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Résumé 
Etude des propriétés mécaniques et des mécanismes d’endommagement 

sous traction de l’acétate de cellulose plastifié 
A.Charvet 

L’acétate de cellulose (CA) est un bio-polymère issu de la cellulose du bois. Sa température de 
dégradation (dont le degré de substitution 2,5 est développé et commercialisé par le Groupe 
Solvay) étant très proche de sa température de fusion, son procédé de mise en œuvre par voie 
fondue ne peut être envisagé qu’avec l’ajout d’une quantité importante de plastifiant externe 
(entre 15 et 30% en poids).  

Le polymère plastifié obtenu est classé parmi les thermoplastiques amorphes et ses propriétés 
sont régies par un «réseau» de très fortes interactions polaires. La plastification de l’acétate de 
cellulose à fait l’objet de nombreux travaux nous permettant de nous concentrer in fine sur deux 
plastifiants: la triacétine (TA), un plastifiant biosourcé fréquemment utilisé dans l’acétate de 
cellulose et le Diethyl Phthalate (DEP) qui est le plastifiant historique de l’acétate de cellulose et 
constitue une référence. 

Les propriétés mécaniques de l’acétate de cellulose plastifié obtenu par voie fondue étant peu 
étudiées dans la littérature, nous avons dans un premier temps évalué le comportement en 
traction et l’influence de différents paramètres tels que le taux et le choix du plastifiant mais 
également l’influence du procédé d’injection sur ces propriétés.  

Nous avons ainsi pu mettre en évidence l’apparition d’un régime de durcissement plastique 
(strain hardening en anglais) dès 8% de déformation sous certaines conditions. Il apparaît que le 
choix du plastifiant, la température d’analyse et la pré-orientation macroscopique des chaînes 
influencent significativement ce régime. Le durcissement plastique a déjà été observé dans 
d’autre polymères amorphes tels que le polycarbonate (PC) ou le poly(méthyle methacrylate) 
(PMMA) qui sont classés parmi les polymères amorphes dit « ductiles ». L’origine de ce régime 
est encore peu connue et suscite de nombreux débats, cependant il semblerait qu’il stabilise la 
déformation en évitant la localisation de l’endommagement et serait donc un paramètre clé 
pour l’amélioration de la ductilité de ces polymères. 

Afin de mieux comprendre cette ductilité nous avons réalisé des observations par microscopie 
électronique à balayage en transmission (STEM) ainsi que par diffusion des rayons X aux très 
petits angles (USAXS). Grâce à ces caractérisations nous avons pu décrire les micro-mécanismes 
d’endommagement sous traction de nos polymères depuis l’échelle macroscopique jusqu’à 
l’échelle nanométrique et ainsi décrire précisément les micro-mécanismes liés à l’initiation et la 
propagation de l’endommagement.  
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Par ces analyses nous mettons en évidence la nucléation simultanée de craquelures 
nanométriques autour des défauts préexistants (liés au processus de mise en œuvre). Ces 
craquelures vont ensuite croitre de façon très limitée jusqu’à atteindre la centaine de micron. 
Cependant lorsque la contrainte appliquée devient suffisamment élevée, une petite portion de 
ces craquelures vont se mettre à croitre plus rapidement jusqu’à entrainer la rupture de 
l’échantillon. Avec le DEP la cinétique de croissance est très rapide, entrainant une rupture 
brutale de l’échantillon dès qu’une craquelure atteint une dimension critique. Avec la TA 
néanmoins cette vitesse est plus lente, ce qui permet d’observer l’évolution d’une deuxième 
famille de craquelures. 

Ces travaux proposent un nouveau mécanisme d’endommagement dans l’acétate de cellulose 
plastifié basé sur des résultats expérimentaux et un modèle physique permettant une meilleure 
compréhension de la ductilité dans ces polymères. 
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Abstract 
Study of mechanical properties and damage mechanisms in plasticized 

cellulose acetate polymers 
A. Charvet 

Cellulose acetate (CA) is a bio based polymer. Melt processing of cellulose based thermoplastic 
polymers is a real challenge. One problem is the existence of a narrow window between the 
melting point and the degradation temperatures for cellulose acetate with a substitution degree 
(DS) around 2.45 (which is developed and commercialized by Rhodia Acetow). As a 
consequence, its processing can only be considered with a sufficient amount of external 
plasticizer (between 15 and 30% by weight). The corresponding polymer/plasticizer blends are 
amorphous and their mechanical properties are mainly governed by the presence of a high 
volume fraction of strong hydrogen bonds. The plasticization of cellulose acetate has been the 
subject of many studies allowing us to focus on two plasticizers: triacetin (TA), an eco-friendly 
plasticizer frequently used for cellulose acetate and diethyl phthalate (DEP) which is the historic 
plasticizer of cellulose acetate which constitutes a reference for this work as it is usually the case 
in the literature. 

Few studies have been published regarding the mechanical properties of bulk cellulose acetate 
(prepared via injection molding). It is described that they are comparable to those of PS or 
poly(methyl methacrylate) (PMMA) and have proven to be particularly interesting. Cellulose 
acetate based materials usually display a high Young modulus. But its small deformation at 
break limits its potential for new applications. The objectives of this thesis are to deeply 
understand the mechanical properties and damage mechanisms of bulk plasticized cellulose 
acetate polymers. For this purpose we first analyzed the tensile behavior and the influence of 
various parameters such as nature and content of the plasticizer, but also the influence of the 
injection process. 

We have thus been able to highlight the appearance of a strain hardening regime from 8% of 
deformation under certain conditions. It appears that the choice of the plasticizer, the 
temperature of the experiment and the macroscopic pre-orientation of the chains significantly 
influence this regime. Strain hardening has already been observed in other amorphous 
polymers such as polycarbonate (PC) or poly (methyl methacrylate) (PMMA) which are 
classified as amorphous polymers called "ductile". The origin of this regime is still undeveloped 
and much debated, however it appears that it stabilizes the deformation by avoiding the 
localization of damage and is therefore a key parameter for improving the ductility of these 
polymers. 
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In order to better understand this ductility, we have made some analysis by Scanning 
Transmission Electron Microscopy (STEM) as well as Ultra Small Angles X-ray Scattering 
(USAXS). Thanks to these characterizations we have been able to describe the micro-
mechanisms of damage from macro to nano-scales and thus precisely describe the micro-
mechanisms related to initiation and propagation of damage. 

By these analyzes we highlight the simultaneous nucleation of nano crazes around pre-existing 
defects (related to the injection process). These crazes grow slowly until reaching the hundred 
microns. However, when the applied stress becomes sufficiently high, a small portion of these 
crazes starts to grow faster until the failure of the sample. With DEP the kinetics of growth is 
very fast, causing a brittle failure of the sample. With TA this growth is slower, which makes it 
possible to observe the evolution of the larger crazes. 

This work proposes a new mechanism of damage in plasticized cellulose acetate based on 
experimental results and physical interpretations. 
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Chapter I. STATE OF THE ART 
 
 

Introduction 
The purpose of this chapter is to present a summarized literature review of the important 
notion and parameters which govern the mechanical and the micro-mechanisms of 
deformation in polymers. 
 In a first part cellulose acetate and its basic properties will be exposed. However, the study of 
the mechanical properties of cellulose acetate obtained by the molten route is not very 
extensive in the literature. Some papers expose the influence of the injection process on the 
mechanical properties of the resulting polymer, but few studies deal with the mechanisms of 
deformation in cellulose acetate.  
As cellulose acetate belongs to the family of amorphous polymers, we will present in a second 
part the mechanical behavior of these polymers. Many studies on different amorphous 
polymers are available in the literature, which allow us to introduce the different macroscopic 
mechanisms induced during mechanical experiments.  
Finally we will expose their micro-mechanisms of deformation observed by microscopic or 
scattering methods. The limits of these studies as well as the context of our study will be 
highlighted at the end of this Chapter. 
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Chapter I- State of the Art 

1. Cellulose acetate synthesis 

Cellulose is the most abundant biopolymer on earth. Its annual production rate is estimated 
between 1011 and 1012 tons (Klemm, Heublein, Fink, and Bohn (2005)). Cellulose molecules are 
present in all plant species in the form of fibril with varying proportions, between 40 and 50% of 
dry mass of cellulose in wood against 85 and 95% in cotton fibers (Kadla and Dai (2007)). In 
most plants, cellulosic fibers are combined with other natural substances such as lignin and 
hemicellulose. Chemical extraction processes are necessary to isolate the cellulose. The 1-4 
conformation of its anhydroglucose units (AGU) allows the formation of a network of strong 
intra and intermolecular hydrogen bonds between the hydroxyl groups present on each AGU, 
as shown (in red) in Figure 1. This confers a strong rigidity to the cellulose fiber. 

 
Figure 1 Schematic structure of cellulose acetate and its intra- and inter-molecular hydrogen bonds network (Wang et al. (2017) 

Nevertheless cellulose has many disadvantages: it is very slightly soluble in most common 
solvents and its processing temperature is higher than its degradation temperature (200 - 250°C), 
its modification is essential to expand its field of application. There are different types of 
modifications of the alcohol functions of cellulose such as etherification (Rustemeyer (2004)). 
The most commons chemical modifications are summarized in Figure 2. 

 

Figure 2 Most common chemical modifications of cellulose (Balser et al. (2012)) 
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1.1. Cellulose acetate properties 

The substitution degree (DS) plays a fundamental role in the chemical properties of cellulose 
acetate. Depending on the acetyl group content, cellulose acetate is soluble in various organic 
solvents or in water. The DS is measured by a saponification reaction. The cellulose acetate is 
reacted in the presence of an excess of sodium hydroxide, which produces acetic acid, and then 
the unreacted sodium hydroxide is measured. The acetyl content are thus measured and 
therefore the DS. The relationship between the DS, the acetyl content and the best organic 
solvent is reported in Table 1. 

Table 1 Relationship between the DS of cellulose acetate and the acetyl content. Last column indicated the best organic solvent 
corresponding (Balser et al. (2012)).  

DS Acetyl %mass  Solvent 
2.8 – 3.0 43 – 44.8 Dichloromethane 
2.2 – 2.7 37 – 42 Acetone 
1.2 – 1.8 24 – 32 2-methoxyethanol 
0.6 – 0.9 15 - 20 Water 

1.1.1. Thermal properties 

Three temperatures are important for the processability of cellulose acetate: the melting 
temperature (Tm), the glass transition temperature (Tg) and the degradation temperature (Td). 
Kamide and Saito (1984) have precisely studied, by Dynamical Scanning Calorimetry (DSC), the 
dependence of these three temperatures with the DS of cellulose acetate. For a DS close to 2.2 
the glass transition temperature of the cellulose acetate is estimated at 190°C (McBierty, Keely, 
Coyle, Xu, and Vij (1996)). 

 

Figure 3 Dependence of glass transition temperature (Tg), melting temperature (Tm) and degradation temperature (Td) on the 
substitution degree (DS) of cellulose acetate (Kamide and Saito (1984)) 

4 

 



Chapter I- State of the Art 

According to this study, the esterification of the cellulose leads to a decrease in the crystallinity 
witnessed by the decrease of Tm and then as the reaction advances the structure of the resulting 
polymer is organized and Tm and Td increase. The authors establish a linear dependence of the 
Tg with the DS according to the following equation: ( ) = 523 20.3                                                                   (1) 

A point of intersection between the degradation temperature and the melting temperature is 
observed for a DS around 2.5, which means that the melt processing of cellulose acetate is only 
possible for this degree of substitution. 

1.1.2. Dynamical properties 

The thermodynamic relaxations of cellulose acetate with a DS = 2.5 have been studied since the 
80’s by using different techniques (Bao, Long, and Vergelati (2015); Jafarpour, Dantras, Boudet, 
and Lacabanne (2007); Scandola and Ceccorulli (1985b); Seymour, Weinhold, and Haynes (2006); 
Sousa et al. (2010)). Generally speaking, these dynamic properties are studied on films, obtained 
by Solvent Casting, by Dynamic Thermomechanical Analysis (DMTA) or by Dielectric 
Broadband Spectroscopy (DBS). Three main relaxations are identified in unplasticized cellulose 
acetate. A first around 200 °C at 3Hz, the main relaxation ( -relaxation) corresponding to the 
glass transition Tg and two other secondary relaxations in the vitreous domain, relaxation  and 
relaxation  (Scandola and Ceccorulli (1985b)). These relaxations are well identified in many 
papers but their molecular origin is still under debate. 

 
Figure 4 Three thermodynamic relaxations observed by DMTA on unplasticized cellulose acetate at 0.3Hz (Scandola and 

Ceccorulli (1985b)) 

The scientific literature assigns the origin of  relaxation to traces of water present in cellulose 
acetate (McBierty et al. (1996); Scandola and Ceccorulli (1985a)).  
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When the polymer is sufficiently dry this relaxation disappears. Einfeldt, Meibner, and 
Kwasniewski (2001) propose another origin of this relaxation: it would be the expression of the 
localized movements of the methyl alcohol groups of the AGUs. Bao (2015) et al suggest that it 
is the rotations of the acetyl groups which are at the origin of the  relaxation.  

In the case of  relaxation, several interpretations are proposed in the literature. Seymour et al. 
(2006) put forward that this relaxation comes from AGU movements. This implies cooperative 
movements between the different polar groups on each side of the cycle. Scandola and 
Ceccorulli (1985a) also suggest that the origin of this secondary relaxation is strongly related to 
the movement of AGUs. The activation energy of this relaxation is about 85 kJ / mol (Bao et al. 
(2015)). 

-relaxation of cellulose acetate is not well documented due to the conductivity 
interference. 

1.1.3. Mechanical properties 

Few studies have been published regarding the mechanical properties of bulk cellulose acetate 
(prepared via injection molding) (Ishikawa and Tadano (1987); Mohanty, Wibowo, Misra, and 
Drzal (2003); van De Ven and Kadla (2013); Warth, Mülhaupt, and Schätzle (1996)). Among 
these studies, the majority is focused on mechanical properties of cellulose acetate fibers 
(Zugenmaier (2004)). 

Ishikawa and Tadano (1987) have studied the mechanical behavior under uniaxial tension of a 
sheet of cellulose acetate obtained via solvent casting. They measured the Young modulus and 
the yield stress at different temperatures and strain rates. The stress-strain curves are reported 
in Figure 5. 

They have shown that the yield stress y (MPa) (defined at the beginning of the plastic flow or 
at maximum stress) increases with strain rate, while the yield strain is nearly equal to 4% 
regardless of strain rate. The yield stress also increases with the decrease of the temperature of 
the experiment. Therefore it can be expressed approximately by a linear function of the 
logarithm of strain rate  (1/h) at a given temperature. Young's modulus E (MPa) is less 
dependent both on strain rate and room temperature. The mechanical properties described in 
this work (elongation at break around 15% and yield stress around 40 MPa, Young modulus 
around 2000 MPa) are comparable to those of polystyrene (PS), styrene acrylonitrile copolymers 
(SAN) or poly(methyl methacrylate) (PMMA) (Carollo and Grospietro (2004)). 
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Figure 5 Tensile behavior of unplasticized cellulose acetate films at 30°C and for different strain rate. a) Stress-Strain curves for 

each strain rate. b) Dependence of the yield stress to the strain rate at different temperatures. c) Dependence of the Young 
modulus to the strain rate at different temperatures. (Ishikawa and Tadano (1987)) 

1.2. Plasticizers of cellulose acetate 

Due to the existence of a narrow window between the melting point and the degradation 
temperatures for cellulose acetate with a substitution degree (DS) around 2.45, its processing 
can only be considered with a sufficient amount of external plasticizer. Extensive research has 
been dedicated for identifying efficient plasticizers (Fordyce and Meyer (1940)). An external 
plasticizer is not bound to the polymer by covalent bonds but only by physical interactions 
(Cadogan and Howick (2000)). The smaller plasticizer molecules limit the interactions between 
the polymer chains thus leading to an acceleration of the molecular dynamics. The addition of a 
plasticizer leads to an increase in the free volume of the system, which induces a decrease of the 
processing temperature and the viscosity. The more the plasticizer is compatible with the 
cellulose acetate, the more the plasticization will be effective and the melt process will be 
simplified.  
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However, there is a solubility limit between the cellulose acetate matrix and the plasticizer. This 
limit must not be exceeded to avoid saturation of the matrix and loss of properties of the 
resulting polymer. Bao (2015) et al have studied the miscibility behavior of plasticized cellulose 
acetate systems with the Diethyl phthalate (DEP) and the Triacetin (TA) as plasticizing agents. 
Figure 6 shows the miscibility limit of CDA/DEP polymers. This miscibility threshold is 
established when two Tg are observed by Modulated Dynamical Scanning Calorimetry 
measurements (MDSC). 

 

Figure 6 Dependence of the glass transition temperatures (Tg) measured by MDSC to the plasticizer content (DEP). Miscibility 
threshold established by the appearance of two glass transition temperatures (Bao et al. (2015)) 

The most commonly used plasticizers for cellulose acetate are phthalate esters such as DEP. 
However, since 2013 this compound has been classified as possibly carcinogenic by the 
International Agency for Research on Cancer (IARC). New biosourced plasticizers have been 
subject to numerous studies. Among them TA has shown good properties and good 
compatibility with cellulose acetate. These two plasticizers interact in the same way with 
cellulose acetate: they form dipolar interactions and hydrogen bonds thanks to their carbonyl 
group. Their chemical structure however differs. DEP has an aromatic ring which can also 
interact with cellulose acetate. Their chemical structures are given in Figure 7. 

 

    

Figure 7 Chemical structures of cellulose acetate plasticizers. 
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Miscibility limits were determined by Bao (2015) for cellulose acetate systems (DS = 2.45) 
plasticized with DEP and TA. In the case of DEP this limit is around 25% by weight and with 
the TA around 20% by weight. 

2. Properties of plasticized cellulose acetate 

The external plasticization of cellulose acetate (DS = 2.45) gives rise to an amorphous, 
transparent thermoplastic polymer (Zugenmaier (2004)). 

2.1. Thermodynamical properties 

The addition of a plasticizer induces a decrease of the relaxation temperature observed in 
unplasticized cellulose acetate (Scandola and Ceccorulli (1985a)). The glass transition 
temperature (Tg) as well as the secondary -relaxation temperature are shifted to lower 
temperatures. Moreover, it is also observed that the magnitude -relaxation increases 
when increasing the plasticizer content, as shown in Figure 8 for the CDA/DEP systems.  

 

Figure 8 DMTA spectra of plasticized cellulose acetate with different amount of plasticizer between 5wt% and 45wt% (Bao 
(2015)) 

In unplasticized cellulose acetate a -relaxation have been observed (Scandola and Ceccorulli 
(1985b)). When the cellulose acetate is plasticized, the secondary peak results from two 
contributions: the -relaxation observed in unplasticized CDA and the ’-relaxation resulting 
from the plasticized CDA (Bao (2015)). The ’-relaxation is specific to the plasticized system and 
has a different molecular origin than that of the -relaxation.  
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This hypothesis is based on the fact that the characteristic temperatures of the secondary 
relaxation peak are not the same for all systems. As CDA requires a certain amounts of 
plasticizer molecules to be completely plasticized, both - and ’-relaxations exist in the 
plasticized CDA samples. Beyond the immiscibility threshold the proportions of these two 
contributions change. -relaxation of the plasticized CDA becomes more important than 

-relaxation of the cellulose acetate. It is assumed that phase separation takes place. 

Thermo-mechanical transitions of polymers are described by different types of behavioral laws. 
The temperature dependence of the relaxation rate of secondary relaxations is generally 
described by an Arrhenius equation (Laidler (1996)): 

( ) = exp                                                                        (3) 

where Ea (kJ.mol-1) is the activation energy, 0 (s) is the characteristic time and kB (m2.kg.s-2.K-1) is 
the Boltzmann’s constant. 

The temperature- -relaxation can be described by the Vogel- 
Fulcher (1925)- Tamman and Hesse (1926) (VFT) equation: 

= exp                                                                          (4) 

where A is a dimensionless constant and T0 (K) denotes the so-called Vogel temperature. 

The different relaxations observed in plasticized cellulose acetate by Bao et al. (2015) are given 
in Figure 9. 

 
Figure 9 a) Temperature dependence of -relaxation times ( - - relaxation times in cellulose acetate/DEP 

polymers. Data obtained by DBS. (Bao (2015)) 
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Relaxations observed in plasticized cellulose acetate are consistent with those observed in 
unplasticized cellulose acetate (Scandola and Ceccorulli (1985b); Sousa et al. (2010)). The main 

-relaxation) is shifted to lower temperatures with increasing the plasticizer content 
but still follows a VFT law. -relaxation observed in unplasticized cellulose 
acetate is still observed in plasticized samples. Its temperature is shifted to lower temperatures 
when the plasticizer content increases. It was seen that two contributions are involved in this 
relaxation when the cellulose acetate is plasticized. A new contribution of the plasticizer rich-

-relaxation) is added with an increasing intensity when the plasticizer content is 
increased. When the plasticized sample is beyond its miscibility threshold the contribution of 

-relaxation becomes the most important contribution. 

2.2. Mechanical properties 

The advantage of cellulose acetate compared to other bio-based thermoplastics is its high 
rigidity which results in a high Young's modulus and its transparency (Ishikawa and Tadano 
(1987)). These two characteristics place it in the same category as other amorphous 
petrochemical materials such as PMMA, PS or PC. However, its elongation at break remains a 
limiting parameter for its applications as well as its resistance to impact. Its impact resistance is 
of the order of 10 J/m (IZOD notched at 23 ° C) regardless of the plasticizer content (Richard and 
Brewer (1981)) while the PS which is one of the most fragile amorphous polymers has an impact 
resistance of 20 J/m under the same conditions. Cellulose acetate may in some cases display a 
high impact resistance: when impact resistance tests are performed on non-notched samples the 
levels of resilience of cellulose acetate are much higher than those of other amorphous polymers. 
Cellulose acetate has a high resistance to crack formation (Balser et al. (2012)). Table 2 reports 
the mechanical properties of plasticized cellulose acetate are compared with those of two 
commercial amorphous polymers (Acrylonitrile butadiene styrene (ABS) and PMMA).  

Table 2 Basic mechanical properties of three commercial amorphous polymers: plasticized cellulose acetate, ABS and PMMA. 
Ocalio (Solvay) 

 
Commercial plasticized cellulose 

acetate (30wt%TA) 
ABS PMMA 

Young modulus (MPa) 2100 2000 2240 
Elongation at break (%) 9 20 4 
Tensile strength (MPa) 40 43 55 

Impact strength (notched 
CHARPY) 23°C (kJ/m) 

16 14 2 

Few studies have been published regarding the mechanical properties of injected cellulose 
acetate, among them Mohanty et al. (2003) measured the influence of the processing mode on 
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the mechanical properties of plasticized cellulose acetate with an eco friendly plasticizer: 
triethyl citrate (TEC). It is well known that the injection process has an influence on mechanical 
properties of polymers (Kantz, Newman, and Stigale (1972); Rider and Hargreaves (1969); Van 
Erp, Govaert, and Peters (2013)). In their study Mohanty et al. (2003) have also measured the 
influence of the plasticizer content on the impact strength, the tensile strength, the elongation at 
break and the Young modulus.  

 

Figure 10 Evolution of a) the impact strength and the elongation at break b) the Young modulus and the impact strength with 
increasing the plasticizer content. Polymer obtained by extrusion followed by compression molding (Mohanty et al. (2003)) 

It is shown for a same injection mode that with an increase of plasticizer content from 20 to 40 
wt%, the tensile properties decrease while impact strength and elongation at break increase, as 
shown in Figure 10(a). Then the influence of the processing mode on these parameters is plotted 
in Figure 11.  

Samples A, B and C are obtained through compression molding (CM) of the blend between 
pure cellulose acetate powder and TEC plasticizer at temperatures of 190°C 180°C, and 170°C 
respectively. Sample D is obtained through extrusion followed by compression molding. 
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Figure 11 Evolution of the mechanical parameters with the processing mode. A, B and C compression molding at 190°C, 180°C 
and 170°C respectively. D extrusion followed by compression molding.(Mohanty et al. (2003)) 

They compare the tensile properties of the compression-molded sample (B) versus the extruded 
followed by compression-molding sample (D), and they respectively find 48% and 13% 
enhancements of the tensile strength and modulus of the latter material. The superior strength 
of the extruded material is attributed to the better mixing of cellulose acetate and TEC 
plasticizer during high shear extrusion processing.  

The mechanisms of deformation induced under tensile stresses are not studied in this paper and 
more generally in the literature. Literature gives some information about the basic mechanical 
properties and the comparison with other commercial amorphous polymers. The description of 
the different deformation phases under tensile stresses will be the first part of this PhD research.  
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3. Mechanical properties of amorphous polymers 

When a polymer is submitted to a mechanical stress in its glassy state, it exhibits a typical 
behavior reproduced in Figure 12 . There are 4 domains on this curve which can be described as 
follows: 

 

Figure 12 Basic stress-Strain curve obtained under tensile stress in amorphous polymer. 

I = Domain where a viscoelastic response is observed, called elastic zone, the slope of this curve 

is called Young's modulus. The decrease in this slope coincides with the development of 
anelastic deformation of the polymer. 

II = This domain marks the appearance of the plastic deformation, it is the plasticity threshold, 

y p. This is called 
strain softening. It is not visible in all polymers and is often related to the occurrence of 
localization of damage such as shear bands or necking (van Breemen, Engels, Klompen, Senden, 
and Govaert (2012)). 

The plastic flow (yield stress) of polymers is a viscous phenomenon (Monnerie, Halary, and 
Kausch (2005)): it strongly depends on the strain rate and the temperature. The yield stress 
increases as the temperature decreases or as the strain rate increases. Below a critical 
temperature or strain rate, the ductile behavior of the polymer switches to a brittle behavior and 
the polymer breaks before reaching its yield stress, beyond this limit the inelastic strain is 
almost zero, there is propagation of a single crack and rupture of the polymer. It is the brittle to 
ductile transition.  
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Figure 13 illustrates the effect of temperature and strain rate on the mechanical response of 
PMMA under compression test. These curves show a decrease in the yield y with 
increasing the temperature of the experiment or with decreasing the strain rate. 

 
Figure 13 Temperature and strain rate dependencies of the mechanical behavior of PMMA under tensile deformation (Monnerie, 

Lauprêtre, and Halary (2005))  

The dependence of the yield stress as a function of the strain rate for a given temperature is 
often described by the Eyring’s law (Eyring (1936); Ree and Eyring (1955)), which is a good tool 
for comparing different polymers. 

According to Eyring's theory, plasticity is a thermally activated phenomenon. This phenomenon 
would be the combination of applied stress and thermal fluctuations, which would mean that 
the intermolecular (chain slip) and intramolecular (conformational change) motions would be 
responsible for this plasticity. These changes of local conformations are driven by energetic 
terms of interaction such as Van der Waals forces. The time / temperature dependence of the 
yield stress follows an Arrhenius law where the component "applied stress" is added. The 
relaxation time of this deformation  

a between the configurations are reduced. Figure 14 proposed a representation of 
this energy model. 
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Figure 14 schematic representation of the energy barrier theory of yielding proposed by (Eyring (1936), Dequidt et al. (2016) 

In the absence of stress, the relaxation time is given by an Arrhenius law: 

= exp                                                                                  (5) 

Where a is the activation energy, R the perfect gas constant and T the temperature of the 
experiment. 

accelerated by the lowering of the energy barrier to an amount proportional to the stress: 

= exp                                                                      (6) 

Th a is often called the activation volume (nm3). 

By plotting = ( ) it is then possible to m a a corresponding to 

the studied polymer. 

= + 2.3                                                                            (7) 

This equation correctly predicts the logarithmic dependence of the plasticity threshold to the 
strain rate  for the majority of amorphous polymers. T y/T is plotted versus log( ,s–1) at 
various temperatures for the PMMA in Figure 15. A linear dependence is observed at each 
temperature, in agreement with the Eyring expression. 
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Figure 15 Strain rate dependence of the yield stress in PMMA at different temperature. Linear dependencies are observed for 
each temperature, the slope of these linear curves a. (Monnerie, Lauprêtre, et al. (2005)) 

The activation volume a is directly related to the slope and is found around 0.1 nm3 at low 
temperature. It increases up to 2 nm3 at 80°C.  

Similar results have been observed in the literature and can be related to the existence of two 
different involved mechanisms (Monnerie, Halary, et al. (2005)). Some authors interpret this 
change on the mechanism as the presence of the secondary relaxation which influences the 
plasticity threshold at lower temperatures (J. P. Halary, Lauprêtre, and Monnerie (2011)).  

III = In this domain, the deformation is always plastic, it is the rubbery plateau, region where 

the stress is minimum and does not depend on the deformation (stationary condition) any more. 
This domain is very dependent on the nature of the polymer, the temperature and the rate of 
deformation. 

IV = At higher deformation levels, the stress may increase again. It is called the strain 

hardening (Kierkels (2006a); D. J. A. Senden, Krop, van Dommelen, and Govaert (2012)).  

The strain-hardening regime is observed in highly entangled amorphous polymers as PC, 
PMMA or polyvinyl chloride (PVC) (Kierkels (2006a, 2006b); Meijer and Govaert (2005); 
Richeton, Ahzi, Daridon, and Rémond (2005)) as shown in Figure 16. The stress increases with 
increasing strain, with a characteristic slope (strain hardening modulus ESH) of order 107 –108 Pa 
well below the glass transition.  
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Figure 16 Temperature dependence of the stress-Strain curves obtained under compression in PC and PMMA (Richeton, Ahzi, 

Vecchio, Jiang, and Adharapurapu (2006))  

The origin of this phenomenon still remains under debate in the literature (E. M.  Arruda and 
Boyce (1993); E. M. Arruda, Boyce, and Quintus-Bosz (1993); Govaert, Engels, Wendlandt, 
Tervoort, and Suter (2008); Haward (1993); R.S. Hoy and M. O. Robbins (2006); R. S. Hoy and 
Robbins (2007a, 2007b); Jatin, Sudarkodi, and Basu (2014); Edward J. Kramer (2005); Robbins 
and Hoy (2009); D.J.A. Senden (2013); D. J. A. Senden et al. (2012); D. J. A. Senden, van 
Dommelen, and Govaert (2010); Wendlandt, Tervoort, and Suter (2010)). It has long been 
attributed, by Haward (1993), to the entropic elasticity of entangled or cross-linked rubbery 
network. This theoretical approach was widely adopted and supported by experiments 
showing an increase of hardening modulus with increasing entanglement or cross-linking 
densities (E. M.  Arruda and Boyce (1993); E. M. Arruda et al. (1993); Chui and Boyce (1999)). 
Qualitatively these entropic models can reproduce the functional form of the stress-strain 
curves but have failed to agree with some experimental results. These flaws in the entropic 
interpretation of ESH were not seriously considered and challenged until they were illustrated in 
experiments performed by Van Melick, Govaert, and Meijer (2003). They have shown that the 
ESH measured over a wide range of temperature decreases linearly with temperature and 
becomes very small near glass transition temperature (Hasan and Boyce (1993)), which goes 
against an entropic model assumption.  
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In addition entropic models cannot explain the orders of magnitude of the experimentally 
measured ESH, which is found to be around 100 times larger than what would be expected from 
even the highest entanglement densities (R. S. Hoy and Robbins (2007b)). A more fundamental 
flaw with entropic models is also that, unlike rubber, glass is not ergodic. In the glassy state, the 
conformational entropy of polymer chains is much less than its equilibrium value. Thermal 
activation is not sufficient to allow chains to sample conformations freely and rearrangements 
occur mainly under active deformation at a frequency that scales with the strain rate (R. Hoy 
(2016)). These open questions about glassy strain hardening were summarized recently by 
Edward J. Kramer (2005) and after him, multiple authors performed simulations and developed 
new theories based on the molecular level (R. S. Hoy (2011); Robert S. Hoy and Mark O. 
Robbins (2006); R. S. Hoy and Robbins (2007a, 2007b); Meijer and Govaert (2005); D.J.A. Senden 
(2013); Van Melick et al. (2003); Wendlandt et al. (2010)). The key new insights are that strain 
hardening is non-entropic but fundamentally viscoelastoplastic (R. S. Hoy and Robbins (2007b)) 
and seems to be controlled by many of the same mechanisms that control plastic flow (R. S. Hoy 
(2011); R. S. Hoy and O'Hern (2010)). A series of recent articles based on simulations and 
experiments are in agreement with the idea that the strain hardening is correlated to flow stress 
(Robbins and Hoy (2009)) and strain rate (R.S. Hoy and M. O. Robbins (2006)) with the same 
physic involved (Govaert et al. (2008); Robbins and Hoy (2009)). It is now generally accepted 
that during plastic deformation, covalent polymer chains orient, resulting in anisotropic 
materials with enhanced properties in the orientation direction (Ge and Robbins (2010)). Both 
stress flow and strain hardening modulus are higher when deformation enhances the 
orientation produced by prestrain (E. M.  Arruda and Boyce (1993); E. M. Arruda et al. (1993); 
Botto, Duckett, and Ward (1987); Rawson and Rider (1973); D. J. A. Senden et al. (2012)). In his 
thesis work Conca (2016) et al assume that local deformation induces an orientation at the scale 
of the monomers in the drawing direction. This orientation leads to intensified interactions 
between monomers in these very deformed regions which slowed-down the mobility at the 
scale of dynamical heterogeneities (   3 – 5nm) (Dequidt et al. (2016)). However, despite all 
work done on understanding strain hardening, mechanisms of the orientation have not yet been 
fully resolved.  

The presence of these 4 domains is observed as long as the material is ductile. If the material is 
brittle, the first domain only exists.  

Five amorphous polymers are well defined in the literature. Their basic mechanical properties 
are reported in Table 3. 
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Table 3 Basic mechanical properties of amorphous polymers (Michler (1989)) 

Mechanical properties  PS PMMA SAN PVC PC 

Yield stress MPa 45 – 50  75 – 80  60 – 70  45 – 60  60 – 70  

Elongation at break % 3 2 – 5  4 – 5  20 – 50  50 – 100  

Young modulus MPa 3500 3500 3600 3000 2000 

Impact strength kJ/m² 18 22 25 not fail not fail 

Impact strength (notched) kJ/m² 2 1.8 3 3 – 5  10 – 20  

In order to understand fracture behavior of amorphous polymers it is important to analyze the 
micro-mechanisms involved during the deformation under strain. The term micromechanics 
defined by García Gutiérrez, Michler, Henning, and Schade (2001) covers all processes on 
mesoscopic, microscopic and nanometric scales that occur within a polymer matrix in response 
to external loading. 

4. Micro-mechanisms of deformation 

Depending on the loading conditions and the polymer structure the micromechanical behavior 
of amorphous polymers is linked to the formation of localized deformations zones, such as 
crazes, deformation bands, or shear bands. 

4.1. Shear bands  

Shear bands are developed at an angle of about 45° with respect to the direction of the applied 
stress 1 which corresponds to the direction of maximum shear stress. Their mechanism is based 
on a slip phenomenon and is well-known in semi-crystalline polymers and metals. 

Shear bands do not create any void inside the material and entirely take place within the sample. 
They can be observed by optical microscopy and by cross-polarized light microscopy (Raha and 
Bowden (1972)). The orientation of the polymer chains renders shear bands birefringent. 
Regarding their morphology, (P. D. Wu and Van Der Giessen (1994); W. Wu and Turner (1973)) 
described two types of shear bands as observed in Figure 17, depending on specific conditions: 

- Localized thin bands, characterized by a length between 0.3 and 3 μm associated with a 
large homogeneous deformation of chains within each band, as shown in Figure 17(a). 

- Diffused broad bands, corresponding to progressive chain deformations, along band 
length and band width, as shown in Figure 17(b). 

20 

 



Chapter I- State of the Art 

 
Figure 17 Shear bands observed by HVTEM (200 kV) in thin film of PC a) localized thin bands observed at room temperature 

and b) Diffused broad bands observed at Tg - 80°C (García Gutiérrez et al. (2001)) 

The observed shear band morphology depends on factors related to the chain mobility (test 
temperature and strain rate) and on the chemical structure of the considered polymer. It is a 
thermos-active mechanism. Most of the studies report that shear bands are observed under 
compressive experiments. Few studies have been done under tensile stresses, but in this case, 
shear bands usually lead to failure, necking or coexist with crazes. The initiation of shear bands 
is poorly discussed in the literature and remains unclear (Chau and Li (1979); Friedrich (1983); 
Henkee and Kramer (1984)). 

4.2. Crazes 

4.2.1. Crazes morphology 

Crazes are ellipsoidal heterogeneities, with a size ranging from 50 nm to 10 mm along the major 
axis and from 5 nm to 10 μm along the minor axis (Michler (1989)). Their major axis lies 
perpendicularly to the tensile direction. Transmission electron microscopy (TEM) provides 
details of the craze architecture, characterized by a succession of microvoids and fibrils lying 
along the tensile direction. As an order of magnitude, the fibril diameter is in a range from 1 to 
10 nm and the inter-fibril distance varies from 10 to 60 nm. The deformation of the polymeric 
material inside the crazes was found to lie between 150 and 250% using different methods 
based on high voltage electron microscopy (HVTEM) (Michler (1979)). 
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Figure 18 HVTEM pictures of crazes with different inside structure in thin section of deformed PS a) fine fibrillar structure, b) 
coarse fibrillar structure and c) microvoids concentration at the craze boundaries (Michler (2008)) 

Depending on the deformation conditions and the structure of the polymer chains, different 
interior crazes morphologies are observed. Figure 18 shows three interior craze morphologies in 
PS. The fibrillar network can be more finely or coarsely structured with fibril thicknesses of up 
to 25 nm and larger voids between. Homogeneous crazes are sometimes observed, it can be 
described as a craze-like zone with homogeneously stretched material inside. It is also called 
homogeneous deformation zone in the literature (Michler (2008)).  

The majority of information on craze microstructure in unreinforced polymers has been 
obtained by TEM on samples that have been solvent cast to form thin films, adhered to a thin 
copper grid, then crazed by deforming the grid. This technique allows for directly observing 
microscopic and macroscopic crazes, but the resolution of this technique makes the observation 
of the initiation of craze with a size smaller than 50 nm difficult. Its main disadvantage is also 
because crazing is a voiding process and so the effect of thickness and plastic constraint are 
important. It is not obvious that crazes formed in thin films have the same microstructure, 
initiation and growth mechanisms as crazes generated in bulk samples. The limitations of the 
TEM technique are obvious when attempts are made to obtain quantitative information on 
volume fraction and size distributions of small crazes and fibrils. The X-Ray scattering method 
is a more indirect technique which permits viewing smaller objects. Transmission X-ray 
scattering from the orthogonal craze walls and fibrils results in highly anisotropic patterns, 
having the form of two elongated streaks approximately perpendicular to each other (Brown 
and Kramer (1981); Lode et al. (1998); Mills, Kramer, and Brown (1985); Salomons, Singh, 
Bardouille, Foran, and Capel (1999)), as shown in Figure 19. 
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Figure 19 Evolution of craze as a function of strain in PS, direction of the stress vertical (Zafeiropoulos et al. (2006)) 

The theory of scattering from crazes has been considered by several authors (Brown and 
Kramer (1981); Brown and Sindoni (1984); Paredes and Fischer (1982)). Paredes and Fischer 
(1982) proposed an expression used for the Porod analysis of the scattered intensity which can 
give access to the fibril volume fraction and the fibrils diameter:  ( ) =                                                                                    (8) 

Where k1 is a constant and the invariant Q is defined as =  ( )2 .                                                                       (9) 

then = 11                                                                      (10) 

Where  is the fibril volume fraction, and D the fibril diameter.  

Knowing the structure of crazes particularly at their first stages of formation enables a better 
interpretation of their processes of initiation and formation in amorphous polymers and a 
deeper insight into the molecular processes of deformation.  

The question of when fibrillar or homogeneous crazes occurs is still discussed in the literature. 
Donth and Michler (1989) have suggested that it is a function of the distance between 
entanglements and the stress level locally acting in the sample. However, E. J. Kramer and 
Berger (1990) have shown that crazing is not only controlled by the density of chain 
entanglements, but also by the van der Waals intermolecular separation energy and the energy 
of bond dissociation along the polymer backbone.  
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According to the literature if crazing occurs in the polymer, the molecular weight (i.e. the 
entanglement densities) seems to be an important parameter (Bucknall (1997); Dompas, 
Groeninckx, Isogawa, Hasegawa, and Kadokura (1994); Plummer and Donald (1991)).  

4.2.2. Mechanisms of craze initiation, growth and breakdown 

Despite more than 50 years of active research on crazing (Dettenmaier (1983); Friedrich (1983); 
Kambour (1973); E. J. Kramer (1983); E. J. Kramer and Berger (1990)), the initiation step is still 
poorly understood. It is largely described in literature that when tensile stress or strain reaches 
a critical value in stress-concentrating sites, these sites start to initiate cavities. These local stress 
concentrators can be surface imperfections, bulk heterogeneities or microvoids resulting from 
material processing or local variation of the macromolecular arrangement (i.e. variations of 
intermolecular connections or of the entanglement density). 

Today, the most-used concept of craze nucleation is the “meniscus-instability model” (Kambour 
(1973); E. J. Kramer (1983)) for polymers proposed by Argon and Salama (1977) and which has 
originally been developed by Taylor (1950) for a liquid film between two hard sheets. Figure 20 
proposes a schematic representation of this model. The local effect of stress concentration in the 
defect surroundings initiates plastic deformation. The thin polymer layer concerned is 
surrounded by glassy polymer which has not yet reached its yield point. The behavior of this 
plastic layer under deformation can be compared to a thin elastomer layer confined between 
two rigid sheets. 

  

Figure 20 schematic drawing of the meniscus instability mechanisms of craze tip advance (E. J. Kramer and Berger (1990)) 

By an action of stress gradient in the craze propagation direction, fluctuations at the craze tip 
provide the separation of liquid-like polymer into single polymer fibrils.  

This begins with a typical concave air-polymer interface (the meniscus), which is usually 
represented as the rounded tip of an existing craze as observed in Figure 20(b). The liquid-like 
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meniscus adopts then a shape that minimizes surface energy, in accordance with standard 
theory (Taylor (1950)). The small surface area of the meniscus limits the rate of flow in the fluid 
zone, and therefore the rate at which the flow front advances. Consequently, the meniscus 
becomes unstable when the solid blocks of polymer enclosing the meniscus are pulled apart at a 
sufficiently high rate. As the finger-like craze tip structure propagates, fibrils develop by 
deformation of the polymer webs between fingers. Therefore, a continuous creation of polymer 
fibrils in a “hollow-matrix’’ is present from the beginning. But this hypothesis considers that the 
polymer is comparable to a liquid when it is submitted to a stress, however this is no longer the 
case when this polymer exhibits a strain hardening. 

Michler (2008) proposed a different model for craze initiation. They supposed that the 
development of a craze is preceded by the formation of a localized plastic deformation zone. As 
this zone develops, the hydrostatic stress increases, and, when exceeding a critical stress level, 
cavitation take place, leading to the local development of voids. They have shown these so-
called “pre-crazes” in PS by HVTEM in-situ tensile tests, as shown in Figure 21.  

 
Figure 21 Semi-thin section of deformed PS in a 1000kV HVTEM. Craze with pre-crazes in the interior structure (Michler, 2008) 

These “pre-crazes” in front of the craze tip are characterized by a domain-like structure. These 
domains have a size of approximately 10 nm up to 20 nm in PS.  Based on this observation for 
strongly plastically stretched domains in PS, the “pre-crazes model” of amorphous polymers is 
developed, which assumes a pre-existing structure of the amorphous state. A schematic 
representation of this structure is given in Figure 22. Weak and localized mobile domains 
(“flowing domains”) exist between the entanglement network. The meshes inside the 
entanglement network correspond to the plastically deformed domains. They consist in 
mechanically softer materials, such as chain ends, short molecules or localized free volume. It 
must be assumed that there is a mesh size distribution.  
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Figure 22 Schematic representation of the “pre-craze” initiation model proposed by (Michler, 2008). 

The experimentally determined main distance between the domains of about 50 nm in PS gives 
the average size of the pre-craze domains in the entanglement network. This network model 
was developed for PS with its relatively large entanglement distance (mean value of 9.6 nm). 
However, it can also be used for other amorphous polymers with smaller entanglement 
distances (e.g. PMMA, 7.3 nm or PC, 4.4 nm).  

Since newly formed crazes are as tiny as few nanometers wide, the main fibrillar structure of 
crazes is formed by craze growth mechanism. It is often described that craze growth involves 
two processes, i.e. craze tip propagation into the polymer core and craze widening. 

In the literature it is described that the craze tip propagation occurs again by the Taylor 
meniscus mechanism (E. J. Kramer (1983)). Two models are proposed for the increase of the 
crazed area width:  

- The more used model is the “drawing model”(E. J. Kramer (1983)) where new polymer from 
craze/bulk polymer interface is drawn into the fibrils from the craze interfaces maintaining 
the extension ratio of the fibrils constant for a given stress on the craze surfaces. This 
mechanism is schematized in Figure 23. 

- The “creep model” is also considered in the literature and can be associated to the “drawing 
model”. In this model, once fibrils are created at the craze tip they extend in length by a 
creep mechanism with no new polymer drawn into the fibrils. This mechanism produces a 
craze that becomes weaker and weaker as the craze grows longer.  
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Measurement by ultramicrohardness on crazes in the micron range revealed that the 
calculated elastic moduli of the stretched material inside the crazes are higher than those of 
the bulk material (Michler, Ensslen, Baltaí-Calleja, Konczoll, and Doll (1999)). This is 
consistent with the concept of the oriented entanglement network and the highly oriented 
polymer chains within the craze. 

 
Figure 23 Schematic representation of the fibril drawing new polymer from craze/bulk polymer interface (E. J. Kramer & Berger, 

1990) 

- J. L. Halary, Lauprêtre , and Monnerie (2011) understood the fibril extension as a micro-
necking phenomenon (localized deformation which leads to a gradual decrease of the 
section) arising from the plastic flow of polymer chains located near the ends of the growing 
fibrils.  

The craze growth is the beginning of the fracture process in glassy polymers. According to E. J. 
Kramer and Berger (1990) craze fibrils start to break at the craze-bulk polymer interface while it 
was believed to occur at the craze midrib (midrib is the oldest part of craze where the fibril 
extension ratio  is the highest) by other authors (J. L. Halary et al. (2011); Kambour (1973)). 
According to the literature, the disentanglement of the polymer chains seems to influence the 
fibril stability. E. J. Kramer and Berger (1990) have proposed a microscopic model of the craze 
fibril breakdown process. According to this model, the mean number of entangled strands in 
the craze / bulk boundary should not be affected by the strand loss. If the number of strands 
becomes zero, the craze widening process is terminated and the sample will break. 

J. L. Halary et al. (2011) described two different mechanisms, depending on the polymer 
mobility, for the rupture of the fibrils. When chains have a low mobility, stretched chains may 
break under the applied stress. When chains have a higher mobility, they may slide with respect 
to each other which induces a flow of the fibrils until they break.  
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Failure mechanism in polymer has often been assimilated to a crack opening mode. Two 
theoretical models based on linear elasticity mechanics, proposed by Griffith and Irwin, give a 
description of the effect of a loading near a defect (J. L. Halary et al. (2011)). The Griffith (1921) 
model considers the elastic energy stored near the defect. Irwin (1957) model uses the stress 
distribution around the defect (Doll (1984); Doll, Konczol, and Schinker (1983)). Brown (1991) 
has then used these criterions to describe plastic areas failure ahead of a craze tip which occurs 
when all fibrils inside the craze completely breakdown. It is shown that toughness varies like 
the square of chain molecules breaking force and the square of the density of entangled strands 
at the interface. Brown – Kramer’s description of craze-crack transition (Brown (1991); Sha, Hui, 
Ruina, and Kramer (1997); Xu, Hui, Kramer, and Creton (1991)) is based on the fracture 
mechanics approach. They calculated either a critical stress intensity or a strain energy release 
rate of the mechanically anisotropic fibrillar network within the craze. The strain energy release 
rate for crack opening is described as being proportional to network density (i.e. entanglement 
density). 

4.3. Relation between mechanical deformation and damage morphology 

As described in the last section, micro-mechanisms of deformation in amorphous polymers are 
different. Few electron microscopic studies of crazes in PVC and PMMA have been done due to 
the high irradiation-sensitivity of these polymers. HVTEM was essentially used to study the 
formation, growth and structure of crazes in PS and SAN (Michler (1990)).  

It appears that PS, which is the more brittle amorphous polymer and has a low entanglement 
density, only exhibits fibrillated crazes (Michler (2008)). The different internal craze structures 
found for linear (coarse fibrillated crazes) and long chain branched (finer fibrillated crazes) PS 
deformed at 20°C have been discussed by Michler (2008) using the “entanglement model”. It is 
the most assumed model in the literature concerning the different morphologies of damage 
observed in amorphous polymers. It is described that increasing the entanglement densities 
leads to a transition from large fibrillar crazes to homogenous deformation bands and shear 
bands. 

Another approach is proposed concerning the origin of the different structures of crazes 
observed in polymer using the toughness property. It is observed that the increase of the 
toughness leads to the transition from large crazes to shear bands (Michler (1989, 1990, 2008)), 
as noted in the Table 4 which reports the properties of four different amorphous polymers, PS, 
SAN, PMMA and PC and their damage morphology. 
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Table 4 Comparison of entanglement molecular weights Me, entanglement densities ve, entanglement distances d and average 
mechanical values with the typical deformation structures for different polymers 

Polymer 
Tensile 

Strength (MPa) 
Elongation at 

break (%) 
Impact strength 

(notched) (kJ.m-2) 
Me e (μm3) d (nm) 

Deformation 
structure 

PS 45 – 55 3 2 19 100 3 x 107 9.6 Fibrillar 

SAN 60 – 70  4 – 5 3 11 600 6 x 107 8.2 Coexistence 

PMMA 75 – 80 2 – 5 1.8 9150 8 x 107 7.3 Coexistence 

PC 60 – 70 50 – 100 10 – 20 3490 29 x 107 4.4 Homogeneous 

Figure 24 gives HVTEM micrographs of different damages observed in PS and PVC. PS exhibits 
fibrillar crazes and a coexistence between crazes and shear bands is observed in PVC. 

 
Figure 24 HVTEM pictures of a) fibrillated craze in PS and b-c-d) coexistence of shear bands, homogeneous deformation zones 

and fibrillated crazes in PVC (Michler (2008)) 
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To measure the influence of these parameters (toughness and entanglement densities), a study 
on cyclic olefin copolymers (COC) with different cyclic monomer contents have been done by 
Michler (2008). They observed a decrease in toughness and elongation at break at increasing 
cyclic monomer content. The micromechanical deformation mechanisms correlate very well 
with the one established above: increasing of the toughness leads to a transition from fibrillated 
crazes to homogeneous deformations zones and shear bands appearance, as schematized in 
Figure 25.  

 
Figure 25 Change in the micromechanical deformation structure in different Cyclic Olefin Copolymers: transition from brittle to 

ductile behavior with decreasing the cyclic monomer content. Tensile stress is in the direction perpendicular (Michler (2008)). 

More ductile amorphous polymers (SAN, COC, PVC, and PC) display a coexistence between 
fibrillated and homogeneous crazes (SAN and COC) and a transition to homogeneous crazes 
and shear bands (PVC, PC) occurs. HVTEM pictures of these different damage morphologies 
are shown in Figure 24. 

In PC, which is the most ductile amorphous polymer and has a high entanglement density, 
shear banding is the main micromechanical deformation mechanism. But increasing the 
temperature close to Tg leads to a transition from homogeneous shear yielding to fibrillated 
crazing. This transition in the micro-mechanism of deformation is also interpreted by Michler 
(2008) as processes taking place at the macromolecular level. They suggest that with increasing 
temperature, the stress necessary for the so-called “thermally induced disentanglement” drops 
more rapidly than the stress necessary for molecular mobility.  
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According to J. L. Halary et al. (2011) the temperature at which shear deformation zones appear 
is directly related to the -transition and, consequently, to the 
occurrence of intramolecular cooperativity of the involved motions. 

Table 5 summarizes the different models used in the literature to describe the initiation and the 
growth of crazes in amorphous polymers. 

Table 5 Summary of the different models described in the literature concerning the crazing mechanism 

Model name Phenomenon Authors 

“Meniscus instability model” 
Craze initiation 

Argon and Salama (1977); E. J. 
Kramer (1983); Taylor (1950) 

“Pre-crazes model” Michler (2008) 
“Polymer drawing model” 

Fibril extension 

E. J. Kramer and Berger (1990) 

“Creep model” Kambour (1973) 

“Micro-necking model” J. L. Halary et al. (2011) 
“Entanglement model” Transition from fibrillar crazes to 

homogeneous crazes and shear 
banding 

Michler (1989, 1990, 2008) 
“Toughness model” 

The numerous studies on micro-mechanisms of deformation in materials give a qualitative 
vision of the morphologies that can be generated in these materials when they are submitted to 
a tensile stress. Some correlations, described earlier in this chapter, between these micro-
mechanisms of deformation and the macroscopic mechanical properties have been established 
from experimental and theoretical studies. It is accepted in the literature that polymers 
considered "brittle" will deform preferentially by crazing. The more these materials are brittle 
the more the internal structure of the crazes will be coarse. Conversely, the polymers considered 
"ductile" will deform preferentially by shear bands or by homogeneous deformation bands. 
Most of these studies were carried out on bulk of films polymers after tensile failure. The 
initiation of these damages has been poorly studied experimentally. Theories on initiation 
mechanisms have been proposed and have been described earlier in this chapter. But for the 
moment no mechanism is really proven and the initiation of the damage remains a subject of 
debate. 

Some studies, such as the one of Stoclet, Lefebvre, Séguéla, and Vanmansart (2014), follow the 
evolution of damage during tensile deformation by in situ USAXS analyzes. This technique, 
much more powerful than optical microscopy, allows the observation on a mesoscopic scale of 
the appearance of damage at the initiation stage. In their study, Stoclet et al. (2014) propose a 
qualitative mechanism for the development of damage in polylactic acid (PLA).  
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They observed that the first stage of damage appears before the yield stress and is characterized 
by the formation and propagation of shear bands, which are then transformed by the action of 
the stress into homogeneous deformation bands. The points of intersection of these bands 
become sites of nucleation of fibrillar crazes. In their study, no quantitative approach of the 
damage mechanism has been done. 

The experimental data obtained in USAXS can also be fitted by theoretical equations. Then it is 
possible to propose quantitative mechanisms of development of the damage by having access to 
characteristic sizes and volume fractions of the defects. This approach was done by Mourglia-
Seignobos et al. (2014) on the polyamide 6.6 submitted to a fatigue test. It has been found that 
the initiation of the damage takes place by nucleation of small cavities in the amorphous zones 
of the polymer. The crystalline zones present in this polymer would then block the propagation 
of the cavities and the rupture would be related to their accumulation and coalescence. To the 
best of our knowledge, no similar studies have been done on the initiation of damage in 
amorphous polymers which constitute our motivation for this PhD research. 

5. Objectives of the research 

The current research work is financed by the GmbH Rhodia Acetow. Du to thermal 
inconvenient, the processing of cellulose acetate can only be considered with a sufficient 
amount of external plasticizer. The specific feature of the resulting plasticized cellulose acetate 
is an amorphous polymer with an important polar interaction network composed by hydrogen 
bonds and dipole-dipole interactions.  

The aim of this study is the better understand the mechanical properties of these polymers, and 
how plasticizer and injection processing influence these properties. The understanding of 
mechanical properties includes the micro-mechanisms of deformation from a macro to a nano-
scales analysis. 

The mechanical properties of amorphous thermoplastic materials such as PC, PVC, PS or 
PMMA are widely described in the literature. Two categories of amorphous polymers are 
described. First the amorphous "ductile" polymers such as PC which exhibits a greater 
elongation at break and impact resistance at room temperature. A second category is described 
as amorphous "brittle" polymers as PS which is known as the most brittle amorphous polymer. 
The concept of ductility in amorphous polymers is at the heart of many current research studies. 
The ductility in semi-crystalline and reinforced polymers has been explain by the presence of a 
second phase (crystallites or fibers as example) which constitute a “disorder” (Fusco, Vanel, and 
Long (2013)). This second phase allows for the stabilization of the damage propagation 
(Mourglia-Seignobos et al. (2014), Bucknall (1997)). In the case of amorphous polymers the 
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stabilization of the damage can no longer be explained by this second phase and we could think 
that the damage cannot be stabilized. Failure would occur by a propagation of a single crack 
just after nucleation. But we have seen that ductility (i.e. strain hardening) is also observed in 
few amorphous polymers under certain conditions (Kierkels (2006a)). The study of the 
mechanical properties of plasticized cellulose acetate fits perfectly in this thematic of ductility of 
amorphous polymers. We have investigated the impact resistance over a wide temperature 
range for all plasticized cellulose acetate polymers considered. This work has been completed 
with tensile tests under several conditions. The monitoring of the tensile deformation also 
makes it possible to evaluate the different regimes of the stress-strain curve of the polymer. We 
have varied the conditions by adjusting the analysis temperature, the plasticizer content, the 
type of plasticizer and also the injection process through the angle between the tensile direction 
and the direction of injection ( ). 

The understanding of the mechanical properties of a polymer goes through the analysis of the 
microstructure of the damage. Thus we have completed our macroscopic study by scanning 
electron microscopy observations to determine the modes of damage in our polymers. Damage 
microstructures in amorphous polymers have been well studied by HVTEM analysis in the 
literature. As cellulose acetate is very sensitive to irradiation we have not found any study in 
the literature on the morphologies of damage in these systems.  

The resolution of the electron microscopy method does not allow us to determine the initiation 
mechanisms of the damage which is still controversial in the literature. We therefore analyzed 
our samples at different strain levels by ultra-small angle X-rays scattering (USAXS) which 
allows for indirect measurements of the sizes and volume fractions of very small defects (~1 
nm). We propose an interpretation of the mechanisms of damage in plasticized cellulose acetate 
from initiation to failure based on experiments and physical interpretations. 

Thus, this report is organized as follows: experimental conditions are presented in chapter II 
“Materials & Methods”. Chapter III is focused on dynamical properties and miscibility limits. 
We present a comparison study between plasticized cellulose acetate obtained via injection 
molding and via solvent casting. Chapter IV is dedicated to the ultimate mechanical properties 
of cellulose acetate. We present the evolution of the ductile to brittle transition with the 
plasticizer content and the tensile behavior in various conditions. The chapter V is focused on 
micro-mechanisms of deformation measured by USAXS measurements during tensile 
experiments and microscopic analysis. We discuss the different steps of damage mechanism, 
based on experiments and physical interpretations. In the chapter VI, the fatigue behavior in 
cellulose acetate with 15wt%TA is presented and constitutes an opening for further research. 
Finally these chapters are completed by a final conclusion. 
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Chapter II. MATERIALS AND METHODS 
 

Introduction 

This chapter describes the materials used in this study: plasticized cellulose acetate with DEP or 
TA plasticizers in weight proportion comprised between 15wt% and 30wt%. The preparation of 
these polymers by extrusion is firstly detailed and the processing technique used to prepare the 
specimens is then presented. The main experimental techniques used to check the molecular 
relaxation such as Dynamic Mechanical Analysis (DMTA) and Modulated Differential Scanning 
Calorimetry (DSC) are described. Commonly used tolls for characterization of the mechanical 
properties such as Charpy test and tensile experiments are then presented. Finally the 
developed damage morphologies are evidenced by using Scanning Electron Microscopy (SEM) 
and Scanning Transmission Electron Microscopy (STEM). The quantitative characterization of 
the initiation step with damage dimensions and volume fractions is performed by Ultra-Small 
Angle X-Ray scattering (USAXS). 
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1. Materials 

Eight compositions are used in this study: two different plasticizers Triacetin (TA) and Diethyl 
phthalate (DEP) and four plasticizer contents for each plasticizing agent, as reported in Table 1. 

Triacetin is also called glycerin triacetate and is one of the most common eco-friendly plasticizer 
of cellulose acetate. Diethyl Phthalate is used as plasticizer for a wide range of polymers. It 
structure presents an aromatic ring, which differs from TA. The phthalate family may have 
some toxicity issues, so they have been less used as plasticizer in industry. But DEP is the 
historic plasticizer of cellulose acetate which constitutes a reference for this work as it is usually 
the case in the literature. The properties of these plasticizers and all compositions used in this 
study are reported in Table 1.  

Table 1 Structure and properties of plasticizer and their contents (wt%) in CDA systems 

 DEP TA Content (wt%) 

 

 

CAS number 

Formula 

Molecular 
weight 

Appearance 

 

84-66-2 

C12H14O4 

222 g/mol 

Oily liquid 

 

102-76-1 

C9H14O6 

218 g/mol 

Oily liquid 

15 

20 

25 

30 

Cellulose acetate samples with an average DS of 2.45 (CDA) is supplied by Rhodia Acetow 
GmbH (Freiburg, Germany). DEP and TA are obtained from Sigma Aldrich (Saint Quentin 
Fallavier, France). The corresponding polymers can be melt processed and injected with 
external additives. 

2. Extrusion and injection molding processes 

Diethyl phthalate plasticized cellulose diacetate (DEP-pCDA) or triacetin plasticized cellulose 
diacetate (TA-pCDA) samples in the desired weight proportion are prepared by extrusion. A 
specific amount of external plasticizer and CDA powder (dried in a vacuum oven at 70°C 
during 24h) is fed into a twin-screw Clextral extruder  EV032 D32 (L/D ratio 48).  The extrusion 
setup used for compounding these polymers is shown in Figure 1.  
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Plasticizers are introduced at the very rear of the extruder (zone 0) thanks to a volumetric pump, 
whereas the cellulose acetate powder is added thanks to a dosing hopper, further at the zone 2 
of the extruder, as schematized in Figure 1. 

 
Figure 1 Schematic representation of the compounding setup 

Because of the thermosensitivity of cellulose acetate the profile of the screw is adapted to limit 
self-heating (Warth, Mülhaupt, and Schätzle (1996)). As seen in Figure 2, three backward-
pumping elements (in red) and only one kneading elements (KB) (in green) are used on this 
profile. Kneading elements are mostly used for dispersive mixing. Backward-pumping and 
kneading elements assure a good plasticization and homogenization of plasticized cellulose 
acetate. All the other elements are conveying which enables a good transport of the product 
through the extruder. These elements are used to forward the material at feed openings in order 
to avoid the increase of the pressure.  

 
Figure 2 Screw profile 

The temperature profile is kept between 170°C and 200°C (Warth et al. (1996)). At lower 
plasticizer contents, a higher temperature in the extruder is required, due to the high viscosity 
of the system. Screw speed is varied between 400 rpm and 500 rpm. At lower plasticizer content 
a faster screw speed is needed to stabilize the process. Debit is kept constant at 20kg/h for all 
compositions. Residence time is approximately 5 min.  

zone 0 zone 2 
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The resulting products are drawn slowly and immediately cooled down in cold water (20°C) in 
order to have solid rod before pelletizing, as shown in Figure 1. 

Compounds are then injection molded in order to obtain tensile and impact specimens. Figure 3 
shows a schematic presentation of an injection molding machine. It is mainly composed of one 
screw extruder which melts the polymer. This latter is carried to the mold environment by a 
hydraulic press coupled to the screw. The principle of the injection-molding is the following: 
the polymer pellets are introduced in a hopper, and then a certain amount of the polymer gets 
into the screw inside which the polymer melts. The motor coupled to the screw pushes the 
molten polymer into the mold and by applying a counter-pressure, the polymer is maintained 
in the mold. Then the polymer takes the shape of the piece and it is cooled down into a solid 
part. The screw temperature, the dosing amount of polymer, the counter-pressure applied by 
the motor, the mold temperature and the piece retention time are the most important 
parameters that have to be optimized to get suitable specimens for testing. These different steps 
of injection-molding processing are schematically represented in Figure 3. 

 

Figure 3 Injection-molding setup 

Different molds are used in order to obtain impact strength, tensile, or plate’s specimen 
geometries. Two mode of injection have been defined for this work. First, (process A): 
formulations are injection-molded into tensile and impact strength specimens with a Billion 
100T injection press. Tensile and impact strength specimens dimensions are 150 × 10 × 4 
and 80 × 10 × 4  respectively (ISO-527 and ISO-157 norms). The injection conditions are 
reported in Table 2. 
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Table 2 Injection condition for all compositions in the case of Process A 

Samples 
Temperature [°C] Molding cycle time 

[s] Screw Mold 
15wt%plasticizer 220 

30 

48 – 54 
20wt%plasticizer 210 48 – 54 
25wt%plasticizer 195 46 – 54 
30wt%plasticizer 185 51 – 60 

Second, (process B): plates with dimensions of 350 × 100 × 4  are injected with a Billion 
750T BI-MAT injection press with the following condition (see Table 3). 

Table 3 Injection conditions for all compositions in the case of Process B 

Samples 
Temperature [°C] Molding cycle time 

[s] Screw Mold 
15wt%plasticizer 220 

80 

42.80 
20wt%plasticizer 200 42.70 
25wt%plasticizer 200 42.70 
30wt%plasticizer 195 50.56 

For the plate specimens, the mold includes a v-shaped runner with a ramp. The flow in front of 
the polymer melt is uniform across the width of the plate, as shown in Figure 4. Based on 
observations on glass fibers reinforced semi-crystalline polymers, we assume that the injection 
molding process into plates leads to a homogeneous orientation of polymer macromolecules in 
the thickness of the plates (Rolland, Saintier, Wilson, Merzeau, and Robert (2017)). Tensile 
specimens (ISO-527 norms) and tensile bars with the following dimensions 92 × 14 × 4  
and with a radius of curvature (Ø = 71) larger than the one of specimen obtained with the ISO-
527 norm (Ø = 31) are directly cut into these plates. The latter are manufactured with different 
angles  with respect to the main flow direction. This angle  ranges from 0° to 90°. This is 
illustrated in Figure 4, where a tensile specimen is schematized at a loading angle  = 45°. The 
specimen’s geometry is designed specifically in order to study strain hardening behavior of 
pCDA. The curvature of this geometry is smaller and therefore the localization of the 
constraints is limited during the tensile experiment which favors homogeneous deformation.  
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Figure 4 Schematic top view of the injection molded plate. The sample is cut with an angle  from the injection direction.  

3. Core/skin effect 

The processing by injection generates a core / skin structure when the temperature of the mold 
is too small (case of the Process A where the mold temperature is set at 30°C) (Kantz, Newman, 
and Stigale (1972); Mourglia-Seignobos (2009); Van Erp, Govaert, and Peters (2013)). When the 
molten polymer at 200°C comes into contact with the mold at 30°C it freezes and a migration of 
the plasticizer to hot areas in the core of the geometry has been observed. A so-called core / skin 
structure is thus obtained with a less plasticized and more fragile skin and a more plasticized 
and ductile core. This structure was first observed by X-ray tomography, as shown in Figure 
5(a). A plasticized cellulose acetate polymer is analyzed by tomography after tensile failure. The 
scanned volume shows the presence of cracks on the surfaces while no damage is observed 
within the core. 

Following these tests, nano-indentation analyses have demonstrated an evolution of the 
Young's modulus between the skin and the core, as shown in Figure 5(b). The edges of the 
specimen have a higher modulus than in the core, which confirms a deplasticization of the skin.  

             

Figure 5 (a) X-Ray tomography picture of the core (1) and the skin (2) of the polymer CDA+30wt%DEO injected with the 
process A and (b) Young's modulus obtained by nano-indentation measurements on the section of CDA+30wt%DEP processed 

via Process A 

 

(a) (b) 

(1) (2) 
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Finally the Nuclear Magnetic Resonance (NMR) measurements of the plasticizer level 
confirmed these observations. NMR spectrum are given in Figure 6 for the polymer 
CDA+30wt%DEP obtained via the process A. It appears, as reported in Table 4, that the core has 
a higher plasticizer content. 

 

Figure 6 NMR spectrum obtained from CDA+30wt%DEP in the core (a) and in the skin (b). Polymer obtained via Process A 

Table 4 Integration values for cellulose acetate and DEP in CDA+30wt%DEP polymer obtained via Process A. 

Samples Cellulose acetate signal Plasticizer signal 

CDA+30wt%DEP core 5.01 3 
CDA+30wt%DEP skin 6.47 3 

In the case of polymers obtained by the process B, the temperature of the mold is raised to 80°C. 
The NMR analyses on the skin and the core of these samples have confirmed the absence of the 
core / skin structure after this mode of injection, as reported in Table 5. 

(a) 

(b) 
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Table 5 Integration values for cellulose acetate and DEP in CDA+15wt%DEP polymer obtained via Process B. 

Samples Cellulose acetate signal Plasticizer signal 

CDA+15wt%DEP core 7 1.19 

CDA+15wt%DEP skin 7 1.24 

These core / skin effects have been taken into account in the interpretation of our different 
obtained results (see following Chapters). Especially during tensile experiments where the 
study at large strain is carried out on the samples obtained via the process B where the core / 
skin effect is considered as negligible. 

4. Miscibility study of cellulose acetate / plasticizers blends 

The molecular mobility and miscibility behavior of plasticized samples are characterized by 
Modulated Differential Scanning Calorimetry (MDSC) and Dynamic Mechanical Thermal 
Analysis (DMTA).  

4.1. Calorimetry (MDSC) 

MDSC measurements are performed by using a Q2000 differential scanning calorimeter (TA 
instruments, United States) equipped with a Liquid Nitrogen Cooling System (LNCS). In this 
work the Temperature-Modulated mode (MDSC) is used to determine the glass transition 
temperature of plasticized cellulose acetate (Tg). This mode applies a relatively fast temperature 
variation, enhancing the sample response to a thermal solicitation, thus increasing the heat flow 
signal. In this mode, the average temperature varies linearly but the actual temperature follows 
a sinusoidal function as shown in Figure 7(a). The principle of the Temperature-Modulated DSC 
is the following: DSC measures a total heat flow dH/dt which is the signal of all the thermic 
phenomena that a polymer may exhibit. The Temperature-Modulated DSC is able to separate 
this total heat flow into two components as defined in Equation (1): one term depends on the 
heat capacity  of the sample and of the heating rate dT/dt (Reversing component), and the 
other term depends on time (i.e. kinetic phenomena) at an absolute temperature f(T,t) (Non-
reversing component). = + ( , )                                                                        (1) 

The heat flow and the reversing and non-reversing components are plotted in Figure 7(b). 
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Figure 7 a) Measured temperatures for conventional and temperature-modulated DSC, b) Temperature-modulated DSC 
thermogram for a plasticized cellulose acetate sample (15wt%TA) where the Tg is observed.

The heat capacity  is the amount of heat needed to increase the temperature of 1g of matter by 
1°C. The heat capacity corresponds to the measured heat flow which is in phase with the 
temperature variation dT/dt. The glass transition (Tg) can be observed on the Reversing 
component. 

Indium is used for temperature and heat flow calibration of the MDSC instrument and sapphire 
is used to calibrate the MDSC reversing heat capacity signal. For each measurement, between 5 
– 10 mg of polymer are sealed into a Tzero aluminum pan and placed in the autosample. 
Samples are preconditioned at 30°C for 10 min for equilibrium. Thermograms are recorded 
during heating at a scanning rate of 5°C/min. Modulation is performed every 40s at ± 2°C. Glass 
transition temperatures are determined from the second scan, in order to discard the influence 
of thermal history, at the inflexion point of the heat capacity jump, as observed in Figure 7(b). 

4.2. Dynamic Mechanical Thermal Analysis 

A rheometric Scientific analyzer RSAGII (TA instrument) is used to perform dynamic 
mechanical thermal analysis (DMTA) measurements. Impact specimens are used to characterize 
the mechanical relaxations, using the three-point bending method.  

A Dynamic Mechanical Analyzer (DMA) applies a dynamic strain to the polymer expressed by 
the following equation (2):  ( ) =                                                                             (2) 

This applied strain leads to a dynamic stress. By applying a very small strain in the polymer, the 
mechanical response of the sample is in the linear regime.  

(a) (b) 
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The ratio between stress and strain is given by the dynamic modulus that can be decomposed 
into two parts, the storage modulus (E’) and the loss modulus (E’’), as described by equation (3): ( ) = [ + " ]                                                          (3) 

A part of the applied energy is elastically restored by the polymer, this energy is associated to 
the storage dynamic modulus E’. The polymer also absorbs a part of this applied energy which 
is dissipated as heat, this part of the energy is associated to the loss dynamic modulus E’’. The 

ratio between the loss and the storage moduli is called the loss angle or tan( ) = "  which is 

the out-of-phasing angle between stress and strain. It represents the energy proportion 
dissipated as heat by the polymer in a sample. When a polymer relaxation temperature is 
reached, the storage dynamic modulus E’ decreases. In the case of a secondary relaxation there 
is only a slight drop on E’. However when the main relaxation temperature is reached, E’ drops 
significantly (by 1 or 2 orders of magnitude). The molecular relaxations also appear in the loss 
dynamic modulus E’’ and tan  signals in the form of peaks. An example of these relaxations 

Figure 8. 

In our study, a strain limit is fixed at 0.03%. Curves are recorded at fixed frequencies 0.1Hz, 1Hz, 
10Hz and 50Hz during heating from -120°C to 200°C at a scanning rate of 2°C/min. The 
frequency of the applied stress at 1 Hz is used to compare the measured  relaxation 
temperature T  with the Tg obtained by MDSC. The value of T   is taken at the first small peak 
observed on the  peak corresponding to this relaxation, see Figure 8. 

 

Figure 8 CDA+25wt%DEP curve showing the polymer's molecular relaxations 
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5. Mechanical study 

5.1. Impact performance 

A Charpy impact setup is used to obtain the impact strength and the brittle to ductile transition 
temperature (TB/D) of all plasticized samples of the study.  

 
Figure 9 (a) Schematic representation of a Charpy impact set up and (b) schematic representation of the notched specimen 

geometry  

Three-point-bend impact experiments are conducted on a CEAST 9050 Instron impact machine. 
A schematic representation of this instrument is given in Figure 9(a). The energy of the hammer 
is 7.25J and the samples are hit at a speed = 3 / . The applied load on the three points 
bending specimen is recorded as a function of time with calibrated strain gages placed on the 
hammer. In the Charpy test the specimen is supported in a horizontal plane near its ends, as 
shown in Figure 9(a), and is struck by a single-pronged hammer. The p-CDA specimens have 
the following dimensions: width   =  10 , thickness   =  4  and length  = 80 . 
Samples are notched with a notch depth of 2 mm and a radius = 0.25 , (see Figure 9(b)) 
which corresponds to a deformation rate of:  = = 1.2. 10                                                         (4) 

Impact strength tests are conducted from -40 to 110°C in order to observe the TB/D of the studied 
polymers, as shown schematically in Figure 10. Samples are kept for 30min at the set 
temperature for equilibrium prior to impact testing. Temperatures are estimated to remain 
roughly constant during the experiment. For each temperature, the tests are performed on ten 
specimens. The impact strength (in J/m²) (i.e. resilience) is defined as the ratio between the 
energy used to fracture the material and the fracture surface area. 

(a) 

(b) 
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Figure 10 Schematic representation of the evolution of the resilience with temperature and the brittle to ductile transition 
temperature TB/D 

5.2. Tensile behavior 

Young’s modulus E, yield stress y and the Strain Hardening modulus ESH of the studied 
samples are obtained by tensile experiments carried out on a Zwick/Roell Z050 universal testing 
machine equipped with a 50kN load cell and the video-controlled materials testing system 
(VidéoTraction®, Apollor, Vandoeuvre) (G'Sell, Hiver, and Dahoun (2002)). This technique is 
based on the measurement and regulation of the local deformation in a representative volume 
element (defined by dot markers on the tensile specimen). A schematic representation of this 
technique is given in Figure 11(a).  

 

Figure 11 (a) Schematic representation of the VideoTraction® system (b) Configuration of the seven markers in the video-
controlled tensile testing system (G'Sell et al. (2002)) 

Samples (parallel and unnotched) are strained to failure at a constant strain rate (between = 5. 10 and  = 5. 10 ) at different temperatures (between -40°C to 60°C). A 
thermally controlled chamber keeps the temperature constant. For each strain rate and 
temperature, the tests are performed on five specimens for repeatability. Figure 12 gives an 

(b) 

(a) 
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example of a stress-strain curve obtained by tensile experiment on plasticized cellulose acetate 
sample. 

The Young modulus E is calculated from the tangent line in the elastic domain. = ( )                                                                                  (5) 

T y is defined as the observed maximum stress, as reported in Figure 12. 

The evolution of y with the strain rate follows the so-called Eyring law (Eyring (1936); Ree and 
Eyring (1955)) as seen in the Chapter I “State of the Art”. 

= + 2.3                                                        (6) 

a is the so-called Eyring volume, Ga is the activation energy and C is a constant. y varies 
linearly with  and the activation volume a can be determined by the slope of the linear 
dependence (Monnerie, Halary, and Kausch (2005)). 

The strain hardening modulus ESH can be measured by the slope of the stress-strain curve at the 
last five percentage of deformation before failure, as schematized in Figure 12. 

 

Figure 12 Plasticized cellulose acetate stress-strain curve obtained at 60°C 
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5.3. Fatigue test 

Uniaxial fatigue tests are carried out on a servohydraulic INSTRON 8872 machine, equipped 
with a cell force of 5kN at 23°C and 60°C in a temperature chamber filled with air at 
atmospheric pressure and uncontrolled humidity. The geometry of tested specimens 
corresponds to the schematic representation in Figure 13 and are obtained from Process B. 

 
Figure 13 Fatigue specimen geometry 

All fatigue tests are conducted in control loading mode with an applied sinusoidal stress. The 
maximum of applied stress are ranging from 30% to 50% of the yield stress determined with 

static tensile tests. The ratio =  between the lowest and the highest values of the 

stress is kept constant at 0.1 in order to prevent buckling of the samples. Since the fatigue 
frequency influences the self-heating of the material, a frequency of 3 Hz is chosen. 

The evolution of the dynamic modulus Ed permits the analysis of the material stiffness during 
fatigue experiments. For a given cycle (N) the dynamic modulus is determined using the 
following equation: =                                                                              (7) 

6. Study of the damage morphologies 

The structure and the mechanisms of damage induced by mechanical experiments are studied 
at microscopic and nanometric scales.  

6.1. Microscopic study 

6.1.1. Scanning Electron Microscopy  (SEM)  

Scanning Electron Microscopy (SEM) highlights the reliefs of a surface. This technique has a 
wide range of magnifications and a large depth of field with a resolution up to 10 nm. In 
Scanning Electron Microscopy, depending on the type of interactions, electrons are ejected from 
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more or less superficial layers of the sample leading to different contrasts. A schematic 
representation of the different types of interactions is proposed in Figure 14. In this work, the 
secondary electrons are used. They are ejected from superficial layers of the sample and give 
topographic information. 

 
Figure 14 Schematic representation of modification of the primary electrons beam caused by various electrons/material 

interactions 

The principle of the SEM is the following: during a collision between the primary electrons of 
the beam and the atoms of the sample, a primary electron can release some of its energy to a 
weakly bound electron in the conduction band of the atom, thus causing ionization by ejection 
of the laster. This ejected electron is called a secondary electron. These electrons usually have 
low energy (about 50eV). Each primary electron can create one or more secondary electrons, as 
shown in Figure 14. Because of their low energy, the secondary electrons are emitted in the 
superficial layers close to the surface. The electrons that can be collected by the detectors are 
often emitted at a depth of less than 10 nm. Since the signal is proportional to the number of 
secondary electrons emitted by the surface of the sample we can easily collect a large number of 
electrons and obtain images of good quality. 

Samples preparations for SEM observation have been done by including the plasticized 
cellulose acetate sample in Epoxy resin (Epofix). The surface is then cryotrimmed at room 
temperature using a diamond knife in order to obtain a mirror surface. The observation area is 
schematized in Figure 15. 
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Figure 15 Observation area of the tensile specimen 

For the observation, samples are then coated with platinium and finally imaged using SEM 
Zeiss Ultra 55 in the following conditions: 

Accelerating tension: 3 kV. 
Diaphragm aperture size: 30 μm. 
Two detectors of secondary electrons are used, see Figure 14: 

- SE2: It gives a better representation of the surface topology. 

- InLens: It allows the study of phase contrast at short working distances. 

6.1.2. Scanning Transmission Electron Microscopy (STEM) (Michler 
(2008)) 

In Scanning Transmission Electron Microscopy (STEM), observations are made possible by the 
collect of scattered electrons with an annular dark-field detector, as schematized in Figure 14. 
These observations are made on ultrathin section of 80 nm of polymers which are cut by 
ultramicrotomy at room temperature with a diamond knife. Sections are then picked-up on a 
copper grid (200 meshes). 

With this technique, the transmitted and scattered electrons can be directly observed. In bright 
field mode (show Figure 16(a)) the different parts of the sample are displayed in varied 
darkness according their density. Objects which absorb the electrons are observed in black and 
objects which transmit electrons are observed in white. In dark field the transmitted electrons 
are not directly observed, only the scattered electrons are measured by the annular detector (as 
shown in Figure 16(b)). In this case the objects which scattered electrons are observed in white. 
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Figure 16 Schematic representations of the different annular STEM detectors modes: (a) Bright-field and (b) Dark-field 

Sections are imaged using STEM Zeiss Ultra 55 in the following conditions: 

Accelerating tension at 30 kV, 
Diaphragm aperture size at 20 μm, 
Work distance WD~4mm  
Annular dark-field detector. 

  

(a)

(b)
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6.2. Ultra-Small Angle X-Ray Scattering (USAXS) 

The X-ray scattering is due to the occurence of electronic density heterogeneities within the 
material. The scattered intensity is a function of these heterogeneities. The diffusion angle 
gives information on the size of the objects. The instrument set-up is represented in Figure 17. 
USAXS technique is a non-destructive method which enables to investigate submicronic 
structures. 

 

Figure 17 Schema of X-Ray scattering experiment 

The principle of a USAXS experiment is the following: X-rays are generated by an X-ray source 
(synchrotron) and passed through a collimator. When the X-rays pass through the sample, some 
of them are scattered and can be detected on a position-sensitive detector. A beamstop is placed 
in front of the detector to absorb the strong direct unscattered beam. For most samples the main 
USAXS intensity is present close to the beamstop and decreases as a function of the scattering 
angle . The larger the distance between the sample and the detector is, the smaller the 
reachable scattering angle is. The scattered intensity, normalized by the thickness of the sample 
(in mm-1), is plotted as a function of the scattering vector, q, which is related to the scattering 
angle, , by the following equation (8): = 4 sin 2                                                                               (8) 

angle between the scattered beam and the incident beam (as shown in Figure 17) 
X-ray wavelength. The data are then represented on a log - log scale (as 

schematized in Figure 18). Many intensity functions have been established for X-Ray scattering 
taking into account the shape of heterogeneities (sphere, ellipse…), the anisotropy and other 
details as size distribution. A universal approach for all particle shapes is known as Guinier’s 
law (Guinier and Fournet (1955)) at small q values and Porod’s law (Beaucage, Kammler, and 
Pratsinis (2004)) at larger q values.  

59 

 



Chapter II  -  Materials and Methods 

 

Figure 18 Scattering intensity of particles as function of the scattering vector (q) in Guinier and Porod regimes 

At high q, the scattered intensity of particles with a well-defined surface can be described by the 
Porod regime (Beaucage et al. (2004)): ( ) = ,   = 2                                                (8)  

Where S is the average surface area for a primary particle and N is the number density of 
primary particles.  is the average electron density between the polymer and air (in the case of 
cavities in a polymer matrix), and re is the classical electron radius (re2 = 7.8.10-24 mm²).  

The number of electron per volume (i.e. electron density) of plasticized CDA is defined by 

 = × + ×                                                           (9) = × + ×                                                           (10) 

Where ,  and  are volume fractions of CDA, TA and DEP respectively. ,  
and  are the electron densities of CDA, TA and DEP respectively and can be expressed by 
the following equation: = × ×                                                                                 (11) 

 is the number of electrons per repeat unit in the polymer i, = 130, = 116  and = 118.  is the density of the component i, = 1.28 g/mm  , = 1.16 g/mm  and = 1.19 g/mm  . = 6.022. 10  is the Avogadro’s number, and  is the molar mass 
of the repeat unit of the polymer i,  = 246 g/mol,  = 218 g/mol and  = 222 g/mol.  
Equation (11) gives  = 4.07 × 10 ,  = 3.72 × 10  and  = 3.81 ×10 . Finally we obtain = 4.02 × 10 , = 4.03 × 10 . 

At lower q values, a transition region is observed that reflects the limit of surface scattering at 
the average primary particle size, Rg. The scattered intensity is described by Guinier’s law:  
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( ) = ,   =                                         (12) 

Where V is an average particle volume.  

Beaucage et al. (2004) have proposed a global unified scattering function containing these two 
local scattering laws: 

( ) = exp 3 + 6                                              (13) 

Where erf() is the error function defined by the following equation (Abramowitz, Stegun, and 
Romer (1988)):  erf( ) = 2                                                                      (14) 

Erf() approaches zero when q approaches zero, and approaches 1 when q tends to infinity. 

The radius of gyration of a particle can be expressed as a function of the radius R by the 

following equation = . 

This function is written for a single polydisperse level of spherical primary particle. In the case 
of several polydisperse levels of different structures, the contributions of each structure are 
added in the global scattering function. In the case of anisotropic structure such as an ellipsoid 
the scattered intensities can be integrated along different directions, as shown in Figure 19. 

Using the equation (13), the scattered intensities in the direction parallel and perpendicular of 
an ellipsoid of dimensions D and L can be expressed by considering that the beam describes a 
sphere with the dimensions D in a given direction and a sphere of dimension L in the other 
direction. The two equations are the following: 

( ) =  exp 5 + 4.5 10                      (15) 

( ) =  exp 5 + 4.5 10                      (16) 

With = . 
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Figure 19 2D anisotropic scattering intensity pattern 

 

Is the case of a multi-leveled (hierarchical) structure, the addition of different contributions at 
the corresponding q-range has been proposed by Sorensen, Oh, Schmidt, and Rieker (1998) in 
the case of fractal aggregates. An example of the addition of all contributions is shown in Figure 
20. This technique allows to the decomposition of the different contributions comprised in the 
scattering intensity at the different size scales. 

 

 
Figure 20 Scattering intensity of fractal aggregates (Sorensen et al. (1998)) 
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Experiments are carried out on the High brilliance Beamline (ID02) at the European 
Synchrotron Radiation Facility (ESRF, Grenoble, France). The X-Ray wave length  is set at 
0.995059Å and the X-ray energy is 12.460KeV. The X-ray beam scans a region of 100 μm. A 2D 
detector Rayonix MX-170HS (170 mm x 170 mm square X-ray area) is used.  

Three sample-to-detector distances variables from 1 m to 21 m are used. The first one, d = 21 m, 
allows to the scattering range 10-3 nm-1 < q < 10-2 nm-1. The second configuration, d = 8 m,  allows 
to longer exposure times in order to record scattering, in the q range 10-2 nm-1 < q < 10-1 nm-1. The 
last configuration, d = 1 m, gives access to the scattering range 10-1 nm-1 < q < 10 nm-1. “Empty 
frames” are recorded and the corresponding intensities are subtracted. Each measurement 
consists of an integration time of 5 s. The inherent absolute scattering intensity is obtained by 
normalizing the scattering intensity by the sample thickness using a Matlab tool suite “SAXS 
utilities” developed by Sztucki (Narayanan et al. (2018)). As the scattering patterns becomes 
anisotropic during deformation, the scattered intensities are integrated both along the direction 
of the tensile deformation ( ), corresponding to [-10 – 10°], and perpendicular to it ( ), 
corresponding to [80 – 100°]. 

Fitting of the scattered intensities I = f(q) is performed using the script of Igor Pro. 
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Chapter III. COMPARATIVE STUDY OF 

DYNAMIC AND MISCIBILITY PROPERTIES OF 

PLASTICIZED CELLULOSE ACETATE OBTAINED 

BY MELTING ROUTE OR SOLVENT CASTING 
 

Introduction 

This chapter is focused on the molecular relaxations and the miscibility behavior of plasticized 
cellulose acetate polymers. This work has already been done in details by Bao (2015) on 
plasticized cellulose acetate obtained via solvent casting. For this purpose Broadband Dielectric 
Spectroscopy (DSB), Dynamic Mechanical Thermal Analysis (DMTA) and Modulated 
Differential Scanning Calorimetry (MDSC) have been used to measure the influence of the 
plasticizing agents and the substitution degree of cellulose acetate on the dynamic properties 
and on the miscibility behavior of plasticized cellulose acetate systems. The purpose of this 
chapter is to compare the dynamical and miscibility behaviors of plasticized cellulose acetate 
systems obtained via solvent casting (studied by Bao (2015)) and those obtained via injection 
molding. In order to ensure this, a single substitution degree of cellulose acetate (DS = 2.45) has 
been used.  
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1. Thermal properties measured by MDSC 

1.1. Results and interpretation obtained on solvent cast samples (Bao (2015)) 

MDSC measurements have been done by Bao et al in order to understand the miscibility 
behavior of plasticized cellulose acetate obtained via solvent casting. Indeed, MDSC is helpful 
for determining the miscibility behavior of polymer blends. The miscibility term is commonly 
estimated by the determination of the glass transition temperature(s) (Tg) of the polymers blend. 
A fully miscible blend exhibits a single Tg. In the case of limited miscibility, two separate 
transitions between those of the single components may result, depicting a component-1 rich 
phase and a component-2 rich phase. Finally a fully immiscible polymer blend exhibits the 
respective Tg of component 1 and component 2. 

In plasticized cellulose acetate systems, Bao (2015) et al have shown the existence of a partial 
miscibility, and plasticized cellulose acetate can be considered as a two phases system with a 
cellulose acetate rich-phase (CDA-rich phase) and a plasticizer rich-phase (TA-rich phase or 
DEP-rich phase). 

Systems with 10wt% of plasticizer are found to be totally miscible with only one Tg observed, as 
reported in Table 1. Increasing the plasticizer content up to ~20wt%, in the case of TA 
plasticized cellulose acetate systems (TA-pCDA) leads to the appearance of a second Tg which is 
assimilated to the Tg of TA-rich phase. The blend is considered at its miscibility threshold which 
represents the beginning of partial miscibility. In the case of DEP plasticized cellulose acetate 
systems (DEP-pCDA), the miscibility threshold limit is found to be of order of ~25wt%. 
Increasing the plasticizer content up to the threshold limit induces phase separation and two 
glass transitions are clearly identified by MDSC. The plasticized polymers are considered 
partially miscible and the two glass transitions observed correspond to the CDA-rich phase and 
the other to the plasticizer-rich phase. It appears that DEP-pCDA systems maintains a wider 
miscibility range than TA-pCDA systems. Tg values are reported in Table 1. 

Regarding the plasticizing effect, it appears that TA is more efficient due to the more important 
decrease of Tg with the increase of plasticizer content than DEP-pCDA systems. 

1.2. Results obtained via injection molding 

The thermal properties of injected plasticized cellulose acetate polymers have also been 
investigated by modulated DSC. The glass transition temperatures are measured on the second 
heating scan in order to discard the influence of thermal history.  
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They can be identified by a smooth step in the “reversing heat flow” or by a peak in the 
derivative reversing capacity. Thermograms obtained, plotted in Figure 1, are consistent with 
those published in the literature on plasticized cellulose acetate films (Bao, Long, and Vergelati 
(2015); McBierty, Keely, Coyle, Xu, and Vij (1996)). It is observed that the glass transition 
temperature of plasticized cellulose acetate is shifted to lower temperatures when increasing the 
amount of plasticizer (Scandola and Ceccorulli (1985)). The glass transition temperatures (Tg) of 
plasticized CDA samples are found to be close to 135°C for specimens with 15wt% of plasticizer 
and close to 100°C for specimens with 30wt% of plasticizer. Phuong et al. (2014) describe the 
decrease of Tg with increasing plasticizer content by a increase the “free volume” linked to the 
intercalation of the molecules of plasticizer between the polymers chains. This leads to the 
decrease of the activation energy necessary for the motions of the polymer main chain. 

 

Figure 1 MDSC thermograms of plasticized cellulose acetate samples with (a) DEP and (b) TA at four plasticizer contents. Dash 
lines are the Reversing Heat flow and solid lines avec the Derivative Reversing Heat Capacity. 

The plasticizer effect of TA and DEP are efficient because of the important decrease of Tg in both 
cases. However it also appears that TA is a more efficient plasticizer for cellulose acetate, as 
observed by Bao (2015) et al on solvent cast cellulose acetate/plasticizer blends. The decrease of 
Tg is more significant, as reported in Table 1. A broadening of the glass transition temperatures 
upon increasing the plasticizer content is observed in both cases and is attributed to the 
heterogeneity of the polymer blend (heterogeneous distribution of 8 possible anhydroglucose 
units of cellulose acetate) as reported by Bao (2015) et al. MDSC thermograms obtained from 
injected plasticized cellulose acetate do not provide a clear identification of miscibility threshold 
limits. The appearance of Tg‘s plasticizer-rich phase are not clearly defined in both cases.  

(a) (b) 
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Only a small bump is observed at ~-50°C in DEP-pCDA systems when the plasticizer content is 
increased up to 25wt% and at ~-45°C in TA-pCDA systems when the plasticizer content is 
increased up to 20wt%. Tgs values are reported in Table 1. If we compare the MDSC 
thermograms of DEP-pCDA and TA-pCDA systems plotted in Figure 1, we can observed that 
DEP-pCDA seems to maintain a wider miscibility range than TA-pCDA systems, as observed 
on solvent cast systems.  

Table 1 CDA-rich phase glass transition temperature (Tg) for all plasticized cellulose acetate studied obtained by injection 
molding and solvent cast (Bao (2015)) 

Compositions 

Injected samples Solvent cast samples 

Tg (°C) CDA-rich 
phase 

Tg (°C) Plast-
rich phase 

Tg (°C) CDA-rich 
phase 

Tg (°C) Plast-
rich phase 

DEP TA DEP TA DEP TA DEP TA 

CDA + 10%plast N/A N/A 
N/A 

141 140 

N/A 
CDA + 15%plast 136 138 118 N/A 

CDA + 20%plast 124 118 N/A ~-45 111 109 

CDA + 25%plast 114 107 ~-50 ~-45 101 N/A 

CDA + 30%plast 110 99 ~-50 ~-45 83 78 ~-49 ~-33 

If we compare our results obtained on injection molded polymers with results obtained by Bao 
(2015) et al, we can observe that the miscibility threshold limit does not seem to be dependent 
on the processing. Even if the second Tg in injection molded polymer is more difficult to observe, 
in both cases miscibility limits seem to be of order of ~20wt%TA or ~25wt%DEP. 

2. Thermo-mechanical properties obtained by DMTA 

The characterization by DMTA provides information about the polymer relaxations. The 
different tan( ) peaks that we observe are denoted ,  and  from the higher to lower 
temperatures in Figure 2. -relaxation) observed by DMTA at 1Hz can be 
assimilated to the Tg observed by MDSC measurement. It corresponds to the onset of segmental 
motion of a polymer. In this section we analyze the evolution of the main - 

-) relaxations of plasticized cellulose acetate with the plasticizer content. The evolution of 
T  and T  can be also used to measure the miscibility behavior of plasticized cellulose acetate. 
As just done before for results obtained by MDSC, we also compare results obtained by DMTA 
on solvent cast and injection molded polymers. 
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In Figure 2 
temperature for TA and DEP based polymers at a frequency of 1Hz.  

 

Figure 2 DMTA spectrum of plasticized cellulose acetate with (a) DEP and (b) TA at the four plasticize content considered at a 
frequency of 1Hz.  

2.1. -relaxation  

Figure 2 shows the shift to lower temperature of T  with increasing the plasticizer content due 
to the acceleration of the dynamic by adding external plasticizer. T  values are reported in Table 
2. The values and the decrease of T  are in the same order of magnitude than Tg measured by 
MDSC. It also appears that T  measured on TA-pCDA samples decrease more significantly than 
DEP-pCDA with the increase of plasticizer content, as reported in Table 2. These results confirm 
the effect more powerful of the TA than the DEP as a plasticizer of cellulose acetate. Regarding 
the influence of the processing, it is reported in Table 2 that T  values are in a same order of 
magnitude whatever the processing used (solvent casting or injection molding) as well as the 
more powerful plasticizing effect of TA.  

(a) (b) 
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Table 2 -relaxation temperatures T  (°C) measured by DMTA at 1Hz on plasticized cellulose acetate samples and solvent cast 
samples (Bao (2015)) 

Compositions 
T  (°C) Injected samples T  (°C) Solvent cast samples (Bao 

(2015)) 

DEP TA DEP TA 

CDA + 15%plast 142 141 143 139 

CDA + 20%plast 129 125 129 121 

CDA + 25%plast 120 111 116 N/A 

CDA + 30%plast 112 98 112 98 

2.2. - -relaxation 

-relaxation) is identified in plasticized cellulose acetate polymers. In her 
thesis work, Bao (2015) et al have shown that -relaxation temperature (T ) 
decreases when the plasticizer content increases and its magnitude increases. T  values are 
reported in Table 3. They assumed that this temperature shift is the same as the Tg

plasticizer-rich phase observed by MDSC. This assumption leads them to think that the related 
relaxation is an overlapping -relaxation of cellulose acetate (also 
observed in unplasticized cellulose acetate) -relaxation of plasticizer-rich phase. They 
also used the evolution of this secondary relaxation as a function of the plasticizer content to 
confirm the miscibility threshold limit at ~20wt%TA and ~25wt%DEP. 

Figure 3 in the secondary relaxation temperature range measured on 
polymers obtained via injection molding. On the contrary to what is observed on solvent cast 
polymers, it appears in injection molded systems that T  values are slightly shifted to higher 
temperatures with increasing the plasticizer content. Its magnitude still increases with the 
plasticizer content -relaxation temperatures are reported in Table 3.  

If we consider Figure 3, the initial -relaxation seems to split ( - - relaxation) from 
the composition that materializes the miscibility threshold, which provides support to the idea 
that there are different domains which relax differently. The miscibility threshold can be 
established for DEP contents larger than ~25wt% and TA contents larger than ~20wt% which 
confirms the miscibility limits observed by MDSC. 
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Figure 3 Zoom of the tan( ) as a function of the temperature in the second relaxation range (a) DEP-pCDA and (b) TA-pCDA. 

Table 3 -relaxation temperatures T  (°C) measured by DMTA at 1Hz on plasticized cellulose acetate obtained via injection 
molding and solvent cast. * indicated + ’ contributions 

Compositions 
T  (°C) Injected samples 

T  (°C) Solvent cast samples Bao 
(2015) 

DEP TA DEP TA 

CDA + 10%plast N/A -55 -31 

CDA + 15%plast -45 -40 -33 N/A 

CDA + 20%plast -38 -23* -35 -22 

CDA + 25%plast -31* -22* -44 N/A 

CDA + 30%plast -33* -22* -41 -25 

CDA + 35%plast 

N/A 

-39 N/A 

CDA + 40%plast -42 -29 

CDA + 50%plast -49 -32 

Different behaviors are observed regarding the evolution of T  with the increase of plasticizer 
content. In polymers obtained via solvent cast T  decreases and in polymers obtained via 
injection molding, T  increases. However, DMTA measurements confirm in both cases, the 

- -relaxations is 
observed from ~25wt% in DEP-pCDA and ~20wt% in TA-pCDA no matter the processing used.  

(a) (b)
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3. Evolution of the dynamical relaxations 

Unlike Bao (2015) et al, we did not perform BDS studies on injected cellulose acetate systems. 
However we were able to obtain semi-quantitatively the same information by carrying out 
DMTA experiments at several frequencies. 

In Figure 4 - - -relaxations of plasticized cellulose acetate obtained by 
injection molding are plotted. Thermo-mechanical transitions of polymers are described by 
different types of behavioral laws as described in Chapter II “Materials & Methods”. It is 

-relaxation follows a typical Arrhenius law which confirms the behavior of a 
secondary relaxation. The fitting parameters obtained on injected plasticized cellulose acetate 
samples are in the same order of magnitude than those obtained by Bao (2015) et al, Ea = 45 
kJ/mol and 0 = -15 are common regardless of the content or the type of plasticizer. It confirms 

-relaxation only depends on the motions of neat cellulose acetate (Sousa et al. (2010)).  

Controversially, -relaxation seems to be more complex and does not follow an Arrhenius 
law. -relaxation appears to deviate and get closer to a typical behavior of a primary relaxation 
when the plasticizer content increases, as shown in Figure 4. The molecular motions at the 
origin of this relaxation have an increasing activation energy with the increase of plasticizer 
content. But their molecular origin is still unknown. Regarding the main relaxation, it is well-
established in the literature that its follows a VFT law usually used for primary relaxation (Bao 
(2015)). 

Figure 4 Relaxation map of -, - and -relaxation processes for all plasticized cellulose acetate systems obtained by injection 
molding (DMTA measurements) 

(a) (b) 
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4. Conclusion 

The temperatures and behaviors of the various relaxations of the plasticized cellulose acetate 
obtained by extrusion followed by injection processing are comparable to those determined on 
solvent cast films by Bao (2015). The presence of an important secondary -relaxation allows 
for identifying a limit of miscibility in cellulose acetate / plasticizer systems which confirms 
results obtained by MDSC. The miscibility threshold can be established for DEP contents larger 
than ~25wt% and TA contents larger than ~20wt%.  

All dynamic properties described in Bao (2015) PhD work are applicable in injection molded 
plasticized cellulose acetate. 
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Chapter IV. MACROSCOPIC STUDY OF 

MECHANICAL PROPERTIES OF PLASTICIZED 

CELLULOSE ACETATE SYSTEMS 
 

Introduction 

Different behaviors are observed above the miscibility threshold established in the Chapter III 
depending on the nature of the plasticizer. This Chapter exposes the results obtained regarding 
the mechanical behavior of plasticized cellulose acetate samples and the influence of several 
parameters as the plasticizer typology and its content. We present the ductile to brittle 
transition measured by Charpy tests at different temperature for both plasticizers (DEP or TA). 
Then, we describe in details the tensile behavior of these systems. Firstly, we present the 
evolution of the Young Modulus (E) and the Yield stress y) as a function of the nature of the 
plasticizer, its composition and the experimental temperature. Then, we describe the Strain 
Hardening (ESH) regime observed at large strain values and the influence of the experimental 
temperature, the plasticizer content and nature and finally the influence of the orientation of the 
polymer chains (resulting from the injection processing). 
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1. Impact strength 

As described in the Chapter II “Materials & Methods”, impact strength tests are conducted on 
all the studied specimens injected via the process A with the required dimensions. Impact tests 
are performed at different temperatures in order to assess the brittle to ductile transition 
temperature (TB/D). Figure 1(a) and Figure 4(a) show the impact strength as a function of 
temperature (brittle to ductile transition curves) for polymers plasticized with DEP and TA 
respectively.  

In all polymers, the curves show a well-defined transition from a brittle failure at low 
temperature where the impact strength is of an order of J  5 kJ/m², to a ductile failure at high 
temperature where the impact strength is of an order of J  40 kJ/m² whatever the plasticizing 
agent is. To determine the brittle-ductile transition temperatures we measure the temperature at 
the middle of the transition. TB/D values are reported in Table 1 and Table 2.  

TB/D values are shifted to lower temperatures upon increasing the amount of plasticizer. The 
different samples are compared at a given state of molecular mobility defined by the 
temperature difference between Tg (obtained from DSC experiments) and the impact test 
temperature (Tg – T), as shown in Figure 1(b) and Figure 4(b). For all studied plasticized CDA 
samples, the fully ductile state is obtained at the same molecular mobility level. However 
different behaviors are observed in the low temperature region of the transition, depending on 
the plasticizing agent. 
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1.1. Evolution of TD/B in DEP-pCDA 

Figure 1 Brittle-ductile transitions curves of all the DEP plasticized cellulose acetate systems. (a) As a function of the experiment 
temperatures and (b) as a function of the normalized temperature by Tg (measured by MDSC). 

As shown in Figure 1(a) the brittle-ductile transition is broadened above 20wt% of plasticizer 
content, a composition which corresponds to the polymer - plasticizer miscibility threshold 
established by MDSC and DMTA measurements. The temperature dependence of the impact 
strength of our plasticized polymers with a plasticizer content up to 20wt% exhibits a similar 
behavior as reinforced amorphous polymers such as notched High Impact Polystyrene (HIPS) 
(Bucknall (1988); Halary, Lauprêtre , and Monnerie (2011)) and rubber toughened PMMA (RT-
PMMA) (Bucknall, Partridge, and Ward (1984); Halary, Lauprêtre , et al. (2011)). Three distinct 
regimes are observed. At very low temperature there is no reinforcement and the failure is fully 
brittle. When increasing the temperature up to Tg – T = 110°C, an intermediate state is observed 
where the toughness increases moderately. It is described as a semi-brittle fracture (Halary, 
Lauprêtre , et al. (2011); Halary, Lauprêtre, and Monnerie (2011)). The damaged zone is limited 
and the crack propagation is catastrophic. At higher temperature the toughness increases 
rapidly with the temperature, the failure is fully ductile. As soon as an intermediate transition is 
observed, the increase of plasticizer content leads to an intensification of this intermediate state. 
It means that different mechanisms may occur during impact tests which depend on the 
amount of plasticizer. TB/D values are reported in Table 1 for systems plasticized with DEP. 

(a) (b) 
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Table 1 Temperatures of the brittle to ductile transition of TA p-CDA obtained from Figure 1 

Composition TB/D 1 (°C) TB/D 2 (°C) 

CDA + 15wt%DEP 
CDA + 20wt%DEP 
CDA + 25wt%DEP 
CDA + 30wt%DEP 

N/A 
N/A 

20 
10 

80 
60 
55 
40 

Microscopic analyses have confirmed this interpretation on CDA+30wt%DEP sample: 

For T < 0°C, impact strength is around 5 / ² and failure is fully brittle. The analysis of the 
failure surface by scanning electron microscopy shows an homogeneous surface, as 
observed in Figure 2. There is neither damaged zone nor damaged feature on the fracture 
surface. 

 

Figure 2 SEM images of fracture surface for CDA+30%DEP obtained after impact testing at -20°C (failure in a brittle mode)  

For 0°C < T < 40°C, the failure is semi-brittle. The failure surface is completely 
heterogeneous. A toughness mechanism is developed during the crack initiation but the 
propagation remains catastrophic. On the same surface some domains have a ductile failure 
and other have a brittle failure meaning that brittle and ductile domains clearly coexist on 
the same fracture surface (as observed on CDA+30wt%DEP surface after failure at 23°C in 
Figure 3). These domains are randomly distributed over the fracture facies and do not seem 
to be related to the position with respect to the notch. 
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Figure 3 SEM images of fracture surface for CDA+30%DEP obtained after impact testing at 23°C (failure in a semi-ductile 

mode) (a - b) domains with ductile failure and (c) domains with brittle failure. 

For T > 60°C, the polymer exhibits a fully ductile failure. The surface observed on 
CDA+30wt%DEP after failure at 60°C is strongly similar to the ductile domains observed 
after failure at 23°C in Figure 3(a). The damaged zone covers the whole fracture surface.  

(a) (b) 

(c) 
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1.2. Evolution of TD/B in TA-pCDA 

Figure 4 Brittle-ductile transitions curves of all the TA plasticized cellulose acetate systems. (a) As a function of the experiment 
temperatures and (b) as a function of the normalized temperature by Tg (measured by MDSC). 

As shown in Figure 4(a) the brittle-ductile transition is slightly broadened above 20wt% of 
plasticizer content, a composition which corresponds to the polymer – plasticizer miscibility 
threshold. But this widening is less pronounced than in DEP-pCDA. Plotting the impact 
strength as a function of the normalized temperature reveals that for all the TA-pCDA samples, 
impact strength curves align on a master curve as a function of Tg – T. The low temperatures 
range is less influenced by the plasticizer content than observed in DEP-pCDA systems. TB/D

values are reported in Table 2. 

Table 2 Temperatures of the brittle to ductile transition of TA p-CDA obtained from Figure 4 

Composition TB/D 1 (°C) TB/D 2 (°C) 

CDA + 15wt%TA 
CDA + 20wt%TA 
CDA + 25wt%TA 
CDA + 30wt%TA 

N/A 
N/A 
31 
20 

74 
55 
58 
45 

As for polymers plasticized with DEP, the failure surface are analyzed by scanning electron 
microscopy. Same observations than in CDA+30wt%DEP are observed. At low temperature the 
surface failure is slick and clean.  

(b) (a) 

83 

 



Chapter IV - Macroscopic study of mechanical properties of plasticized cellulose acetate 

In the middle region of the transition the coexistence between brittle and ductile domains is also 
observed. At higher temperature the failure surface is fully ductile. 

1.3. Conclusion 

These impact resistance tests reveal an atypical behavior of the plasticized cellulose acetate 
polymers. The widening of the ductile / brittle transition is a phenomenon not yet described in 
the literature and not typical of plasticized polymers. For example, the impact behavior of 
plasticized PVC does not show a widening of the transition but only an offset of its transition 
towards the lower temperatures (Hassan and Haworth (2006)). In our cellulose acetate / 
plasticizer systems this enlargement of the transition is related to the addition of plasticizer. 
This phenomenon may be explained by the fact that our polymers are heterogeneous and have 
domains with different levels of plasticity that can deform independently. We have shown that 
when increasing the plasticizer content, the brittle to ductile transition temperature is decreased. 
The impact performance is more influenced by DEP plasticizer for which the decrease of TB/D is 
more pronounced. At 23°C the impact performance is better with DEP than TA. The 
phenomenon of transition widening is also more important on polymers plasticized with DEP. 
Based on thermomechanical response described in Chapter III, we have observed that TA-
pCDA polymers exhibit a lower miscibility threshold limit than DEP-pCDA polymers. 
Regarding the mechanical response, in the miscibility domains (below the miscibility threshold 
limit) both plasticizer lead to the same brittle to ductile transition. But, beyond this miscibility 
threshold DEP-pCDA polymers exhibit a lower and more broadened impact strength transition 
than TA-pCDA polymers. We interpret this behavior by the idea that DEP-pCDA systems have 
a more heterogeneous mechanical response above its miscibility threshold. 
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2. Tensile behavior 

The tensile behavior of plasticized cellulose acetate samples has been studied at different 
temperatures and strain rates in order to determine their influence on the different regimes 
described in Chapter I “State of the art”. In Figure 5 the stress-strain curves of samples 
plasticized with 20wt% (obtained via Process A) are plotted at different temperatures for a 
constant strain rate. All the studied samples exhibit a similar behavior. A ductile to brittle 
transition can also be determined by tensile behavior, but this technique is less precise than 
impact experiments. It appears that decreasing the temperature, or increasing the strain rate, 
induces an increase of the rigidity and a transition from ductile to brittle behavior, as observed 
in Figure 5.  

At low temperatures, the polymer is considered as brittle, the failure is reached before reaching 
the yield point y (shown in Figure 5 for the two systems measured at -40°C).  

By increasing the temperature of the tensile experiment, the behavior becomes more ductile and 
reveals a yield point y, as observed above -20°C in Figure 5. 

 

Figure 5 Stress – strain curves obtained at different temperature for a constant strain rate at 1.10-3s-1 on samples plasticized with 
(a) 20wt%DEP and (b) 20wt%TA (injection by Process A). AT very low temperatures de failure is brittle and occurs before de 

yield point and at very large temperature the failure is ductile and the plasticity can develop. 

 

(a) (b) 
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In this part of the study we do not decided to comment on behaviors beyond 5% of strain. As 
seen previously, (Chapter II “Materials & Methods”, Section 3) the core / skin effect on the 
injected tensile specimens ISO-527 (Process A) is very important, so that we consider the 
mechanical behavior being homogeneous over the entire specimen up to 5% of strain but 
heterogeneous beyond (the observed deformation rendering obsolete the interpretation of its 
behavior). Many other amorphous polymers such as BPA-PC and PVC also show deformation 
heterogeneities beyond their plasticity threshold called necking phenomenon. But it is often 
considered that the deformation is homogeneous over the entire sample until reaching the yield 
point. Our experiments allow thus for studying macroscopic quantities such as Young's 
Modulus E and the evolution of Yield Stress y as a function of temperature and composition. 

2.1. Young modulus (E) 

Young’s modulii E are determined from tensile measurements conducted at different 
temperatures and at a constant strain rate of 10-3s-1. E is obtained from the slope of the part of 
the curve defining the linear elastic regime of the mechanical response. As expected the Young's 
modulus decreases with the addition of plasticizer.  

The phenomenon of mechanical plasticization is usually explained qualitatively by an increase 
of the free volume of the polymer due to amount of plasticizer within the matrix. The 
improvement of the molecular mobility facilitates the plasticity for the polymer and is 
responsible of the loss of rigidity. Likewise, Young modulus decreases upon increasing the 
temperature. The temperature assuming the transition between the glassy and the rubbery 
states is the glass transition temperature (Tg). The closer it gets to Tg, the more ductile the 
material becomes. 

The different samples are compared at the same level of molecular mobility defined by the 
difference Tg – T (as shown in Figure 6). The Young modulus values are only measured at 
experimental temperatures below Tg. Figure 6 reports a clear correlation between the Young 
modulus (E) for all studied plasticized cellulose acetate compositions over a wide range of 
temperatures. Young moduli values determine a linear master curve with a positive slope 
(increase of E when the distance to Tg increases). 
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Figure 6 Master curve of the Young modulii E of p-CDA systems as a function of Tg-T. The data are obtained from tensile 
measurements at a strain rate of 1.10-3s-1 

2.2. y) 

The yield stress y is also determined from tensile measurements conducted at different 
temperatures and at a constant true strain rate of 10-3s-1. It appears, as for the Young Modulus, 
that the yield stress decreases when increasing the plasticizer content or the experimental 
temperature. It also seems to follow a linear master curve when it is plotted as a function of the 
normalized (Tg – T) temperatures (see Figure 7). 

 
Figure 7 Master curve of the y of DEPp-CDA systems as a function of Tg-T. The data are obtained from tensile 

measurement at a strain rate of 1.10-3s-1 
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Table 3 Yield stress values measured at 1.10-3s-1 at three temperatures on all plasticized samples. 

Yield stress 
(MPa) 

DEP TA 

23°C 40°C 60°C 23°C 40°C 60°C 

CDA+15wt.% 64.8 ± 0.2 47.7 ± 0.1 38.2 ± 0.4 61.7 ± 0.2 48.8 ± 0.7 38.6 ± 0.5 

CDA+20wt.% 52.5 ± 0.5 36.6 ± 0.4 27.9 ± 0.2 48.9± 0.4 34.9 ± 0.2 26.6 ± 0.3 

CDA+25wt.% 42.4 ± 0.4 28.3 ± 0.4 N/A 39.6 ± 0.4 26.0 ± 0.4 N/A 

CDA+30wt.% 32.2 ± 0.3 21.1 ± 0.3 N/A N/A N/A N/A 

y have also been investigated at different temperatures below Tg as a 
function of strain rate (varying between 5.10-2 to 5.10-4 s-1). Increasing the strain rate is equivalent 
to decreasing the temperature. 

Below the miscibility threshold (established by DMTA measurement on pCDA compositions) 
y with the strain rate follows the so-called Eyring (1936) law (as shown in 

Chapter I «State of the art»). 

Figure 8 reports the linear dependencies of the yield stress of plasticized cellulose acetate 
systems with DEP. It is shown that for a constant plasticizer content the linear curves 
established at different temperatures are parallel to each other. The activation volume a is 
equivalent to the slope of the linear curve = ( ). It appears to be independent on the 
temperature but increases with the plasticizer content, as shown in Figure 8(a – b – c). For 
CDA+15wt%DEP, a is found around 0.35 nm3 and up to 0.52 nm3 for CDA +25wt%DEP. All the 
fitting parameters are reported in Table 4. y 
dependence on the strain rate is. The evolution of the slope with the amount of plasticizer 
confirms that plasticizer has an important contribution in the mechanism involved in yielding. 
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Figure 8 Yield stresses measured in tensile tests plotted as functions of the strain rate, for various temperatures. The considered 

samples are CDA plasticized with DEP (weight fraction comprised between 15 and 25wt%). 

Table 4 Eyring parameters of DEP plasticized cellulose acetate polymers obtained for three temperatures: 0°C, 23°C and 40°C. 

systems Temperature (°C) a (nm3) Ga (kJ/mol) 

CDA + 15wt%DEP 
0 0.305 61.9 
23 0.324 51.9 
40 0.350 47.1 

CDA + 20wt%DEP 
0 0.411 63.6 

23 0.391 54.7 
40 0.450 48.4 

CDA + 25wt%DEP 
0 0.472 68.1 

23 0.521 54.9 
40 0.564 45.5 

(a) (b) 

(c) 
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Regarding amorphous polymers in the glassy state, a parameters measured in PVC or PMMA 
are in the same order of magnitude.  In PMMA a = 0.25 nm3 at -20°C and increases up to a = 
0.9 nm3 at 80°C. In PVC a = 0.105 nm3 at 0°C (Halary, Monnerie, and Lauprêtre (2011); 
Monnerie, Halary, and Kausch (2005)). 

Above the miscibility threshold (~ 25wt% of DEP), the yield stress behavior is not reproducible 
and exhibits a very large dispersion. Stress/strain curves obtained by tensile measurements on 
the five samples of the same pCDA exhibit highly disperse results. Heterogeneity of the tensile 
behavior is observed. No reasonable dependence on temperature and strain rate can be 
established. 

Since the time / temperature dependence of DEP-pCDA yield stress y) is in line with what we 
expected, we have made the hypothesis that the same study on TA-pCDA would give identical 
results. 

2.3. r) 

As the injection process generally has a considerable importance on the stress – strain behavior 
under tensile deformation of plasticized cellulose acetate systems and moreover because of the 
core / skin effect detected on samples obtained by the process A, data become uninterpretable 
from an estimated deformation threshold of 5%. Figure 9, and Figure 10 report stress - strain 
curves obtained from tensile measurements for polymers plasticized by 15wt% of plasticizer for 
the three injection modes described above (Process A and Process B with the two tensile 
geometries ISO-527-norm and hourglass specimens). It is observed that the tensile behaviors are 
fundamentally different even if geometries are similar (as seen in Figure 9(a) and Figure 9(b)). 
The core – skin effect observed with specimens injected by the process A induces an important 
localization of the damage in the skin and reduces consequently the elongation at break (as 
explained in Chapter II «Materials & Methods»). The processing with the same geometries but 
at increasing temperature of the mold leads to a reduce of the core – skin effect but reveals that 
the geometry used by respect to ISO-527 norm is not optimum for studying large strain in 
plasticized cellulose acetate polymers (Process B), as shown in Figure 9(b) and Figure 10(b). The 
elongation at break is improved but remains localized on the tensile specimen geometry. 

The radius curvature of the hourglass geometry, cut within plates injected with Process B, is 
larger (Ø=71). Therefore the localization of the constraints is limited during the tensile 
experiment which favors homogeneous deformation, as shown in Figure 9(c) and Figure 10(c). 
The elongation at break is increased with this geometry and also is the strain hardening regime. 
After failure, damage mechanisms have been developed all along the tensile sample geometry. 
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Figure 9 Uniaxial stress-strain curves determined for CDA+15%wtDEP at several temperatures and a strain rate of 1.10-3s-1 (a) 
for the specimens directly injected in the ISO-527 mold. Process A Tmold = 30°C, (b) for the specimens ISO-527. Process B Tmold = 

80°C and (c) for specimen cut at an angle  = 0°. Process B Tmold = 80°C 

(a)
(b) 

(c) 
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Figure 10 Uniaxial stress-strain curves determined for CDA+15%wtTA at several temperatures and a strain rate of 1.10-3s-1 (a) 
for the specimens directly injected in the ISO-527 mold. Process A Tmold = 30°C, (b) for the specimens ISO-527. Process B Tmold = 

80°C and (c) for specimen cut at an angle  = 0°. Process B Tmold = 80°C 

It appears that increasing the temperature does not influence the elongation at break. In the case 
of hourglass specimen geometry (process B) at 60°C or 80°C the elongation remains constant 
around 25 – 30% of true strain for TA-pCDA and around 35% for DEP-pCDA. 

As explained earlier in the Chapter II «Materials & Methods», the high stresses which occur 
during the injection phase result in a strong orientation of the polymer chains in the direction of 
injection (Thakkar and Broutman (1980)).  

(a) 

(b) 

(c) 
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It has been reported that processing-induced orientation has influence on toughness (Bridle, 
Buckley, and Scanlan (1968); Rawson and Rider (1973)) and result in an anisotropy of the 
mechanical properties. To highlight this phenomenon on pCDA, tensile specimens have been 
cut at different angles  between the direction of the injection and the direction of the tensile 
test (Process B). Figure 11 and Figure 12 illustrate the influence of this orientation on tensile 
behavior of plasticized polymers with 15wt% and 20wt% at 40°C, 60°C and 80°C. 

 
Figure 11 Uniaxial tensile measurements of CDA+15wt%of plasticizer cut at different angles  and at true strain rate of 1.10-3s-1. 

Process C (Tmold = 80°C). (a) CDA+15wt%DEP at T = 60°C, (b) CDA+15wt%DEP at T = 80°C, (c) CDA+15wt%TA at T = 
60°C and (d) CDA+15wt%TA at T = 80°C  

(c) (d) 

(b) (a) 
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Figure 12 Uniaxial tensile measurements of CDA+20wt%of plasticizer cut at different angles  and at true strain rate of 1.10-3s-1. 
Process C (Tmold = 80°C). (a) CDA+20wt%DEP at T = 40°C, (b) CDA+20wt%DEP at T = 60°C, (c) CDA+20wt%TA at T = 

40°C and (d) CDA+20wt%TA at T = 60°C 

any unstable cracks appear on the surface and generate an abrupt failure 
which results in a more important standard error of elongation at break. In this case, the 
elongation at break is still smaller. true stress / strain curves are 
more and more repeatable and superimposed for the same batch of specimens, and their 
elongation at break is greater (as shown in Figure 11 and Figure 12). All the elongation at break 
values measured on the studied systems are reported in Table 5. 

(d) (c) 

(b) (a) 
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Table 5 Elongation at break R %) of p-CDA systems plasticized by 15wt% and 20wt% of plasticizer measured from Figure 11 
and Figure 12 at different temperatures and angles  

R (%) 

samples CDA + 15wt%DEP CDA + 15wt%TA 

(°) 0 45 90 0 45 90 

60°C 24 ± 12 30 ± 12 31 ± 4 25 ± 6 32 ± 10 26 ± 9 

80°C 29 ± 6 36 ± 2 38 ± 3 14 ± 9 32 ± 2 38 ± 3 

samples CDA + 20wt%DEP CDA + 20wt%TA 

40°C 22 ± 5 34 ± 3 38 ± 5 26 ± 5 34 ± 4 43 ± 1 

60°C 20 ± 7 38 ± 2 37 ± 4 21 ± 6 30 ± 1 33 ± 1 

2.4. Strain Hardening 

Beyond yield and typically above 8% of true strain, we observe a strain hardening. It is also 
observed in highly entangled amorphous polymers such as polycarbonate (PC), 
poly(metyl)methacrylate (PMMA) or polyvinyl chloride (PVC) (Kierkels (2006); Richeton, Ahzi, 
Daridon, and Rémond (2005); Van Melick, Govaert, and Meijer (2003)). It can be defined as 
stress increase at higher deformation levels (Meijer and Govaert (2005)) with a characteristic 
slope (strain hardening modulus ESH) with an order of magnitude 107 –108 Pa well below the 
glass transition. For a more complete description of the strain hardening some other 
measurements have been done on hourglass specimens cut into plates, following process B 
methodology. 

Stress-strain curves of CDA+15wt% and CDA+20wt% of plasticizer obtained by tensile 
measurements at four different temperatures and a constant true strain rate of 10-3s-1 are plotted 
in Figure 11 and Figure 12 respectively for the three angles. Tests were performed at 40°C, 
60°C and 80°C (below glass transition temperature Tg). These plasticized compositions can be 
considered homogeneous and no phase separation occurs, meaning that only one domain of 
plasticized cellulose acetate is involved in the mechanism. Samples have been injected in a mold 
at 80°C, for which we consider that no core/skin effects are present or at least have negligible 
effects. For all studied systems, it is observed that the macroscopic orientations of the molecular 

 a significant 
influence on the strain hardening regime.  

95 

 



Chapter IV - Macroscopic study of mechanical properties of plasticized cellulose acetate 

2.4.1. Influence of the orientation of polymer chains  

The influence of the the strain hardening is shown in Figure 11 and Figure 
12. Increasing the loading angle towards 90° leads to a slightly decrease of yield stress which is 
similar to the response reported in the literature (Bridle et al. (1968) Rawson and Rider (1973) 
Rider and Hargreaves (1969)) and of the Young modulus. The more significant influence is 
observed on the strain hardening modulus ESH, measured by the slope over the last 5 
percentages of deformation. The measured strain hardening modulus of CDA+15wt%DEP at 
60°C, obtained from Figure 11(a), shows a decrease from 165MPa at  = 0° to 76MPa at  = 90°. 
Polymers deformed in the same direction than the macroscopic chain orientation (  = 0°) exhibit 
a higher stiffness. This decrease in properties, when increasing the angle , is observed 
regardless of the plasticizing agent used, the composition and the experimental temperature. 
Strain hardening modulii (ESH) are reported in Table 6. It appears that in the case of DEP-pCDA 
samples at 60°C, the strain hardening regime is strongly dependent on the loading angle. This 
effect is smaller in the case of TA-pCDA systems for which the strain hardening modulus 
decreases from . 

At 80°C a decrease of strain hardening modulus is observed in both cases. It appears that 
systems plasticized with the TA are more sensitive to the increase of temperature than systems 
plasticized with DEP. At 60°C the strain hardening moduli are in the same order of magnitude. 
On the reverse strain hardening modulus measured at 80°C show a difference between the two 
plasticized systems. Those plasticized with TA have lower ESH moduli than systems plasticized 
with DEP. At  = 0°, ESH of the CDA+15wt% TA system is 77MPa while CDA+15wt%DEP 
system has an ESH = 95MPa.  

Table 6 Strain hardening moduli obtained from tensile measurements at 60°C and 80°C on samples with 15wt% of plasticizer 
transformed by process B at different cutting angles 

Strain hardening modulus (MPa)  = 0°  = 45°  = 90° 

60 °C 
(Tg – T = 80°C) 

CDA+15wt.% DEP 165 ± 9 153 ± 14 76 ± 2 

CDA+15wt.% TA 132 ± 34 134 ± 6 104 ± 17 

80 °C 
(Tg – T = 60°C) 

CDA+15wt.% DEP 95 ± 15 79 ± 6 70 ± 21 

CDA+15wt.% TA 77 ± 7 57 ± 9 37 ± 7 

 

This strong influence of the molecular chains orientation on the strain hardening regime is 
consistent with results reported in the literature (D. J. A. Senden, Krop, van Dommelen, and 
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Govaert (2012)) where it was shown that the strain hardening is strongly dependent on pre-
deformation. 

2.4.2. Influence of the typology and amount of plasticizer 

We have seen that the strain hardening is higher with DEP than TA. Meaning that plasticizer 
has an influence on the mechanisms induced by the strain hardening. 

All the measured strain hardening moduli on samples with 20wt% of plasticizer are reported in 
Table 7. For the same level of molecular mobility (i.e. Tg – T), it appears that the ESH and the 
elongation at break ( r) in systems with 15wt% and 20wt% of plasticizer are of the same order of 
magnitude. As an example, the polymer CDA+15wt% TA (Tg = 140 °C) with  = 0° submitted to 
a tensile test at 60°C has a strain hardening modulus ESH of 132MPa, and the polymer 
CDA+20wt % TA (Tg = 120 °C) with  = 0° submitted to a tensile test at 40°C has a strain 
hardening modulus ESH of 120MPa.  

When the temperature is increased to 60°C it appears that the strain hardening modulus on 
CDA+20wt%DEP systems are higher than TA plasticized systems. As observed for samples 
with 15wt% of plasticizer at 80°C. 

Table 7 Strain hardening moduli obtained from tensile measurements at 40°C and 60°C on samples with 20wt% of plasticizer 
transformed by process B at different cutting angles 

Strain hardening modulus (MPa)  = 0°  = 45°  = 90° 

40 °C 
(Tg – T = 80°C) 

CDA+20wt.% DEP 124 ± 5  126 ± 19  116 ± 34  

CDA+20wt.% TA 120 ± 5  136 ± 19  131 ± 8  

60 °C 
(Tg – T = 60°C) 

CDA+20wt.% DEP 110 ± 19  118 ± 6  82 ± 17  

CDA+20wt.% TA 100 ± 14  67 ± 4  48 ± 9  
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3. Conclusion 

In this chapter the mechanical and ultimate properties of plasticized cellulose samples 
processed by injection molding for two different plasticizers, DEP and TA have been studied. In 
particular the impact properties and the tensile behavior with various plasticizer contents, both 
below and above the miscibility threshold (~20% Bao (2015)). These samples exhibit a brittle-to-
ductile transition from a low impact strength to a high impact strength of order 40 kJ/m². Upon 
increasing the plasticizer content, it is observed that the brittle-to-ductile transition is broadened 
over more than 60°C in temperature, with the appearance in some cases of a plateau in the 
transition, for plasticizer contents above the miscibility threshold. Obtaining a high impact 
resistance at room temperature requires plasticizer content larger than 25%. It is shown that the 
Young moduli of CDA samples with various plasticizer contents fall on a master curve as a 
function of Tg – T. It is observed that the tensile behavior depends on the injection process, in 
particular on the mold temperature and geometry. A low mold temperature leads to a 
pronounced core/skin effect which has a strong influence on the elongation at break and on the 
strain hardening behavior of the samples. The temperature gradient between the melt (around 
200°C) and the mold (around 30°C) leads to a deplasticization of the sample skin. The skin 
becomes more brittle and leads to a brittle failure of the sample. A high mold temperature (e.g. 
80°C) is needed to limit the core/skin effect. The latter geometry with a large radius of curvature 
reduces the localization of the constraints in the sample. Samples are then more homogeneous 
and ductile deformation can occur. 

Strain hardening has been observed from 8% of true strain for samples with both plasticizing 
agents at contents larger or equal to 15wt%. The measured strain hardening moduli are in a 
range between 70 MPa and 140 MPa at Tg – 80 K. It is also observed that the strain hardening 
behavior depends markedly on the tensile direction as compared to that of the injection flow, 
more importantly with the TA p-CDA. Strain hardening is stronger when this angle is zero.  

The origin of this phenomenon still remains under debate(E. M.  Arruda and Boyce (1993); E. M. 
Arruda, Boyce, and Quintus-Bosz (1993); Govaert, Engels, Wendlandt, Tervoort, and Suter 
(2008); Haward (1993); R.S. Hoy and Robbins (2006); Robert S. Hoy and Robbins (2007a, 2007b); 
Jatin, Sudarkodi, and Basu (2014); Kramer (2005); Robbins and Hoy (2009); D.J.A. Senden (2013); 
D. J. A. Senden et al. (2012); D. J. A. Senden, van Dommelen, and Govaert (2010); Wendlandt, 
Tervoort, and Suter (2010)). But it is known that polymers response at large strain values plays a 
key role in determining their failure mode and mechanical performance. Experimentally it was 
observed that polymers which exhibit greater strain hardening, such as PC are tougher and 
tend to undergo ductile rather than brittle deformation. This improvement in ductility is 
explained by Meijer and Govaert (2005) with the idea that strain hardening suppressed the 
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strain localization or the shear banding. However, upon increasing the deformation further the 
polymer eventually breaks. Thus open questions are: which macroscopic mechanisms of 
damage are related to this break? When do these defects appear? Is it from the beginning of 
strain hardening or just before breaking? How do they lead to failure? Is it by a propagation of a 
single defect or by an accumulation of these defects? And what is the nature of these defects? 
Characterizing the damaging mechanisms on the nanoscale will be the object of next chapter. 
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Chapter V. DAMAGE MECHANISMS 

UNDER TENSILE DEFORMATION 
 

Introduction 

The previous chapter (see Chapter IV) brings out the existence of a strain hardening regime at 
large strain during tensile experiment under certain conditions. Although, polymers response at 
large strain values plays a key role in determining their failure mode and mechanical 
performance. Experimentally it was observed that polymers which exhibit greater strain 
hardening, such as PC are tougher and tend to undergo ductile rather than brittle deformation. 
This improvement in ductility is explained by Meijer and Govaert (2005) with the idea that 
strain hardening suppressed the strain localization or the shear banding. However, upon 
increasing the deformation further the polymer eventually breaks. Thus open questions are 
which macroscopic mechanisms of damage are related to breaking? When do these defects 
appear? Is it from the beginning of strain hardening or just before breaking? How do they lead 
to failure? Is it by a propagation of a single defect or by an accumulation of these defects? And 
what is the nature of these defects? Therefore in this chapter we focus on the identification of 
the microscopic mechanisms responsible for damaging in plasticized cellulose acetate polymers 
under tensile stresses. This damage mechanism is characterized at various scales with electron 
microscopy and X-ray scattering. The size distribution, number and form factor of the damages 
are characterized during tensile measurement. We discuss the different steps of damage 
mechanism, based on experiments and physical interpretations. All observations presented in 
this chapter are performed on tensile geometry obtained by the process B with the large radius 
of curvature. 
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1. Microscopic study of the damage morphologies after failure under 
tensile stresses 

Microscopic investigations have been done by scanning electron microscopy (SEM) and 
scanning transmission electron microscopy (STEM) in the useful area (as schematized in 
Chapter II “Materials & Methods”). Due to the high sensitivity of cellulose acetate to electron 
irradiation, microscopic investigations are very difficult to perform. The focus on the image 
must be done quickly in order to prevent polymer degradation. This drawback may explain 
why no microscopic studies on cellulose acetate polymers have been done before. Large cavities 
or impurities (with a diameter comprised between 100 nm and 2 μm) are observed on all 
materials used in this study even in reference samples (before tensile experiment), as shown for 
the case of CDA+15wt%TA reported in Figure 1. These cavities are probably generated during 
the injection process. 

   
Figure 1 SEM micrographs of CDA+15wt%TA before tensile experiment (a) 5K (b) 10K 

The 3D reconstruction of plasticized cellulose acetate samples have been done by X-ray micro 
tomography with a voxel resolution of 2.5 μm. This technique can recreate a virtual model (3D 
model) without destroying the original sample. Large impurities produced by the injection 
process are observed in all samples. These impurities totally attenuate the beam, indicating that 
they have a high electron density. Figure 2 shows a scan and a 3D volume reconstruction of 
CDA+15wt%TA system  = 0° after failure at 80°C. The resolution of the 
tomography does not allow the observation of small damages induced by tensile measurement 
but initial impurities are observed in white. These types of defect are observed in all polymers 
regardless the plasticizer used. 
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Figure 2 X-ray tomography observation on CDA+15wt%TA with the sample 

and (b) 3D volume reconstruction, impurities are observed in white and cavities in purple. 

Complementary analyses are needed to characterize the structure of these defects. For this 
study we have considered them as initial cavities induced by injection process. 

The SEM and STEM micrographs respectively reported in Figure 3 and Figure 4 show different 
types of damage observed after failure. In all polymers a phenomenon of crazing is observed. 
Crazes propagate into the polymer perpendicular to the tensile direction. The interior structure 
of crazes can be either fibrillar network where fibrils are separated by microvoids (as seen in 
Figure 3(f) and Figure 4(f)) or a homogeneous deformation structure (as seen in Figure 3(b) and 
Figure 4(b)). In the latter case no structure is revealed, the interior of the craze is fully composed 
of elongated polymers (G. H. Michler (1989)). It is observed that morphologies and sizes of 
these crazes depend on the plasticizer and on the orientation of the macroscopic polymer chains 
(measured by the  angle). The DEP-pCDA systems (as shown in Figure 4 (a – b – c)) exhibit 
homogeneous crazes while TA-pCDA ones exhibit both fibrillar and homogeneous crazes (as 
shown in Figure 4 (b – e – f)).  
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Figure 3 S – b – 
c ) plasticized with DEP at  - - – f – g) plasticized with TA at  - - Cavities 

are observed in all micrographs, homogeneous craze and crazes coarsely fibrillated coexistent when  s are 
observed in TA plasticized CDA (deformation direction vertical). 
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Figure 4 – b 
– c ) plasticized with DEP at  - - – f – g) plasticized with TA at  - - ely. 

Cavities are observed in all micrographs, homogeneous craze and crazes coarsely fibrillated coexistent when   
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1.1. Influence of the plasticizing agent 

It is observed that TA p-CDA exhibit a larger number of crazes than DEP p- CDA. Crazes in the 
latter case are more homogeneous and a very small number of fibrillar crazes are only observed 
at  = 45°, as shown in Figure 4(b). The sizes of fibrillar crazes are found to be around 1.5 μm in 
length and 0.1 μm in thickness. In the case of TA p-CDA a large number of crazes with fibrils 
are observed and the sizes seem to be larger. For example fibrillar craze in CDA+15wt%TA with 

.25 μm in thickness (as seen in Figure 5(a)). The 
dimensions of the crazes are reported in Table 1. 

   
Figure 5  damage in (a) CDA+15wt%DEP homogeneous crazes 

only, and (b) CDA+15wt%TA : homogeneous crazes and crazes coarsely fibrillated. 

Table 1 Craze sizes in CDA + 15wt%plasticizer samples after failure in . Sizes measured on Figure 4. 

Angle 
 

CDA + 15wt%DEP CDA + 15wt%TA 
Homogeneous 

crazes 
Fibrillated crazes Homogeneous crazes Fibrillated crazes 

Length 
(μm) 

Thickness 
(μm) 

Length 
(μm) 

Thickness 
(μm) 

Length 
(μm) 

Thickness 
(μm) 

Length 
(μm) 

Thickness 
(μm) 

0 
1 0.2 

No 
0.6 0.1 1.2 0.1 0.2 0.05 0.4 0.05 0.7 0.1

45 
1.1 0.2 1.2 0.1 1.3 0.25 1.4 0.25 0.4 0.05 0.7 0.1 0.3 0.1 0.7 0.1 

90 
1.1 0.05 

No 
1.3 0.25 1.8 0.3 0.7 0.02 0.4 0.1 0.8 0.1 

The resolution of the microscope allows for determining these sizes within an uncertainty of ± 
0.05 μm.  

a b 
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1.2. Influence of the orientation of macromolecular chains 

In the case of TA plasticized polymers, increasing the angle  leads to a transition from 
homogeneous to fibrillar crazes. Their proportion and size also increase with the same 
parameter (as shown in Figure 4 (d – e – f) and reported in Table 1). At  = 0°, TA-pCDA 
exhibits several homogeneous crazes for which sizes can reach around 1 μm in length and 0.1 
μm in thickness and a small number of fibrillar crazes whose largest sizes are around 4 μm long 
and 0.3 μm thick. At  = 90° an increase of the volume fraction of fibrillar crazes is observed and 
their sizes are typically 2 μm in length and 0.3 μm in thickness. 

Another feature is observed at  = 45° for TA-pCDA. Crazes seem to be organized in shear band 
at 45° with respect to the direction of applied stress which corresponds to the alignment of the 
polymer chains orientation, as observed in Figure 4(e). 

By contrast with TA plasticized polymers, increasing the angle  in DEP-pCDA leads to a 
decrease of the craze thickness (as shown in Figure 3(c) and Figure 4(c)). At  = 90°, the 
thickness of crazes does not exceed 0.05 μm and 0.2 μm at  = 0°.  

1.3. Influence of the temperature 

Plasticized cellulose acetate samples after tensile failure at 60°C have also been analyzed by 
STEM but no damages are observed on the micrographs, as shown in Figure 6. It is supposed 
that the size of damage cannot be compatible with the microscope resolution, or that the 
contrast between structural damage (homogeneous crazes) and polymer matrix is too small.  

   
Figure 6 SEM (a) and i

and several initial cavities are observed by SEM and STEM. 

a b 
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1.4. Conclusion 

Different types of damage have been observed by microscopic analyses, but the resolution of 
these techniques does not allow us to measure precisely their sizes and their volume fraction. 
Moreover damages have only been observed after tensile failure at 80°C. Microscopic analyses 
give access to an average size and the structure of crazes. The STEM resolution does not allow 
us to directly observe objects smaller than 100 nm. A quantitative study of the damages can 
only be done by USAXS measurements. 

From observations done by microscopic analysis, a schematic representation of different types 
of damage observed in plasticized cellulose acetate is proposed in Figure 7. The X axis indicates 
the tensile direction.  

 

Figure 7 Schematic representation of the different structures of damage observed in plasticized cellulose acetate (deformation 
direction horizontal X) 

This schematic representation will be used for analyzing the scattered intensities measured by 
USAXS. The first category of defects consists in elongated cavities (micro-voids) observed 
within fibrillar crazes. Category 2 includes both the homogeneous and fibrillar crazes. Finally, 
category 3 corresponds to large cavities formed during the injection process. Microscopic 
analyses give access to an average size and structure of crazes but only in a quite limited 
representative area. Moreover, objects smaller than 100 nm can hardly be observed. Therefore, a 
quantitative study of the damages must be complemented by USAXS measurements. 
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2. Ultra-Small Angles X-rays Scattering (USAXS) study of the damage 
morphologies 

All polymers are analyzed by USAXS measurements with a 2D detector during tensile 
experiments at 40°C, 60°C and 80°C. As shown in the Figure 8, it is observed that the initial 
nearly isotropic scattering becomes anisotropic after failure. The scattering from crazes has 
already been proposed by Paredes and Fischer (1982) and refined by Brown and Kramer (1981). 
It results in highly anisotropic patterns having the form of two elongated streaks approximately 
perpendicular to each other (as observed on Figure 8). 

 

 
Figure  2D USAXS patterns for CDA+15wt%TA  

direction is horizontal. 

From the anisotropic patterns the scattered intensities are integrated along the direction of the 
tensile deformation ( ), corresponding to (-10 – 10°) parallel to the beam stop in Figure 8, and 
perpendicular to it ( ), corresponding to (80 – 100°). Figure 9 gives a schematic representation 
of the general form for global scattered intensities in the two directions, parallel to the tensile 
direction X in blue and perpendicular to the tensile direction Z in green as a function of the 
scattering vector (q).  

At high q values, the scattering profiles appear to be relatively identical in both directions 
(parallel and perpendicular). However, noticeable differences are observed at low scattering 
vector (q) values. 
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2.1. Fitting equations 

 

Figure 9 Schematic diagram of complete scattered intensity of a polymer with different damage morphologies as represented in 
figure 4. The contributions from all three types of defects are included: 1: small elongated cavities (interior structure of crazes), 2: 

homogeneous and fibrillated crazes and 3: large cavities induced by injection process. The red dash curve is a schematic 
representation of the isotropic intensity in the initial state (before tensile deformation). 

To analyze our experimental intensities we use a global unified scattering function proposed by 
Beaucage, Kammler, and Pratsinis (2004) for a single polydisperse level spherical primary 
particle with a radius of gyration Rg (as explained in Chapter II “Materials & Methods”): 

( ) = exp 3 + 6                                              (1) 

When > 2 /   (region 1 in Figure 9), scattering comes from the small elongated cavities which 
are in between fibrils inside fibrillated crazes. These voids are modeled on average by uniaxial 
ellipsoids elongated along the tensile direction with long radius  and small radius  , as 
represented in Figure 7. The corresponding scattered intensity is anisotropic. It gives access to 
the long radius  in the tensile direction (para, X) and to the short radius  in the direction 
perpendicular to the tensile direction (perp, Z).   

The scattered intensities in both directions are expressed as:  
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( ) =  exp 5 + 4.5 erf 10( )                           (2) 

( ) =  exp 5 + 4.5 erf 10( )                              (3) 

Where N1 is the total number density and V1 is the volume = 43                                                                              (4) 

The corresponding volume fraction is =  . In what follows we shall make the 
simplifying assumption that =   where  is a number smaller than one.  

When q is in the range  2 /  <   <  2 /   (region 2 in Figure 9), mall isotropic and elongated 
voids described previously are unresolved and the scattering can only reveal the global craze 
structure. Crazes are filled with polymer with a volume fraction of air , so that the contrast 
factor can be written as =  where  is the average electron density of the polymer 
matrix. We assume the value  = 0.25 which is coherent with the polymer volume fraction used 
by Mourglia-Seignobos et al. (2014) in polyamide and with the volume fraction of air within a 
fibrillar craze found by G. H.  Michler (1985) in polystyrene. Crazes are modeled by uniaxial 
oblate ellipsoids with radius (half thickness) L along the tensile direction (X) and larger radius 
D in the perpendicular direction, as represented in Figure 7. Microscopic observations (Figure 3 
and 4) have shown large distributions of craze sizes. To describe the resulting scattered 
intensity some hypotheses must be done. We assume that the larger radius D (respectively ) 
varies between extremum values  and  (respectively  and  ) and that D is a 
linear function of :  =   +                                                                                 (5) 

With: =                                                                             (6) 

and 
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=                                                                  (7) 

The size distribution ( ) (where ( )  is the number of cavities per unit volume with a size 
comprised between L and L + dL) is described by a power law: ( ) =                                                                           (8) 

The distribution ( ) is normalized in such a way that the number density of crazes of type 2 is 
given by  

=  ( )                                                                 (9) 

And the corresponding volume fraction of crazes 2 is given by 

=  ( ) ( )                                                        (10) 

Where = 4 /3 is the ellipsoid volume. 

Thus, in region 2, the scattered intensity is expressed by the following equations: 

( ) =  exp 5 + 4.5 erf 10( )            (11) 

( ) =  exp 5 + 4.5 erf 10( )          (12) 

With D related to L by Equation (5).  

In the region of < 2 /  (domain 3 in Figure 9), the scattered intensity is nearly isotropic. It 
comes from the response of large spherical cavities formed during the injection process. The 
radius of these cavities is comprised between Rmin and Rmax. The size distribution is also 
expressed by a power law:  ( ) =                                                                     (13) 

114 

 



Chapter V  -  Damage Mechanisms under Tensile deformation 

( ) =  exp 5 + 4.5 erf 10( )                     (14) 

V3 is the volume of spherical cavities with a radius R. 

The number density of large cavities is given by: 

=  ( )                                                             (15) 

And the corresponding volume fraction  is given by 

=  ( ) ( )                                                         (16) 

Altogether, the global scattered intensities are the sums of all contributions (Sorensen, Oh, 
Schmidt, and Rieker (1998)). ( ) =  ( ) + ( ) + ( ) +  ( )                                      (17) ( ) =  ( ) + ( ) + ( ) +  ( )                                        (18) 

The above discussion illustrates the importance of combining microscopic observations and 
scattering experiments. While direct observations enable identifying the various types and 
typical size and structure of damage defects, the analysis of scattering curves enable a 
quantitative determination of the evolution of associated parameters.  
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2.2. Experimental results 

2.2.1. Reference unstretched samples

In Figure 10, the scattered intensities of CDA+15wt%TA are plotted for the three different 
The scattering intensities observed in all polymers 

in the reference, unstretched state, i.e. before tensile experiment, have been fitted with equation 
(14). This scattering is due to cavities resulting from the injection process. This population of 
cavities is modelled with a size distribution exponent 1 = 3.8 and radii ranging from Rmin = 1 
nm to Rmax = 1.5 μm. For specimens cut in the 0° and 90° directions, a small amount of cavities 
elongated in the direction perpendicular to the direction of injection is observed. Their 
contributions are added to the fitted intensities in the form of ellipsoidal cavities. The volume 
fraction of initial damages does not exceed 10-5 and the number density of initial defects N3 is of 
order 1010 to 1011 mm-3.  

 

Figure 10 Restricted scattered intensities in the direction parallel (in bleu) and perpendicular (green) to the tensile direction 
obtained by USAXS measurements on CDA + 15wt%TA before tensile experiment.   

A schematic representation of the initial cavities observed on samples before tensile experiment 
is given in Figure 11. 

 
Figure 11 Schematic representation of the initial cavities observed in the sample  before tensile experiment 

a b c 
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2.2.2. Evolution of damage under tensile deformation 

In this study we are interested in the mechanism of initiation and propagation of damages 
under tensile deformation. USAXS measurements have been done at different strain levels 
which are indicated by colored stars in Figure 12. 

 
Figure 12 Stress – strain curves of CDA+20wt% of plasticizer (a) with DEP and (b) with TA obtained by tensile measurement at 

4 , colored stars indicate de moment where USAXS analysis have been done. 

 

Figure 13 shows the parallel and perpendicular scattered intensities at different stages of the 
deformation at 40°C for the samples CDA+20wt%DEP (a – b) and CDA+20wt%TA (c – d) at  = 
90°. Experimental data have been fitted by global scattered intensity equations (17) and (18). 
The analysis of experimental scattered intensities provides the size and volume fraction of each 
type of damage. Adjustable parameters are given in Table 2 and Table 3. 

(a) (b) 
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Figure 13 Evolution of the USAXS intensities in directions parallel (a - c) and perpendicular (b - d) to the tensile direction on (a 
– b) DEP20-CDA and (c – d) TA20-CDA samples with an angles  

 Black arrows indicate the different fitting contributions. 
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It is observed that the scattered intensities parallel to the tensile direction increase with the 
deformation as a consequence of an increasing damage. Two different evolutions of intensities 
are observed depending on DEP or TA plasticizing agents. At small q values, the scattered 
intensity parallel to the tensile direction of DEP-pCDA does not increase with the strain, 
whereas in TA-pCDA the intensity at small q values goes on increasing with the deformation. 
At 32% of true strain, intensity in TA-pCDA is two decades higher in the small q values region 
than DEP-pCDA. The increase of the intensity parallel to the tensile direction indicates the 
appearance of damage elongated in the direction normal to the tensile direction, i.e. crazes 
(defects 2 in Figure 7). The scattered intensities perpendicular to the tensile direction remain 
constant until failure in both cases, at the exception of TA-pCDA from 32% of deformation for 
which a bump is observed at q values comprised between 0.06 and 0.2 nm-1.It confirms the 
appearance of elongated cavities oriented in the tensile direction, i.e. the formation of fibrillar 
crazes (defect 1 in the Figure 7). From these graphs we can observe that the plasticizer has an 
influence on the damage mechanisms. TA plasticizer seems to favors the development and the 
growth of damages in the polymers. The number and the sizes of crazes seem to be larger in 
TA-pCDA than in DEP-pCDA polymers.  

Regarding the micro-mechanisms of damage in plasticized cellulose acetate systems, two 
regimes can be observed during the tensile deformation. A first regime corresponds to the 
nucleation of small crazes. We will see later that nucleation certainly takes place in the vicinity 
of pre-existing defects or impurities in the samples (mainly related to the injection process). The 
nucleation of these crazes occurs below 10% of true strain. The volume fraction and sizes of 
these nucleated crazes remain very small, in between 4×10-6 and 10-5 with a size which does not 
exceed 100 nm in length for both polymers. The quantitative USAXS analysis gives access to the 
number density N2 of these crazes. It is found that at 10% true strain, about 1010 small crazes per 
mm3 have already nucleated. This number is of the same order of magnitude as for the pre-
existing defects (N3), as shown in Table 2. 

Once the crazes have nucleated, the number density of crazes does not evolve anymore up to 
failure. Their growth seems to be blocked by an internal process within the material. For 
instance, in DEP20-CDA at  = 90° submitted to a tensile experiment at 40°C (Figure 13 a-b), the 
maximum size of crazes increases from 100 to 260 nm in length and from 60 to 70 nm in 
thickness and their volume fraction only increases from 4 × 10-6 to 6 × 10-5 between 10% and 34% 
of deformation (see Table 2).  
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Table 2 Sizes and volume fractions of damage corresponding to fitting parameters used at different strain for DEP20-CDA with 
 Figure 13 (a-b),   (a) table, (b) schematic representation of the evolution of fitting parameters with deformation. 

Strain (%) 

1st craze family 

Dmin 

(nm) 

Dmax 

(nm) 

Lmin 

(nm) 

Lmax  

(nm) 
2

N2 

(mm-3)

10% 5 50 1 30 1.4×10-5 1×1010

15% 5 70 1 30 3.3×10-5 5×1010

20% 5 75 1 30 5.4×10-5 7×1010

24% 5 75 1 30 7.2×10-5 9×1010

28% 5 90 2 30 5.6×10-5 2×1010

32% 5 110 2 32 5.4×10-5 1×1010

34% 5 130 2 35 6.0×10-5 1×1010

 

We propose to explain this moderate growth by the presence of strain hardening, which would 
block or slow down craze growth. This mechanism will be discussed in the discussion section.  

When the macroscopic applied stress becomes sufficiently high, the larger crazes present in the 
sample can finally grow, which constitutes a second growth regime.  

(a) 

(b) 
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Table 3 Sizes and volume fractions of damage corresponding to fitting parameters used at different strain for TA20-CDA with  
Figure 13 (c-d),  . (a) table, (b) schematic representation of the evolution of fitting parameters with deformation.

Strain 
(%) 

1st craze family 2nd craze family 

Dmi

n 

nm 

Dma

x 

nm 

Lmin 

nm 

Lmax 

nm 
2 

N2 

mm-3 

DDmin 

nm 

DDmax 

nm 

LLmin 

nm 

LLmax 

nm 
2’ 

N2’ 

mm-3 

15% 

5 

80 2 40 1.3×10-5 9×109 N/A 

24% 90 2 35 3.5×10-5 1010 100 600 50 250 2.2×10-5 106 

28% 90 3 35 5.7×10-5 6×109 100 800 50 250 4.1×10-5 2×106 

32% 100 3 35 6.2×10-5 7×109 100 1300 45 250 5.0×10-5 106 

36% 100 4 35 6.1×10-5 5×109 100 1500 35 250 1.3×10-4 4×106 

40% 100 4 35 2.6×10-4 2×1010 120 1700 35 230 6.3×10-4 107 

 

Different growth kinetics are observed in this second growth regime depending on the 
plasticizing agent. In the case of samples plasticized with DEP, the growth of a large craze 
becomes quickly unstable and catastrophic for the polymer properties. The second growth 
regime is too fast, in the time scale of experiment, to be observed in USAXS. As soon as a craze 
reaches a sufficiently high growth rate it generates the failure of the material. We can then 

(b)

(a)
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consider this mode of failure as "fragile": no dissipative process stabilizes craze growth. The 
analysis of these polymers after failure indicates that the maximum craze sizes are of the order 
of 200 nm long and 70 nm thick with volume fractions of the order of 6.10-5.  

On the other hand, when cellulose acetate is plasticized with TA, a second growth regime is 
observed. A second population of crazes appears, which scatter at small q values and 
correspond to crazes with the largest sizes, as reported in Table 3. This population is 
experimentally observed by the second bump on the scattered intensity parallel to the tensile 
direction, as shown in Figure 13 c. It corresponds to the large crazes with dimensions DD and 
LL in Table 3. This reveals that a small proportion of the (largest) crazes formed by nucleation 
of cavities around the pre-existing defects during the first growth regime will start to grow 
faster. The USAXS analyzes indicate that between 106 and 107 crazes per mm3 belong to this 
second family (N2’), as reported in Table 3. This constitutes a small fraction of the total number 
of crazes in the sample, which is in the order 1010. Craze sizes are multiplied by 6 compared to 
the first family, as reported in Table 3. These crazes then continue to grow until failure occurs at 
about 40% of true strain. The analysis of these samples after failure indicates that these crazes 
reach maximum sizes of 3 μm long and 500 nm thick with a volume fraction of 9.10-4.The 
corresponding growth rates can be estimated at 5nm/s. In the discussion section, we will 
propose a mechanism of growth which describes this acceleration. 

2.2.2.1. Influence of the orientation of macromolecular chains 

Figure 14 reports the normalized scattered intensities parallel and perpendicular to the tensile 
direction at different angles  (0° - 45° and 90°) obtained after failure at 60°C on the sample 
TA15-CDA. All fitting parameters are given in Table 4. By comparing the scattered intensities of 
the TA15-CDA sample broken at 60°C at the three different angles , different evolutions of the 
scattered intensities parallel to the tensile direction are observed for  = 0° and   45°. The 
slight bump observed on scattered intensities perpendicular to the tensile direction for samples 
at   45° indicates the occurring of crazes with fibrils. It means that the angle  between the 
tensile direction and the injection direction has an influence on the number and sizes of damage. 
When  = 0°, scattered intensities are smaller which indicates that smaller and fewer damage 
are developed in the polymer. The increase of angle  appears to be accompanied by an 
increase of the size and number of crazes.  
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Figure 14 Restricted scattered intensity in the direction parallel (in blue) and perpendicular (in green) to the tensile direction 
obtained by USAXS measurements on TA15-CDA  (a)   

and (c)  . The arrows indicate the small bump observed in the direction normal to the applied stress. 

Table 4 Size and volume fraction of different damage corresponding to fitting parameters used in Figure 15 for TA15-CDA 
  

 
(°) 

1st craze family 2nd craze family 

Dmin 

(nm) 

Dmax 

(nm) 

Lmin 

(nm) 

Lmax 

(nm) 
2 

N2 

mm-3 

DDmin 

(nm) 

DDmax 

(nm) 

LLmin 

(nm) 

LLmax 

(nm) 
2 

N2’ 

mm-3 

0 10 300 5 25 1.9×10-6 2×107 N / A 

45 8 80 5 25 5.5×10-5 3×109 80 500 30 160 8.9×10-5 1×107 

90 5 70 3 20 3.6×10-5 5×109 70 550 28 180 8.3×10-5 2×107 

Increasing  leads to an increase of the volume fraction and of the size of the crazes, as observed 
by microscopic analysis. It is observed that when the injection direction is parallel to the tensile 
direction (  = 0°), and whatever the plasticizing agent, the materials are more rigid (Young's 
modulus and strain hardening modulus are higher and elongation at break is smaller) and 
break by propagation of a single craze as described above for polymers plasticized with DEP. 

2.2.2.2. Influence of the plasticizer content 

Figure 13(c – d) show the scattered intensities of TA20-CDA (Tg = 120°C) during tensile 
experiments at 40°C and Figure 14c shows the scattered intensities of TA15-CDA (Tg = 140°C) 
after tensile failure at 60°C, both at  = 90°. 

The sizes and volume fractions of crazes formed during tensile experiment in TA15-CDA 
systems are lower than those measured in TA20-CDA, as reported in Table 3 and Table 4. At a 
sufficiently high stress value (approximately 50 MPa), a second family of crazes with sizes 
about 4 times larger also appears in TA15-pCDA. The post-mortem analysis of these samples 
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indicates that the maximum craze sizes are of the order of 1 μm long and 300 nm thick with 
volume fractions of the order of 10-4. Yet it was observed earlier that in TA20-CDA the volume 
fraction of crazes at failure is found to be of order 9.10-4 and crazes sizes can reach 3 μm in 
length and 500 nm in thickness. 

Increasing the plasticizer content leads to an increase of craze sizes and volume fractions but 
does not affect the craze morphologies and the existence of only one craze population with 
moderate size in DEP-pCDA and two populations of crazes in TA-pCDA. Fibrillar crazes are 
observed in TA-pCDA and smaller homogeneous crazes are observed in DEP-pCDA. An 
increase of the volume fractions and sizes of crazes is observed as  changes from 45° to 90° in 
TA20-CDA, while it is not the case in TA15-CDA. Therefore, the micro-mechanism of 
deformation seems to be more sensitive to the orientation of polymer chains as the plasticizer 
content increases. 

2.2.2.3. Influence of the temperature 

It has been observed that temperature affects the ductility of plasticized cellulose acetate by 
decreasing the strain hardening modulus. STEM observations have also revealed a difference in 
the morphologies of damage as temperature increases. In samples broken at 80°C, crazes were 
visible on the microscopic images whereas no damage was observed for the same samples 
broken at 60°C. USAXS analyses performed after tensile failure has confirmed these differences 
in the structure of the damage. Figure 15 shows the normalized scattered intensities for DEP15-
CDA system at  = 90° broken at 60°C and 80°C. It is observed in the q range values 7.10-2 < q < 
3.10-1 nm-1 that the evolution of the scattered intensity perpendicular to the tensile direction 
measured on DEP15-CDA after failure at 80°C exhibits a bump which is attributed to the 
apparition of elongated cavities inside crazes corresponding to fibrils. Whereas it is not the case 
when scattered intensities are measured on DEP15-CDA after failure at 60°C. A transition from 
homogeneous crazes to fibrillated crazes is observed when increasing the temperature. It is also 
found that the intensity measured on the sample broken at 80°C is one decade higher than those 
in the case of the broken sample at 60°C. This increase in intensity with temperature 
corresponds to the increase of the volume fraction and sizes of crazes. 

These results confirm the influence of the plasticizer, temperature and angle  on the damage 
mechanisms and morphologies as it was observed by microscopic analysis. In order to propose 
a quantitative description of these damages mechanisms, the scattered intensities obtained by 
USAXS measurement are then fitted by theoretical equations. Adjustable parameters are given 
in Table 5. 

124 

 



Chapter V - Damage Mechanisms under Tensile deformation

Figure 15 Restricted scattered intensity in the direction parallel (in blue) and perpendicular (in green) to the tensile direction 
obtained by USAXS measurements on CDA+15wt%DEP samples with   

Table 5 Sizes and volume fractions of different damages corresponding to fitting parameters used in Figure 15. The two  and 2 

values correspond to two distinct size distributions. 

T 

 

1st craze family 2nd craze family 

Dmin 

(nm) 

Dmax

(nm) 

Lmin 

(nm) 

Lmax 

(nm) 
2

N2 

mm-3 

DDmin 

(nm) 

DDmax 

(nm) 

LLmin 

(nm) 

LLmax 

(nm) 
2’

N2’ 

mm-3 

60 10 115 3 35 7.1.10-5 6.109 N / A 

80 5 80 4 30 3.5.10-4 3.1010 80 1200 30 150 4.9.10-4 2.107 

In the case of the samples broken at 60°C (Figure 15a), a single size distribution is used to fit the 
contribution of crazes. Moreover no bump is observed on the scattered intensity perpendicular 
to the tensile direction (in green in Figure 15a). It means that no fibrils are observed. In the case 
of the sample broken at 80°C (Figure 15b), two size distributions are used for describing the 
contribution of crazes. In addition, in the q range values 7.10-2 < q < 3.10-1 nm-1 the evolution of 
the scattered intensity perpendicular to the tensile direction exhibits a bump which is attributed 
to the apparition of elongated cavities inside crazes corresponding to fibrils. The volume 
fraction 2 indicates the apparition of 7.10-5 fibrillar crazes after failure at 80°C. A transition 
from homogeneous crazes to fibrillated crazes is observed when increasing the temperature. It 
is also found that the intensity measured on the sample broken at 80°C is one decade higher 
than those in the case of the broken sample at 60°C. This increase in intensity with temperature 
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corresponds to the increase of the volume fraction of crazes. Indeed, the volume fraction of 
crazes in the sample after breaking at 80°C is found to be around 8.10-4 while volume fraction of 
craze after failure at 60°C is found to be of order of 7.10-5. The increase of experimental 
temperature leads to a decrease of the second growth regime kinetics. A second population of 
larger crazes is observed even in DEP-pCDA samples. 
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2.3. Summary of the experimental results 

Tensile experiments on plasticized cellulose acetate samples have revealed the presence of an 
important strain hardening regime above 8% of true strain for samples with 15wt% and 20wt% 
of plasticizer (Charvet, Vergelati, & Long). It is shown that the strain hardening moduli are 
higher for DEP-pCDA samples than TA-pCDA samples and decrease with the increase of the 
angle  and with the temperature of the experiment, as typically observed in the literature 
(Bridle, Buckley, and Scanlan (1968); Rawson and Rider (1973)). Concerning the damage 
morphologies observed in these samples, STEM observations have been done after failure at 
80°C and indicate the presence of homogeneous crazes and a small amount of fibrillated crazes 
growing preferentially in the direction normal to the applied stress in DEP p-CDA and the 
coexistence of homogeneous crazes and fibrillated crazes in TA p-CDA, as observed in Figure 3 
and Figure 4. It also appears that the increase of the angle  leads to an increase of the volume 
fraction and the size of crazes. In TA p-CDA samples the increase of this angle  reveals a 
transition from homogeneous crazes to fibrillated crazes with a progressive increase of the 
volume fraction of fibrillated crazes, as shown in as shown in Figure 4. Similar transitions of the 
damage morphology have been observed in the literature (G. H. Michler (2008a)). 

The analysis of the damage microstructure by USAXS measurements confirms the results 
obtained by scanning electron microscopy. The best resolution of X-ray techniques allows us to 
observe objects at much smaller scales than those observed in microscopy, i.e. of the order of ten 
nanometers (Zafeiropoulos et al. (2006)). The influence of temperature and the evolution of the 
microstructure during a tensile experiment can be investigated. The analysis of the normalized 
scattered intensity curves makes it possible to highlight the damage initiation and propagation 
mechanisms in plasticized cellulose acetate samples (Mourglia-Seignobos et al. (2014); Stoclet, 
Lefebvre, Séguéla, and Vanmansart (2014)). It is observed that the damage mechanism in our 
samples can be described by a two-steps mechanism. During the first step, USAXS analysis 
have shown that small crazes with sizes comprised between 10 and 100 nm nucleate 
simultaneously within the time resolution of our experiment before 10% of true strain. The 
number of these nucleated crazes per unit volume is found to be of order 10  which 
is in the same order of magnitude than impurities initially present in the sample with 10  measured on samples before tensile testing, as reported in Table 2 and Table 3. It is 
observed that the number of the nucleated crazes no longer varies with the deformation until 
failure, as reported in Table 2. 

The small increase of the volume fraction 2  and the sizes of these crazes with the 
deformation indicate that this initial crazes nucleation is followed by a slow craze growth 
without new nucleation, as reported in Table 2. At 10% of true strain the system DEP20-CDA at 
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=90° exhibits a volume fraction of crazes 2 = 1. 10  with a maximum craze length of 100 nm. 
At 34% of true strain (failure) the volume fraction is increased up to 2 = 6. 10  with a 
maximum craze length of 250 nm. In view of the small value of 2 we can deduce that the 
propagation of a single crack is responsible for the final failure of the sample. No accumulation 
of damage before failure is observed (Fusco, Vanel, and Long (2013)). Microscopic and USAXS 
measurements have shown that this growth is sufficiently slow to be observed within the time 
resolution of our experiment and that does not lead to a rapid and catastrophic failure. In semi-
crystalline polymers, Mourglia-Seignobos et al. (2014) have shown that the craze growth is 
blocked by the crystalline phase. Since no crystalline phases exist in our amorphous polymers 
we could think that the crazes growth would lead to a rapid brittle failure soon after the 
appearance of a single cavity after 10% of deformation. This is not what is observed. We suggest 
that ductile behavior observed in our polymers is due to strain hardening which blocks the 
propagation of cracks. 

When applied stress is sufficiently high, we observe that sample breaks due to a brutal 
crack propagation. Experimentally, this 2nd growth regime is observed when the macroscopic 
stress reaches 50 MPa approximatively, see Table 3 and Figure 13. USAXS measurements have 
shown, in TA-pCDA at =90° samples (see Figure 13), that a second family of crazes is observed 
after 24% of true strain approximatively which corresponds to a macroscopic stress of about 45 
MPa. This second family is deduced from the appearance of a second bump at small q values in 
the scattered intensity parallel to the tensile direction. The number of these crazes per unit 
volume is found to be of order 10  , as reported in Table 3. The small volume 
fraction of crazes observed, even after failure, indicates that this second craze family cannot 
result from a mechanism of crazes coalescence. The distance between two crazes is too large. 
We assume that this second family of larger crazes results from a very small proportion of 
crazes initially nucleated (1st regime) which grow faster than the rest of the initial crazes 
population. These crazes go on growing until the growth rate of one of them accelerates 
sufficiently to break the sample within the time frame of the experiment. 

This 2nd growth regime is so rapid in DEP-pCDA that it leads to a "brittle" failure of the 
sample as soon as one craze starts to grow faster. We are not able to observe the formation of a 
second family of larger crazes. It is possible that their number is too small, e.g. smaller than 104 
mm-3 for being observable in USAXS experiments. Note that this regime is observed in DEP-
pCDA samples for experiments performed at 80°C (see Figure 8).  Conversely, for TA 
plasticized samples this 2nd growth regime appears and we are able to observe the evolution of 
this second family of larger crazes. The presence of this 2nd regime explains why the volume 
fraction and the sizes of the crazes are larger in TA-pCDA samples (reaching 0.1% at failure for 
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the sample TA20-CDA at =90° with a maximal craze size of 3 μm in length and 0.5 μm in 
thickness) as compared to ones in DEP-pCDA samples for which the second growth regime is 
not observed for deformations performed at 60°C. 

We have shown that different parameters can influence this damage kinetics. The increase of 
the experiment temperature leads to an increase of the sizes and the volume fractions of crazes. 
Even for polymers plasticized with DEP the size of the crazes can reach 3μm in length and the 
volume fraction is found to be in order of 8.10-4.The 2nd regime of craze growth described above 
is observed in DEP-pCDA samples when the temperature of the experiment is 80°C, as shown 
in Figure 15. The macroscopic orientation of the polymer chains ( ) also influences this kinetics. 
When the chains are oriented in the tensile direction (  = 0°), the failure is catastrophic for all 
the studied systems including those plasticized with TA. The 2nd growth regime and 
consequently the second craze family are not observed, as shown in Figure 15. Regarding the 
influence of the plasticizer content it is observed that its increase leads to an increase of the 
crazes sizes and of their volume fraction. However the typology of the crazes remains similar 
for a given plasticizer. With DEP the crazes remains homogeneous and for TA the coexistence 
between homogeneous and fibrillated crazes is still observed, as discussed in section 1.1. 

We consider now more detailed interpretations of the physical mechanisms leading to 
damaging and ultimate failure. Several key issues need to be explained:  

1 What is the mechanism responsible for the first appearance of crazes?  

2 What is the mechanism which stabilizes damaging between its initiation at about 30MPa 
applied stress (i.e. 15% deformation) and 60MPa (breaking)? 
 

3 How can we explain the stabilization of the number of crazes at about ~1010 / mm3 after 
their appearance at 15% deformation? 

 
4 How can we explain that the majority of crazes do not grow (about 99,99% of them) 

upon increasing the stress and that only a tiny minority grow and are responsible for 
ultimate failure ?  

5 What is the growth mechanism of crazes responsible for ultimate failure?   

In the following, we discuss the different steps of damaging mechanism, based on experiments 
and physical interpretations. The elementary nucleation process is discussed in subsection 3.1. 
The ensuing different regimes, which correspond to the slow growth of crazes followed by the 
acceleration of the growth kinetics up to failure, are described in subsection 3.2.   
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3. Physical interpretations 

3.1. Nucleation of crazes 

According to the classical theory of homogeneous nucleation, cavitation occurs when the 
isotropic component of the stress in the bulk material, i.e. the negative pressure, denoted  in 
what follows, exceeds a given value. The free energy of homogeneous nucleation contains a 
term corresponding to the release of elastic energy, which favors nucleation of a craze, and a 
surface energy term, which tends to prevent nucleation. For a given   value, the free energy of 
nucleation has a maximum for a critical cavity diameter  beyond which a cavity becomes 
unstable and grows, while below  it will collapse (Landau & Lifshitz, 1980) (Fisher; Herbert, 
Balibar, & Caupin, 2006; Herbert & Caupin, 2005). The critical diameter    is given by  = 4                                                                           (19) 

where p the surface tension of the material. Typically, for accessible time scales,  is of order 1 
nm (Fisher; Herbert et al., 2006; Herbert & Caupin, 2005). The corresponding theoretical free 
energy barrier for homogeneous nucleation is given by  

( ) = 163                                                                        (20) 

Nucleation is thermally activated (Blander and Katz (1975); Pauchard and Meunier (1993); 
Pomeau (2002); Vanel, Ciliberto, Cortet, and Santucci (2009)). The nucleation time of a craze is 
related to the experimental nucleation barrier  by = exp                                                                         (21) 

Where 0 is a microscopic time of order 10-12 s (Kramers (1940), kB is the Boltzmann constant 
1.38.10-23 m².kg.s-2.K-1 and T is the experiment temperature. Nucleation is a process which takes 
place in parallel in a relevant volume V. That is the nucleation rate in a system of volume V is 
extensive. The nucleation frequency   in a sample is thus given by       exp                                                                 (22) 

The volume V is not necessarily the whole volume of the sample but may be the volume where 
stress is intensified as a consequence of the shape of the sample, or in the vicinity of solid 
particles (impurities). The volume  is the volume where an elementary cavitation event takes 
place. For relevant experimental time scales,  is typically of order 10-27m3. The relevant time 
scale of nucleation under tensile stress is around exp = 102 s which is the duration of the 
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experiment. According to equation (22), this corresponds to a typical nucleation free energy 
barrier given by: 

= +                                                               (23) 

The first term in parenthesis on the right hand side of Equation (23) is of order 30. The second 
depends on the relevant volume V. Note that the dependence of  on the considered volume is 
logarithmic and is thus small. If we assume that V is of order 10-22m3 (which is typically the 
volume where stress is intensified in the vicinity of an existing cavity in the sample as we shall 
see later), the second term is of order 10. The relevant energy barrier for nucleation in our 
problem is then of order =  40  = 1.6 × 10 . Note that if the volume V is macroscopic, 
e.g. of order 10-9m3, which may be the relevant volume in an experiment of cavitation in pure 
water for instance (Fisher; Herbert et al., 2006; Herbert & Caupin, 2005), the second term in 
Equation (23) is of order 40. Thus, for being metastable for a duration of about 100s, a sample of 
volume 10-9m3 requires free energy barriers for cavitation of order 70  ( 2.8 × 10 ), 
whereas systems of sizes of volume 10-22m3 requires free energy barriers of only 40 .  

The nucleation barrier in our samples can be estimated from equation (20), using 
experimental values of the parameters. The surface tension of plasticized cellulose acetate is 
found to be around 4.0 × 10-2 J/m² at 20°C (Rustemeyer (2004). Crazes in our experiments 
nucleate at stress values of order of 30 MPa. The local negative pressure  may be smaller but 
similar to the applied stress (in the vicinity of a solid particle for instance) which would give a 
theoretical nucleation barrier  of order 10 . We find thus that there is a discrepancy of 
about a factor 5 to 10 regarding the theoretical homogeneous nucleation barrier   of a craze 
as compared to the experimental value   deduced from the observed nucleation times.  

 On the basis of our experiments, it follows that homogeneous nucleation of cavities 
cannot be the relevant mechanism for damage nucleation. We propose that cavities nucleation in 
our experiments is heterogeneous, i.e. initiates at interfaces between the polymer matrix and 
preexisting impurities. This point of view is consistent with USAXS experiments which show 
that the number of nucleated crazes is very close to the number of initial defects (cavities and 
impurities induced by injection) observed before tensile analysis. Our point of view is that 
crazes during tensile tests nucleate on the same impurities which lead to the formation of 
bubbles during injection. Heterogeneous nucleation is very often observed e.g. in water for 
which the pressure at cavitation is very frequently much smaller than the theoretical prediction 
deduced from the standard nucleation theory (Herbert et al., 2006; Ma, Vijayan, Hiltner, Baer, & 
Iim, 1989), corresponding to a reduction by a factor 10 of the observed free energy barrier as 
compared to the theoretical one.   
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At an interface between the polymer and a solid particle, the free energy barrier of 
nucleation is reduced by a factor f( ) which depends on the contact angle  between the 
polymer and the impurity (see Figure 16(b)) (Colton and Suh (1987) and (P. G. de Gennes 
(1985)): = ( )                                                                      (24) 

where the function f( ) is given by: 

( ) = (2 cos )(1 + cos )4                                                         (25) 

The evolution of f( )  as a function of    (in rad) is reported in Figure 16(a). The contact angle is 
given by the Young-Dupré relation (Bico, Thiele, and Quéré (2002)) cos = ( )/  where 

I and P are the surface tensions of the impurity and of the polymer respectively and IP the 
interfacial tension between the polymer and the impurity. Figure 16(a) shows that the factor ( ) may reduce the nucleation barrier by several orders of magnitude if the contact angle is 
large, and in any case larger than 90°. According to the Young-Dupré relation, this corresponds 
to < 0.

  
Figure 16 a) Evolution of f( ) as a function of  and b) Measure of the contact angle  between the interface polymer –impurity 

This condition may be realized between strongly polar polymer like plasticized cellulose acetate, 
(surface tension P of about 4.0 × 10-2 J/m² at 20°C (Rustemeyer, 2004) with roughly equivalent 
polar and dispersive components) and a non-polar impurity like graphitized carbon black 
particles aggregates, which may be assumed to have a negligible polar contribution to its 
surface energy.  Indeed, carbon black may be present as residue traces in the extruder due to the 
high processing temperature.  

 

(a) 
(b) 
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When the contact angle  in a flat interface is larger than 2 (non-wetting interface), it can be 

increased by the roughness of the impurity, as schematized in Figure 17 (P.-G. de Gennes, 
Brochard-Wyart, and Quéré (2004); Oliver, Huh, and Mason (1977)). 

 

Figure 17 Measure of the contact angle  between the rough surface of the impurity and the polymer 

In the case of a non-wetting interface, the polymer does not penetrate the surface roughness, 
which increases the contact angle  between the polymer and the impurity and consequently 
decreases the interfacial adhesion. According to the Cassie and Baxter (1944) model, the 
interfacial tension can be express by the following equation: = (1 ) +                              =                            (26) 

 is the roughness of the surface impurity, as reported in Figure 17. By replacing  by  

we find: cos =  cos ( ) (1 )                                                              (27) 

As   and/or cos( )  are small,  cos 1  and 2  .  A moderate 
roughness = 0.5 is sufficient to reduce the free energy barrier by about a factor 5 to 6 which is 
the order of what is required so that  = = 1.6 × 10 =                                             (28) 
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3.2. Controlled growth by the strain hardening 

The growth of these cavities is the second stage of the damage process and can be divided in 
two steps.  

3.2.1. 1st regime: 

Once a cavity has nucleated, the local elastic stress around it relaxes. The growth of the cavity is 
driven by the relaxation of the lower than equilibrium polymer density (consequence of the 
triaxality of the applied stress in the vicinity of the nucleating particle) which allows the density 
of the polymer to partially relax towards the equilibrium value at the considered temperature. 
The cavity may be assumed to be spherical and grows rapidly (Herbert et al., 2006; Herbert & 
Caupin, 2005). In liquids such as water, the cavity would grow without limit reaching 
observable macroscopic size on a short time scale. However, the polymer which we consider is 
different from liquids in an essential way. It exhibits strain hardening at large deformations 
amplitudes.  

Therefore, during the growth of the cavity, the tangential stress increases as a 
consequence of the tangential strain undergone by the polymer during this bubble inflation 
process and of the strain hardening behavior of the considered material. Once the tangential 
stress reaches a value of order a few , where  is the applied stress at large distance from the 
bubble, the stress in the vicinity of the cavity becomes able to equilibrate the applied stress on 
larger scale. The growth of the cavity is blocked. Note that in the case of a polymer which does 
not exhibit strain hardening the growth would go on unimpeded: the sample would break after 
the nucleation of a single cavity the growth of which nothing would stop. Figure 18 gives a 
schematic representation of the 1st regime of craze growth where  is the macroscopic imposed 
stress, tan is the local stress in the equator position of the cavity, a(0) is an initial cavity diameter 
and R is the final diameter that the cavity can reach. 

 
Figure  Schematic representation of the first step of cavities growth influenced by the strain hardening 
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The radius R of the cavity goes on growing until the tangential stress value become equivalent 
to the macroscopic stress applied on the sample with an intensification effect (Landau and 
Lifshitz (1986)),  , where   is a number larger than an order 1. We obtain the 
following equation:  = (0)(0) ~                                                               (29) 

ESH the strain hardening modulus. One may assume that a(0) ~ 20 nm which is the typical 
distance for an interface to recover bulk glassy properties (Dequidt, Long, Merabia, and Sotta 
(2016)). At smaller distances from the interface the polymer is in a mobile state and not glassy, 
thereby unable to display strain hardening and to bear a high stress. Thus we can deduce the 
diameter R of the cavities:  =  (0) + (0)                                                                  (30) 

As an example the measure of R in DEP20-CDA at  = 90° during a tensile experiment at 40°C 
have been done. We observed that the maximum size of R is of order 60 nanometers which is 
compatible with the estimate that can be deduced from Equation (31).   

We propose thus that cavities nucleate on impurities and that they grow rapidly until they 
reach a size of order 60 nm at which their growth is blocked by the strain hardening behavior of 
the polymer in the vicinity of the growing bubble. Note that once the cavities are blocked by the 
strain hardening mechanism, their diameters grow linearly with the applied stress according to 
Equation (30). This growth takes place without new damaging and is an elasto-plastic effect 
associated to the strain hardening in the vicinity of the cavity. This result is consistent with 
what is observed in USAXS experiments as can be observed in Figure 13.a. Between 15% 
deformation and 35% of deformation, the stress increases by 50%. According to Equation (30), 
the diameter increases thus by about 50% also. The scattered intensity, which is proportional to 
R6 is expected to increase by about a factor 10 which is what is observed in Figure 13.a. Thus, 
the increase of the scattering intensity in this figure upon increasing deformation can be 
interpreted by a linear increase of the size of the cavities with the applied stress.  

However, upon increasing the stress further, we observe in Figure 13.c. that cavities grow again 
in a way that cannot be accounted for by Equation (30). This second growth process leads to a 
large increase of the cavities, from typically 60 nm in diameter to 1 micron and more, up to 
macroscopic failure. We assume that this second step growth process is due to new cavities 
nucleation in the vicinity of already existing cavities. 
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3.2.2. Subsequent growth of craze 

We consider here this second step growth process.  

After a nucleated cavity is blocked at a size of order 60 nm, we assume that this cavity may 
grow by nucleation of new cavities in its vicinity and more specifically in its equatorial 
neighborhood where stress is intensified. This growth process may take place once the 
macroscopic stress has reach a sufficiently high value. The volume V influenced by the effect of 
stress intensification in the vicinity of an existing cavity is proportional to the size of this craze 
itself ( ). The larger the craze, the larger the volume submitted to an intensified stress and 
the larger the nucleation rate in the neighborhood of a cavity. This mechanism is described by 
the schematic in Figure 19. Craze growth is proportional to the nucleation rate of cavities in the 
volume of polymer submitted to an intensified stress. As a consequence, larger crazes grow 
more rapidly than smaller ones. The cavitation frequency in the vicinity of a given craze is given 
by Equation (23) where the volume V is of order 10-22m3. For a nucleation rate of order 0.01/s, 
the nucleation barrier must be of order  =  40  = 1.6 × 10  as calculated above. This 
nucleation free energy barrier corresponds to a local stress  of order 100 MPa according to 
Equation (20). This is the stress level which is expected in the vicinity of a cavity where the 
macroscopic stress is intensified by a factor of order 1.5 or 2 depending on the shape of the 
cavity, whereas the macroscopic stress in this regime is about 50 MPa.  

 
Figure 19 Schematics of the growth craves by nucleation of cavities in the equator positions and followed by a mechanism of 

coalescence. 

  As a consequence, homogeneous nucleation just ahead of already existing cavities allows for 
explaining  the growth of cavities upon increasing the stress from 30 MPa up to 60 MPa, for 
which, typically, our samples break.  

Let us consider in more details the growth kinetics due to new cavities nucleation ahead 
of the growing one. The growth of a craze can be expressed as a function of the nucleation time 
, defined by equation (21), of new cavities in the vicinity of already existing cavities where 

stress is intensified. The corresponding region has a volume , where D is the diameter of 
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the considered cavity. The nucleation rate per unit volume is defined by ~ 1  . The 

nucleation rate of new cavities in the vicinity of a current craze of size D is given by  ~ . 

Once a new cavity has nucleated in the vicinity of a craze, it grows until it reaches a size 
of order ~100  where it is blocked by the strain hardening mechanism. The evolution of the 
craze size D(t) obeys then to  the following equation: dDdt   D3ac3                                                                          (31) 

Which leads to  

2 1(0) 1( )                                                            (32) 

Where (0) ~ 100  is the size of the initial craze at 15% of deformation. When D( ) + , 
the breaking time  starting from a craze of size of D(0) is then obtained : 

(0)                                                                         (33) 

On sees thus that if the nucleation time  at the considered stress level is of order   = 108  s, the 
sample breaks in a time   100 s (Assuming that    ~ 1 nm;   ~ 100 nm and D(0)~100 nm).  

In order to consider how sharp the transition is between no growth at all and a fast 
growth process, consider the following relations regarding the nucleation times at different 

stress levels: ln( ) ln( ) +  , with  a constant and   is the local stress and ln( )ln( ) +  with r = 108 s and the local stress at breaking   = 100 MPa. Thus we deduce the 

following equation: 

ln  ln 1  46 1                                                      (34) 

which expresses the evolution of the breaking time as a function of the applied stress.  
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Figure 20 Evolution of ln( / r) as a function of the macroscopic stress applied  

Increasing the stress leads to an abrupt decrease of the nucleation time  and consequently the 
craze-crack transition becomes immediate when a critical stress value is reached. The rupture 
time   given by Equation (34) is highly sensitive to the stress, as shown in Figure 20.  When 
the local stress is 100 MPa, the nucleation time is equal to   r = 108 s and the macroscopic 
breaking time is  ~ 100 s. By decreasing the local stress down to 85 MPa, we obtain  ~ 10  s which is infinite for all practical purposes.  

At a local level, there is certainly a distribution of stress in the vicinity of the cavities. All 
cavities are not submitted exactly to the same stress, in particular as a consequence of a 
disordered distribution of cavities. Those for which the stress is slightly larger grow much more 
rapidly. It allows for explaining why we observe a small fraction of large craze in the case of 
TA-pCDA before failure. It allows also for understanding why we do not observe intermediate 
steps between crazes of moderated sizes and final failure in some samples (i.e. DEP-pCDA) 
since the fraction of craze leading to ultimate failure may be too small to be observe in USAXS. 
It would be the case for instance if their number is smaller than 104 mm-3.   
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4. General conclusion 

In this Chapter we show that under the effect of tensile stress, plasticized cellulose acetate 
damage mechanism takes place in two main stages. This damage mechanism is schematized in 
Figure 21. 

 

Figure 21 Damage mechanism of plasticized cellulose acetate under tensile deformation: 1) before tensile experiment (impurities 
are present in the sample), 2 – 3) Craze growth is stopped by the presence of strain hardening, 4– 5– 6) subsequent growth 
regime: initiation of new cavities in the vicinity of the current one and 7) failure when one of these crazes reaches a critical 

growth rate. 

The first stage is associated with heterogeneous cavity nucleation in the vicinity of pre-existing 
impurities (i.e. related to the injection process). We find indeed that homogeneous nucleation is 
impossible in cellulose acetate because the free energy barrier of nucleation is too high at the 
stresses values (~30MPa) for which cavitation is observed experimentally. On the other hand, in 
the vicinity of an impurity the nucleation energy is lowered by a factor ( ) depending on the 
contact angle between the polymer and the impurity. In addition, the surface of these impurities 
may be rough, which further lowers the free energy barriers of nucleation. The free energy 
barrier calculated for homogeneous nucleation is compatible for heterogeneous nucleation to 
take place at the considered stress values.  

Experimentally we have observed that the craze growth can be described as a two 
regime process. A first slow growth regime is observed. We propose to explain this moderate 
growth by the presence of strain hardening. Once the cavity is nucleated, the tensile stress 
around it relaxes. Under the effect of the macroscopic stress the cavity starts to grow. During 
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the growth of the cavity, the tangential stress increases as a consequence of the strain hardening 
behavior of our material. Once the tangential stress reaches a value of order  , where   is a 
number of order 2, the growth of the cavity is blocked. Thus the cavity can grow until it reaches 

a size   (0) + (0) 60 . Upon increasing the stress further, the diameter of the 

cavities increases proportionally to the stress without further damage in a first step.  

In a second step, the size of cavities starts to increase faster than in the linear growth 
regime. We have observed indeed that crazes grow much faster when the applied macroscopic 
tensile stress reaches a sufficiently high value. We propose that this growth is governed by a 
mechanism of successive nucleations of new cavities in the vicinity of the existing cavities. The 
larger the craze, the larger the volume of polymer ahead at craze tip undergoing intensified 
stresses, and therefore the higher the nucleation rate of new small cavities in its vicinity, which 
leads to an acceleration of the craze growth. As soon as a craze reaches a sufficiently large size, 
or that the local stress level is sufficiently large, this craze becomes unstable (at tensile test 
timescales) so that it propagates as a crack resulting in the rupture of the sample. 

This mechanism happens so quickly for DEP plasticized cellulose acetate samples that it 
leads to rapid breakage of the material, or with a too small number of crazes per unit volume, 
preventing us from observing the phenomenon. In the case of TA plasticized polymers however, 
we have observed this second growth regime on a small population of crazes using USAXS. The 
scattered intensities revealed the presence of a second family of crazes with sizes well above 
those of the first family which grow only linearly with the applied stress.  

Crazing has been the subject of intense research over the past 50 years.  It is often 
described in the literature that damage mechanisms are strongly related to polymer 
entanglements. Regarding the craze initiation, Michler et al (G. H. Michler) have suggested 
recently that the development of a craze is preceded by the formation of a localized plastic 
deformation zone. As this zone develops, the hydrostatic stress increases, and, when exceeding 
a critical stress level, cavitation will take place. They assumed that these “pre-crazes” are 
characterized by a domain-like structure where weak and localized mobile domains exist 
between the entanglement networks. These structures are only visible after “straining induced 
contrast enhanced” pretreatment using solution or vapours of chemicals such as osmium 
tetroxide (G. H. Michler). The most common approach used to describe the craze initiation is 
the stress concentration effect in the vicinity of pre-existing defect in the polymer 
sample(Kramer & Berger, 1990).  
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It had been proposed long ago by Argon (Argon) that craze growth takes place by nucleation 
ahead of the craze tip, in an analogous way as the model we propose here. Then, a few years 
later, Argon argued that this mechanism is not relevant for several reasons (Argon; Argon & 
Hannoosh, 1977). A first reason is that this mechanism may be incompatible with the formation 
of fibrils. A second reason was that nucleation would not be possible at the observed stress 
levels. Our point of view is that nucleation of new cavities ahead of the craze tip as we discuss 
in this manuscript is perfectly consistent with the apparition of fibrils. Indeed, between 
neighboring cavities, thin polymer films are formed. Once they reach a thickness of order 10 nm, 
they become unstable due to disjoining pressure effects and they are expected to rupture (P. G. 
de Gennes, 1985). This mechanism should lead to fibril like structure. Regarding the second 
reason, we find in our experiments that the growth rate of crazes is perfectly compatible with 
homogeneous nucleation of cavities ahead of already existing cavities. The latter are supposed 
to have nucleated initially on impurities at an applied stress about 30 MPa. A strong indication 
for this is that their number is constant throughout the experiment, and that this number is 
equal to the number of cavities created during the injection process. We assume that the same 
impurities which allow for the creation of cavities during injection lead also to the cavitation of 
crazes under applied stress. Their number has been found to be of order 1010 mm-3 in our 
samples.  

 The alternative mechanism to nucleation ahead of the craze is the so-called meniscus 
instability (Argon & Salama, 1977; Fields & Ashby, 1976). This mechanism has been proposed 
by Taylor (Taylor) for describing hydrodynamic instabilities between two plates when they are 
pulled away one from the other at a small angle. This mechanism may be relevant for a polymer 
in the molten state. However, reconciling this mechanism with the strain hardening behavior of 
polymers such as those studied here is not obvious. Instead of being liquid under the applied 
deformation, the considered polymer undergoes strain hardening which may prevent the 
meniscus instability to take place. This point of view is supported by the fact that most of the 
crazes do not grow once they have reached a size of order 50 – 100 nm. We find indeed that at 
least 99,99% of cavities do not grow at all except for a linear increase of their diameter with the 
applied stress. Only a tiny fraction of crazes grow in the second step as described above, 
involving new damages in the material, which may be accounted for by nucleation of cavities 
ahead of the already existing ones. The strongly non-linear growth kinetics as a function of the 
local stress and of the size of the cavities explains why only a small fraction undergo this second 
step growth process. For describing this growth kinetics, strongly non-linear constitutive 

relations are used in the literature such that       where the exponent m may be as large 

as 20 or more (Donald; Kramer). These constitutive relations derive from an Eyring picture 
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(Argon & Bessonov, 1977). As such, they involve an “activation volume v” which has no clear 
physical interpretation (for a discussion at this regard see references (Conca, Dequidt, Sotta, & 
Long, 2017; Dequidt, Conca, et al., 2016; Long, Conca, & Sotta, 2018) and references therein) but 
is used for fitting the data, such as plastic flow for instance. Our point of view is that the 
corresponding growth kinetics can be explained by a nucleation mechanism which does not 
require the introduction of an ill-defined “activation volume”. This nucleation model involves 
only the polymer surface energy. The growth of crazes involves then the stress hardening 
behavior of the considered polymer and the nucleation model. The nucleation process that we 
have discussed in this manuscript leads naturally to very strong non-linear dependences of the 
growth rate as a function of the applied stress.    

 Note that an important role is often attributed to fibrils in the literature, in particular for 
bearing stress. This point of view seems difficult to reconcile with experiments performed over 
the past 20 years regarding dynamics in thin suspended films. Thin polymer films of thickness 
smaller than 20 nm have a very low glass transition temperature (Baglay & Roth, 2015, 2017; 
Roth, Pye, & Baglay, 2016). Fibrils that are one dimensional objects about 10 nm in diameter are 
expected to have an even lower glass transition temperature than ultra-thin films. Based on 
these recent experimental results, one would expect fibrils be in a mobile state, above their glass 
transition. As such they should not be able to undergo strain hardening and to contribute 
significantly to the mechanical response. In particular, one may expect that their contribution is 
insufficient to prevent stress intensification ahead of the craze as we consider in this manuscript 
which is the only assumption that we need for our discussion. Fibrils are expected to play a role 
for craze widening by pulling polymer from the matrix as the craze widens (Donald; Kramer). 
The assumed molten state of the fibrils in this manuscript is not in contradiction with this 
picture since the free surface of the matrix in a craze is also in the molten state as experiments in 
thin films show. Note that no experiment yet has been able to probe directly the mechanical or 
dynamical state of fibrils. It is often argued that strain hardening is due to entanglements. 
Indeed, fibrils are made of entangled polymer under large elongation. However, recent 
theoretical, experimental and numerical simulations studies indicate that strain hardening is 
related to long lived molecular interactions such as those observed in the glassy state (R.S. Hoy 
& Robbins, 2006; Robert S. Hoy & Robbins, 2007). As a consequence, we do not expect fibrils to 
support a large fraction of the stress. Our point of view therefore has been that fibrils do not 
bear enough stress in order to prevent stress intensification ahead of the crazes. Especially since 
the critical stress level of failure observed experimentally (of order a few 107Pa) are significantly 
higher than the contribution that could have entanglements (~ 105Pa). This same argument had 
allowed (Meijer & Govaert, 2005) to reject their involvement in the strain hardening mechanism. 
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 It appears that strain hardening plays a key role in stabilizing the defects once they 
nucleate. As discussed, it is difficult to reconcile the strain hardening mechanism and the 
meniscus instability mechanism for craze growth. However, we do not rule out the relevance of 
this mechanism in polymers which do not exhibit strain hardening, which form the majority of 
the polymers studied in the literature regarding crazing (Donald; Kramer). For polymers which 
exhibit a strong strain hardening, we expect this effect to block the growth of crazes. Upon 
increasing the stress further, the crazes can grow by homogeneous nucleation ahead of them. 
This mechanism could be studied in the future by similar experiments such as those performed 
by (Vanel et al.). In their experiments, the authors monitor cavitation events by microphones, 
with the resolution of single events. Such experiments could be performed on bulk polymer 
materials in order to better describe the individual events of damaging and craze growth.   
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Chapter VI. FATIGUE BEHAVIOR 
 
 
 

Introduction 

This last Chapter exposes the unusual behavior observed during fatigue experiment on CDA + 
15wt%TA system. These experiments have been performed at 23°C and 60°C during one week 
in order to follow the evolution of damage during fatigue lifetime (Mourglia-Seignobos et al. 

(2014)). The sinusoidal solicitation is keeping in tension-tension with a ratio =  

between the lowest and the highest values of stress at 0.1 in order to prevent buckling of the 
sample. It reveals the existence of a damage mechanism different from that which we have just 
proposed when the polymer is subjected to a tensile experiment. This Chapter is an opening to 
new analyzes that would be interesting to explore further. 
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1. Fatigue cycle analysis 

The representation of fatigue stress - strain cycles allows us to study the evolution of 
macroscopic mechanical properties during a fatigue test. These cycles are plotted in Figure 1 

maximum values of the sinusoidal signal of the force imposed by the fatigue machine we obtain 
a fatigue cycle comparable to an ellipse. 

Figure 1 shows the evolution of the cycle shape during fatigue in plasticized cellulose acetate 
with 15wt% TA at four levels of max at a temperature of experiment of 23°C. The lower the max, 
the more the number of cycles until failure increases. For a value of max = 13 MPa (Figure 1a), 
the rupture takes place after 106 cycles which corresponds to a lifetime of 1 week. 

Figure 1 reveals that the fatigue cycles are more and more broadened in the strain scale with 
increase the maximum of stress value. For a given experiment, we can observe that the fatigue 
cycles are shifted to larger strain values during the fatigue behavior but the shape of the ellipse 
does not change (i.e. the dynamical modulus Ed).  
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1.1. Influence of the maximal stress value 

 
Figure 1 Evolution of fatigue cycles during mechanical test at 23°C on CDA+15wt%TA sample at four stress values : a) 13MPa, 

b) 17 MPa, c) 20MPa and d)30MPa 

The study of these cycles gives access to the following macroscopic quantities: 

- The minima and maximas of th max max min min 

max e, and the 
p, defined as: 

                                                                        (1) pemax

(a) (b) 

(c) (d) 
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                                                       (2) 

                                                            (3) 

N is the fatigue cycle, Ed max is 
the maximal stress value applied. 

Figure 2 p (%) in fatigue for the polymer 
CDA+15wt%TA at 23° max. 

 

Figure 2 Evolution of the plastic deformation in CDA+15wt%TA during fatigue experiment at 23°C for different stress values 

The plastic strain increases linearly with the logarithm of the number of fatigue cycles. There is 
an acceleration of this increase as the failure approaches. We can then see that the slope of the 
linear dependence of this deformation to the logarithm of the number of cycles decreases with 
the applied stress. This slope is often related to the creep rate, the increase of the maximum 
stress value applied leads to an acceleration of the polymer creep. 

- The major axis of the ellipse which is consider as the dynamic modulus Ed 

=  

The evolution of the dynamic modulus Ed during the fatigue test is related to a change in the 
apparent rigidity of the polymer. The evolution of the modulus as a function of the logarithm of 

)(
)()()( max

max NE
NNN

d
p

)()()( max NNN pe
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the number of cycles is represented in Figure 3 for the polymer CDA+15wt% TA during fatigue 
experiment at 23°C and 60°C. 

2. Evolution of the dynamic modulus Ed 

Figure 3 Evolution of the dynamic modulus as a function of the cycle number during fatigue experiment at a) 23°C and b) 60°C 

At 23°C the dynamic modulus Ed of the polymer CDA+15wt%TA remains constant until 
breaking at 106 cycles approximatively. This behavior indicates that our polymer does not 
change its rigidity during the fatigue test. Another unusual behavior is observed during fatigue 
experiment at 60°C on the same sample CDA+15wt%TA, the dynamic modulus Ed increases 
during the lifetime and fails at 106 cycles without decreasing its dynamic modulus. Generally, it 
is more common to observe a decrease in the Ed modulus with the number of cycles which 
reflects the progressive appearance of damage in the sample (Li, Hristov, Yeet, and Gidley 
(1995), Mourglia-Seignobos et al. (2014)).  

The plasticizer content was measured by NMR experiments in order to confirm that this 
hardening is related to internal mechanism in our sample and not to the exudation of the 
plasticizer during the fatigue experiment. Table 1 reports the plasticizer content measured 
before and after fatigue experiment at 60°C on CDA+15wt%TA. 

(a) (b) 
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Table 1 Plasticizer content measured by NMR analysis before and after fatigue experiment 

Samples Cellulose acetate 
signal Plasticizer signal (TA) wt% TA 

CDA+15wt%TA before 
fatigue experiment 

7 0.21 15.3 

CDA+15wt%TA after 106

cycles at 60°C 
7 0.21 15.3 

NMR results confirmed that no exudation of plasticizer takes place during fatigue experiment. 
We suggest that the increase of the dynamical modulus observed at 60°C could be related to the 
presence of a strain hardening in tensile experiment. 

3. Evolution of the damage during fatigue lifetime 

In order to understand the microscopic mechanisms involved in these behaviors, we have 
performed X-ray analyses at different times of the lifetime. Figure 4 shows the normalized 
scattered intensities of the sample CDA+15wt% TA at both 23°C and 60°C at different levels of 
the lifetime. It is observed that regardless of the temperature and the lifetime levels, the 
intensities are isotropic and superimposed. No damage is developed in our materials. The 
mechanisms of failure in fatigue are different from those observed in tensile experiment.  

Figure 4 Normalized scattered intensities obtained by USAXS measurement at different moment of the lifetime during fatigue 
experiment at a) 23°C and b) 60°C on CDA+15wt%TA samples 

(a) (b) 
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4. Conclusion 

These measurements enabled to demonstrate the existence of a damage mechanism which 
differs from the one observed under tensile deformation in cellulose acetate / plasticizer systems 
where the occurring of crazes from the first steps of deformation is observed. The evolution of 
the dynamic modulus during fatigue experiment is unusual, such stabilization or increase of 
rigidity is not described in the literature. With our current level of understanding, we are 
unable to explain these phenomena. However it would be interesting to continue the study of 
fatigue properties by varying different parameters such as frequency, temperature and 
plasticizer’s nature and content. USAXS analyzes did not reveal the presence of damage in the 
systems even after one week under fatigue stresses at 23 °C or 60 °C. These results confirm the 
existence of a very different damage mechanism. We suggest that this increase of the dynamic 
modulus during the fatigue experiment is related to the presence of strain hardening observed 
under tensile testing on these same polymers. This hypothesis has to be verified by 
complementary analyzes which constitute an opening on new ways of understanding the 
mechanisms involved in the lifetime of these plasticized materials. 
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GENERAL CONCLUSION  

MECHANICAL PROPERTIES 
In this PhD work the mechanical and ultimate properties of plasticized cellulose samples 
processed by injection molding for two different plasticizers, DEP and TA have been studied. In 
particular the impact properties and the tensile behavior with various plasticizer contents, both 
below and above the miscibility threshold (~20%). These samples exhibit a brittle-to-ductile 
transition from a low impact strength to a high impact strength of order 40 kJ/m². Upon 
increasing the plasticizer content, it is observed that the brittle-to-ductile transition is broadened 
over more than 60°C in temperature, with the appearance in some cases of a plateau in the 
transition, for plasticizer contents above the miscibility threshold. Obtaining a high impact 
resistance at room temperature requires plasticizer content larger than 25%. It is shown that the 
Young moduli of CDA samples with various plasticizer contents fall on a master curve as a 
function of Tg – T. It is observed that the tensile behavior depends on the injection process, in 
particular on the mold temperature and geometry. A low mold temperature leads to a 
pronounced core/skin effect which has a strong influence on the elongation at break and on the 
strain hardening behavior of the samples. The temperature gradient between the melt (around 
200°C) and the mold (around 30°C) leads to a deplasticization of the sample skin. The skin 
becomes more brittle and leads to a brittle failure of the sample. A high mold temperature (e.g. 
80°C) is needed to limit the core/skin effect. The latter geometry with a large radius of curvature 
reduced the localization of the constraint in the sample. Samples are homogeneous and ductile 
deformation can occur. Strain hardening has been observed for samples with both plasticizers at 
contents larger or equal to 15wt%. The measured strain hardening moduli are in a range 
between 70 MPa and 140 MPa at Tg – 80 K. It is also observed that the strain hardening behavior 
depends markedly on the tensile direction as compared to that of the injection flow, more 
importantly with the TA plasticized CDA. The stain hardening seems to be related to the 
orientation of the polymer molecular chains, and plasticizer seems to have an influence on this 
orientation.  
 
DAMAGE MECHANISM 
In this PhD thesis we show that under the effect of tensile stress, plasticized cellulose acetate 
damage mechanism takes place in two main stages. 
The first stage is associated with heterogeneous cavity nucleation in the vicinity of pre-existing 
impurities (i.e. related to the injection process). Since the free energy barriers of nucleation 
depends on both polymer surface tension and applied macroscopic stress, homogeneous 
nucleation is impossible in cellulose acetate because the free energy barrier of nucleation is too 
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high at the critical stresses values (~30MPa) observed experimentally. Even if we consider 
cavities with stretched polymer inside (i.e. homogeneous crazes) the surface tension is not 
sufficiently lowered to allow cavitation. But in the vicinity of an impurity the nucleation energy 
is lowered by a factor f
impurity. In addition, the surface of these impurities may be rough, which further lowers the 
free energy barriers of nucleation. 
We have observed that the craze growth can be described as a two regime process. 
A first slow growth regime is observed. We propose to explain this moderate growth by the 
presence of strain hardening. Once the cavity has nucleated, the tensile stress around it relaxes. 
Under the effect of the macroscopic stress the cavity starts to grow. During the growth of the 
cavity, the tangential stress increases as a consequence of the strain hardening behavior of our 

 
blocked. Thus the cavity can grow until it reaches a value = /   (0) + (0) 10 . 
We think that the growth of crazes in our samples is governed by a mechanism of successive 
nucleation of new cavities in the vicinity of the existing cavity. Thus we propose to consider the 
volume of polymer ahead of the craze. We assume that strain hardening blocking effect on the 
growth of nucleated cavities leads to a slowdown in crazes growth. 
Then, we have observed that crazes grow much faster when the applied macroscopic tensile 
stress reaches a sufficiently high value. Indeed, the larger the craze, the larger the volume of 
polymer ahead at craze tip undergoing intensified stresses, and therefore the higher the 
nucleation rate of new small cavities in these volumes, which leads to an acceleration of the 
craze growth. We also assume the existence of a second impurity family which increases the 
nucleation rate of new cavities in stress concentration volumes, and thus further accelerate the 
growth of these crazes. This is where the second growth regime starts. As soon as a craze 
reaches a sufficiently high growth rate under the influence of the applied tensile stress, this 
craze becomes so prompt and unstable (at tensile test timescales) that it propagates in a crack 
resulting in the rupture of the sample. 
At this stage, this mechanism happens so quickly for DEP plasticized cellulose acetate samples 
that it leads to rapid breakage of the material, thus preventing us from observing the 
phenomenon. In the case of TA plasticized polymers however, we have observed this second 
growth regime on a small population of crazes using USAXS. It revealed the presence of a 
second family of craze with sizes well above those observed in samples coated with DEP. The 
largest crazes which were formed during the first slow growth regime that we just described, 
will accelerate their growth thanks to the greater volume of stress concentration at craze tip. 
Crazes can then very quickly multiply their size by a factor of 6 and continue to grow until one 
of them reaches a macroscopic size. The existence of the second impurity family makes it 
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possible to nucleate more cavities before reaching the critical macroscopic stress from which 
craze growth is no longer controlled. From there crazes turn into cracks leading to the final 
rupture of the sample. 
 
PERSPECTIVES 
Due to the preponderant role attributed to impurities (the existence of two families which 
control initiation and growth of crazes) in the mechanism of damage in our polymers, it is now 
important to analyze finely the nature as well as the origin of these impurities. The removal of 
these impurities should significantly improve the ultimate properties of the polymer. It would 
be interesting to investigate the damage mechanisms involved when all of these impurities are 
removed from the polymer. How the initiation and growth of damages take place? Would the 
break be more brutal? On the other hand, it would also be interesting to verify the damage 
initiation mechanism that we propose in polymers in which known nucleating agents in known 
proportion are added. Regarding the craze growth mechanism, it would also be interesting to 
do the same analysis of damage in other amorphous polymers with more or less strain 
hardening (PC, PMMA or aromatic polyamide) and evaluate the influence of this one on the 
nature and the growth of damages. 
 
The evolution of the dynamic modulus Ed in fatigue reflects the maintain and even the 
improvement of the stiffness of CDA+15wt%TA polymer under sinusoidal stress. In the 
literature, the logarithmic decrease of the dynamic modulus during fatigue experiment, which 
is observed for the majority of polymers, reflects the appearance of progressive damage (by 
cavitation as an example) depending on the number of fatigue cycles. The constant evolution or 
the increase of the Ed observed in our polymer indicates the existence of an entirely different 
mechanism of damaging. The monitoring of the damage at different levels of the lifetime by 
USAXS measurements does not reveal the presence of any structure of damage, even after 
failure. These early results do not allow for understanding the damage mechanisms involved 
during fatigue experiment and may be the subject of further research.   
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