C. Cavinato, C. Helfenstein-didier, T. Olivier, S. R. Du-roscoat, N. Laroche et al., Biaxial loading of arterial tissues with 3d in situ observations of adventitia fibrous microstructure: A method coupling multi-photon confocal microscopy and bulge inflation test, Journal of the Mechanical Behavior of Biomedical Materials, vol.74, pp.488-498, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566802

R. W. Chan, M. Fu, L. Young, and N. Tirunagari, Relative Contributions of Collagen and Elastin to Elasticity of the Vocal Fold Under Tension, Annals of Biomedical Engineering, vol.35, issue.8, pp.1471-1483, 2007.

R. W. Chan and M. L. Rodriguez, A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies, The Journal of the Acoustical Society of America, vol.124, issue.2, pp.1207-1219, 2008.

R. W. Chan and I. R. Titze, Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results, The Journal of the Acoustical Society of America, vol.106, issue.4, pp.2008-2021, 1999.

R. W. Chan and I. R. Titze, Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling, J Acoust Soc Am, vol.107, issue.1, pp.565-580, 2000.

D. K. Chhetri, Z. Zhang, and J. Neubauer, Measurement of Young's modulus of vocal folds by indentation, Journal of Voice, vol.25, issue.1, pp.1-7, 2011.

Y. H. Choi, H. Ahn, M. R. Park, M. Han, J. H. Lee et al., Dual growth factor-immobilized bioactive injection material for enhanced treatment of glottal insufficiency, Acta Biomaterialia, 2018.

W. Daamen, J. Veerkamp, J. Vanhest, and T. Vankuppevelt, Elastin as a biomaterial for tissue engineering, Biomaterials, vol.28, issue.30, pp.4378-4398, 2007.

J. Dudak, J. Zemlicka, J. Karch, M. Patzelt, J. Mrzilkova et al., High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photoncounting detector, Scientific Reports, vol.6, issue.1, 2016.

C. Finck, Implantation d'acide hyaluronique estérifié lors de la microchirurgie des lésions cordales bénignes, 2008.

C. Finck and P. Lefebvre, Implantation of Esterified Hyaluronic Acid in Microdissected Reinke's Space after Vocal Fold Microsurgery: First Clinical Experiences:. The Laryngoscope, vol.115, pp.1841-1847, 2005.

C. L. Finck, B. Harmegnies, A. Remacle, and P. Lefebvre, Implantation of Esterified Hyaluronic Acid in Microdissected Reinke's Space After Vocal Fold Microsurgery: Short-and Long-Term Results, Journal of Voice, vol.24, issue.5, pp.626-635, 2010.

B. Fink, The Human Larynx: a functional study, 1975.

P. , Collagen: structure and mechanics, an introduction, Collagen, pp.1-13

. Springer, , 2008.

P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch et al., Fibrillar Structure and Mechanical Properties of Collagen, Journal of Structural Biology, vol.122, issue.1, pp.119-122, 1998.

T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of The Royal Society Interface, vol.3, issue.6, pp.15-35, 2006.

B. S. Gerald, Intraoperative measurement of the elastic modulus of the vocal fold, Laryngoscope, 1992.

E. Goodyer, S. Hemmerich, F. Müller, J. B. Kobler, and M. Hess, The shear modulus of the human vocal fold, preliminary results from 20 larynxes, European Archives of Oto-Rhino-Laryngology, vol.264, issue.1, pp.45-50, 2007.

S. D. Gray, S. S. Pignatari, and P. Harding, Morphologic ultrastructure of anchoring fibers in normal vocal fold basement membrane zone, Journal of Voice, vol.8, issue.1, pp.48-52, 1994.

S. D. Gray, I. R. Titze, F. Alipour, and T. H. Hammond, Biomechanical and histologic observations of vocal fold fibrous proteins, Rhinology & Laryngology, vol.109, issue.1, pp.77-85, 2000.

R. Grytz and G. Meschke, Constitutive modeling of crimped collagen fibrils in soft tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.5, pp.522-533, 2009.

M. Gugatschka, S. Ohno, A. Saxena, and S. Hirano, Regenerative medicine of the larynx. where are we today? A review, Journal of Voice, vol.26, issue.5, 2012.

N. Gundiah, M. B. Ratcliffe, and L. A. Pruitt, The biomechanics of arterial elastin, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.3, pp.288-296, 2009.

V. L. and M. , The mechanics of the cricoarytenoid joint, Journal of Physiology, vol.7, pp.541-550, 1961.

M. S. Hahn, J. B. Kobler, B. C. Starcher, S. M. Zeitels, and R. Langer, Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix. I: Elastic Fibers and Hyaluronic Acid, Rhinology & Laryngology, vol.115, issue.2, pp.156-164, 2006.

M. S. Hahn, J. B. Kobler, B. C. Starcher, S. M. Zeitels, and R. Langer, Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix I: Elastic Fibers and Hyaluronic Acid, Rhinology & Laryngology, 2016.

T. Hsiao, C. Wang, C. Chen, F. Hsieh, and Y. Shau, Elasticity of human vocal folds measured in vivo using color Doppler imaging, Ultrasound in medicine & biology, vol.28, issue.9, pp.1145-1152, 2002.

R. Hu, W. Xu, W. Ling, Q. Wang, Y. Wu et al., Characterization of extracellular matrix proteins during wound healing in the lamina propria of vocal fold in a canine model: A long-term and consecutive study, Acta Histochemica, vol.116, issue.5, pp.730-735, 2014.

R. Husson, Physiologie de la phonation, 1962.

T. R. , Principles of Voice Production. National Center for Voice and Speech, 2000.

L. Jp, Use of ultrasound in the evaluation of the vocal folds following thyroidectomy, Colombian Journal of Anesthesiology, vol.42, issue.3, pp.238-242, 2014.

L. Judson and A. Weaver, Voice Science, 1965.

J. C. Kahane, A morphological study of the human prepubertal and pubertal larynx, American Journal of Anatomy, vol.151, issue.1, pp.11-19, 1978.

S. S. Karajanagi, G. Lopez-guerra, H. Park, J. B. Kobler, M. Galindo et al.,

Y. Mehta, N. Kumai, A. Giordano, J. T. Almeida, R. Heaton et al., Assessment of Canine Vocal Fold Function after Injection of a New Biomaterial Designed to Treat Phonatory Mucosal Scarring, Rhinology & Laryngology, 2011.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1636, 2013.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria, Biomechanics and Modeling in Mechanobiology, vol.12, issue.3, pp.555-567, 2013.

M. Kimura, T. Mau, and R. W. Chan, Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies, The Laryngoscope, vol.120, issue.4, p.764, 2010.

I. Klepacek, D. Jirak, M. Smrckova, O. Janouskova, and T. Vampola, The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model, Journal of Voice, vol.30, issue.5, pp.529-537, 2016.

K. Kumagai, H. Koike, R. Nagaoka, S. Sakai, K. Kobayashi et al., HighResolution Ultrasound Imaging of Human Skin In Vivo by Using Three-Dimensional Ultrasound Microscopy, Ultrasound in Medicine & Biology, vol.38, issue.10, pp.1833-1838, 2012.

J. K. Kutty, D. Ph, K. Webb, and D. Ph, for the Vocal Fold Lamina Propria, vol.15, 2009.

A. Lagier, Approche expérimentale de la collision entre les plis vocaux en phonation et du phonotraumatisme: Études in vivo et sur larynx humains excisés, 2016.

Y. T. Lanir, Constitutive equations for fibrous connective tissues, Journal of biomechanics, vol.16, issue.1, pp.1-12, 1983.

M. W. Laschke, C. Körbel, J. Rudzitis-auth, I. Gashaw, M. Reinhardt et al., High-Resolution Ultrasound Imaging. The American Journal of Pathology, vol.176, pp.585-593, 2010.

F. L. Huche and A. Allali, Anatomie et physiologie des organes de la voix et de la parole. Seconde édition, 1991.

L. Li, J. M. Stiadle, H. K. Lau, A. B. Zerdoum, X. Jia et al., Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration, Biomaterials, vol.108, pp.91-110, 2016.

R. L. Lieber, Skeletal muscle adaptability. I: review of basic properties, Developmental Medicine & Child Neurology, vol.28, issue.3, pp.390-397, 1986.

C. Ling, Q. Li, M. E. Brown, Y. Kishimoto, Y. Toya et al., Bioengineered vocal fold mucosa for voice restoration, Science translational medicine, vol.7, issue.314, pp.314-187, 2015.

J. L. Long and D. K. Chhetri, Restoring voice: Engineered vocal cords could soon replace damage damaged tissue, Science, vol.350, issue.6263, p.908, 2015.

B. Macé, Histologie, bases fondamentales. Omniscience, 2008.

E. C. Madruga-de-melo, M. Lemos, J. Aragão-ximenes-filho, L. U. Sennes, P. H. Saldiva et al., Distribution of collagen in the lamina propria of the human vocal fold, The Laryngoscope, vol.113, pp.2187-2191, 2003.

A. Mattei, J. Magalon, B. Bertrand, C. Philandrianos, J. Veran et al., Cell therapy and vocal fold scarring, European Annals of Otorhinolaryngology, Head and Neck Diseases, vol.134, issue.5, pp.339-345, 2017.

Y. B. Min, I. R. Titze, and F. Alipour-haghighi, Stress-strain response of the human vocal ligament. The Annals of Otology, Rhinology, and Laryngology, vol.104, issue.7, pp.563-569, 1995.

A. K. Miri, H. K. Heris, U. Tripathy, P. W. Wiseman, and L. Mongeau, Microstructural characterization of vocal folds toward a strain-energy model of collagen remodeling, Acta Biomaterialia, vol.9, issue.8, pp.7957-7967, 2013.

A. K. Miri, U. Tripathy, L. Mongeau, and P. W. Wiseman, Nonlinear laser scanning microscopy of human vocal folds, The Laryngoscope, vol.122, issue.2, pp.356-363, 2012.

B. Story and I. R. Titze, Voice simulation with a body cover model of the vocal folds, Journal of the Acoustical Society of America, vol.97, issue.2, pp.1249-1260, 1995.

J. Sundberg, Comprehensive Human Physiology, vol.1, 1996.

T. Tateya, I. Tateya, and D. M. Bless, Collagen Subtypes in Human Vocal Folds. Annals of Otology, vol.115, pp.469-476, 2006.

I. R. Titze, The physics of small-amplitude oscillation of the vocal folds, Journal of the Acoustical Society of America, vol.83, issue.4, pp.1536-1552, 1988.

Q. T. Tran, G. S. Berke, B. R. Gerratt, and J. Kreiman, Measurements of Young's Modulus in the in-vivo Human Vocal Folds, Rhinology and Laryngology, vol.102, issue.8, pp.584-591, 1993.

C. Tsai, J. Chen, Y. Shau, and T. Hsiao, Dynamic B-Mode Ultrasound Imaging of Vocal Fold Vibration During Phonation, Ultrasound in Medicine & Biology, vol.35, issue.11, pp.1812-1818, 2009.

C. Tsai, Y. Shau, H. Liu, and T. Hsiao, Laryngeal Mechanisms During Human 4-kHz Vocalization Studied With CT, Videostroboscopy, and Color Doppler Imaging, Journal of Voice, vol.22, issue.3, pp.275-282, 2008.

J. Van-den and . Berg, Myoelastic-aerodynamic theory of voice production, J. Speech Hear. Res, 1958.

J. Van-den, T. S. Berg, and . Tan, Results of experiments with human larynxes, ORL, vol.21, issue.6, pp.425-450, 1959.

J. Van-den, J. T. Berg, P. Zantema, and . Doornenbal, On the air resistance and the bernouilli effect of the humain larynx, J. Acous. Soc. Am, 1957.

W. Vågberg, D. H. Larsson, M. Li, A. Arner, and H. M. Hertz, X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging, Scientific Reports, vol.5, issue.1, 2015.

L. Yang, Mechanical properties of collagen fibrils and elastic fibers explored by AFM, 2008.

Z. Yao, L. Yan, T. Wang, S. Qiu, T. Lin et al., A rapid micro-magnetic resonance imaging scanning for three-dimensional reconstruction of peripheral nerve fascicles, Neural Regeneration Research, vol.13, issue.11, p.1953, 2018.

W. Zemlin, Speech and hearing science, 1968.

S. G. Advani and C. L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of Rheology, vol.31, issue.8, pp.751-784, 1987.

M. Böl, A. E. Ehret, K. Leichsenring, C. Weichert, and R. Kruse, On the anisotropy of skeletal muscle tissue under compression, Acta Biomateriala, vol.10, issue.7, pp.3225-3259, 2014.

E. W. Chang, J. B. Kobler, and S. H. Yun, Triggered optical coherence tomography for capturing rapid periodic motion, Scientific Reports, vol.1, issue.48, pp.1-7, 2011.

T. Chen, A. M. Chodara, A. J. Sprecher, F. Fang, W. Song et al., A New Method of Reconstructing the Human Laryngeal Architecture Using Micro-MRI, Journal of Voice, vol.27, issue.6, pp.555-562, 2012.

P. Coan, A. Peterzol, S. Fiedler, C. Ponchut, J. Labiche et al., Evaluation of imaging performance of a taper optics CCD "FReLoN" camera designed for medical imaging, Journal of Synchrotron Radiation, vol.13, pp.260-270, 2006.

C. Coughlan, L. Chou, J. Jing, J. Chen, S. Rangarajan et al., In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography, Scientific Reports, vol.6, pp.1-9, 2016.

C. Cupello, P. M. Brito, M. Herbin, F. J. Meunier, P. Janvier et al., Allometric growth in the extant coelacanth lung during ontogenetic development, Nature Communications, vol.6, issue.8222, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206566

D. Deliyski and R. E. Hillman, State of the Art Laryngeal Imaging: Research and Clinical Implications, Current Opinion in Otolaryngology & Head and Neck Surgery, vol.18, issue.3, pp.147-152, 2010.

C. Disney, P. D. Lee, J. A. Hoyland, M. J. Sherratt, and B. K. Bay, A review of techiques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo, Journal of Microscopy, vol.35, pp.1-15, 2018.

R. Dougherty and K. Kunzelmann, Computing Local Thickness of 3D Structures with, ImageJ. Microscopy and Microanalysis, vol.13, issue.S02, pp.1678-1679, 2007.

J. Dudak, J. Zemlicka, J. Karch, M. Patzelt, J. Mrzilkova et al., High-contrast X-ray micro-radiography and micro-CT of exvivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector, pp.1-9, 2016.

I. Gabay, K. Subramanian, C. Martin, M. Yildirim, V. V. Tuchin et al., Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing, Proc. SPIE 9707, Dynamics and Fluctuations in Biomedical Photonics XIII, p.97070, 2016.

C. G. Garrett, J. R. Coleman, and L. Reinisch, Comparative Histology and Vibration of the Vocal Folds: Implications for Experimental Studies in Microlaryngeal Surgery, The Laryngoscope, vol.110, pp.814-824, 2000.

C. Gramaccioni, Y. Yang, A. Procopio, A. Pacureanu, S. Bohic et al., Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography, Applied Physics Letters, vol.112, p.53701, 2018.

S. D. Gray, I. R. Titze, F. Alipour, and T. H. Hammond, Biomechanical and histologic observations of vocal fold fibrous proteins, Rhinology & Laryngology, vol.109, issue.1, pp.77-85, 2000.

H. Gunter, Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions, J. Biomechanics, vol.37, pp.1119-1124, 2004.

V. L. Herrera, J. C. Viereck, G. Lopez-guerra, J. Kumai, J. Kobler et al., 11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture, Laryngoscope, vol.119, issue.6, pp.2187-2194, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01901020

H. Herzel, D. Berry, I. Titze, and I. Steinecke, Nonlinear Dynamics of the Voice : Signal Analysis and Biomechanical Modeling, Chaos, vol.5, issue.1, pp.30-34, 1995.

T. Hildebrand and P. Rüesgsegger, A new method for the model-independent assessment of thickness in three-dimensional images, Journal of Microscopy, vol.185, pp.67-75, 1996.

M. Hirano, Morphological structure of the vocal cord as a vibrator and its variations, Folia Phoniatrica, vol.26, pp.89-94, 1974.

M. Hirano, Structure and vibratory behavior of the vocal folds, In: Dynamic aspects of speech production, 1977.

M. Hirano, Vox Humana, chapter The role of the layer structure of the vocal fold in register control, pp.50-62, 1982.

M. Hirano, Y. Kukita, K. Ohmaru, and S. Kurita, Speech and language: advances in basic research and practice, Structure and Mechanical Properties of the Vocal Fold, vol.7, pp.271-97, 1982.

G. Holzapfel, Collagen in Arterial Walls: Biomechanical Aspects, Collagen Structure and Mechanics. Collagen: Structure and Mechanics, 2008.

E. J. Hunter, I. R. Titze, and F. Alipour, A three-dimensional model of vocal fold abduction/adduction, Journal of the Acoustical Society of America, vol.115, issue.4, pp.1747-1759, 2004.

B. Jähne, Spatio-Temporal Image Processing: Theory and Scientific Applications, 1993.

V. M. Joshi, V. Wadhwa, and S. K. Mukherji, Imaging in laryngeal cancers, Indian J Radiol Imaging, vol.22, pp.209-226, 2012.

A. Kazarine, S. Bouhabel, A. H. Douillette, K. Kost, N. Y. Li-jessen et al., Multimodal imaging of vocal fold scarring in a rabbit model by multiphoton microscopy, Proc. SPIE 10069, p.100692, 2017.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1661, 2013.

J. E. Kelleher, K. Zhang, T. Siegmund, and R. W. Chan, Spatially varying properties of the vocal ligament contribute to its eigenfrequency response, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.8, pp.600-609, 2010.

J. Keyrilainen, A. Bravin, M. Fernandez, M. Tenhunen, P. Virkkunen et al., Phase-contrast X-ray imaging of breast, Acta radiologica, vol.51, issue.8, pp.866-884, 1987.

R. H. Khonsari, M. Seppala, A. Prade, H. Dutel, G. Clément et al., The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling, BMC Biology, vol.51, issue.8, pp.11-27, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01572918

I. Klepacek, D. Jirak, M. Smrckova, O. Janouskova, and T. Vampola, The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model, Journal of Voice, vol.30, issue.5, pp.529-537, 2016.

Z. S. Kobler, J. B. Chang, E. W. , and Y. S. , Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography, Laryngoscope, vol.120, pp.1354-1362, 2010.

R. G. Koch, A. Tsamis, A. D'amore, W. R. Wagner, S. C. Watkins et al., A custom image-based analysis tool for quantifying elastin and collagen micro-architecture in the wall of the human aorta from multi-photon microscopy, Journal of Biomechanics, vol.47, pp.935-978, 2014.

J. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. G. Ferre et al., The fast readout low noise camera as a versatile xray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis, Review of Scientific Instruments, vol.78, p.91301, 2007.

A. Lagier, D. Guenoun, T. Legou, R. Espesser, A. Giovanni et al., Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices, Surgical and Radiologic Anatomy, vol.39, pp.257-262, 2017.

M. Langer, R. Boistel, E. Pagot, P. Cloetens, and F. Peyrin, Microscopy: Science, Technology, Applications and Education, chapter X-ray in-line phase microtomography for biomedical applications, Formatex Research Center, pp.391-402, 2010.

P. Latil, L. Orgéas, C. Geindreau, P. J. Dumont, and S. Rolland-du-roscoat, Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres, Composites Science and Technology, vol.71, issue.4, pp.480-488, 2011.

T. Laurencin, L. Orgéas, P. Dumont, S. Rolland-du-roscoat, P. Laure et al., 3D real-time and in situ characterisation of fibre kinematics in dilute non-Newtonian fibre suspensions during confined and lubricated compression flow, Composites Science and Technology, pp.258-66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371009

J. Lucero, Oscillation hysteresis in a two-mass model of the vocal folds, Journal of Sound and Vibration, vol.282, pp.1247-1254, 2005.

E. C. Madruga-de-melo, M. Lemos, J. Aragão-ximenes-filho, L. U. Sennes, P. H. Saldiva et al., Distribution of collagen in the lamina propria of the human vocal fold, The Laryngoscope, vol.113, pp.2187-2191, 2003.

S. Maturo, F. Benboujja, C. Boudoux, and C. Hartnick, Quantitative distinction of unique vocal fold subepithelial architectures using optical coherence tomography. Annals of Otology, Rhinology & Laryngology, vol.121, pp.754-760, 2012.

I. Mirea, F. Varray, Y. Zhu, L. Fanton, M. Langer et al., Very High-Resolution Imaging of Post-Mortem Human Cardiac Tissue Using X-Ray Phase Contrast Tomography. Functional Imaging and Modeling of the Heart (FIMH), vol.9126, pp.65-73, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086644

A. K. Miri, Mechanical characterization of vocal fold tissue: A review study, Journal of Voice, vol.28, issue.6, pp.657-667, 2014.

A. K. Miri, H. K. Heris, L. Mongeau, and F. Javid, Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach, Journal of the Mechanical Behavior of Biomedical Materials, vol.30, pp.196-204, 2014.

A. K. Miri, H. K. Heris, U. Tripathy, P. W. Wiseman, and L. Mongeau, Microstructural characterization of vocal folds toward a strain-energy model of collagen remodeling, Acta Biomaterialia, vol.9, issue.8, pp.7957-7967, 2013.

A. K. Miri, U. Tripathy, L. Mongeau, and P. W. Wiseman, Nonlinear laser scanning microscopy of human vocal folds, The Laryngoscope, vol.122, issue.2, pp.356-63, 2012.

D. A. Morrow, T. L. Haut-donahue, G. M. Odegard, and K. R. Kaufman, Transversely isotropic tensile material properties of skeletal muscle tissue, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, pp.124-129, 2010.

G. R. Myers, K. K. Siu, S. Morgan, and K. , Emerging imaging technologies in medicine, chapter Propagation-Based Imaging, pp.75-91, 2013.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of Microscopy, vol.206, pp.33-40, 2002.

T. Pufe, R. Mentlein, M. Tsokos, P. Steven, D. Varoga et al., VEGF expression in adult permanent thyroid cartilage: implications for lack of cartilage ossification, Bone, vol.35, pp.543-552, 2004.

A. Remacle, D. Morsomme, and C. Finck, Comparison of vocal loading parameters in kindergarten and elementary school teachers, Journal of Speech, Language, and Hearing Research, vol.57, issue.2, pp.406-415, 2014.

D. S. Richardson and J. W. Licthman, Clarifying Tissue Clearing. Cell, vol.162, issue.2, pp.246-257, 2015.

Y. Robert, N. Rocourt, D. Chevalier, A. Duhamel, S. Carcasset et al., Helical CT of the Larynx: A Comparative Study With Conventional CT Scan, Clinical Radiology, vol.51, pp.882-885, 1996.

T. Roberts, R. Morton, and S. Al-ali, Microstructure of the vocal fold in elderly humans, Clinical Anatomy, vol.24, issue.5, pp.544-551, 2011.

T. Sato and H. Tauchi, Age changes in human vocal muscle, Mechanisms of Ageing and Development, vol.18, pp.67-74, 1982.

T. Shearer, R. S. Bradley, L. Hidalgo-bastida, M. J. Sherratt, and S. H. Cartmell, Three-dimensional visualisation of soft biological structures by X-ray computed microtomography, Journal of Cell Science, vol.129, pp.2483-2492, 2016.

P. ?idlof, J. G. ?vec, J. Horá?ek, J. Veselý, I. Klepá?ek et al., Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production, Journal of Biomechanics, vol.41, issue.5, pp.985-995, 2008.

C. Storck, P. Juergens, C. Fischer, O. Haenni, F. Ebner et al., Three-dimensional imaging of the larynx for preoperative planning of laryngeal framework surgery, European Archives of Oto-RhinoLaryngology, vol.267, issue.4, pp.557-563, 2010.

M. Strupler, R. Deterre, N. Goulamhoussen, F. Benboujja, C. J. Hartnick et al., Biomedical Optics in Otorhinolaryngology: Head and Neck Surgery

, Nonlinear Microscopy of the Vocal Folds, pp.511-528, 2016.

T. Takeda, T. Thet-thet-lwin, R. Kunii, T. Sirai, H. Ohizumi et al., Ethanol fixed brain imaging by phase-contrast X-ray technique, Journal of Physics: Conference Series, vol.425, issue.2, p.22004, 2013.

C. Tao, J. Jiang, and Y. Zhang, Simulation of vocal fold impact pressures with a selfoscillating finite-element model, J. Acoust. Soc. Am, vol.119, issue.6, pp.3987-3994, 2006.

I. R. Titze, Principles of voice production. National Center for Voice and Speech, 2000.

W. Vågberg, D. H. Larsson, M. Li, A. Arner, and H. M. Hertz, X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging, Scientific reports, vol.5, p.16625, 2015.

T. Vampola, J. Horacek, and I. Klepacek, Computer simulation of mucosal waves on vibrating human vocal folds, Biocybernetics and biomedical engineering, vol.36, pp.451-465, 2016.

F. Varray, I. Mirea, M. Langer, F. Peyrin, L. Fanton et al., Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis, Medical Image Analysis, vol.38, pp.117-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481358

M. Yildirim, N. Durr, and A. Ben-yakar, Tripling the maximum imaging depth with third-harmonic generation microscopy, Journal of Biomedical Optics, vol.20, issue.9, pp.96013-96014, 2015.

K. Zhang and T. Siegmund, A constitutive model of the human vocal fold cover for fundamental frequency regulation, J. Acoust. Soc. Am, vol.119, issue.2, pp.1050-1062, 2006.

P. Andrikakou, K. Vickraman, and H. Arora, On the behaviour of lung tissue under tension and compression, Scientific Reports, vol.6, issue.1, 2016.

H. Bakhshaee, J. Young, J. C. Yang, L. Mongeau, and A. K. Miri, Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using DIC, Journal of Voice, vol.27, issue.6, pp.659-667, 2013.

M. Böl, A. E. Ehret, K. Leichsenring, C. Weichert, and R. Kruse, On the anisotropy of skeletal muscle tissue under compression, Acta Biomaterialia, vol.10, issue.7, pp.3225-3234, 2014.

R. W. Chan, M. Fu, L. Young, and N. Tirunagari, Relative Contributions of Collagen and Elastin to Elasticity of the Vocal Fold Under Tension, Annals of Biomedical Engineering, vol.35, issue.8, pp.1471-1483, 2007.

R. W. Chan and M. L. Rodriguez, A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies, The Journal of the Acoustical Society of America, vol.124, issue.2, pp.1207-1219, 2008.

R. W. Chan and N. Tayama, Biomechanical Effects of Hydration in Vocal Fold Tissues, Otolaryngology-Head and Neck Surgery, vol.126, issue.5, pp.528-537, 2002.

R. W. Chan and I. R. Titze, Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results, The Journal of the Acoustical Society of America, vol.106, issue.4, pp.2008-2021, 1999.

R. W. Chan and I. R. Titze, Effect of Postmortem Changes and Freezing on the Viscoelastic Properties of Vocal Fold Tissues, Annals of Biomedical Engineering, vol.31, issue.4, pp.482-491, 2003.

S. Chang, F. Tian, H. Luo, J. F. Doyle, and B. Rousseau, The role of finite displacements in vocal fold modeling, Journal of Biomechanical Engineering, vol.135, issue.11, p.111008, 2013.

K. Comley and N. Fleck, The compressive response of porcine adipose tissue from low to high strain rate, International Journal of Impact Engineering, vol.46, pp.1-10, 2012.

A. Eilaghi, J. G. Flanagan, G. W. Brodland, and C. R. Ethier, Strain uniformity in biaxial specimens is highly sensitive to attachment details, Journal of Biomechanical Engineering, vol.131, issue.9, p.91003, 2009.

P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch et al., Fibrillar Structure and Mechanical Properties of Collagen, Journal of Structural Biology, vol.122, issue.1, pp.119-122, 1998.

T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of The Royal Society Interface, vol.3, issue.6, pp.15-35, 2006.

J. Gleason, R. L. , and R. Wang, A Novel Compression Tester for Detecting Anisotropy in Very Soft Biological Tissues, pp.755-756, 2012.

E. Goodyer, S. Hemmerich, F. Müller, J. B. Kobler, and M. Hess, The shear modulus of the human vocal fold, preliminary results from 20 larynxes, European Archives of Oto-Rhino-Laryngology, vol.264, issue.1, pp.45-50, 2007.

E. Goodyer, F. Muller, B. Bramer, D. Chauhan, and M. Hess, In vivo measurement of the elastic properties of the human vocal fold, European Archives of Oto-Rhino-Laryngology, vol.263, issue.5, pp.455-462, 2006.

H. E. Gunter, A mechanical model of vocal-fold collision with high spatial and temporal resolution, The Journal of the Acoustical Society of America, vol.113, issue.2, pp.994-1000, 2003.

H. E. Gunter, Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions, Journal of Biomechanics, vol.37, issue.7, pp.1119-1124, 2004.

M. M. Hess, F. Mueller, J. B. Kobler, S. M. Zeitels, and E. Goodyer, Measurements of Vocal Fold Elasticity Using the Linear Skin Rheometer, Folia Phoniatrica et Logopaedica, vol.58, issue.3, pp.207-216, 2006.

P. Isaksson, P. Dumont, and S. Rolland-du-roscoat, Crack growth in planar elastic fiber materials, International Journal of Solids and Structures, vol.49, issue.13, pp.1900-1907, 2012.

J. Kelleher, K. Zhang, T. Siegmund, and R. Chan, Spatially varying properties of the vocal ligament contribute to its eigenfrequency response, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.8, pp.600-609, 2010.

J. E. Kelleher, T. Siegmund, R. W. Chan, and E. A. Henslee, Optical measurements of vocal fold tensile properties: Implications for phonatory mechanics, Journal of Biomechanics, vol.44, issue.9, pp.1729-1734, 2011.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1636, 2013.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria, Biomechanics and Modeling in Mechanobiology, vol.12, issue.3, pp.555-567, 2013.

V. Krasnoshlyk, S. R. Roscoat, P. J. Dumont, P. Isaksson, E. Ando et al., Three-dimensional visualization and quantification of the fracture mechanisms in sparse fibre networks using multiscale X-ray microtomography, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01980309

A. Lagier, Approche expérimentale de la collision entre les plis vocaux en phonation et du phonotraumatisme: Études in vivo et sur larynx humains excisés, 2016.

P. Latil, L. Orgéas, C. Geindreau, P. Dumont, and S. Rolland-du-roscoat, Towards the 3d in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres, Composites Science and Technology, vol.71, issue.4, pp.480-488, 2011.

T. Laurencin, L. Orgéas, P. Dumont, S. Rolland-du-roscoat, P. Laure et al., 3d real-time and in situ characterisation of fibre kinematics in dilute non-Newtonian fibre suspensions during confined and lubricated compression flow, Composites Science and Technology, vol.134, pp.258-266, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371009

N. Y. Li, H. K. Heris, and L. Mongeau, Current Understanding and Future Directions for Vocal Fold Mechanobiology, Journal of cytology & molecular biology, vol.1, issue.1, p.1, 2013.

K. Miller, Method of testing very soft biological tissues in compression, Journal of Biomechanics, vol.38, issue.1, pp.153-158, 2005.

Y. B. Min, I. R. Titze, and F. Alipour-haghighi, Stress-strain response of the human vocal ligament. The Annals of Otology, Rhinology, and Laryngology, vol.104, issue.7, pp.563-569, 1995.

A. K. Miri, Mechanical Characterization of Vocal Fold Tissue: A Review Study, Journal of Voice, vol.28, issue.6, pp.657-667, 2014.

A. K. Miri, F. Barthelat, and L. Mongeau, Effects of Dehydration on the Viscoelastic Properties of Vocal Folds in Large Deformations, Journal of Voice, vol.26, issue.6, pp.688-697, 2012.

A. K. Miri, R. Mongrain, L. X. Chen, and L. Mongeau, Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing, Journal of Biomechanics, vol.45, issue.16, pp.2943-2946, 2012.

L. Morriss, A. Wittek, and K. Miller, Compression testing of very soft biological tissues using semi-confined configuration-A word of caution, Journal of Biomechanics, vol.41, issue.1, pp.235-238, 2008.

R. Pietsch, B. B. Wheatley, T. L. Haut-donahue, R. Gilbrech, R. Prabhu et al., Anisotropic Compressive Properties of Passive Porcine Muscle Tissue, Journal of Biomechanical Engineering, vol.136, issue.11, pp.111003-111003, 2014.

A. Rohlfs, E. Goodyer, T. Clauditz, M. Hess, M. Kob et al.,

F. Roemer and . Müller, The anisotropic nature of the human vocal fold: an ex vivo study, European Archives of Oto-Rhino-Laryngology, vol.270, issue.6, pp.1885-1895, 2013.

M. Sivasankar and C. Leydon, The role of hydration in vocal fold physiology:. Current Opinion in Otolaryngology & Head and Neck Surgery, vol.18, pp.171-175, 2010.

W. Sun, M. S. Sacks, and M. J. Scott, Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues, Journal of Biomechanical Engineering, vol.127, issue.4, p.709, 2005.

C. Tao and J. J. Jiang, Mechanical stress during phonation in a self-oscillating finiteelement vocal fold model, Journal of Biomechanics, vol.40, issue.10, pp.2191-2198, 2007.

P. Vacher, F. Morestin, S. Dumoulin, and S. Mgil, Bidimensional strain measurement using digital images, Proc Inst Mech Eng Part C J Mech Eng Sci, 1999.

T. Vampola and J. Horaceck, Simulation of vibration of the human vocal folds, Proceedings of the 9th International Conference on Structural Dynamics, 2014.

T. Vampola, J. Horá?ek, and I. Klepá?ek, Computer simulation of mucosal waves on vibrating human vocal folds, Biocybernetics and Biomedical Engineering, vol.36, issue.3, pp.451-465, 2016.

K. Zhang, T. Siegmund, and R. W. Chan, Modeling of the transient responses of the vocal fold lamina propria, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.1, pp.93-104, 2009.

S. G. Advani and C. L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of Rheology, vol.31, issue.8, pp.751-784, 1987.

F. Alipour, D. Berry, and I. R. Titze, A finite-element model of vocal-fold vibration, The Journal of the Acoustical Society of America, vol.108, issue.6, pp.3003-3012, 2000.

F. Alipour-haghighi and I. R. Titze, Elastic models of vocal fold tissues, The Journal of the Acoustical Society of America, vol.90, issue.3, pp.1326-1331, 1991.

E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, vol.41, issue.2, pp.389-412, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01390807

M. Asgari, N. Latifi, H. K. Heris, H. Vali, and L. Mongeau, In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics, Scientific Reports, vol.7, issue.1, 2017.

L. Bailly, T. Cochereau, L. Orgéas, N. Bernardoni, S. Rolland-du-roscoat et al., 3d multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode, Scientific Reports, vol.8, issue.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01878124

L. Bailly, C. Geindreau, L. Orgéas, and V. Deplano, Towards a biomimetism of abdominal healthy and aneurysmal arterial tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.10, pp.151-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00669949

L. Bailly, M. Toungara, L. Orgéas, E. Bertrand, V. Deplano et al., In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes, Journal of the Mechanical Behavior of Biomedical Materials, vol.40, pp.339-353, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068035

D. Berry and I. Titze, Normal modes in a continuum model of vocal fold tissues, J. Acoust. Soc. Am, vol.100, issue.5, pp.3345-3354, 1996.

T. Bertorini, Neuromuscular Case Studies, 2008.

R. B. Bühler, L. U. Sennes, D. H. Tsuji, T. Mauad, L. F. Da-silva et al., Collagen type I, collagen type III, and versican in vocal fold lamina propria, Archives of Otolaryngology-Head & Neck Surgery, vol.137, issue.6, pp.604-608, 2011.

D. Caillerie, A. Mourad, and A. Raoult, Discrete Homogenization in Graphene Sheet Modeling, Journal of Elasticity, vol.84, issue.1, pp.33-68, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103196

C. J. Chen, L. D. Thompson, and L. A. Snow, Muscle structure and function, Orthopaedic Physical Therapy Secrets-E-Book, issue.1, 2016.

F. Colomo, N. Piroddi, C. Poggesi, G. T. Kronnie, and C. Tesi, Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog, The Journal of Physiology, vol.500, issue.2, pp.535-548, 1997.

D. A. Cook, E. Nauman, and L. Mongeau, Reducing the number of vocal fold mechanical tissue properties: evaluation of the incompressibility and planar displacement assumptions, The Journal of the Acoustical Society of America, vol.124, issue.6, pp.3888-3896, 2008.

L. Cveticanin, Review on Mathematical and Mechanical Models of the Vocal Cord, Journal of Applied Mathematics, vol.2012, pp.1-18, 2012.

C. Finck, Implantation d'acide hyaluronique estérifié lors de la microchirurgie des lésions cordales bénignes, 2008.

L. Flanagan and L. Landgraf, Self oscillating source for vocal tract synthesizers, IEEE Trans. on Audio and Electroacoustics, vol.16, pp.57-64, 1968.

P. , Collagen: structure and mechanics, an introduction, Collagen, pp.1-13

. Springer, , 2008.

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

A. Gautieri, S. Vesentini, A. Redaelli, and M. J. Buehler, Viscoelastic properties of model segments of collagen molecules, Matrix Biology, vol.31, issue.2, pp.141-149, 2012.

K. Gelse, Collagens-structure, function, and biosynthesis, Advanced Drug Delivery Reviews, vol.55, issue.12, pp.1531-1546, 2003.

S. D. Gray, I. R. Titze, F. Alipour, and T. H. Hammond, Biomechanical and histologic observations of vocal fold fibrous proteins, Rhinology & Laryngology, vol.109, issue.1, pp.77-85, 2000.

Y. Grinberg, M. A. Schiefer, D. J. Tyler, and K. J. Gustafson, Fascicular perineurium thickness, size, and position affect model predictions of neural excitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.16, issue.6, pp.572-581, 2008.

R. Grytz and G. Meschke, Constitutive modeling of crimped collagen fibrils in soft tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.5, pp.522-533, 2009.

M. S. Hahn, J. B. Kobler, B. C. Starcher, S. M. Zeitels, and R. Langer, Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix I: Elastic Fibers and Hyaluronic Acid, Rhinology & Laryngology, 2016.

M. S. Hahn, J. B. Kobler, S. M. Zeitels, and R. Langer, Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix II: Collagen:. Annals of Otology, 2016.

T. H. Hammond, R. Zhou, E. H. Hammond, A. Pawlak, and S. D. Gray, The intermediate layer: a morphologic study of the elastin and hyaluronic acid constituents of normal human vocal folds, Journal of Voice, vol.11, issue.1, pp.59-66, 1997.

A. Hantzakos, M. Remacle, F. G. Dikkers, J. Degols, M. Delos et al., Exudative lesions of Reinke's space: a terminology proposal, European Archives of Oto-Rhino-Laryngology, vol.266, issue.6, pp.869-878, 2009.

H. K. Heris, M. Rahmat, and L. Mongeau, Characterization of a Hierarchical Network of Hyaluronic Acid/Gelatin Composite for use as a Smart Injectable Biomaterial, Macromolecular Bioscience, vol.12, issue.2, pp.202-210, 2012.

V. L. Herrera, J. C. Viereck, G. Lopez-guerra, J. Kumai, J. Kobler et al., 11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture, Laryngoscope, vol.119, issue.6, pp.2187-2194, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01901020

M. Hirano, Y. Kukita, K. Ohmaru, and S. Kurita, Speech and language: advances in basic research and practice, Structure and Mechanical Properties of the Vocal Fold, vol.7, pp.271-97, 1982.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of arteries, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010.

A. Kabla and L. Mahadevan, Nonlinear mechanics of soft fibrous networks, Journal of The Royal Society Interface, vol.4, issue.12, pp.99-106, 2007.

J. Kelleher, K. Zhang, T. Siegmund, and R. Chan, Spatially varying properties of the vocal ligament contribute to its eigenfrequency response, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.8, pp.600-609, 2010.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1636, 2013.

I. Klepacek, D. Jirak, M. Smrckova, O. Janouskova, and T. Vampola, The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model, Journal of Voice, vol.30, issue.5, pp.529-537, 2016.

R. J. Korthuis, Skeletal Muscle Circulation. Morgan & Claypool Life Sciences, 2011.

F. L. Huche and A. Allali, Anatomie et physiologie des organes de la voix et de la parole. Seconde édition, 1991.

R. L. Lieber, Skeletal muscle adaptability. I: review of basic properties, Developmental Medicine & Child Neurology, vol.28, issue.3, pp.390-397, 1986.

F. Maceri, M. Marino, and G. Vairo, A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement, Journal of Biomechanics, vol.43, issue.2, pp.355-363, 2010.

A. K. Miri, H. K. Heris, U. Tripathy, P. W. Wiseman, and L. Mongeau, Microstructural characterization of vocal folds toward a strain-energy model of collagen remodeling, Acta Biomaterialia, vol.9, issue.8, pp.7957-7967, 2013.

A. K. Miri, U. Tripathy, L. Mongeau, and P. W. Wiseman, Nonlinear laser scanning microscopy of human vocal folds, The Laryngoscope, vol.122, issue.2, pp.356-363, 2012.

L. Orgéas, D. Favier, and G. Rio, Déformation superélastique non homogène d ' une éprouvette de traction NiTi . Expérience et modélisation numérique, vol.7, pp.111-136, 1998.

T. Roberts, R. Morton, and S. Al-ali, Microstructure of the vocal fold in elderly humans, Clinical Anatomy, vol.24, issue.5, pp.544-551, 2011.

D. Rodney, B. Gadot, O. R. Martinez, S. R. Du-roscoat, and L. Orgéas, Reversible dilatancy in entangled single-wire materials, Nature Materials, vol.15, issue.1, pp.72-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01956941

T. Sato and H. Tauchi, Age changes in human vocal muscle, Mechanisms of Ageing and Development, vol.18, pp.67-74, 1982.

S. M. Shaw, S. L. Thomson, C. Dromey, and S. Smith, Frequency Response of Synthetic Fold Models With Linear and Nonlinear Material Properities, vol.55, pp.1395-1406, 2012.

Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell, Stress-strain experiments on individual collagen fibrils, Biophysical journal, vol.95, issue.8, pp.3956-63, 2008.

F. H. Silver, J. W. Freeman, and G. P. Seehra, Collagen self-assembly and the development of tendon mechanical properties, Journal of Biomechanics, vol.36, issue.10, pp.1529-1553, 2003.

J. Sundberg, Comprehensive Human Physiology, vol.1, 1996.

C. Tao and J. J. Jiang, Mechanical stress during phonation in a self-oscillating finiteelement vocal fold model, Journal of Biomechanics, vol.40, issue.10, pp.2191-2198, 2007.

C. Tao, Y. Zhang, D. Hottinger, and J. Jiang, Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds, J. Acoust. Soc. Am, vol.122, issue.6, pp.2270-2278, 2007.

T. Tateya, I. Tateya, and D. M. Bless, Collagen Subtypes in Human Vocal Folds. Annals of Otology, vol.115, pp.469-476, 2006.

I. R. Titze, The human vocal cords: a mathematical model, part I. Phonetica, vol.28, pp.129-170, 1973.

L. R. Treloar, The elasticity of a network of long-chain molecules. I. Transactions of the Faraday Society, vol.39, pp.36-41, 1943.

T. Vampola, J. Horacek, and I. Klepacek, Computer simulation of mucosal waves on vibrating human vocal folds, Biocybernetics and biomedical engineering, vol.36, pp.451-465, 2016.

T. Wurzbacher, M. Döllinger, R. Schwarz, U. Hoppe, U. Eysholdt et al., Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters, The Journal of the Acoustical Society of America, vol.123, issue.4, p.2324, 2008.

Y. Xuan and Z. Zhang, Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model, Journal of speech, language, and hearing research, vol.57, issue.2, pp.416-425, 2014.

Q. Xue, R. Mittal, X. Zheng, and S. Bielamowicz, Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx, The Journal of the Acoustical Society of America, vol.132, issue.3, pp.1602-1613, 2012.

L. Yang, Mechanical properties of collagen fibrils and elastic fibers explored by AFM, 2008.

Z. Zhang, Restraining mechanisms in regulating glottal closure during phonation, The Journal of the Acoustical Society of America, vol.130, issue.6, p.4010, 2011.

Z. Zhang, The influence of material anisotropy on vibration at onset in a threedimensional vocal fold model, J. Acoust. Soc. Am, vol.135, issue.3, pp.1480-1490, 2014.

X. Zheng, R. Mittal, Q. Xue, and S. Bielamowicz, Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model, The Journal of the Acoustical Society of America, vol.130, issue.1, pp.404-415, 2011.

. .. ,

.. .. Control,

.. .. Material,

.. .. Manual,

.. .. Silicone,

, Polyethylene glycol (PEG) based materials

.. .. Gelatin,

T. .. , 154 5.4.1 Model assumptions and input parameters

, Up-scaling of the biological network

. .. , Preliminary results: conception and mechanical characterisation

.. .. Quasi-static-loadings,

.. .. Vibratory,

.. .. Concluding,

, Carbon

R. Argoud, Vers la caractérisation des propriétés dynamiques de matériaux élastomères á renforts fibreux pour le design biomimétique de cordes vocales artificielles, 2015.

L. Bailly, C. Geindreau, L. Orgéas, and V. Deplano, Towards a biomimetism of abdominal healthy and aneurysmal arterial tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.10, pp.151-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00669949

L. Bailly, M. Toungara, L. Orgéas, E. Bertrand, V. Deplano et al., In-plane mechanics of elastomeric fibrous composite membranes: cases of straight fibres and wavy bundle of fibres, EUROMECH Colloquium 560: Mechanics of Biological Membranes

L. Bailly, M. Toungara, L. Orgéas, E. Bertrand, V. Deplano et al., In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes, Journal of the Mechanical Behavior of Biomedical Materials, vol.40, pp.339-353, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068035

R. S. Bartlett and S. L. Thibeault, Bioengineering the vocal fold: a review of mesenchymal stem cell applications, Advances in Biomimetics. InTech, 2011.

A. Bigi, K. Panzavolta, and K. Rubini, Relationship between triple-helix content and mechanical properties of gelatin films, Biomaterials, vol.25, issue.25, pp.5675-5680, 2004.

A. Bot, I. Van-amerongen, R. Groot, N. Hoekstra, and W. Agterof, Large deformation rheology of gelatin gels, Polymer Gels and Networks, vol.4, issue.3, pp.189-227, 1996.

C. Debry, A. Dupret-bories, N. E. Vrana, P. Hemar, P. Lavalle et al., Laryngeal replacement with an artificial larynx after total laryngectomy: The possibility of restoring larynx functionality in the future, Head & Neck, vol.36, issue.11, pp.1669-1673, 2014.

C. Finck, Implantation d'acide hyaluronique estérifié lors de la microchirurgie des lésions cordales bénignes, 2008.

C. Finck and P. Lefebvre, Implantation of Esterified Hyaluronic Acid in Microdissected Reinke ' s Space after Vocal Fold Microsurgery : First Clinical Experiences, pp.1841-1847, 2005.

M. Gugatschka, S. Ohno, A. Saxena, and S. Hirano, Regenerative medicine of the larynx. where are we today? A review, Journal of Voice, vol.26, issue.5, 2012.

C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi et al., Artificial Muscles from Fishing Line and Sewing Thread, Science, vol.343, issue.6173, pp.868-872, 2014.

H. K. Heris, N. Latifi, H. Vali, N. Li, and L. Mongeau, Investigation of Chitosanglycol/glyoxal as an Injectable Biomaterial for Vocal Fold Tissue Engineering, Procedia Engineering, vol.110, pp.143-150, 2015.

S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez et al., 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Advanced materials, p.4034, 2015.

S. S. Karajanagi, G. Lopez-guerra, H. Park, J. B. Kobler, M. Galindo et al.,

Y. Mehta, N. Kumai, A. Giordano, J. T. Almeida, R. Heaton et al., Assessment of Canine Vocal Fold Function after Injection of a New Biomaterial Designed to Treat Phonatory Mucosal Scarring, Rhinology & Laryngology, 2011.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1636, 2013.

J. E. Kelleher, T. Siegmund, M. Du, E. Naseri, and R. W. Chan, The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: A case study, The Journal of the Acoustical Society of America, vol.133, issue.3, pp.1625-1661, 2013.

M. Kimura, T. Mau, and R. W. Chan, Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies, The Laryngoscope, vol.120, issue.4, p.764, 2010.

F. F. Kisuka, Vibratory properties of fibre-reinforced biomimetic materials, 2018.

S. Kniesburges, S. L. Thomson, A. Barney, M. Triep, P. ?idlof et al., In vitro experimental investigation of voice production, Current bioinformatics, vol.6, issue.3, p.305, 2011.

N. Latifi, M. Asgari, H. Vali, and L. Mongeau, A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications, Scientific Reports, vol.8, issue.1, p.1047, 2018.

N. Latifi, H. K. Heris, S. L. Thomson, R. Taher, S. Kazemirad et al., A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications, Tissue Engineering. Part C, Methods, vol.22, issue.9, p.823, 2016.

C. Ling, Q. Li, M. E. Brown, Y. Kishimoto, Y. Toya et al.,

B. L. Smith, N. V. Frey, and . Welham, Bioengineered vocal fold mucosa for voice restoration, Science translational medicine, vol.7, issue.314, pp.314-187, 2015.

J. L. Long and D. K. Chhetri, Restoring voice: Engineered vocal cords could soon replace damage damaged tissue, Science, vol.350, issue.6263, p.908, 2015.

A. K. Miri and L. Mongeau, Role of Collagen Helical Hierarchy in Soft Tissue, Journal of Biomechanics, vol.45, p.587, 2012.

P. R. Murray, S. L. Thomson, and M. E. Smith, A Synthetic, Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection, Journal of Voice, vol.28, issue.2, pp.133-143, 2014.

B. A. Pickup and S. L. Thomson, Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models, Journal of Biomechanics, vol.42, issue.14, pp.2219-2225, 2009.

T. Riede, I. T. Tokuda, J. B. Munger, and S. L. Thomson, Mammalian laryngseal air sacs add variability to the vocal tract impedance: physical and computational modeling, The Journal of the Acoustical Society of America, vol.124, issue.1, pp.634-681, 2008.

R. Romero, T. Greenwood, C. Young, S. Hatch, M. Colton et al., Development and analysis of 3d-printed synthetic vocal folds models, 11th Internation Conference on Voice Physiology and Biomechanics

S. B. Ross-murphy, Structure and rheology of gelatin gels: recent progress, Polymer, vol.33, issue.12, pp.2622-2627, 1992.

N. Ruty, X. Pelorson, A. Van-hirtum, I. Lopez-arteaga, and A. Hirschberg, An in vitro setup to test the relevance and the accuracy of low-order vocal folds models, The Journal of the Acoustical Society of America, vol.121, issue.1, pp.479-490, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180800

R. C. Scherer, I. R. Titze, and J. F. Curtis, Pressure-flow relationships in two models of the larynx having rectangular glottal shapes, Journal of the Acoustical Society of America, vol.73, issue.2, pp.668-676, 1983.

H. Scremin, Caractérisation mécanique et vibratoire de tissus vocaux synthétiques, 2017.

C. H. Shadle, A. M. Barney, and D. W. Thomas, An Investigation into the Acoustics and Aerodynamics of the Larynx, pp.73-82, 1991.

S. M. Shaw, S. L. Thomson, C. Dromey, and S. Smith, Frequency Response of Synthetic Fold Models With Linear and Nonlinear Material Properities, vol.55, pp.1395-1406, 2012.

M. R. Sherman, L. D. Williams, M. G. Saifer, J. A. French, L. W. Kwak et al., Conjugation of High-Molecular Weight Poly(ethylene glycol) to Cytokines: Granulocyte-Macrophage Colony-Stimulating Factors as Model Substrates, Poly(ethylene glycol), vol.680, pp.155-169, 1997.

K. L. Syndergaard, S. Dushku, and S. L. Thomson, Electrically conductive synthetic vocal fold replicas for voice production research, The Journal of the Acoustical Society of America, vol.142, issue.1, p.63, 2017.

L. R. Treloar, The elasticity of a network of long-chain molecules. I. Transactions of the Faraday Society, vol.39, pp.36-41, 1943.

S. Weiß, S. L. Thomson, R. Lerch, M. Döllinger, and A. Sutor, Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling, Journal of the mechanical behavior of biomedical materials, vol.17, p.137, 2013.

Y. Xuan and Z. Zhang, Influence of embedded fibers and an epithelium layer on glottal closure pattern in a physical vocal fold model, Journal of speech, language, and hearing research, vol.57, issue.2, p.416, 2014.

C. Gramaccioni, Y. Yang, A. Procopio, A. Pacureanu, S. Bohic et al., Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography, Applied Physics Letters, vol.112, p.53701, 2018.

C. Helfenstein-didier, D. Taïnoff, J. Viville, J. Adrien, P. Maire et al., Tensile rupture of medial arterial tissue studied by X-ray micro-tomography on stained samples, Journal of the Mechanical Behavior of Biomedical Materials, vol.78, pp.362-368, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01659507

. Figure-a, Comparison between (a) elastic arytenoid cartilage and (b) hyaline arytenoid cartilage acquired by two imaging modes: (left) 2D coronal views of L 10 -S 3 ([C 2 H 6 0] = 70 %), reconstructed from synchrotron highresolution X-ray microtomographic images (PRI mode), vol.4