K. Strimbu and J. A. Tavel, What are Biomarkers?, Curr Opin HIV AIDS, vol.5, issue.6, pp.463-466, 2011.
DOI : 10.1097/coh.0b013e32833ed177

, Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework, Biomarkers Definitions Working Group, vol.69, issue.3, pp.89-95, 2001.

M. Ammar, Chemical Engineering of Self-Assembled Alzheimer ' s Peptide on a Silanized Silicon Surface, Langmuir, vol.30, issue.20, pp.5863-5872, 2014.

M. K. Pal, S. P. Jaiswar, V. N. Dwivedi, A. K. Tripathi, A. Dwivedi et al., MicroRNA : a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer, Cancer Biol Med, vol.12, issue.4, pp.328-341, 2015.

P. Kuppusamy, N. Govindan, M. M. Yusoff, and S. J. Ichwan, Proteins are potent biomarkers to detect colon cancer progression, Saudi J. Biol. Sci, vol.24, issue.6, pp.1212-1221, 2017.

M. J. Duffy, N. Harbeck, M. Nap, R. Molina, and A. Nicolini, Clinical use of biomarkers in breast cancer : Updated guidelines from the European Group on Tumor Markers, Eur. J. Cancer, vol.75, pp.284-298, 2017.

M. Adhyam and A. K. Gupta, A Review on the Clinical Utility of PSA in Cancer Prostate, Indian J Surg Oncol, vol.3, pp.120-129, 2012.

V. Kulasingam and E. P. Diamandis, Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nat Clin Pr. Oncol, vol.5, issue.10, pp.588-599, 2008.

J. W. Davis, Biomarker classification, validation, and what to look for in 2017 and beyond, BJU Int, vol.119, issue.5, pp.812-814, 2017.

A. N. Bhatt, R. Mathur, A. Farooque, A. Verma, and B. S. Dwarakanath, Cancer biomarkers -Current perspectives, Rev. Artic. Indian J Med Res, vol.132, pp.129-149, 2010.

S. B. Nimse, M. D. Sonawane, K. Song, and K. Taisun, Biomarker detection technologies and future directions, Analyst, vol.141, issue.3, pp.740-755, 2016.

A. Jablonski, Efficiency of Anti-Stokes Fluorescence in Dyes, Nature, vol.131, pp.839-840, 1933.

D. E. Wolf, Fundamentals of Fluorescence and Fluorescence Microscopy, Methods in Cell Biology, vol.114, pp.69-97, 2007.

M. J. Sanderson, I. Smith, I. Parker, and M. D. Bootman, Cold Spring Harb Protoc, vol.2014, issue.10, pp.1042-1065, 2016.

B. W. Van-der and . Meer, Förster Theory, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.23-62, 2014.

U. Kallmann and F. London, Über quantenmechanische Energieübertragung zwischen atomaren Systemen, pp.207-243, 1928.
DOI : 10.1515/zpch-1929-0214

T. Förster, Transfer Mechanisms of Electronic Excitation, Discussions of the Faraday Society, pp.7-17, 1959.

T. Förster, Energy migration and fluorescence, Naturwissenschaften, vol.33, issue.6, pp.166-175, 1946.

N. Hildebrandt, How to Apply FRET : From Experimental Design to Data Analysis, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.105-163, 2014.

P. R. Selvin, The renaissance of fluorescence resonance energy transfer, Nat Struct Biol, vol.7, issue.9, pp.730-734, 2000.

S. Spindel, J. Granek, and K. E. Sapsford, In Vitro FRET Sensing, Diagnostics, and Personalized Medicine, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.271-322, 2014.

P. J. Robinson and C. A. Woolhead, Implementation of FRET Technologies for Studying the Folding and Conformational Changes in Biological Structures, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.357-396, 2014.

J. C. Claussen, N. Hildebrandt, and I. Medintz, FRET-Based Cellular Sensing with Genetically Encoded Fluorescent Indicators, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.397-429, 2014.

L. Mattera, Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits, Nanoscale, vol.8, issue.21, pp.11275-11283, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01851581

B. Schuler and W. A. Eaton, Protein folding studied by single-molecule FRET, Curr Opin Struct Biol, vol.18, issue.1, pp.16-26, 2008.

K. Boeneman, J. B. Delehanty, K. Susumu, M. H. Stewart, and I. L. Medintz, Intracellular bioconjugation of targeted proteins with semiconductor quantum dots, J. Am. Chem. Soc, vol.132, issue.17, pp.5975-5977, 2010.

H. Miller, Z. Zhou, J. Shepherd, and A. J. Wollman, Single-molecule techniques in biophysics : a review of the progress in methods and applications, Rep. Prog. Phys, vol.81, issue.2, 2018.

E. Margeat, A Dance with Two Dragons : fluorophores photophysics in the context of FRET, 2017.

T. Pons, Single-Molecule Applications, FRET -Förster Resonance Energy Transfer From Theory to Applications, pp.323-356, 2014.

R. Roy, S. Hohng, and T. Ha, A Practical Guide to Single Molecule FRET, Nat. Methods, vol.5, issue.6, pp.507-516, 2008.

E. Ullman, Chapter 2.3 -Homogeneous Immunoassays, The Immunoassay Handbook, pp.67-87, 2013.

K. D. Wegner, Z. Jin, S. Linden, T. L. Jennings, and N. Hildebrandt, Quantumdot-based Forster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples, ACS Nano, vol.7, issue.8, pp.7411-7419, 2013.

Y. Wu, Quantum Dot -Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins, Small, vol.14, issue.35, pp.1-5, 2018.

N. Hildebrandt, Energy Transfer with Semiconductor Quantum Dot Bioconjugates : A Versatile Platform for Biosensing , Energy Harvesting , and Other Developing Applications, Chem. Rev, vol.117, issue.2, pp.536-711, 2017.

Y. Kim, S. Park, E. Oh, Y. Oh, and H. Kim, On-chip detection of protein glycosylation based on energy transfer between nanoparticles, Biosens. Bioelectron, vol.24, issue.5, pp.1189-1194, 2009.

S. Saraheimo, J. Hepojoki, A. Lahtinen, I. Hemmilä, A. Vaheri et al., Time-Resolved FRET -Based Approach for Antibody Detection -A New Serodiagnostic Concept, PLoS One, vol.8, issue.5, 2013.

S. Rattle, O. Hofmann, C. P. Price, L. J. Kricka, and D. Wild, Micro-and Nanoscale Immunoassay Systems, and Microarrays, pp.175-202, 2013.

S. C. Terry, J. H. Jerman, and J. B. Angell, A Gas Chromatographic Air Analyzer Fabricated, IEEE, vol.26, issue.12, pp.1880-1886, 1979.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

G. Crivat, S. Maria, D. Silva, D. R. Reyes, and L. E. Locascio, Quantum Dot FRET-Based Probes in Thin Films Grown in Microfluidic Channels, J. Am. Chem. Soc, vol.132, issue.5, pp.1460-1461, 2010.

C. Benz, H. Retzbach, S. Nagl, and D. Belder, Protein -protein interaction analysis in single microfluidic droplets using FRET and fluorescence, Lab Chip, vol.13, issue.14, pp.2808-2822, 2013.

C. Chen, Multiplexed Protease Activity Assay for Low-Volume Clinical Samples Using Droplet-Based Micro fl uidics and Its Application to Endometriosis, J. Am. Chem. Soc, vol.135, issue.5, pp.1645-1648, 2013.

L. Chen, W. R. Algar, A. J. Tavares, and U. J. Krull, Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer, Anal Bioanal Chem, vol.399, issue.1, pp.133-141, 2011.

A. J. Tavares, M. O. Noor, C. H. Vannoy, W. R. Algar, and U. J. Krull, On-Chip Transduction of Nucleic Acid Hybridization Using Spatial Profiles of Immobilized Quantum Dots and Fluorescence Resonance Energy Transfer, Anal Chem, vol.84, issue.1, pp.312-321, 2012.

M. O. Noor, A. J. Tavares, and U. J. Krull, On-Chip Multiplexed Solid-Phase Nucleic Acid Hybridization Assay Using Spatial Profiles of Immobilized Quantum Dots and Fluorescence Resonance Energy Transfer ( FRET ), Anal. Chim. Acta, vol.788, pp.148-57, 2013.

B. Spackova, P. Wrobel, M. Bockova, and J. Homola, Optical Biosensors Based on Plasmonic Nanostructures : A Review, Proc. IEEE, vol.104, pp.2380-2408, 2016.

M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De-angelis, Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs, ACS Appl. Mater. Interfaces, vol.9, issue.35, pp.29394-29411, 2017.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, issue.4, pp.1103-1169, 2005.

S. Casalini, C. A. Bortolotti, F. Leonardi, and F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev, vol.46, issue.1, pp.40-71, 2017.

A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev, vol.96, issue.4, pp.1533-1554, 1996.

S. A. Skoog, J. W. Elam, and R. J. Narayan, Atomic layer deposition: medical and biological applications, Int. Mater. Rev, vol.58, issue.2, pp.113-129, 2013.

E. Reimhult and F. Höök, Design of Surface Modifications for Nanoscale Sensor Applications, Sensors, vol.15, issue.1, pp.1635-1675, 2015.

M. Eichler, C. Klages, and K. Lachmann, Surface Functionalization of Microfluidic Devices, Microsystems for Pharmatechnology Manipulation of Fluids, Particles, Droplets, and Cells, A. Dietzel, pp.59-97, 2016.

G. Dingemans and W. M. Kessels, Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.30, issue.4, pp.40802-40803, 2012.

C. Chan and T. Ko, Polymer surface modification by plasmas and photons, Surf. Sci. Rep, vol.24, issue.1-2, pp.1-54, 1996.

J. Zhou, D. V. Khodakov, A. Ellis, and N. H. Voelcker, Surface modification for PDMS-based microfluidic devices, Electrophoresis, vol.33, issue.1, pp.89-104, 2012.

N. R. Glass, R. Tjeung, P. Chan, L. Y. Yeo, and J. R. Friend, Organosilane deposition for microfluidic applications, Biomicrofluidics, vol.5, issue.3, pp.36501-36508, 2011.

C. Séguin, J. M. Mclachlan, P. R. Norton, and F. Lagugné-labarthet, Surface modification of poly ( dimethylsiloxane ) for microfluidic assay applications, Appl. Surf. Sci, vol.256, issue.8, pp.2524-2531, 2010.

G. Sui, Solution-Phase Surface Modification in Intact Poly (dimethylsiloxane) Microfluidic Channels, Anal. Chem, vol.78, issue.15, pp.5543-5551, 2006.

S. Goodwin, J. D. Mcpherson, and W. R. Mccombie, Coming of age: ten years of next-generation sequencing technologies, Nat Rev Genet, vol.17, issue.6, pp.333-351, 2016.

M. Belkin, S. H. Chao, M. P. Jonsson, C. Dekker, and A. Aksimentiev, Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA, ACS Nano, vol.9, issue.11, pp.10598-10611, 2015.

D. Branton, The potential and challenges of nanopore sequencing, Nat. Biotechnol, vol.26, issue.10, pp.1146-1153, 2008.

L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley et al., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, vol.274, issue.5294, pp.1859-66, 1996.

J. Nivala, D. B. Marks, and M. Akeson, Unfoldase-mediated protein translocation through an ?-hemolysin nanopore, Nat. Biotechnol, vol.31, issue.3, pp.247-50, 2013.

F. Haque, J. Li, H. C. Wu, X. J. Liang, and P. Guo, Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA, Nano Today, vol.8, issue.1, pp.56-74, 2013.

I. M. Derrington, Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.37, pp.16060-16065, 2010.

J. Clarke, H. Wu, L. Jayasinghe, A. Patel, S. Reid et al., Continuous base identification for single-molecule nanopore DNA sequencing, Nat. Nanotechnol, vol.4, issue.4, pp.265-270, 2009.

Y. Feng, Y. Zhang, C. Ying, D. Wang, and C. Du, Nanopore-based fourthgeneration DNA sequencing technology, Genomics, Proteomics Bioinforma, vol.13, issue.1, pp.4-16, 2015.

F. Nicoli, D. Verschueren, M. Klein, C. Dekker, and M. P. Jonsson, DNA Translocations through Solid-State Plasmonic Nanopores, Nano Lett, vol.14, issue.12, pp.6917-6925, 2014.

M. Kim, A draft map of the human proteome, Nature, vol.509, issue.7502, pp.575-581, 2014.

M. Wilhelm, Mass-spectrometry-based draft of the human proteome, Nature, vol.509, issue.7502, pp.582-587, 2014.

Y. Yao, M. Docter, J. Van-ginkel, D. D. Ridder, and C. Joo, Single-molecule protein sequencing through fi ngerprinting : computational assessment, Phys. Biol, vol.12, issue.5, p.55003, 2015.

J. Van-ginkel, M. Filius, M. Szczepaniak, P. Tulinski, A. S. Meyer et al., Single-molecule peptide fingerprinting, vol.115, pp.3338-3343, 2018.

R. S. Yalow and S. A. Berson, Assay of Plasma Insulin in Human Subjects by Immunological Methods, Nature, vol.184, issue.4699, pp.1648-1649, 1959.

D. Wild and E. , The Immunoassay Handbook, 2013.

D. Geißler, S. Stufler, H. Löhmannsröben, and N. Hildebrandt, Six-Color TimeResolved Förster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing, J. Am. Chem. Soc, vol.135, issue.3, pp.1102-1109, 2013.

X. Qiu, K. D. Wegner, Y. T. Wu, P. M. Van-bergen-en-henegouwen, T. L. Jennings et al., Nanobodies and antibodies for duplexed EGFR/HER2 immunoassays using terbium-to-quantum dot FRET, Chem. Mater, vol.28, issue.22, pp.8256-8267, 2016.

Y. Kim, Y. Oh, E. Oh, S. Ko, M. Han et al., Energy Transfer-Based Multiplexed Assay of Proteases by Using Gold Nanoparticle and Quantum Dot Conjugates on a Surface, Anal. Chem, vol.80, issue.12, pp.4634-4641, 2008.

W. R. Algar and U. J. Krull, Toward A Multiplexed Solid-Phase Nucleic Acid Hybridization Assay Using Quantum Dots as Donors in Fluorescence Resonance Energy Transfer, Anal. Chem, vol.81, issue.15, pp.4113-4120, 2009.

K. Lee, H. Hsu, M. You, C. Chang, and M. Pan, Highly Sensitive AluminumBased Biosensors using Tailorable Fano Resonances in Capped Nanostructures, Nat. Sci. reports, vol.7, issue.44104, pp.1-14, 2017.

W. Li, K. Ren, and J. Zhou, Trends in Analytical Chemistry Aluminum-based localized surface plasmon resonance for biosensing, Trends Anal. Chem, vol.80, pp.486-494, 2016.

D. Gérard and S. K. Gray, Aluminium plasmonics, J. Phys. D. Appl. Phys, vol.48, issue.18, p.184001, 2015.

C. A. Barrios, Aluminum Nanoholes for Optical Biosensing, Biosensors, vol.5, issue.3, pp.417-431, 2015.

P. Ghenuche, Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates, Nano Lett, vol.15, issue.9, pp.6193-6201, 2015.

J. Martin and J. Plain, Fabrication of aluminium nanostructures for plasmonics, J. Phys. D. Appl. Phys, vol.48, issue.18, p.184002, 2015.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander et al., Aluminum for Plasmonics, ACS Nano, vol.8, issue.1, pp.834-840, 2014.

M. Neouze and U. Schubert, Review Surface Modification, p.151

, Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands, Monatshefte für Chemie -Chem. Mon, vol.139, issue.3, pp.183-195, 2008.

Y. A. Atmane, Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method, J. Phys. Chem. C, vol.117, issue.49, pp.26000-26006, 2013.

M. Fogliazza, L. Sicard, P. Decorse, A. Chevillot-biraud, C. Mangeney et al., Powerful Surface Chemistry Approach for the Grafting of Alkyl Multilayers on Aluminum Nanoparticles, Langmuir, vol.31, issue.22, pp.6092-6098, 2015.

W. L. Barnes, Fluorescence near interfaces : The role of photonic mode density, J. Mod. Opt, vol.45, issue.4, pp.661-699, 1998.

J. R. Lakowicz, Radiative Decay Engineering: Biophysical and Biomedical Applications, Anal Biochem, vol.298, issue.1, pp.1-24, 2001.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Plasmonic Enhancement of Molecular Fluorescence, Nano Lett, vol.7, issue.2, pp.496-501, 2007.

D. J. Guo, GaN Nanowire Functionalized with Atomic Layer Deposition Techniques for Enhanced Immobilization of Biomolecules, Langmuir, vol.26, issue.23, pp.18382-18391, 2010.

N. Akbay, J. R. Lakowicz, and K. Ray, Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles, J. Phys. Chem. C, vol.116, issue.19, pp.10766-10773, 2012.

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and Quenching of Single-Molecule Fluorescence, Phys Rev Lett, vol.96, issue.11, p.113002, 2006.

S. Bidault, A. Devilez, P. Ghenuche, B. Stout, N. Bonod et al., Competition between Förster resonance energy transfer and donor photodynamics in plasmonic dimer nanoantennas, ACS Photonics, vol.3, issue.5, pp.895-903, 2016.

T. Usui, C. A. Donnelly, M. Logar, R. Sinclair, J. Schoonman et al., Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition, Acta Mater, vol.61, issue.20, pp.7660-7670, 2013.

J. A. Howarter, J. P. Youngblood, R. May, I. Final, and F. September, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir, vol.22, issue.26, pp.11142-11147, 2006.

E. T. Vandenberg, Structure of 3-Aminopropyltriethoxy silane on silicon oxide, J. Colloid Interface Sci, vol.147, issue.1, pp.103-118, 1991.

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, Chemical Improved surface plasmon resonance biosensing using silanized optical fibers, Sensors Actuators B Chem, vol.216, pp.518-526, 2015.

M. Ammar, A new controlled concept of immune-sensing platform for specific detection of Alzheimer's biomarkers, Biosens. Bioelectron, vol.40, issue.1, pp.329-335, 2013.

E. Briand, Chemical Modifications of Au/ SiO 2 Template Substrates for Patterned Biofunctional Surfaces, Langmuir, vol.27, issue.2, pp.678-685, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602936

S. Ko and S. A. Grant, A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium, Biosens Bioelectron, vol.21, issue.7, pp.1283-1290, 2006.

S. K. Vashist, E. Lam, S. Hrapovic, K. B. Male, and J. H. Luong, Immobilization of Antibodies and Enzymes on Platforms for Biosensors and Diagnostics, Chem. Rev, vol.114, issue.21, pp.11083-11130, 2014.

M. Santos, Etude de l'adhésion de vésicules géantes et de cellules vivantes par nanoscopie de fluorescence, 2015.

J. Diao, D. Ren, J. R. Engstrom, and K. H. Lee, A surface modification strategy on silicon nitride for developing biosensors, Anal. Biochem, vol.343, issue.2, pp.322-328, 2005.

L. D. White and C. P. Tripp, Reaction of (3-Aminopropyl) dimethylethoxysilane with Amine Catalysts on Silica Surfaces, J. Colloid Interface Sci, vol.232, issue.2, pp.400-407, 2000.

F. D. Chaumont, Icy : an open bioimage informatics platform for extended reproducible research, Nat Methods, vol.9, issue.7, pp.690-696, 2012.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2010.

O. Lefebvre, C. Smadja, E. Martincic, M. Woytasik, and M. Ammar, Integration of microcoils for on-chip immunosensors based on magnetic nanoparticles capture, Sens. Bio-Sensing Res, vol.13, pp.115-121, 2017.

K. Shirai, K. Mawatari, and T. Kitamori, Extended Nanofl uidic Immunochemical Reaction with Femtoliter Sample Volumes, Small, vol.10, issue.8, pp.1514-1522, 2014.

B. Song, Time-resolved lanthanide luminescence for lab-on-a-chip detection of biomarkers on cancerous tissues, Analyst, vol.134, issue.10, pp.1191-1993, 2009.

X. Ren, M. Bachman, C. Sims, and G. P. Li, Electroosmotic properties of microfluidic channels composed of poly ( dimethylsiloxane ), J. Chromatogr. B Biomed. Sci. Appl, vol.762, issue.2, pp.117-125, 2001.

M. Leester-schädel, T. Lorenz, F. Jürgens, and C. Richter, Fabrication of Microfluidic Devices, Microsystems for Pharmatechnology Manipulation of Fluids, Particles, Droplets, and Cells, A. Dietzel, pp.23-57, 2016.

A. Piruska, The autofluorescence of plastic materials and chips measured under laser irradiation, Lab Chip, vol.5, issue.12, pp.1348-1354, 2005.

M. Bélanger and Y. Marois, Hemocompatibility, Biocompatibility, p.153

, Inflammatory and in Vivo Studies of Primary Reference Materials Low-Density Polyethylene and Polydimethylsiloxane: A Review, J. Biomed. Mater. Res, vol.58, issue.5, pp.467-477, 2001.

D. J. Campbell, Replication and Compression of Bulk and Surface Structures with Polydimethylsiloxane Elastomer, J. Chem. Educ, vol.75, issue.4, pp.537-541, 1999.

A. Mata and A. J. Fleischman, Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems, Biomed Microdevices, vol.7, issue.4, pp.281-293, 2005.

I. D. Johnston, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, J. Micromechanics Microengineering, vol.24, issue.3, p.35017, 2014.

R. Wilson and D. J. Schiffrin, Use of Fluorescamine for the Spectrofluorimetric Investigation of Primary Amines on Silanized Glass and Indium Tin Oxidecoated Glass, Analyst, vol.120, issue.1, pp.175-178, 1995.

L. Locascio-brown, A. L. Plant, R. A. Durst, and M. Brizgys, Radiometric and fluorimetric determination of aminosilanes and protein covalently bound to thermally pretreated glass substrates, Anal. Chim. Acta, vol.228, pp.107-116, 1990.

D. Geißler, Multiplexed diagnostics and spectroscopic ruler applications with terbium to quantum dots FRET, Clinical and Biomedical Spectroscopy, vol.7368, pp.1-8, 2009.

N. Hildebrandt, K. D. Wegner, and W. R. Algar, Luminescent terbium complexes : Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing, Coord. Chem. Rev, pp.125-138, 2014.

K. D. Wegner, Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of TimeResolved FRET Bioassays, Appl. Mater. Interfaces, vol.5, issue.8, pp.2881-2892, 2013.

M. Santos and N. Hildebrandt, Recent developments in lanthanide-to-quantum dot FRET using time-gated fluorescence detection and photon upconversion, Trends Anal. Chem, vol.84, issue.A, pp.60-71, 2016.

S. Bhuckory, O. Lefebvre, X. Qiu, K. D. Wegner, and N. Hildebrandt, Evaluating quantum dot performance in homogeneous FRET immunoassays for prostate specific antigen, Sensors (Switzerland), vol.16, issue.2, p.197, 2016.

I. Nikcevic, Adsorption of Fluorescently Labeled Microbeads on PDMS Surfaces, SPIE Proceedings, vol.5718, pp.159-167, 2005.

X. Yu, J. Xiao, and F. Dang, Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption, Langmuir, vol.31, issue.21, pp.5891-5898, 2015.

Y. Liu, L. Zhang, W. Wu, and M. Zhao, Restraining non-specific adsorption of protein using Parylene C-caulked polydimethylsiloxane, Biomicrofluidics, vol.10, issue.2, pp.24126-24137, 2016.

D. K. Wegner, Förster Resonance Energy Transfer from Terbium Complexes to Quantum Dots for Multiplexed Homogeneous Immunoassays and Molecular Rulers, 2016.

X. Qiu, Time-Gated Förster Resonance Energy Transfer Biosensors for Multiplexed Diagnostics of Epidermal Growth Factor Receptors and MicroRNAs, 2017.

S. Bhuckory, Quantum dots and upconverting nanoparticles : Bioconjugation and time-resolved multiplexed FRET spectroscopy for cancer diagnostics, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01548910

, Annexe B Exemples d'histogrammes d'intensité de fluorescence pour les différentes concentrations étudiées au chapitre III (0,25 mg/mL, 0,5 mg/mL et 1,0 mg/mL, p.161