.. .. Materials,

, Extrusion and injection molding processes

, Miscibility study of cellulose acetate / plasticizers blends

.. .. Mechanical,

, 1.2. Scanning Transmission Electron Microscopy (STEM), 2008.

. .. References, C. Y. References--bao, D. R. Long, C. Vergelati, V. J. Mcbierty et al., Miscibility and Dynamical Properties of Cellulose Acetate/Plasticizer Systems. Carbohydrate Polymers, Cellulose Acetate/Plasticizer Systems: Structure, Morphology And Dynamics, vol.116, pp.593-600, 1996.

M. Scandola, G. Ceccorulli, M. Sousa, A. R. Bras, H. I. Veiga et al., Viscoelastic Properties of Cellulose Derivatives 2. Effect of Diethylphthalate On The Dynamic Mechanical Relaxations of Cellulose Acetate, Cellulose Acetate Blends -Effect of Plasticizers on Properties and Biodegradability, vol.2, pp.35-41, 1958.

B. , , vol.114, pp.10939-10953

.. .. Impact,

, 95 2.4.1. Influence of the orientation of polymer chains

.. .. Conclusion,

. .. References, M. C. Boyce, E. M. Arruda, M. C. Boyce, and H. Quintus-bosz, Evolution of plastic anisotropy in amorphous polymers during finite straining, Effects of initial anisotropy on the finite strain deformation behavior of glassy polymers, vol.9, pp.783-783, 1993.

C. Y. Bao, A. Buckley, J. Scanlan, C. B. Bucknall, C. B. Bucknall et al., A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures, Brittle-Tough Transition Temperatures In Impact Tests On Rubber-Toughned Plastics. Makromol. Chem., Macromol. Symp, vol.3, pp.1464-1472, 1936.

, 2. Influence of the orientation of macromolecular chains, Microscopic study of the damage morphologies after failure under tensile stresses

. .. , Ultra-Small Angles X-rays Scattering (USAXS) study of the damage morphologies

, Influence of the orientation of macromolecular chains

, Controlled growth by the strain hardening

. .. References, A. S. Argon, M. I. Bessonov, A. S. Argon, J. G. Hannoosh et al., Communication: Experimentally determined profile of local glass transition temperature across a glassy-rubbery polymer interface with a Tg difference of 80 K, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, vol.52, pp.827-863, 1944.

A. Dequidt, D. R. Long, S. Merabia, P. ;. Sotta, L. Vanel et al., Mechanical Properties of Polymers and Nano-Composites Close to the Glass Transition, Heterogeneous Dynamics and Polymer Plasticity, vol.33, p.36, 1948.
URL : https://hal.archives-ouvertes.fr/hal-01489479

E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water, Physical Review E, vol.74, issue.4, 2006.

E. Herbert, F. Caupin, R. S. Hoy, M. O. Robbins, R. S. Hoy et al., Strain hardening of polymer glasses: Effect of entanglement density, temperature, and rate, Strain Hardening in Polymer Glasses: Limitations of Network Models, vol.17, pp.3487-3500, 2005.

E. J. Kramer, E. J. Kramer, L. L. Berger, L. D. Landau, and E. M. Lifshitz, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, vol.7, issue.4, pp.284-304, 1940.

. Butterworthheinemann, L. D. Landau, E. M. Lifshitz, D. R. Long, L. Conca et al., Crazes in amorphous polymers I. Variety of the structure of crazes and classification of different types of crazes, Electron Microscopy Of Polymers, vol.2, pp.377-388, 1985.

J. F. Oliver, C. Huh, S. G. Mason, E. Paredes, E. W. Fischer et al., Time-dependent rupture and slow crack growth: elastic and viscoplastic dynamics : Fracture from the atomic to the geophysical scale, The Relationship between Craze Structure and Molecular Weight in Polystyrene as Revealed by ?SAXS Experiments. Macromolecular Rapid Communications, vol.59, pp.1689-1694, 1065.

. .. Fatigue-cycle-analysis, 150 1.1. Influence of the maximal stress value

.. .. Modulus-ed, Evolution of the damage during fatigue lifetime

.. .. Conclusion,

.. .. References,