Y. Akashi, R. Muramatsu, and S. Kanaya, Unified glare rating (UGR) and subjective appraisal of discomfort glare, International Journal of Lighting Research and Technology, vol.28, issue.4, pp.199-206, 1996.

J. Ashmore and P. Richens, Computer simulation in daylight design: a comparison, Architectural Science Review, vol.44, issue.1, pp.33-44, 2001.
DOI : 10.1080/00038628.2001.9697451

A. Aucliciens and S. V. Szokolay, Passive and Low Energy Architecture, International Design Tools and Techniques, 2007.

V. Bazjanac and D. B. Crawley, The implementation of industry foundation classes in simulation tools for the building industry, 1997.

V. Bazjanac, Acquisition of building geometry in the simulation of energy performance. No. LBNL-48450

C. A. Berkeley, , 2001.

V. Bazjanac, Space Boundary Requirements for Modeling of Building Geometry for Energy and Other Performance Simulation, CIB W78: 27th International Conference, 2010.

K. Beddiar and F. Imbault, BIM et énergétique des bâtiments

. Dunod, , 2017.

Y. Bian and Y. Ma, Subjective survey & simulation analysis of timebased visual comfort in daylit spaces, Building and Environment, 2018.

J. F. Blinn, Models of light reflection for computer synthesized pictures, In ACM SIGGRAPH computer graphics, vol.11, issue.2, pp.192-198, 1977.

M. Boudhaim, T. Pflug, B. Bueno, M. Siroux, and T. E. Kuhn, thermal and optical modeling of complex fenestration systems within the context of building information modeling, 2016.

M. Boudhaim, B. Bueno, M. Siroux, and T. E. Kuhn, A BIM-compatible Framework to Assess the Thermal and Optical Performance of Envelope Systems, 2017.

P. Bretagnon and G. Francou, Planetary theories in rectangular and spherical variables-VSOP 87 solutions, Astronomy and Astrophysics, vol.202, 1988.

. Buildingsmart, , 2017.

B. Bueno, J. Wienold, A. Katsifaraki, T. E. Kuhn-;-bue2017]-b, J. M. Bueno et al., Fener: a radiance-based modelling approach to assess the thermal and daylighting performance of complex fenestration systems in office spaces, Energy and Buildings, vol.94, pp.43-53, 2015.

G. Cellai, C. Carletti, F. Sciurpi, and S. Secchi, Transparent building envelope: windows and shading devices typologies for energy efficiency refurbishments, Building Refurbishment for Energy Performance, pp.61-118
DOI : 10.1007/978-3-319-03074-6_2

C. Springer, Complex glazing database, 2014.

U. S. Choi, R. Johnson, and S. Selkowitz, The impact of daylighting on peak electrical demand, Energy and Buildings, vol.6, issue.4, pp.387-399, 1984.

R. P. Clark and O. G. Edholm, Man and his thermal environment

E. Arnold, ;. Cody, M. Rose, ;. Vladimir, and B. , An algorithm to generate space boundaries for building energy simulation, Engineering with Computers, vol.31, issue.2, 1985.

D. Sunday, ;. Dea1998]-de-dear, R. , and G. S. Brager, Developing an adaptive model of thermal comfort and preference, 1998.

T. Doerr, ;. Colorado, B. Dong, K. P. Lam, Y. C. Huang et al., A comparative study of the IFC and gbXML informational infrastructures for data exchange in computational design support environments, Passive Solar Simplified: Easily design a truly green home for, vol.11, pp.90-94, 1979.

[. Eisenlohr, C. Eller, C. Leifgen, M. Boudhaim, and T. E. Kuhn, FLEXIBLE FILTERING OF HETEROGENEOUS DATA USING THE EXAMPLE OF THE DESIGN AMD SIMULATION OF BUILDING INTEGRATED PHOTOVOLTAICS

P. O. Fanger, Thermal comfort. Analysis and applications in environmental engineering, 1970.

G. E. Folk, Adaptation and heat loss: the past thirty years, Butterworths, pp.119-146, 1974.

G. E. Folk, Climatic change and acclimatization, Biometeorology, thermal physiology and comfort, pp.157-168, 1981.
DOI : 10.1016/s0166-1116(08)71087-2

M. Fontoynont, P. Laforgue, R. Mitanchey, M. Aizlewood, and J. Butt,

W. Carroll, R. Hitchock, H. Erhorn, J. De-boer, M. Dirksmöller et al., Validation of daylighting simulation programs, 1999.

[. Fri1993]-frisancho and A. Roberto, Human adaptation and accommodation, 1993.

H. Fuchs, Z. M. Kedem, and B. F. Naylor, visible surface generation by a priori tree structures, Computer Graphics (ACM), vol.14, issue.3, pp.124-133, 1980.

A. D. Galasiu and M. R. Atif, Applicability of daylighting computer modeling in real case studies: comparison between measured and simulated daylight availability and lighting consumption, Building and Environment, vol.37, issue.4, pp.363-377, 2002.

. Geisler-moroder, E. S. David, G. J. Lee, and . Ward, Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements, p.2016

R. Goldsmith, Acclimatisation to cold in man-fact or fiction? Heat loss from animals and man: assessment and control, Proceedings of the 20th Easter School in Agricultural Science, 1974.

A. Grynberg, Validation of RADIANCE, 1989.

R. T. Hellwig, S. Brasche, and W. Bischof, Thermal Comfort in Offices-Natural Ventilation vs. Air Conditioning, Proceedings of congress Comfort and Energy Use in Buildings-Getting it Right, 2006.

L. Heschong, M. Van-den-wymelenberg, N. Andersen, and L. Digert,

A. Fernandes, J. Keller, and . Loveland, Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). No. EPFL-STANDARD-196436, IES-Illuminating Engineering Society, 2012.

J. Kajiya, A. Katsifaraki, B. Bueno, and T. E. Kuhn, A daylight optimized simulation-based shading controller for venetian blinds, ACM Siggraph Computer Graphics, vol.20, issue.4, pp.207-220, 1986.

A. Khodulev and E. Kopylov, Physically accurate lighting simulation in computer graphics software, Keldysh Institute of Applied Mathematics, 1996.

J. H. Klems, A new method for predicting the solar heat gain of complex fenestration systems: I. Overview and derivation of the matrix layer calculation, ASHRAE Trans, vol.100, issue.1, pp.1065-1072, 1994.

J. H. Klems, A new method for predicting the solar heat gain of complex fenestration systems: II. Detailed description of the matrix layer calculation, 1994.

, ASHRAE Trans, vol.100, issue.1, pp.1073-1086

T. E. Kuhn, . Herkel, ;. Sebastian, F. ;. Frontini, and P. Strachan,

G. ;. Kokogiannakis, . Kuhn, and E. Tilmann, Solar control. A general method for modelling of solar gains through complex facades in building simulation programs, In: Energy and Buildings, vol.43, issue.1, pp.112-133, 2011.

[. Lee2018]-lee, E. S. , D. Geisler-moroder, and G. Ward, Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation, Solar Energy, vol.160, pp.380-395, 2018.

G. N. Lilis, G. I. Giannakis, G. D. Kontes, D. V. Rovas-;-lilis, G. N. et al., Detection and semiautomatic correction of geometric inaccuracies in IFC files, Proc. of European Conference on Product and Process Modelling, vol.27, pp.181-188, 1995.

[. Mar2000]-mardaljevic and J. , Daylight simulation: validation, sky models and daylight coefficients" (Doctoral dissertation, 2000.

J. Mardaljevic, The BRE-IDMP dataset: a new benchmark for the validation of illuminance prediction techniques, Transactions of the Illuminating Engineering Society, vol.33, pp.117-134, 2001.

E. Mayer, Objective criteria for thermal comfort, Building and environment, vol.28, issue.4, pp.399-403, 1993.
DOI : 10.1016/0360-1323(93)90016-v

A. Mcneil and E. S. Lee, A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems, Journal of Building Performance Simulation, vol.6, pp.24-37, 2013.

A. Mcneil, The Five-Phase Method for Simulating Complex Fenestration with Radiance, 2013.

A. Mcneil, A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems, Solar Energy, vol.98, pp.404-414, 2013.

A. Nabil and J. Mardaljevic, Useful daylight illuminance: a new paradigm for assessing daylight in buildings, Lighting Research & Technology, vol.37, issue.1, pp.41-57, 2005.

A. Nabil and J. Mardaljevic, Useful daylight illuminances: A replacement for daylight factors, Energy and buildings, vol.38, issue.7, pp.905-913, 2006.
DOI : 10.1016/j.enbuild.2006.03.013

C. E. Ochoa, M. B. Aries, and J. L. Hensen, State of the art in lighting simulation for building science: a literature review, Journal of Building Performance Simulation, 2011.

K. Pearson, Note on regression and inheritance in the case of two parents, Proceedings of the Royal Society of London, vol.58, pp.240-242, 1895.

R. Perez and P. Ineichen,

R. Stewart, Modeling daylight availability and irradiance components from direct and global irradiance, Solar energy, vol.44, issue.5, pp.271-289, 1990.

M. Boudhaim and -. , , 2018.

R. Perez, R. Seals, and J. Michalsky, All-weather model for sky luminance distribution-preliminary configuration and validation, Solar energy, vol.50, issue.3, pp.235-245, 1993.
DOI : 10.1016/0038-092x(93)90017-i

B. Phong and . Tuong, Illumination for computer generated pictures, Communications of the ACM, vol.18, issue.6, pp.311-317, 1975.
DOI : 10.1145/360825.360839

. Tutorial-fivephasemethod_v2, , 2017.

C. F. Reinhart and O. Walkenhorst, Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds, Energy and buildings, vol.33, pp.683-697, 2001.

C. F. Reinhart, J. Mardaljevic, and Z. Rogers, Dynamic daylight performance metrics for sustainable building design, Leukos, vol.3, issue.1, 2006.

J. Karlsson, M. Rubin, and A. Roos, Evaluation of predictive models for the angle-dependent total solar energy transmittance of glazing materials, Solar Energy, vol.71, issue.1, pp.23-31, 2001.

C. Spearman, The proof and measurement of association between two things, The American journal of psychology, vol.15, issue.1, pp.72-101, 1904.

S. Stevanovi?, Optimization of passive solar design strategies: A review, Renewable and Sustainable Energy Reviews, vol.25, pp.177-196, 2013.

J. Suk, M. Yong, K. Schiler, and . Kensek, discomfort glare metrics, 2016.

S. V. Szokolay, . Tam1992]-filippo, and . Tampieri, Introduction to architectural science: the basis of sustainable design, Graphics Gems III, pp.231-232, 1992.

A. Tsangrassoulis and V. Bourdakis, Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria, Renewable Energy, vol.28, issue.13, pp.2157-2162, 2003.

M. Ubbelohde, C. Susan, ;. Humann, . Ward, and J. Gregory, Comparative evaluation of four daylighting software programs, Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp.23-28, 1994.

G. Ward, Simulating the daylight performance of complex fenestration systems using bidirectional scattering distribution functions within radiance, Leukos, vol.7, pp.241-261, 2011.
DOI : 10.1080/15502724.2011.10732150

URL : https://digital.library.unt.edu/ark:/67531/metadc833429/m2/1/high_res_d/1012245.pdf

J. Wienold and J. Christoffersen, Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras, Energy and buildings, vol.38, issue.7, pp.743-757, 2006.

J. Wienold, Comparison of luminance-based metrics in different lighting conditions, Proceedings of the CIE 2017, Midterm Meeting, 2017.

J. Wienold, Evalglare-A new RADIANCE-based tool to evaluate daylight glare in office spaces, Proceedings of Building Simulation, pp.944-951, 2009.

W. ;. Jeong and J. Son, An Algorithm to Translate Building Topology in Building Information Modeling into Object-Oriented Physical Modeling-Based Building Energy Modeling, In: Energies, vol.9, issue.1, 2016.
DOI : 10.3390/en9010050

URL : https://www.mdpi.com/1996-1073/9/1/50/pdf

K. Van-den-wymelenberg and M. Inanici, A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight, Leukos, vol.10, pp.145-164, 2014.

. Cie, Outline of a standard procedure for computing visual comfort ratings for interior lighting, Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries, vol.61, pp.2013-2017, 1966.