J. Avigad, K. Donnelly, D. Gray, and P. Raff, A Formally Verified Proof of the Prime Number Theorem, ACM Transactions on Computational Logic, vol.9, issue.1, 2007.

J. Avigad, E. Dean, and J. Mumma, A formal system for Euclid's elements. The Review of Symbolic Logic, vol.2, pp.700-768, 2009.

K. Appel and W. Haken, Every planar map is four colorable, Bulletin of the American Mathematical Society, vol.82, issue.5, pp.711-712, 1976.

A. Amiot, Éléments de géométrie : rédigés d'après le nouveau programme de l'enseignement scientifique des lycées; suivis d'un Complémentà l'usage desélèves de mathématiques spéciales, C. Delagrave et Cie, p.1870

D. Amira, Sur l'axiome de droites parallèles, vol.32, pp.52-57, 1933.

J. Alama and V. Pambuccian, From absolute to affine geometry in terms of point-reflections, midpoints, and collinearity. Note di Matematica, vol.36, pp.11-24, 2016.

Y. Bertot and G. Allais, Views of PI: Definition and computation, Journal of Formalized Reasoning, vol.7, issue.1, pp.105-129, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074926

F. Bachmann and . Zur-parallelenfrage, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol.27, pp.173-192, 1964.

F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff. Grundlehren der mathematischen Wissenschaften, 1973.

T. John and . Baldwin, Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-DescartesHilbert-Tarski, Philosophia Mathematica, p.31, 2017.

M. Beeson, P. Boutry, and J. Narboux, Herbrand's theorem and non-Euclidean geometry. The Bulletin of Symbolic Logic, vol.21, pp.111-122, 2015.

G. Braun, P. Boutry, and J. Narboux, From Hilbert to Tarski, Proceedings of the Eleventh International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pp.78-96, 2016.
DOI : 10.1007/978-3-642-40672-0_7

URL : https://hal.archives-ouvertes.fr/hal-01332044

P. Boutry, G. Braun, and J. Narboux, Formalization of the Arithmetization of Euclidean Plane Geometry and Applications, Journal of Symbolic Computation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01483457

Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development, Coq'Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer Science. An EATCS Series, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344237

C. Brun, J. Dufourd, and N. Magaud, Formal Proof in Coq and Derivation of a Program in C++ to Compute Convex Hulls, Lecture Notes in Computer Science, vol.7993, pp.71-88, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00916880

. +-16]-thibaut, A. Balabonski, L. Delga, S. Rieg, X. Tixeuil et al., Synchronous Gathering Without Multiplicity Detection: A Certified Algorithm, Stabilization, Safety, and Security of Distributed Systems, pp.7-19, 2016.

M. Beeson, Constructive Geometry, Proceedings of the Tenth Asian Logic Colloquium, pp.19-84, 2008.

M. Beeson, Proof and Computation in Geometry, Automated Deduction in Geometry (ADG 2012, vol.7993, pp.1-30, 2013.

M. Beeson, Proving Hilbert's axioms in Tarski geometry, 2014.

M. Beeson, A Constructive Version of Tarski's Geometry, Annals of Pure and Applied Logic, vol.166, issue.11, pp.1199-1273, 2015.

M. Beeson, Constructive Geometry and the Parallel Postulate, Bulletin of Symbolic Logic, vol.22, issue.1, pp.1-104, 2016.

E. Beltrami, Saggio di interpretazione della geometria Non-Euclidea. s.n, p.1868

J. Bell, Hilbert's ?-operator in intuitionistic type theories, Mathematical Logic Quarterly, vol.39, issue.1, pp.323-337, 1993.

G. Barthe, J. Forest, D. Pichardie, and V. Rusu, Defining and Reasoning About Recursive Functions: A Practical Tool for the Coq Proof Assistant, Functional and Logic Programming (FLOPS'06), 2006.
DOI : 10.1007/11737414_9

URL : https://hal.archives-ouvertes.fr/inria-00564237

P. Boutry, C. Gries, J. Narboux, and P. Schreck, Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq, Journal of Automated Reasoning, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01178236

M. Francisco-botana, P. Hohenwarter, Z. Jani?i?, I. Kovács, T. Petrovi? et al., Automated Theorem Proving in GeoGebra: Current Achievements, Journal of Automated Reasoning, vol.55, issue.1, pp.39-59, 2015.

G. D. Birkhoff, A Set of Postulates for Plane Geometry, Based on Scale and Protractor, Annals of Mathematics, pp.329-345, 1932.

D. Braun and N. Magaud, Des preuves formelles en Coq du théorème de Thalès pour les cercles, Vingt-sixièmes Journées Francophones des Langages Applicatifs, 2015.

D. Braun, N. Magaud, and P. Schreck, An Equivalence Proof Between Rank Theory and Incidence Projective Geometry, Proceedings of ADG 2016, pp.62-77, 2016.

G. Braun and J. Narboux, From Tarski to Hilbert, Automated Deduction in Geometry (ADG 2012, vol.7993, pp.89-109, 2012.
DOI : 10.1007/978-3-642-40672-0_7

URL : https://hal.archives-ouvertes.fr/hal-01332044

G. Braun and J. Narboux, A synthetic proof of Pappus' theorem in Tarski's geometry, Journal of Automated Reasoning, vol.58, issue.2, p.23, 2017.

P. Boutry, J. Narboux, P. Schreck, and G. Braun, A short note about case distinctions in Tarski's geometry, Proceedings of the Tenth International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2014, pp.51-65, 2014.

P. Boutry, J. Narboux, P. Schreck, and G. Braun, Using small scale automation to improve both accessibility and readability of formal proofs in geometry, Proceedings of the Tenth International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2014, pp.31-49, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00989781

M. Beeson, J. Narboux, and F. Wiedijk, Proof-checking Euclid, 2017.
DOI : 10.1007/s10472-018-9606-x

URL : https://hal.archives-ouvertes.fr/hal-01612807

, Scientiam Spatii absolute veram exhibens: a veritate aut falsitate Axiomatis XI. Euclidei (a priori haud unquam decidenda) independentem; adjecta ad casum falsitatis, quadratura circuli geometrica

, Geometrarum in Exercitu Caesareo Regio Austriaco Castrensium Capitaneo, Coll. Ref, p.1832

R. Bonola, Non-Euclidean Geometry: A Critical and Historical Study of Its Development. Courier Corporation, 1955.

S. Boutin, Using reflection to build efficient and certified decision procedures, Theoretical Aspects of Computer Software, vol.1281, pp.515-529, 1997.
DOI : 10.1007/bfb0014565

F. Botana and T. Recio, On the Unavoidable Uncertainty of Truth in Dynamic Geometry Proving, Mathematics in Computer Science, vol.10, issue.1, pp.5-25, 2016.

K. Borsuk and W. Szmielew, Foundations of Geometry, 1960.

S. Buss, Introduction to Proof Theory, Handbook of Proof Theory, vol.137, pp.1-78, 1998.

, Gröbner Bases and Applications, 1998.

M. Beeson and L. Wos, Finding Proofs in Tarskian Geometry, Journal of Automated Reasoning, vol.58, issue.1, pp.181-207, 2017.

F. Cajori, A History of Elementary Mathematics, p.1898

C. Cerroni, Some models of geometries after Hilbert's Grundlagen. Rendiconti di Matematica e delle sue applicazioni, pp.47-66, 2009.

C. Shang, X. Chou, J. Gao, and . Zhang, Machine Proofs in Geometry. World Scientific, 1994.

T. Coquand and G. Huet, The Calculus of Constructions, 1986.
URL : https://hal.archives-ouvertes.fr/inria-00076024

S. Chou, , 1988.

C. Cohen and A. Mahboubi, Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination, Logical Methods in Computer Science, vol.8, issue.1, pp.1-40, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00593738

C. Cohen, Formalized algebraic numbers: construction and first-order theory, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00780446

G. E. and C. , Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition, Lecture Notes In Computer Science, vol.33, pp.134-183, 1975.

H. Coxeter, Non-Euclidean Geometry, 1998.

H. S. Coxeter and . Macdonald, Projective Geometry, 2003.

T. Coquand and C. Paulin, Inductively defined types, COLOG-88, pp.50-66, 1990.

X. Chen and D. Wang, Formalization and Specification of Geometric Knowledge Objects, Mathematics in Computer Science, vol.7, issue.4, pp.439-454, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913400

J. Dufourd and Y. Bertot, Formal study of plane Delaunay triangulation, Interactive Theorem Proving'2010 (In Federative Logic Conference: FLoC'2010), number 6172 in Lecture Notes in Computer Science, pp.211-226, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00504027

C. Dehlinger and J. Dufourd, Formalizing generalized maps in Coq, Theoretical Computer Science, vol.323, issue.1, pp.351-397, 2004.

C. Dehlinger, J. Dufourd, and P. Schreck, Higher-Order Intuitionistic Formalization and Proofs in Hilbert's Elementary Geometry, Automated Deduction in Geometry, vol.2061, pp.306-324, 2000.

M. Dehn, Die Legendre'schen Sätzeüber die Winkelsumme im Dreieck, Mathematische Annalen, vol.53, issue.3, pp.404-439, 1900.

R. L. Descartes and . Géométrie, Open Court, 1637.

. Vincenzo-de-risi, The development of Euclidean axiomatics. Archive for History of Exact Sciences, vol.70, pp.591-676, 2016.

J. Dufourd, A Hypermap Framework for Computer-aided Proofs in Surface Subdivisions: Genus Theorem and Euler's Formula, Proceedings of the 2007 ACM Symposium on Applied Computing, SAC '07, pp.757-761, 2007.

J. Duprat, Fondements de géométrie euclidienne, 2010.

T. L. Euclid, D. Heath, and . Densmore, Euclid's Elements: all thirteen books complete in one volume : the Thomas Little Heath translation, 2002.

J. Fleuriot, Nonstandard Geometric Proofs, Automated Deduction in Geometry (ADG 2000), pp.246-267, 2001.

J. Fleuriot, Theorem Proving in Infinitesimal Geometry, Logic Journal of the IGPL, vol.9, issue.3, pp.447-474, 2001.

J. Fleuriot, Exploring the Foundations of Discrete Analytical Geometry in Isabelle/HOL, Automated Deduction in Geometry (ADG 2010), vol.6877, pp.34-50, 2010.

G. Frege, Begriffsschrift: Eine Der Arithmetische Nachgebildete Formelsprache des Reinen Denkens, p.1879

W. Feit and J. Griggs-thompson, Solvability of groups of odd order, Pacific Journal of Mathematics, vol.13, pp.775-1029, 1963.

L. Fuchs and L. Théry, A Formalization of Grassmann-Cayley Algebra in COQ and Its Application to Theorem Proving in Projective Geometry, Lecture Notes in Computer Science, vol.6877, pp.51-62, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01112822

A. Georges-gonthier, J. Asperti, Y. Avigad, C. Bertot, F. Cohen et al., A Machine-Checked Proof of the Odd Order Theorem, Interactive Theorem Proving, pp.163-179, 2013.

C. Gries, P. Boutry, and J. Narboux, Somme des angles d'un triangle et unicité de la parallèle : une preuve d'équivalence formalisée en Coq, Les vingt-septièmes Journées Francophones des Langages Applicatifs, p.15, 2016.

H. Gelernter, Realization of a geometry theorem machine, Proceedings of the International Conference on Information Processing, pp.273-282, 1959.

G. Gonthier, A. Mahboubi, and E. Tassi, A Small Scale Reflection Extension for the Coq system, 2016.
URL : https://hal.archives-ouvertes.fr/inria-00258384

J. Genevaux, J. Narboux, and P. Schreck, Formalization of Wu's simple method in Coq, CPP 2011 First International Conference on Certified Programs and Proofs, vol.7086, pp.71-86, 2011.

G. Gonthier, A computer-checked proof of the four colour theorem, 2004.

G. Gonthier, The Four Colour Theorem: Engineering of a Formal Proof, Computer Mathematics, p.8

, Revised and Invited Papers, Asian Symposium, p.333, 2007.

B. Grégoire, L. Pottier, and L. Théry, Proof Certificates for Algebra and Their Application to Automatic Geometry Theorem Proving, Automated Deduction in Geometry (ADG 2010), vol.6301, pp.42-59, 2011.

M. Greenberg, Aristotle's axiom in the foundations of geometry, Journal of Geometry, vol.33, issue.1, pp.53-57, 1988.

M. Greenberg, Euclidean and Non-Euclidean Geometries -Development and History, 1993.

M. Greenberg, Old and New Results in the Foundations of Elementary Plane Euclidean and NonEuclidean Geometries, The American Mathematical Monthly, vol.117, issue.3, pp.198-219, 2010.

, Mathematics for high school: Geometry. Teacher's commentary, School Mathematics Study Group, 1961.

F. Guilhot, Formalisation en Coq et visualisation d'un cours de géométrie pour le lycée, Technique et Science Informatiques, vol.24, issue.9, pp.1113-1138, 2005.
DOI : 10.3166/tsi.24.1113-1138

. Haragauri-narayan-gupta, Contributions to the Axiomatic Foundations of Geometry, 1965.

T. Hales, M. Adams, G. Bauer, D. Dang, J. Harrison et al., Forum of Mathematics, Pi, vol.5, p.2, 2017.

T. Hales, The Kepler conjecture, 1998.

T. Hales, The Jordan Curve Theorem, Formally and Informally, The American Mathematical Monthly, vol.114, issue.10, pp.882-894, 2007.
DOI : 10.1080/00029890.2007.11920481

URL : http://www.maths.ed.ac.uk/~aar/papers/hales3.pdf

J. Harrison and . Light, A tutorial introduction, Formal Methods in Computer-Aided Design, pp.265-269, 1996.

R. Hartshorne, Geometry : Euclid and beyond. Undergraduate texts in mathematics, 2000.

J. Harrison, Formalizing an Analytic Proof of the Prime Number Theorem, Journal of Automated Reasoning, vol.43, issue.3, pp.243-261, 2009.

A. Heyting, Axioms for Intuitionistic Plane Affine Geometry, The Axiomatic Method, vol.27, pp.160-173, 1959.
DOI : 10.1016/s0049-237x(09)70026-6

D. Hilbert, Foundations of Geometry (Grundlagen der Geometrie). Open Court, p.1899, 1960.

D. Hilbert, Edition critique avec introduction et compléments préparée par Paul Rossier, 1971.

J. Hurd, First-order proof tactics in higher-order logic theorem provers, Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical Reports, pp.56-68, 2003.

P. Jani?i?, GCLC -A Tool for Constructive Euclidean Geometry and More than That, Proceedings of International Congress of Mathematical Software, vol.4151, pp.58-73, 2006.

P. Jani?i?, J. Narboux, and P. Quaresma, The Area Method : a Recapitulation, Journal of Automated Reasoning, vol.48, issue.4, pp.489-532, 2012.

K. +-09]-gerwin-klein, G. Elphinstone, J. Heiser, D. Andronick, P. Cock et al., seL4: Formal Verification of an OS Kernel, Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP '09, pp.207-220, 2009.

F. Klein, A comparative review of recent researches in geometry, Bulletin of the New York Mathematical Society, vol.2, issue.10, p.1893

F. Klein, Vergleichende Betrachtungenüber neuere geometrische Forschungen, Mathematische Annalen, vol.43, issue.1, pp.63-100, 1893.

. Stephen-cole-kleene, Introduction to Metamathematics. van Nostrand, 1952.

M. Kline, Mathematical Thought From Ancient to Modern Times, vol.3, 1990.

G. Simon-klugel, Conatuum praecipuorum theoriam parallelarum demonstrandi recensio

K. Korovin, iProver -An Instantiation-Based Theorem Prover for First-Order Logic (System Description), Automated Reasoning, 4th International Joint Conference, vol.5195, pp.292-298, 2008.

A. M. Legendre, Réflexions sur différentes manières de démontrer la théorie des parallèles ou le théorème sur la somme des trois angles du triangle. Mémoires de l'Académie royale des sciences de l, pp.367-410, 1833.

G. Wilhelm-leibniz, Nova methodus pro maximis et minimis, itemque tangentibus, qua nec fractas nec irrationales quantitates moratur, et singulare pro illi calculi genus, Acta Eruditorum, pp.467-473, 1684.

G. Wilhelm-leibniz, Dissertation on the Art of Combinations, pp.73-84, 1989.

X. Leroy, Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof Assistant, POPL 2006: 33rd symposium Principles of Programming Languages, pp.42-54, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00000963

S. Lescuyer, First-Class Containers in Coq, Studia Informatica Universalis, vol.9, issue.1, pp.87-127, 2011.

L. Florence-parthenia, History of the Parallel Postulate, The American Mathematical Monthly, vol.27, issue.1, pp.16-23, 1920.

H. Li, Automated Geometric Theorem Proving, Clifford Bracket Algebra and Clifford Expansions, Advances in Analysis and Geometry, pp.345-363, 2004.

N. Lobatschewsky, Geometrische Untersuchungen zur Theorie der Parallellinien, pp.159-223, 1985.

J. F. Lorenz, Grundriss der reinen und angewandten Mathematik. Fleckeisen, p.1791

R. Laubenbacher and D. Pengelley, Mathematical Expeditions: Chronicles by the Explorers, 2013.

A. Mahboubi, Programming and certifying a CAD algorithm in the Coq system, Dagstuhl Seminar 05021 -Mathematics, Algorithms, Proofs, Dagstuhl, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00819492

A. Mahboubi, Contributionsà la certification des calculs dans R : théorie, preuves, programmation, 2006.

T. Makarios, A Mechanical Verification of the Independence of Tarski's Euclidean Axiom, 2012.

G. E. and M. , The Foundations of Geometry and the Non-Euclidean Plane, Undergraduate Texts in Mathematics, 1998.

W. Mccune, OTTER 3.3 Reference Manual, 2003.

N. Magaud, A. Chollet, and L. Fuchs, Formalizing a Discrete Model of the Continuum in Coq from a Discrete Geometry Perspective, Annals of Mathematics and Artificial Intelligence, pp.309-332, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01066671

L. Meikle and J. Fleuriot, Formalizing Hilbert's Grundlagen in Isabelle/Isar, Theorem Proving in Higher Order Logics, pp.319-334, 2003.

L. Meikle and J. Fleuriot, Mechanical Theorem Proving in Computational Geometry, Automated Deduction in Geometry (ADG 2004), pp.1-18, 2006.

P. Martin-löf, Intuitionistic Type Theory. Bibliopolis, Naples, 1984. Notes by Giovanni Sambin

A. Mcfarland, J. Mcfarland, and J. Smith, Alfred Tarski: Early Work in PolandGeometry and Teaching, 2014.

V. Marinkovi?, M. Nikoli?, Z. Kovács, and P. Jani?i?, Portfolio Methods in Theorem Proving for Elementary Geometry, Eleventh International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pp.152-161, 2016.

N. Magaud, J. Narboux, P. Schreck, ;. Xiao-shan, R. Gao et al., Formalizing Desargues' theorem in Coq using ranks in Coq, 24th Annual ACM Symposium on Applied Computing, Proceedings of SAC 2009, pp.1110-1115, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00335719

N. Magaud, J. Narboux, and P. Schreck, A Case Study in Formalizing Projective Geometry in Coq: Desargues Theorem, Computational Geometry, vol.45, issue.8, pp.406-424, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00432810

E. E. Moise, Elementary Geometry from an Advanced Standpoint, 1990.

S. Richard, G. Millman, and . Parker, Geometry: A Metric Approach with Models, 1991.

F. Mari? and D. Petrovi?, Formalizing Complex Plane Geometry, Annals of Mathematics and Artificial Intelligence, vol.74, issue.3-4, pp.271-308, 2015.

P. Mathis and P. Schreck, Determining automatically compass and straightedge unconstructibility in triangles, 7th International Symposium on Symbolic Computation, vol.39, pp.2040-557, 2016.
DOI : 10.29007/b28w

URL : https://easychair.org/publications/open/cw

A. Mahboubi and E. Tassi, Mathematical Components

J. Narboux, A Decision Procedure for Geometry in Coq, Theorem Proving in Higher Order Logics, pp.225-240, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00001035

J. Narboux, A Graphical User Interface for Formal Proofs in Geometry, Journal of Automated Reasoning, vol.39, issue.2, pp.161-180, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00118903

J. Narboux, Mechanical Theorem Proving in Tarski's geometry, Lecture Notes in Computer Science, vol.4869, pp.139-156, 2006.
DOI : 10.1007/978-3-540-77356-6_9

URL : https://hal.inria.fr/inria-00118812/file/adg06-narboux.pdf

J. Narboux and D. Braun, Towards A Certified Version of the Encyclopedia of Triangle Centers, Mathematics in Computer Science, vol.10, issue.1, p.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01174131

I. Newton, The Method of Fluxions and Infinite Series (Translated from the Author's Latin Original by John Colson), Printed by Henry Woodfall; and sold by John Nourse, p.1736

R. Nederpelt, H. Geuvers, and . Vrijer, , 1994.

J. Narboux, P. Jani?i?, and J. Fleuriot, Computer-assisted Theorem Proving in Synthetic Geometry, Handbook of Geometric Constraint Systems Principles, pp.25-73, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01779452

A. Naumowicz and A. Kornilowicz, A Brief Overview of Mizar, Theorem Proving in Higher Order Logics, pp.67-72, 2009.

J. Benjamin and . Northrop, Automated Diagrammatic Reasoning, 2011.

T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof Assistant for Higherorder Logic, 2002.

. Victor-pambuccian, Zum Stufenaufbau des Parallelenaxioms, Journal of Geometry, vol.51, issue.1-2, pp.79-88, 1994.

. Victor-pambuccian, Zur Existenz gleichseitiger Dreiecke in H-Ebenen, Journal of Geometry, vol.63, issue.1, pp.147-153, 1998.

. Victor-pambuccian, Axiomatizations of Hyperbolic and Absolute Geometries, Non-Euclidean Geometries, vol.581, pp.119-153, 2006.

. Victor-pambuccian, On the equivalence of Lagrange's axiom to the Lotschnittaxiom, Journal of Geometry, vol.95, issue.1-2, pp.165-171, 2009.

. Victor-pambuccian, Another Splitting of the Pasch Axiom, Results in Mathematics, vol.59, issue.3, pp.219-227, 2011.

. Victor-pambuccian, Another equivalent of the Lotschnittaxiom. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, vol.58, p.2017

A. Papadopoulos, Master Class in Geometry -Chapter 1 -Notes on non-Euclidean geometry, 2012.

M. Pasch, Vorlesungüber Neuere Geometrie, 1976.

D. Pichardie and Y. Bertot, Formalizing Convex Hull Algorithms, Theorem Proving in Higher Order Logics, pp.346-361, 2001.

M. Pasch and M. Dehn, The first edition (1882), which is the one digitized by Google Scholar, Vorlesungüber Neuere Geometrie. B. G. Teubner, 1926.

F. Puitg and J. Dufourd, Formal specification and theorem proving breakthroughs in geometric modeling, Theorem Proving in Higher Order Logics, pp.401-422, 1998.

W. Pejas, Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie, Mathematische Annalen, vol.143, issue.3, pp.212-235, 1961.

Z. Piesyk, The existential and universal statements on parallels, Série des Sciences Mathématiques, Astronomiques et Physiques, vol.9, pp.761-764, 1961.

D. Petrovi? and F. Mari?, Formalizing Analytic Geometries, Proceedings of the Ninth International Workshop on Automated Deduction in Geometry, 2012.

L. Pottier, Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics, Knowledge Exchange: Automated Provers and Proof Assistants, CEUR Workshop Proceedings, p.418, 2008.

W. Richter, A. Grabowski, and J. Alama, Tarski Geometry Axioms. Formalized Mathematics, vol.22, issue.2, pp.167-176, 2014.

A. Rosenthal, Vereinfachungen des Hilbertschen Systems der Kongruenzaxiome, Mathematische Annalen, vol.71, issue.2, pp.257-274, 1911.

F. Rothe, Several Topics from Geometry. unpublished, 2014.

A. Riazanov, A. Voronkov, and . Vampire, Automated Deduction -CADE-16, pp.292-296, 1999.

G. Saccheri, Euclides ab omni naevo vindicatus, p.1733

E. Schechter, Constructivism is difficult, The American Mathematical Monthly, vol.108, issue.1, pp.50-54, 2001.

S. Schulz, System Description: E 1.8, Proc. of the 19th LPAR, vol.8312, 2013.

P. Scott, Mechanising Hilbert's foundations of geometry in Isabelle, 2008.

P. Scott and J. Fleuriot, An Investigation of Hilbert's Implicit Reasoning through Proof Discovery in Idle-Time, Proceedings of the Seventh International Workshop on Automated Deduction in Geometry, pp.182-200, 2010.

P. Scott and J. Fleuriot, A Combinator Language for Theorem Discovery

J. Campbell, G. D. Carette, P. Reis, and . Sojka, Intelligent Computer Mathematics, vol.7362, pp.371-385, 2012.

T. Skolem, Logisch-kombinatorische Untersuchungenüber die Erfüllbarkeit mathematischer Satzsysteme, nebst einem theoremeüber dichte mengen, Selected papers, pp.103-136, 1970.

S. Stojanovi?durdevi?, J. Narboux, and P. Jani?i?, Automated Generation of Machine Verifiable and Readable Proofs: A Case Study of Tarski's Geometry, Annals of Mathematics and Artificial Intelligence, pp.249-269, 2015.

M. Sozeau and N. Oury, First-Class Type Classes, OtmaneAit Mohamed, César Muñoz, and Sofiène Tahar, vol.5170, pp.278-293, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00628864

M. Sozeau, A New Look at Generalized Rewriting in Type Theory, Journal of Formalized Reasoning, vol.2, issue.1, pp.41-62, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00628904

W. Schwabhäuser, W. Szmielew, and A. Tarski, Metamathematische Methoden in der Geometrie, 1983.

S. Leslaw-wlodzimierz, Independence of Pasch's axiom. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, vol.18, pp.491-498, 1970.

W. Szmielew, Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry, Studies in Logic and the Foundations of Mathematics, vol.27, pp.30-52, 1959.

W. Szmielew, A new analytic approach to hyperbolic geometry, Fundamenta Mathematicae, vol.50, issue.2, pp.129-158, 1961.

A. Tarski, A Decision Method for Elementary Algebra and Geometry, 1951.

A. Tarski, What is Elementary Geometry? In The axiomatic Method, with special reference to Geometry and Physics, pp.16-29, 1959.

, The Coq Development Team. The Coq Proof Assistant, 2018.

A. Tarski and S. Givant, Tarski's System of Geometry, The Bulletin of Symbolic Logic, vol.5, issue.2, pp.175-214, 1999.

L. Théry, A Machine-Checked Implementation of Buchberger's Algorithm, Journal of Automated Reasoning, vol.26, pp.107-137, 2001.

R. J. Trudeau, The Non-Euclidean Revolution, 1986.

R. Taylor and A. Wiles, Ring-Theoretic Properties of Certain Hecke Algebras, Annals of Mathematics, vol.141, issue.3, pp.553-572, 1995.

O. Veblen, A System of Axioms for Geometry, Transactions of the American Mathematical Society, vol.5, pp.343-384, 1904.

P. Jan-von, The Axioms of Constructive Geometry, Annals of Pure and Applied Logic, vol.76, issue.2, pp.169-200, 1995.

P. Jan-von, Terminating Proof Search in Elementary Geometry, Institut Mittag-Leffler, 2000.

D. Wang, , 2001.

F. Wiedijk, The Seventeen Provers of the World: Foreword by Dana Scott, 2006.

A. Wiles, Modular Elliptic Curves and Fermat's Last Theorem, Annals of Mathematics, vol.141, issue.3, pp.443-551, 1995.

W. Wu, On the Decision Problem and the Mechanization of Theorem Proving in Elementary Geometry, Scientia Sinica, vol.21, pp.157-179, 1978.

W. Wu, Mechanical Theorem Proving in Geometries, 1994.

Z. Ye, S. Chou, and X. Gao, de l'histoire de la preuve mathématique, la géométrie a joué un rôle central. En effet, l'un des travaux les plus influents dans l'histoire des mathématiques concerne la géométrie : lesÉléments d'Euclide [EHD02]. Pendant plus de 2000 ans, Proceedings of the Seventh International Workshop on Automated Deduction in Geometry, vol.6301, pp.189-195, 2008.

, Au cours de cette période, troisécoles de pensée différentes ontémergé, l'école dominante ayant opté pour une approche formaliste. La géométrie a joué un rôle important pour cetteécole dominante. En effet, elleétait dirigée par Hilbert qui a commencé son travail sur le formalisme avec la géométrie, De plus, lesÉléments d'Euclide ont introduit l'approche axiomatique qui est encore utilisée aujourd'hui

C. Durant-cette, les mathématiciens ont commencéà faire la distinction entre les théorèmes et les métathéorèmes pour mettre enévidence que ces derniers correspondentà des théorèmes sur les mathématiques elles-mêmes. Tout comme pour les mathématiques, la géométrie a eu une place importante dans l'histoire des métamathématiques. Tout d'abord, le premier jalon dans l'histoire des métamathématiques est probablement la découverte de la géométrie non euclidienne

, Lorsque Descartes a inventé la géométrie analytique [Des25], il a commencéà considérer les carrés de nombres non seulement comme des aires, mais aussi comme des longueurs. Cela l'a amenéà analyser leséquations algébriques de degré supérieurà trois qui, jusque-là, correspondaientà des objets tridimensionnels et etaient considérées comme la dimension la plusélevée de l'univers. Ainsi, l'invention de la géométrie analytique s'est avérée cruciale dans le développement de l'algèbre moderne, mais elle a aussi contribuéà la découverte du calcul infinitésimal. Le calcul infinitésimal aété créé par Leibniz [Lei84] et Newton [New36] pourétudier les quantités en constanteévolution. Par exemple, Newtonétudiait l'évolution de la vitesse de chute d'un objet. Toutefois, avant lui, aucun mathématicien n'était en mesure de déterminer cette vitesse

, Dès le troisième siècle avant J.-C., Euclide a présenté une exposition de la théorie des nombres fondée sur la géométrie, L'algèbre et le calcul infinitésimal ne sont pas les seuls domaines que la géométrie a affecté, 1995.

, L'un des buts d'une preuve mathématique est de garantir la véracité d'unénoncé mathématique

B. Dans-ce, avoir accèsà un mécanisme de vérification d'une preuve mathématique devient très attrayant. Cette idée remonteà Leibniz et son calculus ratiocinator, p.1666

. Néanmoins, Leibnizétait très en avance sur son temps car il a fallu des centaines d'années pour que son rêve devienne réalité. En effet, le premier système formel qui pouvaitêtre mécanisé,à savoir le Begriffsschrift [Fre79] de Frege

, Fait intéressant, les mêmes raisons qui expliquent le rôle central de la géométrie dans l'histoire de la preuve mathématique motiventégalement la preuve assistée par ordinateur en géométrie. En effet, les trois systèmes axiomatiques que nous avons constructives, il est assez facile de négliger les utilisations d'énoncés qui ne sont pas valables en mathématiques constructives

, Dans cette thèse, notre objectif est d'étendre la bibliothèque GeoCoq et d'étudier simultanément ses fondements axiomatiques sous un angle métathéorique. La bibliothèque GeoCoq fournit un développement formel de géométrie basé sur le système axiomatique de Tarski [SST83] qui peut etre trouvé sur le lien suivant : http://geocoq.github.io/GeoCoq/ Le système axiomatique de Tarski aété choisi comme base pour cette bibliothèque pour ses propriétés métamathématiques, les plus pertinentesétant sa cohérence et son complétude [TG99]. Le développement est effectué dans l'assistant de preuve Coq, qui, dans le but d'étudier les propriétés métathéoriques en mathématiques constructives, est commodément basé sur une théorie des types intuitionniste, Avoir un moyen mécanique de garantir qu'une preuve est effectivement constructive peut alorsêtre critique, ce qui rend les assistants de preuve basés sur des théories des types intuitionnistes particulièrement attractifs pour effectuer ce type d'études

, Le lecteur non familier avec Coq ou SSReflect, qui seront utilisés dans cette thèse

, Les principales contributions de cette thèse peuventêtre résumées comme suit : ? Dans le contexte du système axiomatique de Tarski, nous avons défini les opérations arithmétiques géométriquement et formalisé la preuve qu'elles

, ? Nous avons formalisé que les plans cartésiens sur un corps pythagoricien ordonné forment un modèle du système axiomatique de Tarski

, Nous avons formellement prouvé que les axiomes de Tarski pour la géométrie neutre du plan peuventêtre dérivés des axiomes de Hilbert correspondants

, Nous avons utilisé le théorème de Herbrand pour donner une nouvelle preuve que l'axiome des parallèles d'Euclide n'est pas dérivable des autres axiomes de la géométrie euclidienne du premier ordre

, Nous avons prouvé que, en abandonnant le principe du tiers exclu, la décidabilité de l'égalité des points est suffisante pour obtenir l'arithmétisation de la géométrie de Tarski

, ? Nous avons clarifié les conditions sous lesquelles les différentes versions du postulat des parallèles sontéquivalentes et formalisé les preuves d'équivalence

, Nous avons mis en place une tactique réflexive pour générer automatiquement des preuves d'incidenceà des variétés affines

?. Dans-le-contexte-du-système-axiomatique-de-tarski, nous avons introduit les coordonnées cartésiennes et fourni des caractérisations aux principaux prédicats géométriques, ce qui a permis l'utilisation de méthodes algébriques de déduction automatique en géométrie synthétique

, Formalization of the Arithmetization of Euclidean Plane Geometry and Applications, La plupart de ces contributions ont déjàété décrites dans les articles suivants : ? Pierre Boutry, Gabriel Braun, and Julien Narboux, 2018.

P. Gabriel-braun, J. Boutry, and . Narboux, From Hilbert to Tarski, Proceedings of the Eleventh International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pp.78-96, 2016.

M. Beeson, P. Boutry, and J. Narboux, Herbrand's theorem and nonEuclidean geometry, The Bulletin of Symbolic Logic, vol.21, issue.2, pp.111-122, 2015.

P. Boutry, J. Narboux, P. Schreck, and G. Braun, A short note about case distinctions in Tarski's geometry, Proceedings of the Tenth International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2014, pp.51-65, 2014.

P. Boutry, C. Gries, J. Narboux, and P. Schreck, Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq, Journal of Automated Reasoning, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01178236