A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell et al., Angew. Chem., Int. Ed, p.5846, 2010.

J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat et al., Proc. Natl. Acad. Sci. U. S. A, p.4004, 2010.

R. Obexer, M. Pott, C. Zeymer, A. D. Griffiths, D. Hilvert-;-r.-obexer et al., Protein Eng., Des. Sel, vol.29, p.50, 2016.

T. Beneyton, I. P. Wijaya, P. Postros, M. Najah, P. Leblond et al., Sci. Rep, 2016.

A. Fallah-araghi, J. Baret, M. Ryckelynck, and A. D. Griffiths, Lab Chip, vol.12, p.882, 2012.

R. L. Scott, J. Am. Chem. Soc, vol.70, p.4750, 1948.

P. Gruner, B. Riechers, B. Semin, J. Lim, A. Johnston et al., Nat. Commun, 2016.

G. Woronoff, A. E. Harrak, E. Mayot, O. Schicke, O. J. Miller et al., Anal. Chem, vol.83, 2011.

S. Griffiths, A. Ladame, and . Drevelle, Anal. Chem, vol.2, issue.0, 9807.

D. Ben-meir, A. Spungin, R. Ashkenazi, and S. Blumberg, Eur. J. Biochem, p.107, 1993.

L. D. Lavisandr, ;. Raines, and C. A. Beija, ACS Chem. Biol, p.2410, 2008.

S. P. Leytus, L. L. Melhado, and W. F. Mangel, Biochem. J, p.253, 1983.

L. , Biorg. Med. Chem. Lett, vol.9, p.127, 1652.

. S-.--t-.h-u-a-n-ga-n-dy-.--l-.l-i-n, Org. Lett, 2006.

A. P. Guzikowski, J. J. Naleway, C. T. Shipp, R. C. Schutte-;-b)-s, H. Cai et al., Bioorg. Med. Chem. Lett, vol.41, p.458, 2000.

T. W. Greene and P. G. Wuts, Protective Groups in Organic Synthesis, 1999.

S. C. Miller, J. Org. Chem, p.4632, 2010.

, See ESI ? for details

J. A. Ferreira, V. V. Serra, A. Sanchez-coronilla, S. M. Pires, M. A. F-a-u-s-t-i-n-o et al., Chem. Commun, p.8809, 2013.

N. H. Ho, R. H. Weisslederandc, and . Tung, Tetrahedron, vol.62, p.578, 2006.

J. O-s-e and Y. U-e-n-oa-n-dk, Chem. -Eur. J, p.418, 2009.

M. A. Clark, S. A. Hilderbrand, and S. J. Lippard, Tetrahedron Lett, vol.45, p.7921, 2004.

V. H. Frade, P. J. Coutinho, J. C. Moura, and M. S. Gonçalves, Absolute quantum yield of rhodamine 110 (F = 0.88 in HEPES buffer) was measured by, ACS Chem. Biol, vol.63, issue.8, p.1303, 1067.

, This factor depends on substrate concentration and is optimal in the range 0.1-1 mM. See Fig. S7 (ESI ?) for details

, Compound 8 was purchased from NewChem Technologies, Holly lodge, vol.375, p.7294

, See ESI ? for detailed droplet production setup

, This 2.7-fold increase results from initial transient exchange as detailed in Fig, vol.3

E. Coli, cells encapsulation (at most, one cell per droplet, in presence of inducer) in 2 pL droplets and collection off chip. 2

, Electro-coalescence of the 2 pL droplets with 20 pL droplets containing the substrate in a periplasmic extraction buffer. 5. Incubation for the enzymatic activity to occur in delay lines. 6. Fluorescence measurement and droplet sorting

, Step Description 1. B. subtilis cells encapsulation (at most, one cell per droplet, in presence of inducer) in 20 pL droplets and collection off chip. 2. Induction off chip: rat trypsin secretion in the droplets

, Reinjection of 20 pL droplets containing the cells and electro-coalescence of the 20 pL droplets with 2 pL droplets containing the substrate 4. Incubation for the enzymatic activity to occur in delay lines. 6. Fluorescence measurement and droplet sorting

W. Johannsen, The Genotype Conception of Heredity, The American Naturalist, vol.45, pp.3-0147, 1911.

T. H. Morgan, The Theory of the Gene, The American Naturalist, vol.51, pp.3-0147, 1917.

O. T. Avery, C. M. Macleod, and M. Mccarty, STUD-IES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUC-ING TRANSFORMATION OF PNEUMOCOCCAL TYPES, The Journal of Experimental Medicine, vol.79, issue.2, pp.22-1007, 1944.

M. Mccarty and O. T. Avery, STUDIES ON THE CHEMI-CAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMA-TION OF PNEUMOCOCCAL TYPES, The Journal of Experimental Medicine, vol.83, issue.2, pp.22-1007, 1946.

M. Mccarty and O. T. Avery, STUDIES ON THE CHEMI-CAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMA-TION OF PNEUMOCOCCAL TYPES, The Journal of Experimental Medicine, vol.83, issue.2, pp.22-1007, 1946.

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids

, Structure for Deoxyribose Nucleic Acid". eng. In: Nature, vol.171, pp.28-0836, 1953.

M. Nirenberg, Historical Review: Deciphering the Genetic Code -a Personal Account, Trends in Biochemical Sciences, vol.29, issue.1, pp.46-54, 2004.

J. C. Kendrew, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis". en, Nature, vol.181, pp.662-666, 1958.

K. A. Dill and J. L. Maccallum, The Protein-Folding Problem, 50 Years On". en, Science, vol.338, pp.36-8075, 2012.

S. Wright, The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution, pp.356-366, 1932.

S. Gavrilets, Evolution and Speciation on Holey Adaptive Landscapes, Trends in Ecology & Evolution, vol.12, pp.169-5347, 1997.
DOI : 10.1016/s0169-5347(97)01098-7

J. Arjan, G. M. Visser, and J. Krug, Empirical Fitness Landscapes and the Predictability of Evolution". en, Nature Reviews Genetics, vol.15, issue.7, pp.480-490, 2014.

J. Zhang, Protein-Length Distributions for the Three Domains of Life, Trends in Genetics, vol.16, issue.3, pp.107-109, 2000.

R. William, M. L. Pearson, and . Sierk, The Limits of Protein Sequence Comparison?, In: Current opinion in structural biology, vol.15, issue.3, 2005.

P. Joram and J. Piatigorsky, Gene Sharing and Evolution: The Diversity of Protein Functions. en. Google-Books-ID: _4Yae-CobdakC, 2009.

A. Kumar and N. Chordia, Bacterial Resistance Against Antibiotics". en. In: Drug Resistance in Bacteria, Fungi, Malaria, and Cancer
DOI : 10.1007/978-3-319-48683-3_7

, , pp.171-192, 2017.

X. Li and J. C. Phillips, Prediction (Early Recognition) of Emerging Flu Strain Clusters, Physica A: Statistical Mechanics and its Applications, vol.479, pp.371-378, 2017.

E. T. Cirulli and D. B. Goldstein, Uncovering the Roles of Rare Variants in Common Disease through Whole-Genome Sequencing". en, Nature Reviews Genetics, vol.11, issue.6, pp.415-425, 2010.

J. L. Porter, A. Rusli, and D. L. Ollis, Directed Evolution of Enzymes for Industrial Biocatalysis". en, ChemBioChem, vol.17, pp.197-203, 2016.

R. A. Lerner, Combinatorial Antibody Libraries: New Advances, vol.16, pp.1474-1733, 2016.

H. Kries, R. Blomberg, and D. Hilvert, De Novo Enzymes by Computational Design, Current Opinion in Chemical Biology. Bioinorganic Chemistry ? Biocatalysis and Biotransformation, vol.17, issue.2, pp.1367-5931, 2013.
DOI : 10.1016/j.cbpa.2013.02.012

M. S. Packer and D. R. Liu, Methods for the Directed Evolution of Proteins". en, Nature Reviews Genetics, vol.16, issue.7, pp.379-394, 2015.

N. Tokuriki, How Protein Stability and New Functions Trade Off, PLOS Computational Biology, vol.4, 2008.
DOI : 10.1371/journal.pcbi.1000002

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000002&type=printable

X. Wang, G. Minasov, and B. K. Shoichet, Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-Offs, Journal of Molecular Biology, vol.320, issue.1, p.400, 2002.

J. D. Bryngelson, Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis". en, Proteins: Structure, Function, and Bioinformatics, vol.21, pp.167-195, 1995.

M. Karplus and J. Andrew-mccammon, Molecular Dynamics Simulations of Biomolecules". en, Nature Structural & Molecular Biology, vol.9, pp.902-646, 2002.

Y. Dehouck, PoPMuSiC 2.1: A Web Server for the Estimation of Protein Stability Changes upon Mutation and Sequence Optimality, BMC Bioinformatics, vol.12, pp.1471-2105, 2011.

J. Schymkowitz, The FoldX Web Server: An Online Force Field, Nucleic Acids Research, vol.33, 2005.
DOI : 10.1093/nar/gki387

URL : https://academic.oup.com/nar/article-pdf/33/suppl_2/W382/7622711/gki387.pdf

S. Khan and M. Vihinen, Performance of Protein Stability Predictors". en, Human Mutation, vol.31, issue.6, pp.1098-1004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552374

S. Mukherjee, Genomes OnLine Database (GOLD) v.6: Data Updates and Feature Enhancements, Nucleic Acids Research, vol.45, pp.305-1048, 2017.
DOI : 10.1093/nar/gky977

URL : https://academic.oup.com/nar/article-pdf/47/D1/D649/27436275/gky977.pdf

S. Cocco, Inverse Statistical Physics of Protein Sequences: A Key Issues Review, 2017.

H. Jacquier, Capturing the Mutational Landscape of the Beta-Lactamase TEM-1". en, Proceedings of the National Academy of Sciences, pp.27-8424, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00984680

E. Firnberg, A Comprehensive, High-Resolution Map of a Gene's Fitness Landscape, Molecular Biology and Evolution, vol.31, issue.6, pp.737-4038, 2014.

N. Halabi, Protein Sectors: Evolutionary Units of ThreeDimensional Structure". en, Cell, vol.138, pp.774-786, 2009.

K. A. Reynolds, R. N. Mclaughlin, and R. Ranganathan, Hot Spots for Allosteric Regulation on Protein Surfaces, English. In: Cell, vol.147, pp.92-8674, 2011.
DOI : 10.1016/j.cell.2011.10.049

URL : https://doi.org/10.1016/j.cell.2011.10.049

S. Arjun, K. I. Raman, R. White, and . Ranganathan, Origins of Allostery and Evolvability in Proteins: A Case Study, Cell 166, vol.2, 2016.

N. Richard and . Mclaughlin, The Spatial Architecture of Protein Function and Adaptation, Nature, vol.491, pp.28-0836, 2012.

S. Cocco, Inverse Statistical Physics of Protein Sequences: A Key Issues Review, 2017.

W. P. Russ, Natural-like Function in Artificial WW Domains". en, Nature, vol.437, pp.579-583, 2005.
DOI : 10.1038/nature03990

M. Socolich, Evolutionary Information for Specifying a Protein Fold". en, Nature, vol.437, pp.512-518, 2005.
DOI : 10.1038/nature03991

G. Robert and . Smock, An Interdomain Sector Mediating Allostery in Hsp70 Molecular Chaperones, Molecular Systems Biology, vol.6, p.414, 2010.

B. C. Cunningham and J. A. Wells, High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis". en, Science, vol.244, pp.36-8075, 1989.

S. Kosuri and G. M. Church, Large-Scale de Novo DNA Synthesis: Technologies and Applications". en, Nature Methods, vol.11, issue.5, pp.499-507, 2014.
DOI : 10.1038/nmeth.2918

A. Randall, A. D. Hughes, and . Ellington, Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology, Cold Spring Harbor Perspectives in Biology, vol.9, 2017.

J. O. Kitzman, Massively Parallel Single Amino Acid Mutagenesis, Nature methods, vol.12, pp.203-206, 2015.
DOI : 10.1038/nmeth.3223

URL : http://europepmc.org/articles/pmc4344410?pdf=render

E. E. Wrenbeck, Plasmid-Based One-Pot Saturation Mutagenesis". en, Nature Methods, vol.13, 2016.
DOI : 10.1038/nmeth.4029

URL : http://europepmc.org/articles/pmc5666567?pdf=render

S. Goodwin, J. D. Mcpherson, and W. Richard-mccombie, Coming of Age: Ten Years of next-Generation Sequencing Technologies". en, Nature Reviews Genetics, vol.17, issue.6, pp.333-351, 2016.

D. M. Fowler, High-Resolution Mapping of Protein SequenceFunction Relationships". en, Nature Methods, vol.7, issue.9, pp.741-746, 2010.

J. O. Kitzman, Massively Parallel Single Amino Acid Mutagenesis, Nature methods, vol.12, pp.203-206, 2015.
DOI : 10.1038/nmeth.3223

URL : http://europepmc.org/articles/pmc4344410?pdf=render

M. W. Traxlmayr, Construction of a Stability Landscape of the CH3 Domain of Human IgG1 by Combining Directed Evolution with High Throughput Sequencing, Journal of Molecular Biology, vol.423, issue.3, pp.22-2836, 2012.

T. Kivioja, Counting Absolute Numbers of Molecules Using Unique Molecular Identifiers". en, Nature Methods, vol.9, issue.1, 2012.

C. L. Araya and D. M. Fowler, Deep Mutational Scanning: Assessing Protein Function on a Massive Scale, Trends in Biotechnology, vol.29, 2011.

C. , A. Olson, N. C. Wu, and R. Sun, A Comprehensive Biophysical Description of Pairwise Epistasis throughout an Entire Protein Domain, Current Biology, vol.24, 2014.

Y. Fujino, Robust in Vitro Affinity Maturation Strategy Based on Interface-Focused High-Throughput Mutational Scanning, Biochemical and Biophysical Research Communications, vol.428, 2012.

P. Koenig, Mutational Landscape of Antibody Variable Domains Reveals a Switch Modulating the Interdomain Conformational Dynamics and Antigen Binding". en, Proceedings of the National Academy of Sciences, vol.114, pp.27-8424, 2017.

G. Pál, Comprehensive and Quantitative Mapping of Energy Landscapes for Protein-Protein Interactions by Rapid Combinatorial Scanning". en, Journal of Biological Chemistry, vol.281, pp.21-9258, 2006.

C. L. Araya, A Fundamental Protein Property, Thermodynamic Stability, Revealed Solely from Large-Scale Measurements of Protein Function, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.16858-16863, 2012.

A. Ernst, Coevolution of PDZ Domain-ligand Interactions Analyzed by High-Throughput Phage Display and Deep Sequencing". en, Molecular BioSystems, vol.6, pp.1782-1790, 2010.

M. Lea and . Starita, Activity-Enhancing Mutations in an E3 Ubiquitin Ligase Identified by High-Throughput Mutagenesis". en, Proceedings of the National Academy of Sciences, vol.110, pp.27-8424, 2013.

T. A. Whitehead, Optimization of Affinity, Specificity and Function of Designed Influenza Inhibitors Using Deep Sequencing". en, Nature Biotechnology, vol.30, issue.6, pp.543-548, 2012.

M. Rhys and . Adams, Measuring the Sequence-Affinity Landscape of Antibodies with Massively Parallel Titration Curves, p.5, 2016.

J. R. Klesmith, Trade-Offs between Enzyme Fitness and Solubility Illuminated by Deep Mutational Scanning". en, Proceedings of the National Academy of Sciences, vol.114, pp.27-8424, 2017.
DOI : 10.1073/pnas.1614437114

URL : https://www.pnas.org/content/pnas/114/9/2265.full.pdf

C. M. Forsyth, Deep Mutational Scanning of an Antibody against Epidermal Growth Factor Receptor Using Mammalian Cell Display and Massively Parallel Pyrosequencing, mAbs 5, pp.523-532, 2013.

M. A. Stiffler, D. R. Hekstra, and R. Ranganathan, Evolvability as a Function of Purifying Selection in TEM-1 ?-Lactamase, Cell 160.5 (Feb. 2015)

Z. Deng, Deep Sequencing of Systematic Combinatorial Libraries Reveals ?-Lactamase Sequence Constraints at High Resolution, Journal of Molecular Biology, vol.424, pp.22-2836, 2012.

R. Hietpas, Fitness Analyses of All Possible Point Mutations for Regions of Genes in Yeast, Nature Protocols, vol.7, issue.7, pp.1754-2189, 2012.

Y. H. Chan, Correlation of Fitness Landscapes from Three Orthologous TIM Barrels Originates from Sequence and Structure Constraints". en, Nature Communications, vol.8, pp.2041-1723, 2017.

P. Benjamin and . Roscoe, Analyses of the Effects of All Ubiquitin Point Mutants on Yeast Growth Rate, Journal of molecular biology, vol.425, pp.22-2836, 2013.

C. Bank, A Systematic Survey of an Intragenic Epistatic Landscape, Molecular Biology and Evolution, vol.32, pp.737-4038, 2015.

C. Nicholas and . Wu, Systematic Identification of H274Y Compensatory Mutations in Influenza A Virus Neuraminidase by High-Throughput Screening, Journal of Virology, vol.87, pp.1193-1199, 2013.

M. Parera and M. A. Martinez, Strong Epistatic Interactions within a Single Protein, Molecular Biology and Evolution, vol.31, issue.6, 2014.

K. S. Sarkisyan, Local Fitness Landscape of the Green Fluorescent Protein". en, Nature, vol.533, 2016.

P. A. Romero, T. M. Tran, and A. R. Abate, Dissecting Enzyme Function with Microfluidic-Based Deep Mutational Scanning". en, Proceedings of the National Academy of Sciences, vol.112, pp.27-8424, 2015.

T. Sohka, An Externally Tunable Bacterial Band-Pass Filter". en, Proceedings of the National Academy of Sciences 106.25, pp.27-8424, 2009.

A. I. Podgornaia and M. T. Laub, Pervasive Degeneracy and Epistasis in a Protein-Protein Interface". en, Science, vol.347, pp.36-8075, 2015.

L. Rockah-shmuel, Á. Tóth-petróczy, and D. S. Tawfik, Systematic Mapping of Protein Mutational Space by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations, PLoS Computational Biology, vol.11, 2015.

B. V. Adkar, Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing, Structure 20, vol.2, pp.969-2126, 2012.

A. Melnikov, Comprehensive Mutational Scanning of a Kinase in Vivo Reveals Substrate-Dependent Fitness Landscapes, Nucleic Acids Research, vol.42, 2014.

R. T. Hietpas, J. D. Jensen, and D. N. Bolon, Experimental Illumination of a Fitness Landscape". en, Proceedings of the National Academy of Sciences, vol.108, pp.27-8424, 2011.

D. Melamed, Deep Mutational Scanning of an RRM Domain of the Saccharomyces Cerevisiae Poly(A)-Binding Protein, pp.1355-8382, 2013.

J. Frank, V. Poelwijk, R. Krishna, and . Ranganathan, The ContextDependence of Mutations: A Linkage of Formalisms, 2015.

J. T. Bridgham, E. A. Ortlund, and J. W. Thornton, An Epistatic Ratchet Constrains the Direction of Glucocorticoid Receptor Evolution, Nature, vol.461, pp.28-0836, 2009.

S. Jack-da, Fitness Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein Region, Genetics 185.1, pp.16-6731, 2010.

E. R. Lozovsky, Stepwise Acquisition of Pyrimethamine Resistance in the Malaria Parasite". en, Proceedings of the National Academy of Sciences, vol.106, pp.27-8424, 2009.

K. M. Brown, Compensatory Mutations Restore Fitness during the Evolution of Dihydrofolate Reductase, Molecular Biology and Evolution, vol.27, 2010.

C. D. Aakre, Evolving New Protein-Protein Interaction Specificity through Promiscuous Intermediates, English. In: Cell, vol.163, pp.92-8674, 2015.

C. Bryan and . Dickinson, Experimental Interrogation of the Path Dependence and Stochasticity of Protein Evolution Using PhageAssisted Continuous Evolution". en, Proceedings of the National Academy of Sciences, vol.110, pp.27-8424, 2013.

P. E. O'maille, Quantitative Exploration of the Catalytic Landscape Separating Divergent Plant Sesquiterpene Synthases, Nature chemical biology, vol.4, pp.617-623, 2008.

A. Ercan, H. I. Park, and L. Ming, A "Moonlighting" Dizinc Aminopeptidase from Streptomyces Griseus : Mechanisms for Peptide Hydrolysis and the 4 × 10 10 -Fold Acceleration of the Alternative Phosphodiester Hydrolysis ? ". en, Biochemistry 45, vol.46, pp.6-2960, 2006.

X. Wang, G. Minasov, and B. K. Shoichet, Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-Offs, Journal of Molecular Biology, vol.320, issue.1, p.400, 2002.

P. Tabeling, Introduction to Microfluidics". en, Angewandte Chemie International Edition, vol.45, pp.1521-3773, 2006.

Y. Fainman, D. Psaltis, and C. Yang, Basic Microfluidic and Soft Lithographic Techniques, Optofluidics: Fundamentals, Devices and Applications, 2010.

L. Shelley and . Anna, Formation of Dispersions Using "Flow Focusing" in Microchannels, Applied Physics Letters, vol.82, pp.3-6951, 2003.

J. Bibette, F. Calderon, and P. Poulin, Emulsions: Basic Principles, en. In: Reports on Progress in Physics, vol.62, p.969, 1999.
DOI : 10.1088/0034-4885/62/6/203

J. Baret, Surfactants in Droplet-Based Microfluidics". eng. In: Lab on a Chip, vol.12, pp.422-433, 2012.

E. Nowak, Effect of Surfactant Concentration and Viscosity of Outer Phase during the Coalescence of a Surfactant-Laden Drop with a Surfactant-Free Drop, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 6th International Workshop on Bubble and Drop Interfaces 505, pp.124-131, 2016.

M. Pilarek, J. Glazyrina, and P. Neubauer, Enhanced Growth and Recombinant Protein Production of Escherichia Coli by a Perfluorinated Oxygen Carrier in Miniaturized Fed-Batch Cultures, In: Microbial Cell Factories, vol.10, pp.1475-2859, 2011.

C. Holtze, Biocompatible Surfactants for Water-in-Fluorocarbon Emulsions". en. In: Lab on a Chip, vol.8, pp.1632-1639, 2008.

A. Trouchet, PCR Digitale Pour La Détection et La Caractérisation de Micro-Organismes Pathogènes Au Niveau de La Cellule Unique, 2016.

V. Miralles, A Versatile Technology for Droplet-Based Microfluidics, Thermomechanical Actuation". en. In: Lab on a Chip, vol.15, pp.2133-2139, 2015.
DOI : 10.1039/c5lc00110b

M. Leman, Droplet-Based Microfluidics at the Femtolitre Scale". en, 2015.

R. Arayanarakool, Single-Enzyme Analysis in a DropletBased Micro-and Nanofluidic System, en. In: Lab on a Chip, vol.13, pp.1955-1962, 2013.

Z. Li, Step-Emulsification in a Microfluidic Device, pp.1023-1031, 2015.

A. Dewan, Growth Kinetics of Microalgae in Microfluidic Static Droplet Arrays". en, Biotechnology and Bioengineering, vol.109, pp.2987-2996, 2012.

A. Claudiu, . Stan, K. Y. Sindy, G. M. Tang, and . Whitesides, Independent Control of Drop Size and Velocity in Microfluidic FlowFocusing Generators Using Variable Temperature and Flow Rate, Analytical Chemistry, vol.81, issue.6, pp.2399-2402, 2009.

B. Dollet, Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices, Physical Review Letters, vol.100, issue.3, p.34504, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674374

P. B. Umbanhowar, V. Prasad, and D. A. Weitz, Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream, Langmuir 16, pp.347-351, 2000.

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of Microfluidic Droplets". en, pp.2032-2045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020657

A. R. Abate, Impact of Inlet Channel Geometry on Microfluidic Drop Formation, Physical Review E, vol.80, issue.2, p.26310, 2009.

B. Zheng, J. D. Tice, and R. F. Ismagilov, Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays, Analytical Chemistry, vol.76, pp.4977-4982, 2004.

A. R. Abate, High-Throughput Injection with Microfluidics Using Picoinjectors". en, Proceedings of the National Academy of Sciences 107.45, pp.27-8424, 2010.

X. Niu, Electro-Coalescence of Digitally Controlled Droplets, Analytical Chemistry, vol.81, 2009.

M. Zagnoni, C. N. Baroud, and J. M. Cooper, Electrically Initiated Upstream Coalescence Cascade of Droplets in a Microfluidic Flow, Physical Review E, vol.80, p.46303, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01021133

M. Zagnoni and J. M. Cooper, On-Chip Electrocoalescence of Microdroplets as a Function of Voltage, Frequency and Droplet Size". en, Lab on a Chip, vol.9, pp.2652-2658, 2009.

L. Mazutis, J. Baret, and A. D. Griffiths, A Fast and Efficient Microfluidic System for Highly Selective One-toOne Droplet Fusion". en, Lab on a Chip, vol.9, pp.2665-2672, 2009.

Y. Tan, Design of Microfluidic Channel Geometries for the Control of Droplet Volume, Chemical Concentration, and Sorting". en, Lab on a Chip, vol.4, pp.292-298, 2004.

X. Niu, Pillar-Induced Droplet Merging in Microfluidic Circuits, en. In: Lab on a Chip, vol.8, pp.1837-1841, 2008.

A. R. Abate and D. A. Weitz, Faster Multiple Emulsification with Drop Splitting, en. In: Lab on a Chip, vol.11, issue.11, pp.1911-1915, 2011.

P. Abbyad, Rails and Anchors: Guiding and Trapping Droplet Microreactors in Two Dimensions, en. In: Lab on a Chip, vol.11, issue.5, pp.813-821, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00804598

L. Frenz, Reliable Microfluidic On-Chip Incubation of Droplets in Delay-Lines". eng, Lab on a Chip, vol.9, issue.10, pp.1344-1348, 2009.

F. Courtois, An Integrated Device for Monitoring TimeDependent in Vitro Expression From Single Genes in Picolitre Droplets, ChemBioChem 9, pp.439-446, 2008.

L. Mazutis, Droplet-Based Microfluidic Systems for HighThroughput Single DNA Molecule Isothermal Amplification and Analysis". en, Analytical Chemistry, vol.81, pp.3-2700, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420178

E. Zonta, Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations, PLOS ONE, vol.11, 2016.

J. Baret, Fluorescence-Activated Droplet Sorting (FADS): Efficient Microfluidic Cell Sorting Based on Enzymatic Activity". en. In: Lab on a Chip, vol.9, issue.13, pp.1850-1858, 2009.

H. Maenaka, Continuous and Size-Dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels, Langmuir 24, vol.8, pp.4405-4410, 2008.

Y. Tan, Y. L. Ho, and A. P. Lee, Microfluidic Sorting of Droplets by Size, en. In: Microfluidics and Nanofluidics, vol.4, pp.1613-4982, 2008.

P. Sajeesh, A Microfluidic Device with Focusing and Spacing Control for Resistance-Based Sorting of Droplets and Cells". en, Lab on a Chip, vol.15, pp.3738-3748, 2015.

F. Gielen, Ultrahigh-Throughput-directed Enzyme Evolution by Absorbance-Activated Droplet Sorting (AADS)". en, Proceedings of the National Academy of Sciences 113.47, 2016.

M. Arjen and . Pit, High-Throughput Sorting of Drops in Microfluidic Chips Using Electric Capacitance, Biomicrofluidics 9, p.44116, 2015.

. Ahn, Dielectrophoretic Manipulation of Drops for High-Speed Microfluidic Sorting Devices, Applied Physics Letters, vol.88, 2006.

A. Sciambi and A. R. Abate, Accurate Microfluidic Sorting of Droplets at 30kHz, Lab on a chip, vol.15, pp.47-51, 2015.

T. Franke, Surface Acoustic Wave (SAW) Directed Droplet Flow in Microfluidics for PDMS Devices". en, Lab on a Chip, vol.9, pp.2625-2627, 2009.

K. Bernath, In Vitro Compartmentalization by Double Emulsions: Sorting and Gene Enrichment by Fluorescence Activated Cell Sorting, Analytical Biochemistry, vol.325, pp.3-2697, 2004.

A. Zinchenko, One in a Million: Flow Cytometric Sorting of Single Cell-Lysate Assays in Monodisperse Picolitre Double Emulsion Droplets for Directed Evolution, Analytical Chemistry, vol.86, p.403585, 2014.

B. Kintses, Microfluidic Droplets: New Integrated Workflows for Biological Experiments". In: Current Opinion in Chemical Biology, Nanotechnology and Miniaturization/Mechanisms, vol.14, pp.1367-5931, 2010.

J. Baret, Fluorescence-Activated Droplet Sorting (FADS): Efficient Microfluidic Cell Sorting Based on Enzymatic Activity". en. In: Lab on a Chip, vol.9, issue.13, pp.1850-1858, 2009.

J. Bibette, Stability Criteria for Emulsions, Physical Review Letters, vol.69, pp.2439-2442, 1992.
DOI : 10.1103/physrevlett.69.2439

S. Köster, Drop-Based Microfluidic Devices for Encapsulation of Single Cells". en, Lab on a Chip, vol.8, pp.1110-1115, 2008.

J. Clausell-tormos, Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms, Chemistry & Biology, vol.15, pp.1074-5521, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02148746

A. Huebner, Development of Quantitative Cell-Based Enzyme Assays in Microdroplets, Analytical Chemistry, vol.80, pp.3890-3896, 2008.

D. J. Collins, The Poisson Distribution and beyond: Methods for Microfluidic Droplet Production and Single Cell Encapsulation". en, Lab on a Chip, vol.15, pp.3439-3459, 2015.

J. F. Edd, Controlled Encapsulation of Single-Cells into Monodisperse Picolitre Drops, en. In: Lab on a Chip, vol.8, issue.8, pp.1262-1264, 2008.

A. Fallah-araghi, A Completely in Vitro Ultrahigh-Throughput Droplet-Based Microfluidic Screening System for Protein Engineering and Directed Evolution". en, Lab on a Chip, vol.12, pp.882-891, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02148773

M. Ryckelynck, Using Droplet-Based Microfluidics to Improve the Catalytic Properties of RNA under Multiple-Turnover Conditions". en, RNA, vol.21, pp.1355-8382, 2015.

L. Mazutis, Multi-Step Microfluidic Droplet Processing: Kinetic Analysis of an in Vitro Translated Enzyme". en, Lab on a Chip, vol.9, pp.2902-2908, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02148762

B. Kintses, Picoliter Cell Lysate Assays in Microfluidic Droplet Compartments for Directed Enzyme Evolution, Chemistry & Biology, vol.19, 2012.

P. Colin, Ultrahigh-Throughput Discovery of Promiscuous Enzymes by Picodroplet Functional Metagenomics". en, Nature Communications, vol.6, pp.2041-1723, 2015.

F. Gielen, Ultrahigh-Throughput-directed Enzyme Evolution by Absorbance-Activated Droplet Sorting (AADS)". en, Proceedings of the National Academy of Sciences 113.47, 2016.
DOI : 10.1073/pnas.1606927113

URL : https://www.pnas.org/content/pnas/113/47/E7383.full.pdf

S. Stanislav and . Terekhov, Microfluidic Droplet Platform for UltrahighThroughput Single-Cell Screening of, Biodiversity". en. In: Proceedings of the National Academy of Sciences, vol.114, issue.10, pp.27-8424, 2017.

T. Beneyton, Droplet-Based Microfluidic High-Throughput Screening of Heterologous Enzymes Secreted by the Yeast Yarrowia Lipolytica, Microbial Cell Factories, vol.16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01468017

L. Staffan and . Sjostrom, High-Throughput Screening for Industrial Enzyme Production Hosts by, Droplet Microfluidics". en. In: Lab on a Chip, vol.14, pp.806-813, 2014.

L. , S. Roach, H. Song, and R. F. Ismagilov, Controlling Nonspecific Protein Adsorption in a Plug-Based Microfluidic System by Controlling Interfacial Chemistry Using Fluorous-Phase Surfactants, Analytical Chemistry, vol.77, pp.785-796, 2005.

S. Matsumura, Transient Compartmentalization of RNA Replicators Prevents Extinction Due to Parasites, en. In: Science, vol.354, pp.36-8075, 2016.

J. Garamella, The All E. Coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology, ACS Synthetic Biology, vol.5, pp.344-355, 2016.

Y. Shimizu, Cell-Free Translation Reconstituted with Purified Components". en, Nature Biotechnology, vol.19, pp.751-755, 2001.

Y. Shimizu, T. Kanamori, and T. Ueda, Protein Synthesis by Pure Translation Systems, Methods. Engineering Translation, vol.36, issue.3, pp.299-304, 2005.

M. Wenzel, Self-Inducible Bacillus Subtilis Expression System for Reliable and Inexpensive Protein Production by High-CellDensity Fermentation ?, Applied and Environmental Microbiology, vol.77, pp.6419-6425, 2011.

T. Beneyton, CotA Laccase: High-Throughput Manipulation and Analysis of Recombinant Enzyme Libraries Expressed in E. Coli Using Droplet-Based Microfluidics". en, Analyst, vol.139, pp.3314-3323, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01128349

A. Huebner, Quantitative Detection of Protein Expression in Single Cells Using, Droplet Microfluidics". en. In: Chemical Communications, vol.12, 2007.

P. R. Marcoux, Micro-Confinement of Bacteria into w/o Emulsion Droplets for Rapid Detection and Enumeration, In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.377, pp.927-7757, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00822878

J. Shim, Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments, Journal of the American Chemical Society, vol.131, pp.15251-15256, 2009.

A. Godina, In Vivo and in Vitro Directed Evolution of Enzymes Using Droplet-Based Microfluidics, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01124086

J. J. Agresti, Ultrahigh-Throughput Screening in DropBased Microfluidics for Directed Evolution". en, Proceedings of the National Academy of Sciences, vol.107, pp.27-8424, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02136491

Y. Nam-ahn, Molecular Transport through Surfactant-Covered Oil-Water Interfaces: Role of Physical Properties of Solutes and Surfactants in Creating Energy Barriers for Transport, Langmuir, vol.27, pp.2420-2436, 2011.

Y. Skhiri, Dynamics of Molecular Transport by Surfactants in Emulsions". en. In: Soft Matter, vol.8, pp.10618-10627, 2012.

P. Gruner, Controlling Molecular Transport in Minimal Emulsions". en, Nature Communications, vol.7, pp.2041-1723, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276355

J. Fenneteau, Synthesis of New Hydrophilic Rhodamine Based Enzymatic Substrates Compatible with Droplet-Based Microfluidic Assays". en, Chemical Communications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02104894

J. Farid, J. L. Ghadessy, P. Ong, and . Holliger, Directed Evolution of Polymerase Function by Compartmentalized Self-Replication". en, Proceedings of the National Academy of Sciences 98, pp.27-8424, 2001.

G. Woronoff, New Generation of Amino Coumarin Methyl Sulfonate-Based Fluorogenic Substrates for Amidase Assays in DropletBased Microfluidic Applications, Analytical Chemistry, vol.83, pp.2852-2857, 2011.

M. Najah, New Glycosidase Substrates for Droplet-Based Microfluidic Screening, Analytical Chemistry, vol.85, pp.9807-9814, 2013.

. Ee-xien-ng, Single Cell Multiplexed Assay for Proteolytic Activity Using Droplet Microfluidics, Biosensors and Bioelectronics, vol.81, pp.408-414, 2016.

F. Courtois, Controlling the Retention of Small Molecules in Emulsion Microdroplets for Use in Cell-Based Assays, Analytical Chemistry, vol.81, pp.3008-3016, 2009.

L. Mazutis, Droplet-Based Microfluidic Systems for HighThroughput Single DNA Molecule Isothermal Amplification and Analysis, Analytical Chemistry, vol.81, pp.4813-4821, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420178

R. Obexer, Emergence of a Catalytic Tetrad during Evolution of a Highly Active Artificial Aldolase". en, Nature Chemistry, vol.9, issue.1, pp.50-56, 2017.

P. Hammar, Single-Cell Screening of Photosynthetic Growth and Lactate Production by Cyanobacteria, In: Biotechnology for Biofuels, vol.8, pp.1754-6834, 2015.

A. Spungin and S. Blumberg, Streptomyces Griseus Aminopeptidase Is a Calcium-Activated Zinc Metalloprotein. Purification and Properties of the Enzyme". eng, European Journal of Biochemistry, vol.183, pp.14-2956, 1989.

D. Ben-meir, Specificity of Streptomyces Griseus Aminopeptidase and Modulation of Activity by Divalent Metal Ion Binding and Substitution". en, European Journal of Biochemistry, vol.212, pp.1432-1033, 1993.

B. Maras, Aminopeptidase from Streptomyces Griseus". en, European Journal of Biochemistry, vol.236, pp.843-846, 1996.

O. Almog, Crystallization and Preliminary Crystallographic Analysis of Streptomyces Griseus Aminopeptidase, Journal of Molecular Biology, vol.230, pp.22-2836, 1993.

H. M. Greenblatt, Streptomyces Griseus Aminopeptidase: XRay Crystallographic Structure at 1.75 \AA Resolution, Journal of molecular biology, vol.265, pp.620-636, 1997.
DOI : 10.1006/jmbi.1996.0729

N. Michael, L. Harris, and . Ming, Different Phosphate Binding Modes of Streptomyces Griseus Aminopeptidase between Crystal and Solution States and the Status of Zinc-Bound Water, FEBS Letters, vol.455, issue.3, pp.879-879, 1999.

R. Gilboa, Interactions of Streptomyces Griseus Aminopeptidase with a Methionine Product Analogue: A Structural Study at 1.53 \AA Resolution, Acta Crystallographica Section D: Biological Crystallography, vol.56, pp.551-558, 2000.

Y. Fundoiano-hershcovitz, Identification of the Catalytic Residues in the Double-Zinc Aminopeptidase from Streptomyces Griseus". en, FEBS Letters, vol.571, pp.192-196, 2004.

J. Arima, Modulation of Streptomyces Leucine Aminopeptidase by Calcium: IDENTIFICATION AND FUNCTIONAL, ANALYSIS OF KEY RESIDUES IN ACTIVATION AND STABILIZATION BY CAL-CIUM". en. In: Journal of Biological Chemistry, vol.281, issue.9, pp.21-9258, 2005.

J. Arima, The Role of Glu196 in the Environment around the Substrate Binding Site of Leucine Aminopeptidase from Streptomyces Griseus". en, FEBS Letters, vol.580, issue.3, pp.1873-3468, 2006.

F. Z. Giordano, L. Silva, and . Ming, Catechol Oxidase Activity of Di-Cu2+-Substituted Aminopeptidase from Streptomyces Griseus, Journal of the American Chemical Society, vol.127, pp.16380-16381, 2005.

A. Ercan, H. I. Park, and L. Ming, A "Moonlighting" Dizinc Aminopeptidase from Streptomyces Griseus: Mechanisms for Peptide Hydrolysis and the 4 × 1010-Fold Acceleration of the Alternative Phosphodiester Hydrolysis, Biochemistry 45, vol.46, pp.13779-13793, 2006.

A. Ercan, Mechanistic Role of Each Metal Ion in Streptomyces Dinuclear Aminopeptidase: Peptide Hydrolysis and 7 × 1010-Fold Rate Enhancement of Phosphodiester Hydrolysis, Journal of Inorganic Biochemistry, vol.104, issue.1, pp.19-29, 2010.

H. Park and L. Ming, A 1010 Rate Enhancement of Phosphodiester Hydrolysis by a Dinuclear Aminopeptidase-TransitionState Analogues as Substrates?" en, Angewandte Chemie International Edition, vol.38, pp.2914-2916, 1999.

A. Ercan, H. I. Park, and L. Ming, Remarkable Enhancement of the Hydrolyses of Phosphoesters by Dinuclear Centers: Streptomyces Aminopeptidase as a 'Natural Model System, Chemical Communications, vol.24, pp.2501-2502, 2000.

J. Arima, M. Iwabuchi, and T. Hatanaka, Gene Cloning and Overproduction of an Aminopeptidase from Streptomyces Septatus TH-2, and Comparison with a Calcium-Activated Enzyme from Streptomyces Griseus". en, Biochemical and Biophysical Research Communications, vol.317, pp.531-538, 2004.

L. Hedstrom, Serine Protease Mechanism and Specificity, Chemical Reviews, vol.102, pp.4501-4524, 2002.
DOI : 10.1002/chin.200306269

G. Dodson and A. Wlodawer, Catalytic Triads and Their Relatives, Trends in Biochemical Sciences, vol.23, issue.9, pp.347-352, 1998.
DOI : 10.1016/s0968-0004(98)01254-7

L. Hedstrom, L. Szilagyi, and W. J. Rutter, Converting Trypsin to Chymotrypsin: The Role of Surface Loops". en, Science 255, vol.5049, pp.36-8075, 1992.

L. Hedstrom, Converting Trypsin to Chymotrypsin: GroundState Binding Does Not Determine Substrate Specificity". eng, Biochemistry 33, vol.29, pp.6-2960, 1994.
DOI : 10.1021/bi00195a018

L. Hedstrom, J. J. Perona, and W. J. Rutter, Converting Trypsin to Chymotrypsin: Residue 172 Is a Substrate Specificity Determinant". eng, Biochemistry 33, vol.29, pp.6-2960, 1994.
DOI : 10.1021/bi00195a017

A. Godina, In Vivo and in Vitro Directed Evolution of Enzymes Using Droplet-Based Microfluidics, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01124086

T. Beneyton, High-Throughput Screening of Filamentous Fungi Using Nanoliter-Range Droplet-Based Microfluidics, Scientific Reports, vol.6, pp.2045-2322, 2016.

C. Nathan and . Shaner, Improved Monomeric Red, Orange and Yellow Fluorescent Proteins Derived from Discosoma Sp. Red Fluorescent Protein". en, Nature Biotechnology, vol.22, pp.1567-1572, 2004.

T. Dinh and T. G. Bernhardt, Using Superfolder Green Fluorescent Protein for Periplasmic Protein Localization Studies ?, Journal of Bacteriology, vol.193, pp.21-9193, 2011.
DOI : 10.1128/jb.00315-11

URL : https://jb.asm.org/content/193/18/4984.full.pdf

L. Westers, H. Westers, and W. J. Quax, Bacillus Subtilis as Cell Factory for Pharmaceutical Proteins: A Biotechnological Approach to Optimize the Host Organism, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, pp.299-310, 2004.

S. Wu, Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus Subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production, en. In: Applied and Environmental Microbiology, vol.68, pp.99-2240, 2002.

. Duc-nguyen-hoang, Construction of Plasmid-Based Expression and Secretion Vectors and Study of the Immobilization of Proteins on the Surface of Bacillus Subtilis Cells, 2006.

R. Tu, A Flow Cytometry-Based Screening System for Directed Evolution of Proteases". en, Journal of Biomolecular Screening, vol.16, issue.3, pp.285-294, 2011.

. Hoang-duc-nguyen, Construction of Plasmid-Based Expression Vectors for Bacillus Subtilis Exhibiting Full Structural Stability, Plasmid, vol.54, pp.241-248, 2005.

T. T. , P. Phan, W. Hoang-duc-nguyen, and . Schumann, Novel Plasmid-Based Expression Vectors for Intra-and Extracellular Production of Recombinant Proteins in Bacillus Subtilis, Protein Expression and Purification, vol.46, issue.2, pp.189-195, 2006.

É. Várallyay, Two Mutations in Rat Trypsin Confer Resistance against Autolysis, Biochemical and Biophysical Research Communications, vol.243, 1998.

Z. Jianying and . Kiser, Streptomyces Erythraeus Trypsin for Proteomics Applications, Journal of Proteome Research, vol.8, pp.1810-1817, 2009.

L. Mahler, Enhanced and Homogeneous Oxygen Availability during Incubation of Microfluidic Droplets". en, RSC Advances, vol.5, pp.101871-101878, 2015.

P. Gruner, Controlling Molecular Transport in Minimal Emulsions". en, Nature Communications, vol.7, pp.2041-1723, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276355

C. Pankaj, R. Jain, and . Varadarajan, A Rapid, Efficient, and Economical Inverse Polymerase Chain Reaction-Based Method for Generating a Site Saturation Mutant Library, Analytical Biochemistry, vol.449, pp.3-2697, 2014.

D. F. Lee, Mapping DNA Polymerase Errors by SingleMolecule Sequencing, Nucleic Acids Research, vol.44, 2016.

. R-h-don, Touchdown' PCR to Circumvent Spurious Priming during Gene Amplification, Nucleic Acids Research, vol.19, pp.305-1048, 1991.