D. Barh, A. Carpi, M. Verma, and M. Gunduz, Cancer biomarkers: Minimal and noninvasive early diagnosis and prognosis, 2014.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.281-297, 2004.

I. L. Medintz and N. Hildebrandt, FRET-Förster resonance energy transfer: from theory to applications, 2013.

T. W. Gadella, FRET and FLIM techniques, vol.33, 2011.

Y. Wang, P. Howes, E. Kim, C. Spicer, M. Thomas et al., Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot-DNA Conjugates, ACS Appl. Mater. Interfaces, vol.10, issue.34, pp.28290-28300, 2018.

Y. Zhang and C. Zhang, Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor, Anal. Chem, vol.84, issue.1, pp.224-231, 2011.

Z. Jin, D. Geißler, X. Qiu, K. D. Wegner, and N. Hildebrandt, A Rapid, AmplificationFree, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA, Angew. Chem. Int. Ed, vol.54, issue.34, pp.10024-10029, 2015.

X. Qiu and N. Hildebrandt, Rapid and multiplexed microRNA diagnostic assay using quantum dot-based forster resonance energy transfer, ACS Nano, vol.9, issue.8, pp.8449-8457, 2015.
DOI : 10.1021/acsnano.5b03364

S. Li, L. Xu, W. Ma, X. Wu, M. Sun et al., Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles, J. Am. Chem. Soc, vol.138, issue.1, pp.306-312, 2015.

N. Hildebrandt, K. D. Wegner, and W. R. Algar, Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing, Coord. Chem. Rev, vol.273, pp.125-138, 2014.
DOI : 10.1016/j.ccr.2014.01.020

D. Gei?ler and N. Hildebrandt, Lanthanide Complexes in FRET Applications, Curr. Org. Chem, vol.1, issue.1, pp.17-35, 2011.

J. G. Bünzli, Benefiting from the Unique Properties of Lanthanide Ions, Acc. Chem. Res, vol.39, issue.1, pp.53-61, 2006.

B. Hötzer, I. L. Medintz, and N. Hildebrandt, Fluorescence in Nanobiotechnology: Sophisticated Fluorophores for Novel Applications, vol.8, pp.2297-2326, 2012.

K. E. Sapsford, L. Berti, and I. L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations, Angew. Chem. Int. Ed, vol.45, issue.28, pp.4562-4589, 2006.

S. H. Kim, J. R. Gunther, and J. A. Katzenellenbogen, Monitoring a Coordinated Exchange Process in a Four-Component Biological Interaction System: Development of a Time-Resolved Terbium-Based One-Donor/Three-Acceptor Multicolor FRET System, J. Am. Chem. Soc, vol.132, issue.13, pp.4685-4692, 2010.

D. Geißler, S. Stufler, H. Löhmannsröben, and N. Hildebrandt, Six-Color TimeResolved Förster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing, J. Am. Chem. Soc, vol.135, issue.3, pp.1102-1109, 2013.

T. Kippeny, L. A. Swafford, and S. J. Rosenthal, Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box, J. Chem. Educ, vol.79, issue.9, p.1094, 2002.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci, vol.30, issue.1, pp.545-610, 2000.

D. Geißler, S. Linden, K. Liermann, K. D. Wegner, L. J. Charbonnière et al., Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging, Inorg. Chem, vol.53, issue.4, pp.1824-1838, 2014.

N. Hildebrandt, L. J. Charbonnière, M. Beck, R. F. Ziessel, and H. Löhmannsröben, , p.106

, Quantum Dots as Efficient Energy Acceptors in a Time-Resolved Fluoroimmunoassay, Angew. Chem. Int. Ed, vol.44, issue.46, pp.7612-7615, 2005.

, Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework, Biomarkers Definitions Working Group, vol.69, issue.3, pp.89-95, 2001.

W. H. Organization, I. P. , and C. Safety, Biomarkers in risk assessment : validity and validation, 2001.

K. E. Sapsford, ?. Te?ak, M. Kondratovich, M. A. Pacanowski, I. Zineh et al., Biomarkers to improve the benefit/risk balance for approved therapeutics: a US FDA perspective on personalized medicine, Ther. Deliv, vol.1, issue.5, pp.631-641, 2010.

S. Y. Loke and A. S. Lee, The future of blood-based biomarkers for the early detection of breast cancer, Eur. J. Cancer, vol.92, pp.54-68, 2018.

A. N. Bhatt, R. Mathur, A. Farooque, A. Verma, and B. S. Dwarakanath, Cancer biomarkers -current perspectives, Indian J. Med. Res, vol.132, issue.8, pp.129-149, 2010.

R. R. Breaker, Natural and engineered nucleic acids as tools to explore biology, Nature, vol.432, issue.7019, pp.838-845, 2004.
DOI : 10.1038/nature03195

D. S. Wilson and J. W. Szostak, In Vitro Selection of Functional Nucleic Acids, Annu. Rev. Biochem, vol.68, issue.1, pp.611-647, 1999.

H. Liang, X. Zhang, Y. Lv, L. Gong, R. Wang et al., Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy, vol.47, pp.1891-1901, 2014.
DOI : 10.1021/ar500078f

URL : https://doi.org/10.1021/ar500078f

Y. Lee, M. Kim, J. Han, K. H. Yeom, S. Lee et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J, vol.23, issue.20, pp.4051-4060, 2004.
DOI : 10.1038/sj.emboj.7600385

URL : http://emboj.embopress.org/content/embojnl/23/20/4051.full.pdf

A. M. Denli, B. B. Tops, R. H. Plasterk, R. F. Ketting, and G. J. Hannon, Processing of primary microRNAs by the Microprocessor complex, Nature, vol.432, issue.7014, pp.231-235, 2004.

T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy, J. Norman, N. Cooch et al., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing, Nature, vol.436, issue.7051, pp.740-744, 2005.
DOI : 10.1038/nature03868

URL : http://europepmc.org/articles/pmc2944926?pdf=render

A. A. Moustafa, H. Kim, R. S. Albeltagy, O. H. El-habit, and A. B. Mageed, MicroRNAs in prostate cancer: From function to biomarker discovery, Exp. Biol. Med, vol.243, issue.10, pp.817-825, 2018.

X. Jin, Y. Chen, H. Chen, S. Fei, and D. Chen, Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing, Clin. Cancer Res, vol.23, issue.17, pp.5311-5319, 2017.

V. Y. Shin, J. M. Siu, I. Cheuk, E. K. Ng, and A. Kwong, Circulating cell-free miRNAs as biomarker for triple-negative breast cancer, Br. J. Cancer, vol.112, issue.11, pp.1751-1759, 2015.

K. Kai, R. L. Dittmar, and S. Sen, Secretory microRNAs as biomarkers of cancer, Semin. Cell Dev. Biol, vol.78, pp.22-36, 2018.

T. Kilic, A. Erdem, M. Ozsoz, and S. Carrara, microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques, Biosens. Bioelectron, vol.99, pp.525-546, 2018.
DOI : 10.1016/j.bios.2017.08.007

D. L. Andrews, A unified theory of radiative and radiationless molecular energy transfer, Chem. Phys, vol.135, issue.2, pp.195-201, 1989.

L. Stryer and R. P. Haugland, Energy transfer: a spectroscopic ruler, Proc. Natl. Acad. Sci. U. S. A, vol.58, issue.2, pp.719-726, 1967.

B. Schuler and W. A. Eaton, Protein folding studied by single-molecule FRET, Curr. Opin. Struct. Biol, vol.18, issue.1, pp.16-26, 2008.

B. Prevo and E. J. Peterman, Förster resonance energy transfer and kinesin motor proteins, Chem. Soc. Rev, vol.43, issue.4, pp.1144-1155, 2014.

J. Szöllosi, S. Damjanovich, and L. Mátyus, Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research, Cytometry, vol.34, issue.4, pp.159-179, 1998.

E. Hirata and E. Kiyokawa, Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy, Biophys. J, vol.111, issue.6, pp.1103-1111, 2016.

S. Hussain, D. Dey, S. Chakraborty, J. Saha, and A. D. Roy, Fluorescence Resonance Energy Transfer (FRET) sensor, Sci. Letts. J, vol.4, issue.19, 2015.

R. B. Sekar and A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations, J. Cell Biol, vol.160, issue.5, pp.629-633, 2003.

T. F?rster, Transfer mechanisms of electronic excitation, Discuss. Faraday Soc, vol.27, pp.7-17, 1959.

J. R. Lakowicz, Principles of fluorescence spectroscopy, 2006.

T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys, vol.437, issue.1, pp.55-75, 1948.

H. C. Ishikawa-ankerhold, R. Ankerhold, and G. P. Drummen, Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM, Molecules, vol.17, issue.4, pp.4047-4132, 2012.

D. Shrestha, A. Jenei, P. Nagy, G. Vereb, and J. Szöll?si, Understanding FRET as a Research Tool for Cellular Studies, Int. J. Mol. Sci, vol.16, issue.12, pp.6718-6756, 2015.

M. Cebecauer, M. Spitaler, A. Sergé, and A. I. Magee, Signalling complexes and clusters: functional advantages and methodological hurdles, J. Cell Sci, vol.123, pp.309-320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502965

A. Miermont, F. Waharte, S. Hu, M. N. Mcclean, S. Bottani et al., Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding, Proc. Natl. Acad. Sci, vol.110, pp.5725-5730, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817393

E. A. Jares-erijman and T. M. Jovin, FRET imaging, Nat. Biotechnol, vol.21, issue.11, pp.1387-1395, 2003.

E. A. Jares-erijman and T. M. Jovin, Imaging molecular interactions in living cells by FRET microscopy, Curr. Opin. Chem. Biol, vol.10, issue.5, pp.409-416, 2006.

A. P. Bogiel and T. W. Gadella, FRET microscopy: from principle to routine technology in cell biology, J. Microsc, vol.241, issue.2, pp.111-118, 2011.

D. M. Charron and G. Zheng, Nanomedicine development guided by FRET imaging, Nano Today, vol.18, pp.124-136, 2018.

R. Roy, S. Hohng, and T. Ha, A practical guide to single-molecule FRET, Nat. Methods, vol.5, issue.6, pp.507-516, 2008.

P. Maleki, J. B. Budhathoki, W. A. Roy, and H. Balci, A practical guide to studying Gquadruplex structures using single-molecule FRET, Mol. Genet. Genomics, vol.292, issue.3, pp.483-498, 2017.

B. Schuler, Single-molecule FRET of protein structure and dynamics -a primer, J. Nanobiotechnology, vol.11, issue.1, p.2, 2013.

E. Lerner, T. Cordes, A. Ingargiola, Y. Alhadid, S. Chung et al., Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer, Science, vol.359, issue.6373, p.1133, 2018.

S. Spindel, J. Granek, and K. E. Sapsford, Vitro FRET Sensing, Diagnostics, and Personalized Medicine" in FRET -Förster Resonance Energy Transfer, pp.269-322, 2013.

S. Zadran, S. Standley, K. Wong, E. Otiniano, A. Amighi et al., Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics, Appl. Microbiol. Biotechnol, vol.96, issue.4, pp.895-902, 2012.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, Point of Care Diagnostics: Status and Future, Anal. Chem, vol.84, issue.2, pp.487-515, 2012.

G. P. Patrinos and W. Ansorge, Molecular diagnostics, p.109, 2010.

W. W. Grody, Molecular diagnostics : techniques and applications for the clinical laboratory, 2010.

L. Buckingham, Molecular diagnostics : fundamentals, methods, and clinical applications. F.A. Davis Company, 2012.

W. R. Algar and U. J. Krull, Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET), Anal. Chim. Acta, vol.581, issue.2, pp.193-201, 2007.

V. V. Didenko, DNA Probes Using Fluorescence Resonance Energy Transfer (FRET): Designs and Applications, Biotechniques, vol.31, issue.5, pp.1106-1121, 2001.

E. Navarro, G. Serrano-heras, M. J. Castaño, and J. Solera, Real-time PCR detection chemistry, Clin. Chim. Acta, vol.439, pp.231-250, 2015.

S. Shionoya, W. M. Yen, and H. Yamamoto, Phosphor handbook, 2007.

J. Kido and Y. Okamoto, Organo lanthanide metal complexes for electroluminescent materials, Chem. Rev, vol.102, issue.6, pp.2357-2368, 2002.

D. Tu, W. Zheng, Y. Liu, H. Zhu, and X. Chen, Luminescent biodetection based on lanthanide-doped inorganic nanoprobes, Coord. Chem. Rev, vol.273, pp.13-29, 2014.

M. C. Heffern, L. M. Matosziuk, and T. J. Meade, Lanthanide Probes for Bioresponsive Imaging, Chem. Rev, vol.114, issue.8, pp.4496-4539, 2014.

D. Kim, N. Lee, Y. Park, and T. Hyeon, Recent Advances in Inorganic NanoparticleBased NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles, Bioconjug. Chem, vol.28, issue.1, pp.115-123, 2017.

C. Zhao, Y. Sun, J. Ren, and X. Qu, Recent progress in lanthanide complexes for DNA sensing and targeting specific DNA structures, Inorganica Chim. Acta, vol.452, pp.50-61, 2016.

J. Vuojola and T. Soukka, Luminescent lanthanide reporters: new concepts for use in bioanalytical applications, Methods Appl. Fluoresc, vol.2, issue.1, p.12001, 2014.

Y. Liu, D. Tu, H. Zhu, and X. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications, Chem. Soc. Rev, vol.42, issue.16, p.6924, 2013.

J. G. Bu?nzli, Lanthanide Luminescence for Biomedical Analyses and Imaging, Chem. Rev, vol.110, issue.5, pp.2729-2755, 2010.

Y. Zhang, W. Wei, G. K. Das, and T. T. Yang-tan, Engineering lanthanide-based materials for nanomedicine, J. Photochem. Photobiol. C Photochem. Rev, vol.20, pp.71-96, 2014.

J. G. Bu?nzli and C. Piguet, Taking advantage of luminescent lanthanide ions, Chem, p.110

, Soc. Rev, vol.34, issue.12, p.1048, 2005.

K. N. Allen and B. Imperiali, Lanthanide-tagged proteins-an illuminating partnership, Curr. Opin. Chem. Biol, vol.14, issue.2, pp.247-254, 2010.
DOI : 10.1016/j.cbpa.2010.01.004

G. Blasse, The influence of charge-transfer and rydberg states on the luminescence properties of lanthanides and actinides, Spectra and Chemical Interactions, pp.43-79, 1976.

P. Dorenbos, The 4fn?4fn?15d transitions of the trivalent lanthanides in halogenides and chalcogenide, J. Lumin, vol.91, issue.1, pp.91-106, 2000.

S. A. Cotton, Lanthanides and actinides, 1991.

K. A. Gschneidner, L. Eyring, and G. H. Lander, Handbook on the physics and chemistry of rare earths, vol.32, 2001.

M. H. Werts, Making sense of lanthanide luminescence, Sci. Prog, vol.88, issue.2, pp.101-131, 2005.
DOI : 10.3184/003685005783238435

URL : https://hal.archives-ouvertes.fr/hal-01206350

A. Thibon and V. C. Pierre, Principles of responsive lanthanide-based luminescent probes for cellular imaging, Anal. Bioanal. Chem, vol.394, issue.1, pp.107-120, 2009.

R. D. Teo, J. Termini, and H. B. Gray, Lanthanides: Applications in Cancer Diagnosis and Therapy, J. Med. Chem, vol.59, issue.13, pp.6012-6024, 2016.
DOI : 10.1021/acs.jmedchem.5b01975

URL : https://authors.library.caltech.edu/64631/2/nihms-760310.pdf

Y. Min, J. Li, F. Liu, P. Padmanabhan, E. K. Yeow et al., Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped UpconversionLuminescent Nanomaterials, Nanomaterials, vol.4, issue.1, pp.129-154, 2014.

H. U. Rashid, M. A. Martines, J. Jorge, P. M. Moraes, M. N. Umar et al., Cyclen-based Gd 3+ complexes as MRI contrast agents: Relaxivity enhancement and ligand design, Bioorg. Med. Chem, vol.24, issue.22, pp.5663-5684, 2016.
DOI : 10.1016/j.bmc.2016.09.069

S. Lacerda and É. Tóth, Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics, Chem. Med. Chem, vol.12, issue.12, pp.883-894, 2017.
DOI : 10.1002/cmdc.201700210

URL : https://hal.archives-ouvertes.fr/hal-01618333

T. Zhang, X. Zhu, W. K. Wong, H. L. Tam, and W. Y. Wong, Light-Harvesting Ytterbium(III)-Porphyrinate-BODIPY Conjugates: Synthesis, Excitation-Energy Transfer, and Two-Photon-Induced Near-Infrared-Emission Studies, Chem. Eur. J, vol.19, issue.2, pp.739-748, 2013.
DOI : 10.1002/chem.201202613

I. Hemmilä and V. Laitala, Progress in Lanthanides as Luminescent Probes, J. Fluoresc, vol.15, issue.4, pp.529-542, 2005.

C. Lin, Y. Liu, and H. Yan, Self-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing, Nano Lett, vol.7, issue.2, pp.507-512, 2007.
DOI : 10.1021/nl062998n

URL : http://europepmc.org/articles/pmc1963466?pdf=render

K. Faulds, R. Jarvis, W. E. Smith, D. Graham, and R. Goodacre, Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering 111 (SERRS), Analyst, vol.133, issue.11, p.1505, 2008.

D. Cai, K. B. Cohen, T. Luo, J. W. Lichtman, and J. R. Sanes, Improved tools for the Brainbow toolbox, Nat. Methods, vol.10, issue.6, pp.540-547, 2013.
DOI : 10.1038/nmeth.2450

URL : http://europepmc.org/articles/pmc3713494?pdf=render

I. L. Medintz, D. Farrell, K. Susumu, S. A. Trammell, and J. R. Deschamps, Multiplex Charge-Transfer Interactions between Quantum Dots and Peptide-Bridged Ruthenium Complexes, Anal. Chem, vol.81, issue.12, pp.4831-4839, 2009.
DOI : 10.1021/ac900412j

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H. Löhmannsröben et al., Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics, Angew. Chem. Int. Ed, vol.49, issue.8, pp.1396-1401, 2010.

A. Waggoner, Optical probes of membrane potential, J. Membr. Biol, vol.27, issue.1, pp.317-334, 1976.
DOI : 10.1007/bf01869143

A. J. Koning, P. Y. Lum, J. M. Williams, and R. Wright, DiOC6 staining reveals organelle structure and dynamics in living yeast cells, vol.25, pp.111-128, 1993.
DOI : 10.1002/cm.970250202

M. Terasaki, J. Song, J. R. Wong, M. J. Weiss, and L. B. Chen, Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes, Cell, vol.38, issue.1, pp.101-108, 1984.

M. G. Honig and R. I. Hume, Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing, Trends Neurosci, vol.12, issue.9, pp.333-335, 1989.
DOI : 10.1016/0166-2236(89)90040-4

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/28179/1/0000631.pdf

H. Y. Yang, Y. Fu, M. Jang, Y. Li, and J. H. Lee, Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors, ACS Appl. Mater. Interfaces, vol.8, issue.51, pp.35021-35032, 2016.
DOI : 10.1021/acsami.6b12877

P. J. Cywi?ski, L. Olejko, and H. Löhmannsröben, A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements, Anal. Chim. Acta, vol.887, pp.209-215, 2015.

Y. Choi, L. Kotthoff, L. Olejko, U. Resch-genger, and I. Bald, DNA Origami-Based Förster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors, ACS Appl. Mater. Interfaces, vol.10, issue.27, pp.23295-23302, 2018.
DOI : 10.1021/acsami.8b03585

A. Striolo, J. Ward, J. M. Prausnitz, W. J. Parak, and D. Zanchet, Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals, J. Phys. Chem. B, vol.106, issue.21, pp.5500-5505, 2002.

J. Weng and J. Ren, Luminescent quantum dots: a very attractive and promising tool in biomedicine, Curr. Med. Chem, vol.13, issue.8, pp.897-909, 2006.

B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, and H. Mattoussi, CdSe)ZnS Core?Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B, vol.101, issue.46, pp.9463-9475, 1997.

A. J. Sutherland, Quantum dots as luminescent probes in biological systems, Curr, vol.112
DOI : 10.1016/s1359-0286(02)00081-5

, Opin. Solid State Mater. Sci, vol.6, issue.4, pp.365-370, 2002.

P. Zrazhevskiy, M. Sena, and X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery, Chem. Soc. Rev, vol.39, issue.11, p.4326, 2010.
DOI : 10.1039/b915139g

URL : http://europepmc.org/articles/pmc3212036?pdf=render

E. Samimi, P. Karami, and M. J. Ahar, A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic, J. Nanomedicine Res, vol.5, issue.3, p.1, 2017.

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, and B. J. Casey, Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology, Chem. Rev, vol.113, issue.3, pp.1904-2074, 2013.
DOI : 10.1021/cr300143v

J. B. Canosa, M. Wu, K. Susumu, E. Petryayeva, and T. L. Jennings, Recent progress in the bioconjugation of quantum dots, Coord. Chem. Rev, vol.263, pp.101-137, 2014.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater, vol.4, issue.6, pp.435-446, 2005.
DOI : 10.1038/nmat1390

A. Foubert, N. V. Beloglazova, A. Rajkovic, B. Sas, and A. Madder, Bioconjugation of quantum dots: Review & impact on future application, TrAC Trends Anal. Chem, vol.83, pp.31-48, 2016.

Y. Xing, Q. Chaudry, C. Shen, K. Y. Kong, and H. E. Zhau, Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry, Nat. Protoc, vol.2, issue.5, pp.1152-1165, 2007.
DOI : 10.1038/nprot.2007.107

URL : https://www.nature.com/articles/nprot.2007.107.pdf

A. Schroedter, H. Weller, R. Eritja, W. E. Ford, and J. M. Wessels, Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals, Nano Lett, vol.2, issue.12, pp.1363-1367, 2002.
DOI : 10.1021/nl025779k

H. Akkiraju, J. Bonor, and A. Nohe, Development of Fluorescently Tagged BMP-2 analog, Biophys. J, vol.100, issue.3, p.137, 2011.

X. Wei, Y. Wang, and Y. Bai, Conjugation behaviours of CdTe quantum dots and antibody by a novel immunochromatographic method, IET Nanobiotechnology, vol.5, issue.1, pp.14-19, 2011.

A. Hoshino, K. Fujioka, T. Oku, S. Nakamura, and M. Suga, Quantum dots targeted to the assigned organelle in living cells, Microbiol. Immunol, vol.48, issue.12, pp.985-994, 2004.

J. M. Slocik, J. T. Moore, and D. W. Wright, Monoclonal Antibody Recognition of Histidine-Rich Peptide Encapsulated Nanoclusters, Nano Lett, vol.2, issue.3, pp.1169-173, 2002.

K. Boeneman, J. R. Deschamps, S. B. White, D. E. Prasuhn, and J. B. Canosa, Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture, ACS Nano, vol.113, issue.12, pp.7253-7266, 2010.
DOI : 10.1021/nn1021346

URL : http://europepmc.org/articles/pmc4383186?pdf=render

E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, and J. M. Mauro, Avidin: A Natural Bridge for Quantum Dot-Antibody Conjugates, J. Am. Chem. Soc, vol.124, issue.22, pp.6378-6382, 2002.
DOI : 10.1021/ja0125570

J. Zhou, Y. Yang, and C. Zhang, Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application, Chem. Rev, vol.115, issue.21, pp.11669-11717, 2015.
DOI : 10.1021/acs.chemrev.5b00049

E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon et al., Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between Quantum Dots and Gold Nanoparticles, J. Am. Chem. Soc, vol.127, issue.10, pp.3270-3271, 2005.

M. Wu, E. Petryayeva, and W. R. Algar, Quantum Dot-Based Concentric FRET Configuration for the Parallel Detection of Protease Activity and Concentration, Anal. Chem, vol.86, issue.22, pp.11181-11188, 2014.

M. K. So, C. Xu, A. M. Loening, S. S. Gambhir, and J. Rao, Self-illuminating quantum dot conjugates for in vivo imaging, Nat. Biotechnol, vol.24, issue.3, pp.339-343, 2006.

R. Freeman, X. Liu, and I. Willner, Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and AptamerSubstrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots, J. Am. Chem. Soc, vol.133, issue.30, pp.11597-11604, 2011.

N. Hildebrandt, L. J. Charbonnière, and H. Löhmannsröben, Time-resolved analysis of a highly sensitive Förster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors, J. Biomed. Biotechnol, issue.7, p.79169, 2007.

S. Bhuckory, O. Lefebvre, X. Qiu, K. D. Wegner, and N. Hildebrandt, Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen, Sensors (Basel), vol.16, issue.2, p.197, 2016.
DOI : 10.3390/s16020197

URL : https://www.mdpi.com/1424-8220/16/2/197/pdf

W. R. Algar, D. Wegner, A. L. Huston, J. B. Canosa, and M. H. Stewart, Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing, J. Am. Chem. Soc, vol.134, issue.3, pp.1876-1891, 2012.
DOI : 10.1021/ja210162f

S. Su, J. Fan, B. Xue, L. Yuwen, and X. Liu, DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA, ACS Appl. Mater. Interfaces, vol.6, issue.2, pp.1152-1157, 2014.

D. J. Huang, Z. M. Huang, H. Y. Xiao, Z. K. Wu, L. J. Tang et al., Protein scaffolded DNA tetrads enable efficient delivery and ultrasensitive imaging of miRNA through crosslinking hybridization chain reaction, Chem. Sci, vol.9, issue.21, pp.4892-4897, 2018.

X. Qiu, J. Guo, Z. Jin, A. Petreto, I. L. Medintz et al., Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning, Small, vol.13, issue.25, p.1700332, 2017.
DOI : 10.1002/smll.201701625

URL : https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201701625

Y. Zhao, F. Chen, Q. Li, L. Wang, and C. Fan, Isothermal Amplification of Nucleic Acids, Chem. Rev, vol.115, issue.22, pp.12491-12545, 2015.

M. Baker, MicroRNA profiling: separating signal from noise, Nat. Methods, vol.7, issue.9, pp.687-692, 2010.
DOI : 10.1038/nmeth0910-687

S. Ro, C. Park, J. Jin, K. M. Sanders, and W. Yan, A PCR-based method for detection and quantification of small RNAs, Biochem. Biophys. Res. Commun, vol.351, issue.3, pp.756-763, 2006.

Y. Zhou, Q. Huang, J. Gao, J. Lu, X. Shen et al., A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection, Nucleic Acids Res, vol.38, issue.15, p.156, 2010.

R. Deng, L. Tang, Q. Tian, Y. Wang, L. Lin et al., Toehold-initiated Rolling Circle Amplification for Visualizing Individual MicroRNAs In Situ in Single Cells, Angew. Chem. Int. Ed, vol.53, issue.9, pp.2389-2393, 2014.

W. Dai, H. Dong, K. Guo, and X. Zhang, Near-infrared triggered strand displacement amplification for MicroRNA quantitative detection in single living cells, Chem. Sci, vol.9, issue.7, pp.1753-1759, 2018.

X. Qu, H. Jin, Y. Liu, and Q. Sun, Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs, Anal. Chem, vol.90, issue.5, pp.3482-3489, 2018.

H. Jia, Z. Li, C. Liu, and Y. Cheng, Ultrasensitive Detection of microRNAs by Exponential Isothermal Amplification, Angew. Chem. Int. Ed, vol.49, issue.32, pp.5498-5501, 2010.

R. M. Dirks and N. A. Pierce, From The Cover: Triggered amplification by hybridization chain reaction, Proc. Natl. Acad. Sci, vol.101, pp.15275-15278, 2004.

Y. Chen, L. Chen, Y. Ou, L. Guo, and F. Fu, Enzyme-free detection of DNA based on hybridization chain reaction amplification and fluorescence resonance energy transfer, Sensors Actuators B Chem, vol.233, pp.691-696, 2016.

X. M. Shi, G. C. Fan, X. Tang, Q. Shen, and J. J. Zhu, Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating ?-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis, Biosens. Bioelectron, vol.109, pp.190-196, 2018.

L. Yang, C. Liu, W. Ren, and Z. Li, Graphene Surface-Anchored Fluorescence Sensor for Sensitive Detection of MicroRNA Coupled with Enzyme-Free Signal Amplification of Hybridization Chain Reaction, ACS Appl. Mater. Interfaces, vol.4, issue.12, pp.6450-6453, 2012.

Z. Ge, M. Lin, P. Wang, H. Pei, and J. Yan, Hybridization Chain Reaction Amplification of MicroRNA Detection with a Tetrahedral DNA Nanostructure-Based Electrochemical Biosensor, Anal. Chem, vol.86, issue.4, pp.2124-2130, 2014.

H. M. Choi, J. Y. Chang, L. A. Trinh, J. E. Padilla, S. E. Fraser et al., Programmable in situ amplification for multiplexed imaging of mRNA expression, Nat. Biotechnol, vol.28, issue.11, pp.1208-1212, 2010.

J. Huang, H. Wang, X. Yang, K. Quan, and Y. Yang, Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA, Chem. Sci, vol.7, issue.6, pp.3829-3835, 2016.

X. Li, J. Li, C. Zhu, X. Zhang, and J. Chen, A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G-quadruplex DNAzyme, Talanta, vol.182, pp.292-298, 2018.

R. Lin, Q. Feng, P. Li, P. Zhou, and R. Wangm, A hybridization-chain-reaction-based method for amplifying immunosignals, Nat. Methods, vol.15, issue.4, pp.275-278, 2018.

G. Zhu, S. Zhang, E. Song, J. Zheng, and R. Hu, Building Fluorescent DNA Nanodevices on Target Living Cell Surfaces, Angew. Chem. Int. Ed, vol.52, issue.21, pp.5490-5496, 2013.

K. Quan, J. Li, J. Wang, N. Xie, and Q. Wei, Dual-microRNA-controlled doubleamplified cascaded logic DNA circuits for accurate discrimination of cell subtypes, Chem. Sci, vol.10, issue.5, pp.1442-1449, 2019.

H. Wang, C. Li, X. Liu, X. Zhou, and F. Wang, Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging, Chem. Sci, vol.9, issue.26, pp.5842-5849, 2018.

B. Xie, Q. Ding, H. Han, and D. Wu, miRCancer: a microRNA-cancer association database constructed by text mining on literature, Bioinformatics, vol.29, issue.5, pp.638-644, 2013.

X. Yang, Y. Yu, and Z. Gao, A Highly Sensitive Plasmonic DNA Assay Based on Triangular Silver Nanoprism Etching, ACS Nano, vol.8, issue.5, pp.4902-4907, 2014.

M. Mandelkern, J. G. Elias, D. Eden, and D. M. Crothers, The dimensions of DNA in solution, J. Mol. Biol, vol.152, issue.1, pp.153-161, 1981.

M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, B. P. Chowdhary et al., Padlock probes: circularizing oligonucleotides for localized DNA detection, Science, vol.265, issue.5181, p.116, 1994.
DOI : 10.1126/science.7522346

M. Nilsson, G. Barbany, D. Antson, K. Gertow, and U. Landegren, Enhanced detection and distinction of RNA by enzymatic probe ligation, Nat. Biotechnol, vol.18, issue.7, pp.791-793, 2000.

C. Larsson, J. Koch, A. Nygren, G. Janssen, and A. K. Raap, In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes, Nat. Methods, vol.1, issue.3, pp.227-232, 2004.

D. C. Thomas, G. A. Nardone, and S. K. Randall, Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction, Arch. Pathol. Lab. Med, vol.123, issue.12, pp.1170-1176, 1999.

S. P. Jonstrup, J. Koch, and J. Kjems, A microRNA detection system based on padlock probes and rolling circle amplification, RNA, vol.12, issue.9, pp.1747-1752, 2006.
DOI : 10.1261/rna.110706

URL : http://rnajournal.cshlp.org/content/12/9/1747.full.pdf

H. Schwarzenbach, K. M. Langosch, B. Steinbach, V. Müller, and K. Pantel, Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients, Breast Cancer Res. Treat, vol.134, issue.3, pp.933-941, 2012.

S. Li, Q. Qiang, H. Shana, M. Shi, and G. Gan, MiR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells, Life Sci, vol.147, pp.143-152, 2016.

F. M. Aguilar, C. M. Aguirre, J. C. Rocha, J. A. Chávez, and V. Trevino, Differential expression of miR-21, miR-125b and miR-191 in breast cancer tissue, Asia. Pac. J. Clin. Oncol, vol.9, issue.1, pp.53-59, 2013.

K. M. Salah, M. M. Zourob, F. Mouffouk, S. A. Alrokayan, M. A. Alaamery et al., DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease, Sensors (Basel), vol.15, issue.6, pp.14539-14568, 2015.

A. Kundu, S. Nandi, and A. K. Nandi, Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications, Prog. Mater. Sci, vol.88, pp.136-185, 2017.
DOI : 10.1016/j.pmatsci.2017.04.001

J. Shi, F. Tian, J. Lyu, and M. Yang, Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications, J. Mater. Chem. B, vol.3, issue.35, pp.6989-7005, 2015.
DOI : 10.1039/c5tb00885a

A. Banerjee, T. Pons, N. Lequeux, and B. Dubertret, Quantum dots-DNA bioconjugates: synthesis to applications, Interface Focus, vol.6, issue.6, p.20160064, 2016.

C. Zhang, C. Ding, D. Xiang, L. Li, and X. Ji, DNA Functionalized Fluorescent Quantum Dots for Bioanalytical Applications, Chinese J. Chem, vol.34, issue.3, pp.317-325, 2016.

G. Wang, Z. Li, and N. Ma, Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors, ACS Chem. Biol, vol.13, issue.7, pp.1705-1713, 2018.
DOI : 10.1021/acschembio.7b00887

M. Stanisavljevic, S. Krizkova, M. Vaculovicova, R. Kizek, and V. Adam, Quantum 117 dots-fluorescence resonance energy transfer-based nanosensors and their application, Biosens. Bioelectron, vol.74, pp.562-574, 2015.
DOI : 10.1016/j.bios.2015.06.076

M. Santos and N. Hildebrandt, Recent developments in lanthanide-toquantum dot FRET using time-gated fluorescence detection and photon upconversion, TrAC Trends Anal. Chem, vol.84, pp.60-71, 2016.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, and D. Liu, Tunable lifetime multiplexing using luminescent nanocrystals, Nat. Photonics, vol.8, issue.1, pp.32-36, 2014.
DOI : 10.1038/nphoton.2013.322

URL : https://digital.library.adelaide.edu.au/dspace/bitstream/2440/101141/3/hdl_101141.pdf

Y. Lu, J. Lu, J. Zhao, J. Cusido, and F. M. Raymo, On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays, Nat. Commun, vol.5, issue.1, p.3741, 2014.

K. Hoffmann, T. Behnke, D. Drescher, J. Kneipp, and U. R. Genger, Near-InfraredEmitting Nanoparticles for Lifetime-Based Multiplexed Analysis and Imaging of Living Cells, ACS Nano, vol.7, issue.8, pp.6674-6684, 2013.

K. L. Hess, E. Oh, L. H. Tostanoski, J. I. Andorko, and K. Susumu, Engineering Immunological Tolerance Using Quantum Dots to Tune the Density of Self-Antigen Display, Adv. Funct. Mater, vol.27, issue.22, p.1700290, 2017.

J. C. Breger, M. Muttenthaler, J. B. Delehanty, D. A. Thompson, and E. Oh, Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery, Nanoscale, vol.9, issue.29, pp.10447-10464, 2017.
DOI : 10.1039/c7nr03362a

B. C. Mei, K. Susumu, I. L. Medintz, J. B. Delehanty, T. J. Mountziaris et al., Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability, J. Mater. Chem, vol.18, issue.41, p.4949, 2008.
DOI : 10.1039/b810488c

Y. T. Wu, X. Qiu, S. Lindbo, K. Susumu, and I. L. Medintz, Quantum Dot-Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins, Small, vol.14, issue.35, p.1802266, 2018.
DOI : 10.1002/smll.201802266

W. R. Algar, M. G. Ancona, A. P. Malanoski, K. Susumu, and I. L. Medintz, Assembly of a Concentric Förster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing, ACS Nano, vol.6, issue.12, pp.11044-11058, 2012.

C. Chen, P. Zhang, G. Gao, D. Gao, and Y. Yang, Near-Infrared-Emitting TwoDimensional Codes Based on Lattice-Strained Core/(Doped) Shell Quantum Dots with Long Fluorescence Lifetime, Adv. Mater, vol.26, issue.36, pp.6313-6317, 2014.

B. C. Mei, K. Susumu, I. L. Medintz, and H. Mattoussi, Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media, Nat. Protoc, vol.4, issue.3, pp.412-423, 2009.

, Synthèse en français

, Le cancer tue des millions de personnes chaque année, c'est l'un des plus grands problèmes de santé des êtres humains. Le prix Nobel de physiologie ou médecine 2018 a été décerné à James P. Allison et Tasuku Honjo pour leur découverte du traitement du cancer par inhibition de la régulation immunitaire négative. Si le cancer peut être diagnostiqué à un stade précoce, les chances de succès des traitements seront considérablement augmentées, Reconnaître les signes avant-coureurs possibles du cancer et agir rapidement mène à un diagnostic précoce

, L'une des meilleures façons de diagnostiquer précocement un cancer est d'identifier des biomarqueurs sériques ou tissulaires. Les biomarqueurs du cancer peuvent être de l'ADN

, Les microARNs (miARNs), qui sont de petits (~22bp) ARNs non codants hautement conservés et exprimés de façon endogène dans chaque type cellulaire, ont émergé en tant que nouveau type de biomarqueur spécifique du cancer [2]. Ils fonctionnent comme des régulateurs de l'expression génétique en réduisant au silence des transcrits cibles par complémentation des paires de bases. Les miARNs peuvent être sécrétés par les cellules et se trouvent dans une variété de fluides corporels comme le sang, la salive et l'urine, où ils sont quantifiables et extrêmement stables, Ces biomarqueurs sont produits par la tumeur elle-même ou par d'autres tissus et peuvent se trouver dans divers fluides, tissus et lignées cellulaires, en réponse à la présence du cancer ou d'affections connexes