G. H. Moser, J. Schrader, and A. Deussen, Turnover of adenosine in plasma of human and dog blood, Am

, J. Physiol. -Cell Physiol, vol.256, pp.799-806, 1989.

A. Laham, N. Claperon, J. J. Durussel, E. Fattal, J. Delattre et al., Liposomally entrapped adenosine triphosphate: Improved efficiency against experimental brain ischaemia in the rat, J. Chromatogr. A, vol.440, pp.94549-94556, 1988.

E. Brailoiu, D. N. Serban, S. Slatineanu, C. M. Filipeanu, B. C. Petrescu et al., Effects of liposome-entrapped adenosine in the isolated rat aorta, Eur. J. Pharmacol, vol.250, pp.489-492, 1993.

A. Takatsuki, K. Arima, and G. Tamura, Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin, J. Antibiot. (Tokyo), vol.24, pp.215-223, 1971.

S. Hynie and J. Smrt, Effects of adenosine 5?-phosphate esters with lipoid hydroxy compounds (adenosine nucleolipids) on the activity of enzymes of cyclic AMP system, FEBS Lett, vol.94, pp.80971-80976, 1978.

S. Hynie and J. Smrt, The inhibitory effects of some adenosine nucleolipids on the lipolysis in rat epididymal fat pads in vitro, Collect. Czechoslov. Chem. Commun, vol.44, pp.1651-1656, 1979.

T. Yasuda and Y. Inoue, Steady-State Kinetic Studies of Binding and Catalysis by Ribonuclease T2: A Microenvironmental Survey of the Active Site by Using a Series of Adenosine-3'-and-5'-Alkylphosphates, J. Biochem. (Tokyo), vol.94, pp.1475-1481, 1983.

K. A. Jacobson, J. Zimmet, R. Schulick, S. Barone, J. W. Daly et al., Adenosine analogs with covalently attached lipids have enhanced potency at A1-adenosine receptors, FEBS Lett, vol.225, pp.81138-81147, 1987.
DOI : 10.1016/0014-5793(87)81138-9

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2887%2981138-9

K. A. Jacobson and J. W. Daly, Purine Functionalized Congeners as Molecular Probes for Adenosine Receptors, Nucleosides Nucleotides, vol.10, pp.1029-1038, 1991.

U. Bulbake, S. Doppalapudi, N. Kommineni, and W. Khan, Liposomal Formulations in Clinical Use: An Updated Review, Pharmaceutics, issue.9, 2017.
DOI : 10.3390/pharmaceutics9020012

URL : https://www.mdpi.com/1999-4923/9/2/12/pdf

D. Gutman, H. Epstein, N. Koroukhov, and G. Golomb, Liposomal delivery system of adenosine for modulating inflammation, J. Drug Deliv. Sci. Technol, vol.19, pp.50049-50053, 2009.

H. Takahama, T. Minamino, H. Asanuma, M. Fujita, T. Asai et al., Prolonged Targeting of Ischemic/Reperfused Myocardium by Liposomal Adenosine Augments Cardioprotection in Rats, J. Am. Coll. Cardiol, vol.53, pp.709-717, 2009.

C. Corciulo, M. Lendhey, T. Wilder, H. Schoen, A. S. Cornelissen et al., Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression, Nat. Commun, vol.8, p.15019, 2017.
DOI : 10.1038/ncomms15019

URL : https://www.nature.com/articles/ncomms15019.pdf

K. Hagisawa, M. Kinoshita, H. Miyawaki, S. Sato, H. Miyazaki et al., Fibrinogen ?-Chain Peptide-Coated Adenosine 5'Diphosphate-Encapsulated Liposomes Rescue Mice From Lethal Blast Lung Injury via Adenosine Signaling, Crit. Care Med, vol.44, pp.827-837, 2016.
DOI : 10.1097/ccm.0000000000001707

K. Nishikawa, K. Hagisawa, M. Kinoshita, S. Shono, S. Katsuno et al., Fibrinogen ?-chain peptide-coated, ADP-encapsulated liposomes rescue thrombocytopenic rabbits from non-compressible liver hemorrhage, J. Thromb. Haemost, vol.10, pp.2137-2148, 2012.

Y. Okamura, S. Katsuno, H. Suzuki, H. Maruyama, M. Handa et al., Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute, J. Control. Release Off. J. Control. Release Soc, vol.148, pp.373-379, 2010.

Y. Okamura, S. Takeoka, K. Eto, I. Maekawa, T. Fujie et al., Development of fibrinogen gamma-chain peptide-coated, adenosine diphosphate-encapsulated liposomes as a

H. Sarojini, A. T. Billeter, S. Eichenberger, D. Druen, R. Barnett et al., Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study, PLOS ONE, vol.12, p.174899, 2017.
DOI : 10.1371/journal.pone.0174899

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0174899&type=printable

J. Wang, R. Wan, Y. Mo, M. Li, Q. Zhang et al., Intracellular delivery of adenosine triphosphate enhanced healing process in full-thickness skin wounds in diabetic rabbits, Am. J. Surg, vol.199, pp.823-832, 2010.

J. Wang, Q. Zhang, R. Wan, Y. Mo, M. Li et al., Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits, Ann. Plast. Surg, vol.62, pp.180-186, 2009.

S. Liu, G. Zhen, R. Li, and S. Doré, Acute bioenergetic intervention or pharmacological preconditioning protects neuron against ischemic injury, J. Exp. Stroke Transl. Med, vol.6, pp.7-17, 2013.
DOI : 10.4172/1939-067x.1000140

URL : http://www.openaccessjournals.com/articles/acute-bioenergetic-intervention-or-pharmacological-preconditioning-protects-neuron-against-ischemic-injury.pdf

B. N. Cronstein and C. Corciulo, Methods and compositions for treating osteoarthritis and promoting cartilage formation, US20180036238A1, 2018.

K. Hagisawa, M. Kinoshita, H. Miyawaki, S. Sato, H. Miyazaki et al., Fibrinogen ?-Chain Peptide-Coated Adenosine 5

, Diphosphate-Encapsulated Liposomes Rescue Mice From Lethal Blast Lung Injury via Adenosine Signaling, Crit. Care Med, vol.44, pp.827-837, 2016.

P. M. D'onofrio and P. D. Koeberle, What can we learn about stroke from retinal ischemia models?, Acta Pharmacol. Sin, vol.34, pp.91-103, 2013.

W. D. Ehringer and S. Chien, Direct cellular energy delivery system, Google Patents, 2015.

R. Mo, T. Jiang, and Z. Gu, Enhanced Anticancer Efficacy by ATP-Mediated Liposomal Drug Delivery, Angew. Chem, vol.126, pp.5925-5930, 2014.
DOI : 10.1002/ange.201400268

K. S. Erga, C. N. Seubert, H. Liang, L. Wu, J. C. Shryock et al., Role of A2A-adenosine receptor activation for ATP-mediated coronary vasodilation in guinea-pig isolated heart, Br. J. Pharmacol, vol.130, pp.1065-1075, 2000.

C. Maldonado, S. B. Pushpakumar, G. Perez-abadia, S. Arumugam, and A. N. Lane, Administration of exogenous adenosine triphosphate to ischemic skeletal muscle induces an energy-sparing effect: Role of adenosine receptors, J. Surg. Res, vol.181, pp.15-22, 2013.

S. Shuto, S. Ueda, S. Imamura, K. Fukukawa, A. Matsuda et al., A facile one-step synthesis of 5?-phosphatidylnucleosides by an enzymatic two-phase reaction, Tetrahedron Lett, vol.28, pp.95685-95690, 1987.

Y. Itojima, Y. Ogawa, K. Tsuno, N. Handa, and H. Yanagawa, Spontaneous formation of helical structures from phospholipid-nucleoside conjugates, Biochemistry, vol.31, pp.4757-4765, 1992.

T. Shiraishi, K. Tezuka, and Y. Uda, Selective inhibition of lignoceroyl-CoA synthetase by adenosine 5?-alkylphosphates, FEBS Lett, vol.352, pp.353-355, 1994.
DOI : 10.1016/0014-5793(94)00992-9

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2894%2900992-9

K. Machida, T. Tanaka, K. Shibata, and M. Taniguchi, Inhibitory effects of nucleoside 5?-alkylphosphates on sexual agglutination in Saccharomyces cerevisiae, FEMS Microbiol. Lett, vol.147, pp.17-22, 1997.

M. Ahlers, H. Ringsdorf, H. Rosemeyer, and F. Seela, Orientation, recognition, and photoreaction of nucleolipids in model membranes, Colloid Polym. Sci, vol.268, pp.132-142, 1990.

L. Moreau, M. Camplo, M. Wathier, N. Taib, M. Laguerre et al., Real Time Imaging of Supramolecular Assembly Formation via Programmed Nucleolipid Recognition, J. Am. Chem. Soc, vol.130, pp.14454-14455, 2008.
DOI : 10.1021/ja805974g

URL : https://hal.archives-ouvertes.fr/hal-00386889

L. Moreau, M. W. Grinstaff, and P. Barthélémy, Vesicle formation from a synthetic adenosine based lipid, Tetrahedron Lett, vol.46, pp.1593-1596, 2005.
DOI : 10.1016/j.tetlet.2005.01.095

E. Lepeltier, C. Bourgaux, V. Rosilio, J. H. Poupaert, F. Meneau et al., Self-Assembly of Squalene, vol.29, pp.14795-14803, 2013.

A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-mouelhi, O. F. Turkoglu et al.,

J. Dantec, S. Mougin, H. Valetti, V. Chacun, D. Nicolas et al., Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nat. Nanotechnol, vol.9, pp.1054-1062, 2014.

R. Angelico, A. Ceglie, F. Cuomo, C. Cardellicchio, G. Mascolo et al., Catanionic Systems from Conversion of Nucleotides into Nucleo-Lipids, Langmuir, vol.24, pp.2348-2355, 2008.

P. Walde, M. Wessicken, U. Rädler, N. Berclaz, K. Conde-frieboes et al., Preparation and Characterization of Vesicles from Mono-n-alkyl Phosphates and Phosphonates, J. Phys. Chem. B, vol.101, pp.7390-7397, 1997.

C. Heiz, U. Rädler, and P. L. Luisi, Spectroscopy and Recognition Chemistry of Micelles from Monoalkyl Phosphoryl Nucleosides, J. Phys. Chem. B, vol.102, pp.8686-8691, 1998.

D. Berti, F. Pini, P. Baglioni, and J. Teixeira, Micellar Aggregates from Short-Chain Phospholiponucleosides: A SANS Study, J. Phys. Chem. B, vol.103, pp.1738-1745, 1999.

D. Berti, F. Bombelli, M. Fortini, and P. Baglioni, Amphiphilic Self-Assemblies Decorated by Nucleobases, J. Phys. Chem. B, vol.111, pp.11734-11744, 2007.
DOI : 10.1021/jp0744073

D. Berti, P. Barbaro, I. Bucci, and P. Baglioni, Molecular Recognition through H-Bonding in Micelles Formed by Dioctylphosphatidyl Nucleosides, J. Phys. Chem. B, vol.103, pp.4916-4922, 1999.

F. B. Bombelli, D. Berti, M. Almgren, G. Karlsson, and P. Baglioni, Light Scattering and Cryo-Transmission Electron Microscopy Investigation of the Self-Assembling Behavior of Di-C12P-Nucleosides in Solution, J. Phys. Chem. B, vol.110, pp.17627-17637, 2006.

F. B. Bombelli, D. Berti, S. Milani, M. Lagi, P. Barbaro et al., Collective headgroup conformational transition in twisted micellar superstructures, Soft Matter, vol.4, pp.1102-1113, 2008.

D. Berti, P. Baglioni, S. Bonaccio, G. Barsacchi-bo, and P. L. Luisi, Base Complementarity and Nucleoside Recognition in Phosphatidylnucleoside Vesicles, J. Phys. Chem. B, vol.102, pp.303-308, 1998.

C. Montis, S. Milani, D. Berti, and P. Baglioni, Complexes of nucleolipid liposomes with single-stranded and double-stranded nucleic acids, J. Colloid Interface Sci, vol.373, pp.57-68, 2012.

S. Milani, F. Bombelli, D. Berti, T. Hauß, S. Dante et al., Structural Investigation of Bilayers Formed by 1-Palmitoyl-2-Oleoylphosphatidylnucleosides, Biophys. J, vol.90, pp.1260-1269, 2006.

C. Montis, Y. Gerelli, G. Fragneto, T. Nylander, P. Baglioni et al., Nucleolipid bilayers: A quartz crystal microbalance and neutron reflectometry study, Colloids Surf. B Biointerfaces, vol.137, pp.203-213, 2016.

D. Berti, L. Franchi, P. Baglioni, and P. L. Luisi, Molecular Recognition in Monolayers. Complementary Base Pairing in Dioleoylphosphatidyl Derivatives of Adenosine, Uridine, and Cytidine, Langmuir, vol.13, pp.3438-3444, 1997.

D. Berti, P. L. Luisi, and P. Baglioni, Molecular recognition in supramolecular structures formed by phosphatidylnucleosides-based amphiphiles, Colloids Surf. Physicochem. Eng. Asp, vol.167, pp.95-103, 2000.

N. Taib, A. Aimé, L. Moreau, M. Camplo, S. Houmadi et al., Formation of supramolecular systems via directed Nucleoside-Lipid recognition, J. Colloid Interface Sci, vol.377, pp.122-130, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724332

A. Gaudin, Squalenoyl-Adenosine Nanoparticles and cerebral ischemia : characterization of the passage of the Blood-Brain Barrier, pharmacological efficacy and theranostic, phdthesis, 2014.

R. F. Brown, C. T. Andrews, and A. H. Elcock, Stacking free energies of all DNA and RNA nucleoside pairs and dinucleoside-monophosphates computed using recently revised AMBER parameters and compared with experiment, J. Chem. Theory Comput, vol.11, pp.2315-2328, 2015.

N. Taib, A. Aimé, S. Houmadi, S. Castano, P. Barthélémy et al., Chemical Details on Nucleolipid Supramolecular Architecture: Molecular Modeling and Physicochemical Studies, vol.28, pp.7452-7460, 2012.
DOI : 10.1021/la300744x

S. Milani, D. Berti, S. Dante, T. Hauss, and P. Baglioni, Intercalation of single-strand oligonucleotides between nucleolipid anionic membranes: a neutron diffraction study, Langmuir, vol.25, pp.4084-4092, 2008.

V. Allain, C. Bourgaux, and P. Couvreur, Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices, Nucleic Acids Res, vol.40, pp.1891-1903, 2012.
DOI : 10.1093/nar/gkr681

URL : https://academic.oup.com/nar/article-pdf/40/5/1891/3855560/gkr681.pdf

M. S. Al-dosari and X. Gao, Nonviral Gene Delivery: Principle, Limitations, and Recent Progress, AAPS J, vol.11, 2009.
DOI : 10.1208/s12248-009-9143-y

URL : http://europepmc.org/articles/pmc2782077?pdf=render

M. Banchelli, D. Berti, and P. Baglioni, Molecular Recognition Drives Oligonucleotide Binding to Nucleolipid Self-Assemblies, Angew. Chem. Int. Ed, vol.46, pp.3070-3073, 2007.
DOI : 10.1002/ange.200604826

S. Milani, F. Bombelli, D. Berti, and P. Baglioni, Nucleolipoplexes: A New Paradigm for Phospholipid Bilayer?Nucleic Acid Interactions, J. Am. Chem. Soc, vol.129, pp.11664-11665, 2007.
DOI : 10.1021/ja0714134

S. Milani, G. Karlsson, K. Edwards, P. Baglioni, and D. Berti, Association of polynucleotides with nucleolipid bilayers driven by molecular recognition, J. Colloid Interface Sci, vol.363, pp.232-240, 2011.
DOI : 10.1016/j.jcis.2011.05.088

P. Chabaud, M. Camplo, D. Payet, G. Serin, L. Moreau et al., Cationic nucleoside lipids for gene delivery, Bioconjug. Chem, vol.17, pp.466-472, 2006.
DOI : 10.1021/bc050162q

URL : https://hal.archives-ouvertes.fr/hal-00165573

L. Moreau, P. Barthélémy, Y. Li, D. Luo, C. A. Prata et al., Nucleoside phosphocholine amphiphile for in vitro DNA transfection, Mol. Biosyst, vol.1, pp.260-264, 2005.
DOI : 10.1039/b503302k

C. Montis, P. Baglioni, and D. Berti, Monitoring the interaction of nucleolipoplexes with model membranes, Soft Matter, vol.10, pp.39-43, 2013.

M. Y. Arteta, D. Berti, C. Montis, R. A. Campbell, L. A. Clifton et al., Molecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes, Soft Matter, vol.10, pp.8401-8405, 2014.

P. Couvreur, B. Stella, L. H. Reddy, H. Hillaireau, C. Dubernet et al.,

N. Rocco, P. Dereuddre-bosquet, V. Clayette, V. Rosilio, J. Marsaud et al., Squalenoyl Nanomedicines as Potential Therapeutics, vol.6, pp.2544-2548, 2006.

E. Lepeltier, C. Bourgaux, H. Amenitsch, V. Rosilio, S. Lepetre-mouelhi et al., Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles, Eur. J. Pharm. Biopharm, vol.96, pp.89-95, 2015.

A. Gaudin, S. Lepetre-mouelhi, J. Mougin, M. Parrod, G. Pieters et al., Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis, J. Controlled Release, vol.212, pp.50-58, 2015.

D. Sobot, S. Mura, S. O. Yesylevskyy, L. Dalbin, F. Cayre et al., Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery, Nat. Commun, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666114

A. Gaudin, O. Tagit, D. Sobot, S. Lepetre-mouelhi, J. Mougin et al., Transport Mechanisms of Squalenoyl-Adenosine Nanoparticles Across the Blood-Brain Barrier, Chem. Mater, vol.27, pp.3636-3647, 2015.

H. Ragelle, F. Danhier, V. Préat, R. Langer, and D. G. Anderson, Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures, Expert Opin. Drug Deliv, vol.14, pp.851-864, 2017.
DOI : 10.1080/17425247.2016.1244187

B. M. Massie, C. M. O'connor, M. Metra, P. Ponikowski, J. R. Teerlink et al.,

M. M. Cleland, A. Givertz, P. Voors, G. A. Delucca, C. M. Mansoor et al.,

R. Dittrich, A. Adenosine, and . Antagonist, Authors contributions Participated in research design: Rouquette, Lepetre-Mouelhi and Couvreur Conducted experiments: Rouquette, Dufrançais, Yang, Mougin Contributed new reagents or analytic tools: Pieters and Garcia-Argote Performed data analysis: Rouquette Wrote or contributed to the writing of the manuscript, Acute Heart Failure

S. A. Baldwin, P. R. Beal, S. Y. Yao, A. E. King, C. Ce et al., The equilibrative nucleoside transporter family, SLC29, Pflügers Archiv, vol.447, pp.735-743, 2004.

P. A. Borea, S. Gessi, S. Merighi, F. Vincenzi, and K. Varani, Pharmacology of Adenosine Receptors: The State of the Art, Physiological reviews, vol.98, pp.1591-1625, 2018.

R. C. Boswell-casteel and F. A. Hays, Equilibrative nucleoside transporters-A review, Nucleosides, Nucleotides and Nucleic Acids, vol.36, pp.7-30, 2017.
DOI : 10.1080/15257770.2016.1210805

URL : http://europepmc.org/articles/pmc5728162?pdf=render

Y. Cheng and W. H. Prusoff, Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochemical pharmacology, vol.22, pp.3099-3108, 1973.

P. Couvreur, B. Stella, L. H. Reddy, H. Hillaireau, C. Dubernet et al., Squalenoyl nanomedicines as potential therapeutics, vol.6, pp.2544-2548, 2006.
DOI : 10.1021/nl061942q

B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, J. Linden, and C. E. Müller, International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update, Pharmacological reviews, vol.63, pp.1-34, 2011.

A. Gaudin, S. Lepetre-mouelhi, J. Mougin, M. Parrod, G. Pieters et al., Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis, Journal of Controlled Release, vol.212, pp.50-58, 2015.

A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-mouelhi, O. F. Turkoglu et al., Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nature nanotechnology, vol.9, p.1054, 2014.
DOI : 10.1038/nnano.2014.274

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351925

J. L. Goldstein, M. S. Brown, R. G. Anderson, R. Dw, and W. J. Schneider, Receptor-mediated endocytosis: concepts emerging from the LDL receptor system, Annual review of cell biology, vol.1, pp.1-39, 1985.
DOI : 10.1146/annurev.cb.01.110185.000245

L. H. Heitman, A. Goblyos, A. M. Zweemer, R. Bakker, T. Mulder-krieger et al., A series of 2, 4-disubstituted quinolines as a new class of allosteric enhancers of the adenosine A3 receptor, Journal of medicinal chemistry, vol.52, pp.926-931, 2009.

L. H. Reddy, C. Dubernet, S. L. Mouelhi, P. E. Marque, D. Desmaele et al., A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types, Journal of controlled release, vol.124, pp.20-27, 2007.

D. Sobot, S. Mura, M. Rouquette, B. Vukosavljevic, F. Cayre et al., Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer Cells, Molecular Therapy, vol.25, pp.1596-1605, 2017.
DOI : 10.1016/j.ymthe.2017.05.016

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498828

D. Sobot, S. Mura, S. O. Yesylevskyy, L. Dalbin, F. Cayre et al., Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery, Nature Communications, vol.8, p.15678, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666114

L. Yan, J. C. Burbiel, A. Maaß, and C. E. Müller, Adenosine receptor agonists: from basic medicinal chemistry to clinical development, Expert opinion on emerging drugs, vol.8, pp.537-576, 2003.
DOI : 10.1517/eoed.8.2.537.21128

X. Yang, G. Dong, T. J. Michiels, E. B. Lenselink, L. Heitman et al., A covalent antagonist for the human adenosine A2A receptor, Purinergic signalling, vol.13, pp.191-201, 2017.

S. O. Yesylevskyy, C. Ramseyer, M. Savenko, S. Mura, and P. Couvreur, Low-Density Lipoproteins and Human Serum Albumin as Carriers of Squalenoylated Drugs: Insights from Molecular Simulations, Molecular pharmaceutics, vol.15, pp.585-591, 2018.
DOI : 10.1021/acs.molpharmaceut.7b00952

URL : https://hal.archives-ouvertes.fr/hal-01684377

B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, J. Linden, and C. E. Müller, Nomenclature and Classification of Adenosine Receptors-An Update, Pharmacol Rev, vol.63, issue.1, pp.1-34, 2011.

P. A. Borea, S. Gessi, S. Merighi, F. Vincenzi, and K. Varani, Pharmacology of Adenosine Receptors: The State of the Art, Physiological reviews, vol.98, issue.3, pp.1591-625, 2018.

P. A. Borea, S. Gessi, S. Merighi, and K. Varani, Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects?, Trends in Pharmacological Sciences, vol.37, issue.6, pp.419-453, 2016.

J. Chen, H. K. Eltzschig, and B. B. Fredholm, Adenosine receptors as drug targets -what are the challenges?, Nat Rev Drug Discov, vol.12, issue.4, pp.265-86, 2013.
DOI : 10.1038/nrd3955

URL : http://europepmc.org/articles/pmc3930074?pdf=render

M. Peleli, B. B. Fredholm, L. Sobrevia, and M. Carlström, Pharmacological targeting of adenosine receptor signaling. Molecular Aspects of Medicine, 2017.

M. Kazemzadeh-narbat, N. Annabi, A. Tamayol, R. Oklu, A. Ghanem et al., AdenosineAssociated Delivery Systems, J Drug Target, vol.23, issue.7-8, pp.580-96, 2015.

A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-mouelhi, O. F. Turkoglu et al., Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nat Nano, vol.9, issue.12, pp.1054-62, 2014.
DOI : 10.1038/nnano.2014.274

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351925

A. Gaudin, S. Lepetre-mouelhi, J. Mougin, M. Parrod, G. Pieters et al.,

. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis, Journal of Controlled Release, vol.212, pp.50-58, 2015.

R. Shegokar and K. Singh, Conversion of stavudine lipid nanoparticles into dry powder, Int J Pharm Biosci, vol.2, pp.443-57, 2011.

W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Freeze-drying of nanoparticles: Formulation, process and storage considerations, Advanced Drug Delivery Reviews, vol.58, issue.15, pp.1688-713, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02020761

N. Rozik, M. Antonietti, J. Yuan, and K. Tauer, Polymerized ionic liquid as stabilizer in aqueous emulsion polymerization enables a hydrophilic-hydrophobic transition during film formation, Macromolecular rapid communications, vol.34, issue.8, pp.665-71, 2013.

K. Sonaje, Y. Chen, H. Chen, S. Wey, J. Juang et al., Enteric-coated capsules filled with freeze-dried chitosan/poly (?-glutamic acid) nanoparticles for oral insulin delivery, Biomaterials, vol.31, issue.12, pp.3384-94, 2010.

M. K. Lee, M. Y. Kim, S. Kim, and J. Lee, Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate, Journal of pharmaceutical sciences, vol.98, issue.12, pp.4808-4825, 2009.

S. Doktorovova, R. Shegokar, L. Fernandes, P. Martins-lopes, A. M. Silva et al., Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Pharmaceutical development and technology, vol.19, pp.922-931, 2014.

C. Schwarz and W. Mehnert, Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN), International Journal of Pharmaceutics, vol.157, issue.2, pp.171-180, 1997.

L. Souza, E. Silva, A. Martins, M. Mota, R. Braga et al., Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release, European Journal of Pharmaceutics and Biopharmaceutics, vol.79, issue.1, pp.189-96, 2011.

E. Lepeltier, C. Bourgaux, H. Amenitsch, V. Rosilio, S. Lepetre-mouelhi et al., Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles

, European Journal of Pharmaceutics and Biopharmaceutics, vol.96, pp.89-95, 2015.

A. Rampino, M. Borgogna, P. Blasi, B. Bellich, and A. Cesàro, Chitosan nanoparticles: preparation, size evolution and stability, International Journal of Pharmaceutics, vol.455, issue.1-2, pp.219-247, 2013.
DOI : 10.1016/j.ijpharm.2013.07.034

P. V. Date, A. Samad, and P. V. Devarajan, Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying, AAPS PharmSciTech, vol.11, issue.1, pp.304-317, 2010.

J. Beirowski and H. Gieseler, Stabilisation of nanoparticles during freeze drying: The difference to proteins, European Pharmaceutical Review, issue.4, 2011.

J. Beirowski, S. Inghelbrecht, A. Arien, and H. Gieseler, Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution, Journal of pharmaceutical sciences, vol.100, issue.5, pp.1958-68, 2011.

G. Wang and A. Haymet, Trehalose and other sugar solutions at low temperature: Modulated differential scanning calorimetry (MDSC), J Phys Chem B, vol.102, issue.27, pp.5341-5348, 1998.
DOI : 10.1021/jp980942e

D. Saha, F. Testard, I. Grillo, F. Zouhiri, D. Desmaele et al., The role of solvent swelling in the self-assembly of squalene based nanomedicines, Soft Matter, vol.11, issue.21, pp.4173-4182, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228690

M. Y. Kim and J. Lee, Chitosan fibrous 3D networks prepared by freeze drying. Carbohydrate polymers, vol.84, pp.1329-1365, 2011.
DOI : 10.1016/j.carbpol.2011.01.029

J. Han, C. Zhou, Y. Wu, F. Liu, and Q. Wu, Self-assembling behavior of cellulose nanoparticles during freezedrying: effect of suspension concentration, particle size, crystal structure, and surface charge, Biomacromolecules, vol.14, issue.5, pp.1529-1569, 2013.

P. Wessman, K. Edwards, and D. Mahlin, Structural effects caused by spray-and freeze-drying of liposomes and bilayer disks, Journal of pharmaceutical sciences, vol.99, issue.4, pp.2032-2080, 2010.

L. Boge, A. Västberg, A. Umerska, H. Bysell, J. Eriksson et al., Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide, Journal of Colloid and Interface Science, vol.522, pp.126-161, 2018.

E. Lepeltier, C. Bourgaux, and P. Couvreur, Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices, Advanced Drug Delivery Reviews, vol.71, pp.86-97, 2014.
DOI : 10.1016/j.addr.2013.12.009

R. Campardelli, D. Porta, G. Reverchon, and E. , Solvent elimination from polymer nanoparticle suspensions by continuous supercritical extraction, The Journal of Supercritical Fluids, vol.70, pp.100-105, 2012.
DOI : 10.1016/j.supflu.2012.06.005

H. D. Andersen, C. Wang, L. Arleth, G. H. Peters, and P. Westh, Reconciliation of opposing views on membrane-sugar interactions, PNAS, vol.108, issue.5, pp.1874-1882, 2011.

V. Agrahari and V. Agrahari, Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today, 2018.

T. Ramirez, A. Strigun, A. Verlohner, H. Huener, E. Peter et al., Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells, Archives of toxicology, vol.92, issue.2, pp.893-906, 2018.

S. C. Sahu, S. Roy, J. Zheng, J. J. Yourick, and R. L. Sprando, Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation, Journal of Applied Toxicology, vol.34, issue.11, pp.1200-1208, 2014.

S. C. Sahu, J. Njoroge, S. M. Bryce, J. J. Yourick, and R. L. Sprando, Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay, Journal of Applied Toxicology, vol.34, issue.11, pp.1226-1260, 2014.

S. C. Sahu, J. Zheng, L. Graham, L. Chen, J. Ihrie et al., Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture, Journal of Applied Toxicology, vol.34, issue.11, pp.1155-66, 2014.

. Iv and . References,

M. A. Zimmerman, E. Tak, S. F. Ehrentraut, M. Kaplan, A. Giebler et al., Equilibrative nucleoside transporter (ENT)-1-dependent elevation of extracellular adenosine protects the liver during ischemia and reperfusion, Hepatology, vol.58, issue.5, pp.1766-78, 2013.

M. L. Hart, I. C. Gorzolla, J. Schittenhelm, S. C. Robson, and H. K. Eltzschig, SP1-Dependent Induction of CD39 Facilitates Hepatic Ischemic Preconditioning, J Immunol, vol.184, issue.7, pp.4017-4041, 2010.
DOI : 10.4049/jimmunol.0901851

URL : http://www.jimmunol.org/content/184/7/4017.full.pdf

M. L. Hart, C. Much, I. C. Gorzolla, J. Schittenhelm, D. Kloor et al., Extracellular Adenosine Production by Ecto-5?-Nucleotidase Protects During Murine Hepatic Ischemic Preconditioning
DOI : 10.1053/j.gastro.2008.07.064

, Gastroenterology, vol.135, issue.5, pp.1739-1750, 2008.

S. Todo, Y. Zhu, S. Zhang, M. B. Jin, N. Ishizaki et al., Attenuation of ischemic liver injury by augmentation of endogenous adenosine, Transplantation, vol.63, issue.2, pp.217-240, 1997.

Y. Day, M. A. Marshall, L. Huang, M. J. Mcduffie, M. D. Okusa et al., Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction, American Journal of Physiology -Gastrointestinal and Liver Physiology, vol.286, issue.2, pp.285-93, 2004.

Y. Day, Y. Li, J. M. Rieger, S. I. Ramos, M. D. Okusa et al., A2A Adenosine Receptors on Bone MarrowDerived Cells Protect Liver from Ischemia-Reperfusion Injury, J Immunol, vol.174, issue.8, pp.5040-5046, 2005.
DOI : 10.4049/jimmunol.174.8.5040

URL : http://www.jimmunol.org/content/174/8/5040.full.pdf

C. M. Lappas, Y. Day, M. A. Marshall, V. H. Engelhard, and J. Linden, Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation, J Exp Med, vol.203, issue.12, pp.2639-2687, 2006.
DOI : 10.1083/jcb1754oia9

Z. Cao, Y. Yuan, G. Jeyabalan, Q. Du, A. Tsung et al., Preactivation of NKT cells with ?-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor, American Journal of Physiology -Gastrointestinal and Liver Physiology, vol.297, issue.2, pp.249-58, 2009.

M. A. Zimmerman, A. Grenz, E. Tak, M. Kaplan, D. Ridyard et al., Signaling through hepatocellular A2B adenosine receptors dampens ischemia and reperfusion injury of the liver, vol.110, pp.12012-12019, 2013.

A. Gaudin, M. Yemisci, H. Eroglu, S. Lepetre-mouelhi, O. F. Turkoglu et al., Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury, Nat Nano, vol.9, issue.12, pp.1054-62, 2014.
DOI : 10.1038/nnano.2014.274

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351925

T. Kalogeris, C. P. Baines, M. Krenz, and R. J. Korthuis, Ischemia/Reperfusion. Compr Physiol, vol.7, issue.1, pp.113-70, 2016.

A. Gaudin, S. Lepetre-mouelhi, J. Mougin, M. Parrod, G. Pieters et al.,

. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis, Journal of Controlled Release, vol.212, pp.50-58, 2015.

E. Lepeltier, C. Bourgaux, and P. Couvreur, Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices. Advanced Drug Delivery Reviews, vol.71, pp.86-97, 2014.
DOI : 10.1016/j.addr.2013.12.009

C. Peralta, G. Hotter, D. Closa, E. Gelpí, O. Bulbena et al., Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: Role of nitric oxide and adenosine, Hepatology, vol.25, issue.4, pp.934-941, 1997.

M. Net, R. Valero, R. Almenara, P. Barros, L. Capdevila et al., The Effect of Normothermic Recirculation is Mediated by Ischemic Preconditioning in NHBD Liver Transplantation, American Journal of Transplantation, vol.5, issue.10, pp.2385-92, 2005.

A. Gaudin, O. Tagit, D. Sobot, S. Lepetre-mouelhi, J. Mougin et al., Transport Mechanisms of Squalenoyl-Adenosine Nanoparticles Across the Blood-Brain Barrier, Chem Mater, vol.27, issue.10, pp.3636-3683, 2015.

D. K. Spady, D. W. Bilheimer, and J. M. Dietschy, Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster, Proc Natl Acad Sci U S A, vol.80, issue.11, pp.3499-503, 1983.

R. Guinzberg, D. Cortés, A. Díaz-cruz, H. Riveros-rosas, R. Villalobos-molina et al., Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors, American Journal of Physiology -Endocrinology and Metabolism, vol.290, issue.5, pp.940-51, 2006.

W. W. Lautt and . Adenosine,

&. Morgan and . Claypool, Life Sciences, 2009.