M. Woloszyn and C. Rode, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Building Simulation, vol.1, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353433

J. Delgado, N. M. Ramos, E. Barreira, and V. D. Freitas, A critical review of hygrothermal models used in porous building materials, Journal of Porous Media, vol.13, p.221234, 2010.

O. F. Osanyintola, P. Talukdar, and C. J. Simonson, Eect of initial conditions, boundary conditions and thickness on the moisture buering capacity of spruce plywood, Energy and Buildings, vol.38, p.12831292, 2006.

M. Zhang, M. Qin, C. Rode, and Z. Chen, Moisture buering phenomenon and its impact on building energy consumption, Applied Thermal Engineering, vol.124, p.337345, 2017.
DOI : 10.1016/j.applthermaleng.2017.05.173

H. Radiarison, R. Rémond, and E. Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials, Building and Environment, vol.89, p.356368, 2015.

H. L. Hens, Combined heat, air, moisture modelling: A look back, how, of help?, Building and Environment, vol.91, p.138151, 2015.

C. Feng, H. Janssen, Y. Feng, and Q. Meng, Hygric properties of porous building materials: Analysis of measurement repeatability and reproducibility, vol.85, p.160172, 2015.

M. Steeman, A. Janssens, H. J. Steeman, M. V. Belleghem, and M. D. Paepe, On coupling 1D non-isothermal heat and mass transfer in porous materials with a multizone building energy simulation model, Building and Environment, vol.45, p.865877, 2010.

G. Almeida, R. Remond, and P. Perré, Evidence of Dual-Scale Diusion Mechanisms in Low Density Fibreboards : Experiment and Multiscale Modelling, Proceedings of the 17th International Drying Symposium (IDS'2010), p.10231030, 2010.

R. Rémond, G. Almeida, and P. Perré, The gripped-box model: A simple and robust formulation of sorption hysteresis for lignocellulosic materials, Construction and Building Materials, vol.170, p.716724, 2018.

S. Y. Yi, L. W. Fan, J. H. Fu, X. Xu, and Z. T. Yu, Experimental determination of the water vapor diusion coecient of autoclaved aerated concrete (AAC) via a transient method: Eects of the porosity and temperature, International Journal of Heat and Mass Transfer, vol.103, p.607610, 2016.

D. Allinson and M. Hall, Hygrothermal analysis of a stabilised rammed earth test building in the UK, Energy and Buildings, vol.42, issue.6, p.845852, 2010.

, Homogenization and porous media, 1997.

P. Perré, Multiscale modelling of drying as a powerful extension of the macroscopic approach: application to soid wood and biomass processing, Dry. Technol, vol.28, issue.8, p.944959, 2010.

J. Crank, A theoretical investigation of the inuence of molecular relaxation and internal stress on diusion in polymers, Journal of Polymer Science, vol.11, issue.2, p.151168, 1953.

L. Wadsö, Describing non-Fickian water-vapour sorption in wood, Journal of Materials Science, vol.29, p.23672372, 1994.

W. Olek, R. Romain, J. Weres, and P. Perré, Non-ckian moisture diusion in thermally modied beech wood analyzed by the inverse method, International Journal of Thermal Sciences, vol.109, p.291298, 2016.
DOI : 10.1016/j.ijthermalsci.2016.06.023

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the mass diusion coecient based on the relative humidity measured at the back face of the sample during unsteady regimes, Drying Technology, vol.33, p.10681075, 2015.

W. Olek, P. Perré, and J. Weres, Implementation of a relaxation equilibrium term in the convective boundary condition for a better representation of the transient bound water diusion in wood, Wood science and technology, vol.45, p.677691, 2011.

T. Colinart, D. Lelievre, and P. Glouannec, Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall, Energy and Buildings, vol.112, p.111, 2016.

J. Delgado, N. M. Ramos, E. Barreira, and V. P. De-freitas, A critical review of hygrothermal models used in porous building materials, Journal of Porous Media, vol.13, issue.3, p.221234, 2010.

A. Piot, M. Woloszyn, J. Brau, and C. Abele, Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models, Energy and Buildings, vol.43, issue.6, p.13221328, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01025211

M. Steeman, A. Janssens, H. J. Steeman, M. V. Belleghem, and M. D. Paepe, On coupling 1D non-isothermal heat and mass transfer in porous materials with a multizone simulation model, Building and Environment, vol.45, issue.4, p.865877, 2010.

A. Tarmian, R. Remond, H. Dashti, and P. Perré, Moisture diusion coecient of reaction woods: Compression wood of Picea abies L. and tension wood of Fagus sylvatica L, Science and Technology, vol.46, issue.1-3, p.405417, 2012.

H. S. Hens, The vapor diusion resistance and air permeance of masonry and roong systems, Building and Environment, vol.41, p.745755, 2006.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the Mass Diusion Coecient Based on the Relative Humidity Measured at the Back Face of the Sample during Unsteady Regimes, Drying Technology, vol.33, issue.9, p.10681075, 2015.

J. Kwiatkowski, M. Woloszyn, and J. Roux, Modelling of hysteresis inuence on mass transfer in building materials, Building and Environment, vol.44, p.633642, 2009.

I. Ioannou, A. Hamilton, and C. Hall, Capillary absorption of water and n-decane by autoclaved aerated concrete, Cement and Concrete Research, vol.38, issue.6, p.766771, 2008.
DOI : 10.1016/j.cemconres.2008.01.013

S. Ganev, R. Beauregard, and G. Gendron, Eect of pannel moisture content and density on moisture movement in MDF, Wood and Fiber Science, vol.35, issue.1, p.6882, 2003.

O. Suchsland and G. E. Woodson, Fiberboard manufacturing Practices In the United States, 1986.

P. Perré, A. C. Houngan, and P. Jacquin, Mass Diusivity of Beech Determined in Unsteady-State Using a Magnetic Suspension Balance, Drying Technology, vol.25, issue.7-8, p.13411347, 2007.

G. Almeida, J. P. Lancha, F. Pierre, J. Casalinho, and P. Perré, Physical behavior of highly deformable products during convective drying assessed by a new experimental device, Drying Technology, vol.35, issue.8, p.906917, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567126

M. Simo-tagne and Y. Rogaume, Sorption behavior of four tropical woods using a dynamic vapor sorption standard analysis system, Maderas. Ciencia y tecnología, vol.18, issue.3, p.403412, 2016.

M. Ben-abdelhamid, D. Mihoubi, J. Sghaier, and A. Bellagi, Water Sorption Isotherms and Thermodynamic Characteristics of Hardened Cement Paste and Mortar, Transport in Porous Media, vol.113, issue.2, p.283301, 2016.

, Détermination de la diffusivité massique de différents matériaux de construction basée sur l'analyse inverse de l'évolution de l'humidité relative en face arrière

K. Levenberg, A Method for the Solution of Certain Non-Linear Problems in Least Squares, Quarterly of Applied Mathematics, vol.2, issue.278, p.164168, 1944.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, p.431441, 1963.

P. Perré and I. W. Turner, A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, pp.98-106, 1999.

P. Perré, The Proper Use of Mass Diusion Equations in Drying Modeling : Introducing the Drying Intensity Number, vol.33, p.19491962, 2015.

C. J. Gommes, S. Blacher, J. H. Dunsmuir, and A. H. Tsou, Practical Methods for Measuring the Tortuosity of Porous Materials from Binary or Gray-Tone Tomographic Reconstructions, vol.55, p.20002012, 2012.

A. Hunt, B. Ghanbarian, and M. Sahimi, Tortuosity in Porous Media: A Critical Review, vol.77, p.14611477, 2013.

A. Derkowski, R. Mirski, and J. Majka, Determination of Sorption Isotherms of Scots Pine ( Pinus Sylvestris L .) Wood Strands Loaded With Melamine-Urea-Phenol-Formaldehyde ( Mupf ) Resin, Wood Research, vol.60, issue.2, p.201210, 2015.

M. Karoglou, A. Moropoulou, M. K. Krokida, and Z. B. Maroulis, A powerful simulator for moisture transfer in buildings, Building and Environment, vol.42, issue.2, p.902912, 2007.

K. and K. Hansen, Sorption isotherms: A Catalogue, Technical University of Denmark : Building Materials Laboratory, 1986.

O. Vololonirina, M. Coutand, and B. Perrin, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, p.223233, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850786

J. Siau, Transport Processes in Wood, 1984.

R. Cern, Eect of moisture content on heat and moisture transport and storage properties of thermal insulation materials, Energy and Buildings, vol.53, p.3946, 2012.

P. Rousset, P. Perré, and P. Girard, Modication of mass transfer properties in poplar wood (P. robusta) by a thermal treatment at high temperature, Holz Roh Werkst, vol.62, issue.2, p.113119, 2004.

E. Agoua and P. Perre, Mass transfer in wood: Identication of structural parameters from diusivity and permeability measurements, Journal of Porous Media, vol.13, issue.11, p.10171024, 2010.

M. Louërat, M. Ayouz, and P. Perré, Heat and moisture diusion in spruce and wood panels computed from 3-D morphologies using the Lattice Boltzmann method, International Journal of Thermal Sciences, vol.130, p.471483, 2018.

P. Perré, A. Challansonnex, and J. Colin, On the importance of heat and mass transfer coupling for the characterization of hygroscopic insulation materials, International Journal of Heat and Mass Transfer, vol.133, p.968975, 2019.

G. Almeida, R. Remond, and P. Perré, Evidence of Dual-Scale Diusion Mechanisms in Low Density Fibreboards : Experiment and Multiscale Modelling, International Drying Symposium, 2010.

J. A. Currie, W. R. Harper, and D. A. Rose, Gaseous diusion in porous media. Part 2. -Dry granular materials, Journal of Applied Physics, vol.11, p.318324, 1960.

N. Epstein, On tortuosity and the tortuosity factor in ow and diusion through porous media, Chemical Engineering Science, vol.44, p.777779, 1989.

D. Hillel, Introduction to environmental soil physics, 2004.

P. Lorenz, Tortuosity in Porous Media, Nature, vol.189, p.386387, 1961.

S. Gutiérrez-gonzález, J. Gadea, A. Rodríguez, M. T. Blanco-varela, and V. Calderón, Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties, Construction and Building Materials, vol.34, p.179185, 2012.

J. Van-brakel and P. M. Heertjes, Analysis of diusion in macroporous media in terms of a porosity , a tortuosity and a constrictivity factor, International Journal of Heat and Mass Transfer, vol.17, p.10931103, 1974.

F. Dullien, Prediction of tortuosity factors from pore structure data, AIChE Journal, vol.21, issue.4, p.820822, 1975.

H. Künzel, A. Holm, D. Zirkelbach, and A. Karagiozis, Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope, Solar Energy, vol.78, issue.4, p.554561, 2005.

J. Jacques, M. Labat, and M. Woloszyn, Dynamic coupling between vapour and heat transfer in wall assemblies : Analysis of measurements achieved under real climate, Building and Environment, vol.87, p.129141, 2015.

R. Rémond and G. Almeida, Mass diusivity of low-density breboard determined under steady-and unsteady-state conditions : Evidence of dual-scale mechanisms in the diusion, Wood Material Science and Engineering, vol.6, p.2333, 2011.

D. Lelievre, T. Colinart, and P. Glouannec, Hygrothermal behavior of bio-based building materials including hysteresis eects: Experimental and numerical analyses, Energy and Buildings, vol.84, p.617627, 2014.
DOI : 10.1016/j.enbuild.2014.09.013

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the Mass Diusion Coecient Based on the Relative Humidity Measured at the Back Face of the Sample during Unsteady Regimes, Drying Technology, vol.33, issue.9, p.10681075, 2015.

K. Krabbenhoft and L. Damkilde, Double porosity models for the description of water inltration in wood, Wood Science and Technology, vol.38, p.641659, 2004.

U. Nyman, P. J. Gustafsson, B. Johannesson, and R. Hägglund, A numerical method for the evaluation of non-linear transient moisture ow in cellulosic materials, International Journal for Numerical Methods in Engineering, vol.66, p.18591883, 2006.

P. Perre, Multiscale Modeling of Drying as a Powerful Extension of the Macroscopic Approach: Application to Solid Wood and Biomass Processing, Drying Technology, vol.28, issue.8, p.944959, 2010.

P. Perré, Multiscale aspects of heat and mass transfer during drying, Transport in Porous Media, vol.66, issue.1-2, p.5976, 2007.

E. Agoua, Diusivité et perméabilité du bois: validation de méthodologies expéri-mentales et prise en compte de parametres morphologiques simples, 2001.

E. T. Engelund, L. G. Thygesen, S. Svensson, and C. A. Hill, A critical discussion of the physics of wood-water interactions, Wood Science and Technology, vol.47, issue.1, p.141161, 2013.

C. A. Hill and Y. Xie, The dynamic water vapour sorption properties of natural bres and viscoelastic behaviour of the cell wall: Is there a link between sorption kinetics and hysteresis?, Journal of Materials Science, vol.46, issue.11, p.37383748, 2011.

L. Wadsö, Describing non-Fickian water-vapour sorption in wood, Journal of Materials Science, vol.29, issue.9, p.23672372, 1994.

G. Christensen, Sorption and Swelling within Wood Cell Walls, Nature, vol.213, p.782784, 1967.

J. Crank, A theoretical investigation of the inuence of molecular relaxation and internal stress on diusion in polymers, Journal of Polymer Science, vol.11, issue.2, p.151168, 1953.

W. Olek, R. Rémond, J. Weres, and P. Perré, Non-Fickian moisture diusion in thermally modied beech wood analyzed by the inverse method, International Journal of Thermal Sciences, vol.109, p.291298, 2016.

H. Håkansson, Retarded sorption in wood: Experimental study, analyses and modelling, 1998.

P. Perré, Coupled heat and mass transfer in lignocellulosic materials : a macroscopic formulation with non-Fickian eects suitable for Building Energy Simulation Tools

P. Perré, The Proper Use of Mass Diusion Equations in Drying Modeling : Introducing the Drying Intensity Number, vol.33, p.19491962, 2015.

P. Perré and I. W. Turner, A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, pp.98-106, 1999.

T. Kawasaki, M. Zhang, and S. Kawai, Manufacture and properties of ultra-low-density berboard, Journal of wood sciences, vol.44, p.354360, 1998.

W. Czajkowski, J. Olek, R. Weres, and . Guzenda, Thermal properties of wood-based panels : specic heat determination, Wood Science and Technology, vol.50, issue.3, p.537545, 2016.

, Chapitre 5. Détermination expérimentale des fonctions mémoires sur des échantillons de petite taille

J. Lux, A. Ahmadi, C. Gobbe, and C. Delisée, Macroscopic thermal properties of real brous materials : Volume averaging method and 3D image analysis, International Journal of Heat and Mass Transfer, vol.49, p.19581973, 2006.

O. Vololonirina, M. Coutand, and B. Perrin, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, p.223233, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850786

S. Ganev, R. Beauregard, and G. Gendron, Eect of pannel moisture content and density on moisture movement in MDF, Wood and Fiber Science, vol.35, issue.1, p.6882, 2003.

W. Sonderegger and P. Niemz, Thermal conductivity and water vapour transmission properties of wood-based materials, European Journal of Wood and Wood Products, vol.67, issue.3, p.313321, 2009.

J. Siau, Transport Processes in Wood, 1984.

G. Almeida, J. P. Lancha, F. Pierre, J. Casalinho, and P. Perré, Physical behavior of highly deformable products during convective drying assessed by a new experimental device, Drying Technology, vol.35, issue.8, p.906917, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567126

L. Wadsö, Measurements of water vapour sorption in wood, Wood Science and Technology, vol.28, p.5965, 1993.

P. Perré, How to Get a Relevant Material Model for Wood Drying Simulation ?, COST Action E 15 -Advances in drying of wood, p.134, 1999.

P. Perré and B. May, The existence of a rst drying stage for potato proved by two independent methods, Journal of Food Engineering, vol.78, issue.4, p.11341140, 2007.

M. Peszynska, Fluid Flow Through Fissured Media. Mathematical Analysis and Numerical Approach, 1992.

J. Crank, The mathematics of diusion, 1975.

A. Bouali, R. Rémond, G. Almeida, and P. Perré, Thermo-diusion in wood: X-ray MC proles analysed using a 2-D computational model, Proceedings of the 18 th International Drying Symposium, p.1115, 2012.

J. ;. Simo,

T. Hughes and C. Inelasticity, , 1998.

B. Mauget and P. Perré, A large displacement formulation for anisotropic constitutive laws, European Journal of Mechanics -A/Solids, vol.18, p.859877, 1999.
DOI : 10.1016/s0997-7538(99)00130-8

J. A. Nelder and R. Mead, The Downhill Simplex Algorithm, Computer Journal, vol.7

, Non-Fickian diffusion in biosourced materials : Experimental determination of the memory function using minute samples 121

G. Almeida, R. Remond, and P. Perré, Evidence of Dual-Scale Diusion Mechanisms in Low Density Fibreboards : Experiment and Multiscale Modelling, International Drying Symposium, 2010.

S. Avramidis and J. F. Siau, An investigation of the external and internal resistance to moisture diusion in wood, Wood Science and Technology, vol.21, issue.3, p.249256, 1987.

A. J. Stamm, Bound-water diusion into wood in the ber direction, Forest Product Journal, vol.9, p.2732, 1959.

O. Suchsland and G. E. Woodson, Fiberboard manufacturing Practices In the United States, 1986.

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 1959.

, Chapitre 5. Détermination expérimentale des fonctions mémoires sur des échantillons de petite taille

Y. Florentin, D. Pearlmutter, B. Givoni, and E. Gal, A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials, Energy and Buildings, vol.156, p.293305, 2017.

P. Pawelzik, M. Carus, J. Hotchkiss, R. Narayan, S. Selke et al., Critical aspects in the life cycle assessment (LCA) of bio-based materials -Reviewing methodologies and deriving recommendations, Resources, Conservation and Recycling, vol.73, p.211228, 2013.

D. Peñaloza, M. Erlandsson, and A. Falk, Exploring the climate impact eects of increased use of bio-based materials in buildings, Construction and Building Materials, vol.125, p.219226, 2016.

A. D. Rosa, A. Recca, A. Gagliano, J. Summerscales, A. Latteri et al., Environmental impacts and thermal insulation performance of innovative composite solutions for building applications, Construction and Building Materials, vol.55, p.406414, 2014.

O. F. Osanyintola and C. J. Simonson, Moisture buering capacity of hygroscopic building materials: Experimental facilities and energy impact, Energy and Buildings, vol.38, issue.10, p.12701282, 2006.

M. Woloszyn, T. Kalamees, M. O. Abadie, M. Steeman, and A. , Sasic Kalagasidis, The eect of combining a relative-humidity-sensitive ventilation system with the moisture-buering capacity of materials on indoor climate and energy eciency of buildings, Building and Environment, vol.44, issue.3, p.515524, 2009.

J. A. Orosa and A. Baaliña, Improving PAQ and comfort conditions in Spanish oce buildings with passive climate control, Building and Environment, vol.44, issue.3, p.502508, 2009.

J. Jacques, M. Labat, and M. Woloszyn, Dynamic coupling between vapour and heat transfer in wall assemblies : Analysis of measurements achieved under real climate, Building and Environment, vol.87, p.129141, 2015.

T. Kalamees and J. Vinha, Hygrothermal calculations and laboratory tests on timber-framed wall structures, Building and Environment, vol.38, issue.5, p.689697, 2003.
DOI : 10.1016/s0360-1323(02)00207-x

H. Künzel, A. Holm, D. Zirkelbach, and A. Karagiozis, Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope, Solar Energy, vol.78, issue.4, p.554561, 2005.

L. Wang and H. Ge, Hygrothermal performance of cross-laminated timber wall assemblies: A stochastic approach, Building and Environment, vol.97, p.1125, 2016.

C. Spitz, L. Mora, E. Wurtz, and A. Jay, Practical application of uncertainty analysis and sensitivity analysis on an experimental house, Energy and Buildings, vol.55, p.459470, 2012.

T. Duforestel, Des transferts couplés de masse et de chaleur à la conception bioclimatique: recherches sur l'ecacité énergétique des bâtiments, Mémoire HDR, p.241, 2015.

J. Kwiatkowski, M. Woloszyn, and J. Roux, Modelling of hysteresis inuence on mass transfer in building materials, Building and Environment, vol.44, p.633642, 2009.

R. Rémond, G. Almeida, and P. Perré, The gripped-box model: A simple and robust formulation of sorption hysteresis for lignocellulosic materials, Construction and Building Materials, vol.170, p.716724, 2018.

, Non-Fickian diffusion in biosourced materials : Prediction of the delay between relative humidity and moisture content

K. Krabbenhoft and L. Damkilde, Double porosity models for the description of water inltration in wood, Wood Science and Technology, vol.38, p.641659, 2004.

U. Nyman, P. J. Gustafsson, B. Johannesson, and R. Hägglund, A numerical method for the evaluation of non-linear transient moisture ow in cellulosic materials, International Journal for Numerical Methods in Engineering, vol.66, p.18591883, 2006.

P. Perré, Multiscale aspects of heat and mass transfer during drying, Transport in Porous Media, vol.66, issue.1-2, p.5976, 2007.

P. Perre, Multiscale Modeling of Drying as a Powerful Extension of the Macroscopic Approach: Application to Solid Wood and Biomass Processing, Drying Technology, vol.28, issue.8, p.944959, 2010.

R. Rémond and G. Almeida, Mass diusivity of low-density breboard determined under steady-and unsteady-state conditions : Evidence of dual-scale mechanisms in the diusion, Wood Material Science and Engineering, vol.6, p.2333, 2011.

A. Challansonnex, F. Pierre, J. Casalinho, P. Lv, and P. Perré, Mass diusivity determination of various building materials based on inverse analysis of relative humidity evolution at the back face of a sample, Construction and building materials, vol.38, p.539546, 2018.

D. Lelievre, T. Colinart, and P. Glouannec, Hygrothermal behavior of bio-based building materials including hysteresis eects: Experimental and numerical analyses, Energy and Buildings, vol.84, p.617627, 2014.
DOI : 10.1016/j.enbuild.2014.09.013

P. Perré, Coupled heat and mass transfer in biosourced materials : a macroscopic formulation with non-Fickian eects adapted to computational simulation

P. Perré and I. W. Turner, A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, p.45014521, 1999.

P. Perré, The Proper Use of Mass Diusion Equations in Drying Modeling : Introducing the Drying Intensity Number, vol.33, pp.15-16, 2015.

A. Challansonnex, J. Casalinho, and P. Perré, Non-Fickian diusion in bio-based materials : experimental determination of the memory function using minute samples

O. Suchsland and G. E. Woodson, Fiberboard manufacturing Practices In the United States, 1986.

T. Kawasaki, M. Zhang, and S. Kawai, Manufacture and properties of ultra-low-density berboard, Journal of wood sciences, vol.44, p.354360, 1998.
DOI : 10.1007/bf01130447

W. Czajkowski, J. Olek, R. Weres, and . Guzenda, Thermal properties of wood-based panels : specic heat determination, Wood Science and Technology, vol.50, issue.3, p.537545, 2016.

J. Lux, A. Ahmadi, C. Gobbe, and C. Delisée, Macroscopic thermal properties of real brous materials : Volume averaging method and 3D image analysis, International Journal of Heat and Mass Transfer, vol.49, p.19581973, 2006.

O. Vololonirina, M. Coutand, and B. Perrin, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, p.223233, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850786

G. Almeida, R. Rémond, and P. Perré, Hygroscopic behaviour of lignocellulosic materials: Dataset at oscillating relative humidity variations, Journal of Building Engineering, vol.170, p.716724, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01959242

S. Ganev, R. Beauregard, and G. Gendron, Eect of pannel moisture content and density on moisture movement in MDF, Wood and Fiber Science, vol.35, issue.1, p.6882, 2003.

W. Sonderegger and P. Niemz, Thermal conductivity and water vapour transmission properties of wood-based materials, European Journal of Wood and Wood Products, vol.67, issue.3, p.313321, 2009.

X. P. Ye, J. Julson, M. Kuo, A. Womac, and D. Myers, Properties of medium density berboards made from renewable biomass, vol.98, p.10771084, 2007.

S. Zohoun, E. Agoua, G. Degan, and P. Perré, An experimental correction proposed for an accurate determination of mass diusivity of wood in steady regime, Heat and Mass Transfer, vol.39, issue.2, p.147155, 2003.

E. Agoua, S. Zohoun, and P. Perré, A double climatic chamber used to measure the diusion coecient of water in wood in unsteady-state conditions: Determination of the best tting method by numerical simulation, International Journal of Heat and Mass Transfer, vol.44, issue.19, p.37313744, 2001.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the Mass Diusion Coecient Based on the Relative Humidity Measured at the Back Face of the Sample during Unsteady Regimes, Drying Technology, vol.33, issue.9, p.10681075, 2015.

P. Perré, A. Challansonnex, and J. Colin, On the importance of heat and mass transfer coupling for the characterization of hygroscopic insulation materials, International Journal of Heat and Mass Transfer, vol.133, p.968975, 2019.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, 2002.

P. Perré and B. May, The existence of a rst drying stage for potato proved by two independent methods, Journal of Food Engineering, vol.78, issue.4, p.11341140, 2007.

W. Ai, H. Duval, F. Pierre, and P. Perré, A novel device to measure gaseous permeability over a wide range of pressures: Characterisation of slip ow for Norway spruce, European beech, and wood-based materials, Holzforschung, vol.71, issue.2, p.147162, 2016.

M. Louërat, M. Ayouz, and P. Perré, Heat and moisture diusion in spruce and wood panels computed from 3-D morphologies using the Lattice Boltzmann method, International Journal of Thermal Sciences, vol.130, p.471483, 2018.

P. Perré and J. Passard, A physical and mechanical model able to predict the stress eld in wood over a wide range of drying conditions, Drying Technology, vol.22, issue.1-2, p.2744, 2004.

M. Goulet, Phénomènes de second ordre de la sorption d'humidité dans le bois au terme d'un conditionnement de trois mois à température normale, 1968.

W. T. Simpson, Moisture changes induced in red oak by transverse stress, Wood and Fiber Science, vol.3, issue.1, p.1320, 2007.

A. Mårtensson, Mechano-sorptive eects in wooden material, Wood Science and Technology, vol.28, issue.6, p.437449, 1994.

N. Bhouri, S. Bennasrallah, and P. Perre, Inuence of geometrical structure on sorption isotherms of jersey and yarns made of cotton at two temperatures, Microporous and Mesoporous Materials, vol.163, p.7684, 2012.

L. Wadsö, Describing non-Fickian water-vapour sorption in wood, Journal of Materials Science, vol.29, issue.9, p.23672372, 1994.

O. Adan, Prédiction du déphasage entre humidité relative et teneur en eau, 1994.

A. , Chiffres clés : climat, air et énergie. Rapport technique, Agence de l'Environnement et de la Maîtrise de l'Énergie, A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, vol.73, pp.1352-1365, 2015.

, A double climatic chamber used to measure the diffusion coefficient of water in wood in unsteadystate conditions : Determination of the best fitting method by numerical simulation, Changes in physical properties of yellow birch below and above the fiber saturation point. Wood and Fiber Science, vol.44, pp.74-83, 2001.

, Evidence of Dual-Scale Diffusion Mechanisms in Low Density Fibreboards : Experiment and Multiscale Modelling, International Drying Symposium, vol.6, pp.245-261, 1960.

, Journal of Applied Mathematics and Mechanics, vol.24, issue.5, pp.1286-1303

, Dynamic vapor sorption isotherms of medium grain rice varieties. LWT -Food Science and Technology, vol.48, pp.156-163, 2012.

. Et-apparu, J. Borloo, B. Et-apparu, A. H. Buchanan, and S. Levine, Wood-based building materials and atmospheric carbon emissions, Environmental Science & Policy, vol.2, issue.6, pp.427-437, 1999.

[. Bibliographie and . Busser, Experimental validation of hygrothermal models for building materials and walls : an analysis of recent trends, 2018.

[. Champiré, Impact of relative humidity on the mechanical behavior of compacted earth as a building material, Construction and Building Materials, vol.110, pp.70-78, 2016.

G. Christensen, Sorption and Swelling within Wood Cell Walls, Nature, vol.213, pp.782-784, 1967.

. Christensen, G. N. Kelsey-;-christensen, and K. E. Kelsey, The rate of sorption of water vapor by wood, Holz Roh Werkst, vol.17, issue.5, pp.178-188, 1959.

J. J. Clarke-;-clarke, Energy Simulation in Building Design, 2007.

T. Colinart and P. Glouannec, Temperature dependence of sorption isotherm of hygroscopic building materials. Part 1 : Experimental evidence and modeling, Energy and Buildings, vol.139, pp.360-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

[. Colinart, Temperature dependence of sorption isotherm of hygroscopic building materials. Part 2 : Influence on hygrothermal behavior of hemp concrete, Energy and Buildings, vol.152, pp.42-51, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

J. Crank, A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers, Journal of Polymer Science, vol.11, issue.2, pp.151-168, 1953.

J. Crank, The mathematics of diffusion, 1975.

[. Crawley, Contrasting the capabilities of building energy performance simulation programs, Building and Environment, vol.43, pp.264-273, 2008.

[. Damfeu, Modeling and measuring of the thermal properties of insulating vegetable fibers by the asymmetrical hot plate method and the radial flux method : Kapok, coconut, groundnut shell fiber and rattan, Thermochimica Acta, vol.630, pp.64-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01410086

T. Duforestel, Des transferts couplés de masse et de chaleur à la conception bioclimatique : recherches sur l'efficacité énergétique des bâtiments. Mémoire "hdr, 2015.

, Il était une fois les réglementations thermiques, 2013.

. Fleury, E. Fleury, and M. Chiche, Le Bois dans la construction. Etude bibliographique, 2006.

. Florentin, A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials, Energy and Buildings, vol.156, pp.293-305, 2017.

[. Frandsen, A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood, Holzforschung, issue.5, pp.563-572, 2007.

H. Glaser-;-glaser, Vereinfachte Berechnung der Dampfdiffusion durch geschichtete Wände bei Ausscheidung von Wasser und Eis, Kältetechnik, vol.10, issue.11, pp.358-364, 1958.

W. G. Gray-;-gray, A derivation of the equations for multi-phase transport, Chemical Engineering Science, vol.30, issue.2, pp.229-233, 1975.

D. Grosser, Die Holzer Mitteleuropas, Ein mikrophotographischer Lehratlas, p.70, 1977.

D. Guitard-;-guitard, , 1987.

H. Håkansson, Retarded sorption in wood : Experimental study, analyses and modelling, 1998.

H. L. Hens, Combined heat, air, moisture modelling : A look back, how, of help ? Building and Environment, vol.91, pp.138-151, 2015.

[. Hill, A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis, Holzforschung, vol.66, issue.1, pp.35-47, 2012.

C. Houngan, Caractérisation hygrothermique des materiaux locaux de construction au benin : Diffusivité massique et isotherme de sorption, conductivité et diffusivité thermique, 2008.

J. S. Hubert and E. S. Et-palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation : application à la mécanique des milieux continus, 1992.

[. Karagiozis, WUFI-ORNL/IBP a North American hygrothermal model. Performance of Exterior Envelopes of Whole Buildings VIII, pp.2-7, 2001.

[. Karoglou, A powerful simulator for moisture transfer in buildings, Building and Environment, vol.42, issue.2, pp.902-912, 2007.

R. Keller-;-keller, La Constitution du Bois, pp.13-51, 1994.

H. Kelly, M. Kelly, and C. Hart, Water Vapor Sorption Rates By Wood Cell Walls, 1970.

O. Bibliographie-[kolditz-;-kolditz, K. Krabbenhoft, L. Damkilde, K. Krabbenhoft, and L. Damkilde, Modelling flow and heat transfer in fractured rocks : dimensional effect of matrix heat diffusion, Wood Science and Technology, vol.24, issue.3, pp.641-659, 1995.

J. Kronvall-;-kronvall, Air flows in building components, 1980.

, Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope, Solar Energy, vol.78, issue.4, pp.554-561, 2005.

H. M. Künzel and . Kwiatkowski, Hygrothermal behavior of bio-based building materials including hysteresis effects : Experimental and numerical analyses, Simultaneous Heat and Moisture Transport in Building Components One-and two-dimensional calculation using simple parameters . Rapport technique, vol.44, pp.1-14, 1975.

P. Zuber-;-maloszewski and A. Zuber, Tracer experiments in fractured rocks : Matrix diffusion and the validity of models, Water Resources Research, vol.29, issue.8, pp.2723-2735, 1993.

B. Mauget and P. Perré, A large displacement formulation for anisotropic constitutive laws, European Journal of Mechanics -A/Solids, vol.18, pp.859-877, 1999.
DOI : 10.1016/s0997-7538(99)00130-8

, Réglementation thermique 2012 : un saut énergé-tique pour les bâtiments neufs, 2011.

, La transition energetique pour la croissance verte : Bâtiments. Rapport technique, Ministère de l'Environnement, de l'Energie et de la Mer, Water Resources Research, vol.20, issue.7, p.831, 1984.

, Référentiel Energie Carbone pour les bâtiments neufs : Méthode d'évaluation de la performance énergétique et environnementale des bâti-ments neufs, 2017.

[. Olek, Implementation of a relaxation equilibrium term in the convective boundary condition for a better representation of the transient bound water diffusion in wood, Wood Science and Technology, vol.45, pp.677-691, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00805553

J. A. Orosa and A. Baaliña, Improving PAQ and comfort conditions in Spanish office buildings with passive climate control, Building and Environment, vol.44, issue.3, pp.502-508, 2009.
DOI : 10.1016/j.buildenv.2008.04.013

O. F. Osanyintola and C. J. Simonson, Moisture buffering capacity of hygroscopic building materials : Experimental facilities and energy impact, Energy and Buildings, vol.38, issue.10, pp.1270-1282, 2006.

[. Parker, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, Journal of Applied Physics, vol.32, issue.9, pp.1679-1684, 1961.
DOI : 10.1063/1.1728417

[. Pawelzik, Critical aspects in the life cycle assessment (LCA) of bio-based materials -Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling, vol.73, pp.211-228, 2013.

. Pel, Determination of moisture diffusivity in porous media using moisture concentration profiles, International Journal of Heat and Mass Transfer, vol.39, issue.6, pp.1273-1280, 1996.

[. Peñaloza, Exploring the climate impact effects of increased use of bio-based materials in buildings, Construction and Building Materials, vol.125, pp.219-226, 2016.

. Perez-garcia, The environmental performance of renewable building materials in the context of residential construction, Wood and Fiber Science, vol.37, pp.3-17, 2005.

P. Bibliographie-;-perré, The Proper Use of Mass Diffusion Equations in Drying Modeling : Introducing the Drying Intensity Number. Drying Technology, pp.1949-1962, 2015.

P. Perré, Coupled heat and mass transfer in lignocellulosic materials : a macroscopic formulation with non-Fickian effects suitable for Building Energy Simulation Tools, 2018.

P. Degiovanni-;-perre and A. Degiovanni, Simulation par volumes finis des transferts couplés en milieux poreux anisotropes : séchage du bois à basse et à haute température, International Journal of Heat and Mass Transfer, vol.33, issue.11, pp.2463-2478, 1990.

[. Perré, Determination of the Mass Diffusion Coefficient Based on the Relative Humidity Measured at the Back Face of the Sample during Unsteady Regimes, Drying Technology, vol.33, issue.9, pp.1068-1075, 2015.

P. Perré and R. Rémond, A Dual-Scale Computational Model of Kiln Wood Drying Including Single Board and Stack Level Simulation, Drying Technology, vol.24, pp.1069-1074, 2006.

[. Perre, Comprehensive drying models based on volume averaging : background, application and perspective, Modern drying technology, vol.1, pp.1-55, 2007.

. Perré, P. Turner-;-perré, and I. W. Turner, A 3-D version of TransPore : a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, pp.4501-4521, 1999.

M. Peszynska, Fluid Flow Through Fissured Media. Mathematical Analysis and Numerical Approach, 1992.

J. R. Philip and D. A. Vries, Moisture movement in porous materials under temperature gradient, vol.38, pp.229-237, 1957.
DOI : 10.1029/tr038i002p00222

[. Pierre, Measurement of thermal properties of biosourced building materials, International Journal of Thermophysics, vol.35, issue.9, pp.1832-1852, 2014.

[. Pleinert, Determination of moisture distributions in porous building materials by neutron transmission analysis, Materials and Structures, vol.31, issue.4, pp.218-224, 1998.

, Guide de bonnes pratiques pour l'évaluation des peformances thermohygriques des bâtiments, 2015.

R. Rémond and G. Almeida, Mass diffusivity of low-density fibreboard determined under steady-and unsteady-state conditions : Evidence of dual-scale mechanisms in the diffusion, Wood Material Science and Engineering, vol.6, pp.1-2, 2011.

[. Rémond, The grippedbox model : A simple and robust formulation of sorption hysteresis for lignocellulosic materials, Construction and Building Materials, vol.170, pp.716-724, 2018.

C. Rode, Combined Heat and Moisture Transfer in Building Constructions, p.132, 1990.

[. Rousset, Modification of mass transfer properties in poplar wood (P. robusta) by a thermal treatment at high temperature, Holz Roh Werkst, vol.62, issue.2, pp.113-119, 2004.

[. Rudy, Comparison of the Saturated Salt Solution and the Dynamic Vapor Sorption techniques based on the measured sorption isotherm of barley straw, Construction and Building Materials, vol.141, pp.140-151, 2017.

E. Sánchez-palencia-;-sánchez-palencia and R. Showalter, Non-homogeneous media and vibration theory, Homogenization and Porous Media, vol.127, issue.1, pp.184-202, 1980.

R. Showalter and U. Hornung, Diffusion Models for Fractured Media, Journal of mathematical analysis and applications, vol.147, pp.69-80, 1990.

R. E. Showalter, Diffusion models with microstructure, Transport in Porous Media, vol.6, issue.5-6, pp.567-580, 1991.
DOI : 10.1007/978-94-017-2199-8_7

J. Siau, Transport Processes in Wood, 1984.

, Simo JC

T. Hughes, Simo JC, 1998.

T. Hughes, Computational Inelasticity, 1998.

. Souihel, Simultaneous estimation of volumetric capacity and thermal conductivity of moroccan wood species from experimental Flash method, Energy Procedia, vol.139, pp.639-644, 2017.

[. Spitz, Practical application of uncertainty analysis and sensitivity analysis on an experimental house, Energy and Buildings, vol.55, pp.459-470, 2012.

[. Tarmian, Moisture diffusion coefficient of reaction woods : Compression wood of Picea abies L. and tension wood of Fagus sylvatica, Science and Technology, vol.46, issue.1-3, pp.405-417, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01264354

L. Bibliographie-[teesdale-;-teesdale and . Vololonirina, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, pp.191-206, 1937.

L. Wadsö, Studies of Water Vapor Transport and Sorption in Wood, 1993.

L. Wang and H. Ge, Hygrothermal performance of crosslaminated timber wall assemblies : A stochastic approach, Building and Environment, vol.97, pp.11-25, 2016.

J. Root-;-warren, P. Root, and S. Whitaker, The Behavior of Naturally Fractured Reservoir, Society of Petroleum Engineers Journal, vol.13, issue.3, pp.420-427, 1963.

S. Whitaker-;-whitaker, Simultaneous Heat, Mass, and Momentum Transfer in Porous Media : A Theory of Drying. advances in Heat Transfer, vol.13, pp.119-203, 1977.

S. Whitaker-;-whitaker, Flow in porous media I : A theoretical deviation of Darcy's law, Transport in Porous Media, vol.1, pp.3-25, 1986.

, The effect of combining a relative-humiditysensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, Environment International, vol.33, issue.6, pp.515-524, 2007.

. [zabalza-bribián, Life cycle assessment of building materials : Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Building and Environment, vol.46, issue.5, pp.1133-1140, 2011.

, An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime, Heat and Mass Transfer, vol.39, issue.2, pp.147-155, 2003.

, 17 1.2 Structure d'un tronc d'arbre, Différentes directions d'étude du bois, p.17, 1987.

, Arrangement cellulaire d'un bloc de conifère, p.18

]. .. , 22 1.6 gauche : a)Schéma représentatif d'un VER dans le cas du bois, droite : b)Schéma explicatif quant à la taille du VER, l'exemple correspond à la masse volumique avec 1 dans la phase solide et 2 dans un pore, 1984.

, Évolution de la masse adimensionnée en fonction de la racine carré du temps divisée par l'épaisseur pour des échantillon de LDF de différentes épaisseurs lorsque soumis à une perturbation de l'humidité relative ambiante, p.34, 2011.

, Schéma de principe de la prédiction du comportement macroscopique, p.45

, Simulations de l'évolution de la température (haut) et de l'humidité relative (bas) en face arrière de l'échantillon pour diverses configurations 47

, Comparaison entre résultats expérimentaux et simulations pour l'humidité relative (haut) et la teneur en eau (bas) sur l'échantillon de LDF de 20 mm d'épaisseur et de masse volumique 145 kg.m ?3, p.50

, Comparaison entre résultats expérimentaux et simulation avec ou sans fonctions mémoire pour le LDF sur le saut d'humidité de 40 à 60 %, p.52

, Comparaison entre résultats expérimentaux et simulations avec ou sans fonction mémoire pour l'humidité relative (haut) et la teneur en eau (bas) sur l'échantillon de LDF de 20 mm et de masse volumique 145 kg

, Schéma récapitulatif de l'organisation du travail de thèse, p.56

A. , Évolution de la fonction mémoire en fonction d'un temps adimensionné pour une géométrie cylindrique

, De gauche a droite : a) Vue du modèle CAO avec 1) vérin, 2) plateau tournant, 3) couronne, 4) plateau de pesée, b) Photo du dispositif dans l'enceinte climatique

B. , De gauche a droite : a) Vue du model CAO lorsque le dispositif est en position de lecture de l'humidité face arrière, b) Vue du model CAO lorsque le dispositif est en position de pesée, les surfaces où se produisent le contact ont été représentées en rouge

, Vue de l'enceinte avec la plaque montée (partie opérationnelle, b) Vue de l'enceinte avec la plaque démontée (partie régulation)

, Évolution de l'humidité relative et de la température dans l'enceinte pour un saut d'humidité de 40 à 60 %

. .. , Photo du support de la tige posé sur la balance, p.171

, Porte-échantillons (de gauche à droite) :a) modèle CAO vue isométrique haute, b) modèle CAO vue isométrique basse, c) modèle CAO vue éclaté avec 1) cible, 2) cone, 3) tige, 4) partie haute, 5) support avec tube caoutchouc inséré, 6)entretoises, 7) disque PVC, 8) échantillon, p.172

B. , de gauche à droite : a) Structure permettant de définir les positions basses et intermédiaire, b) Contacteur définissant la position haute, p.174

B. ;. , 8 Schéma explicatif du fonctionnement du robot, p.175

, 10 Photo du boitier de contrôle fermé (gauche) et ouvert (droite), Comparaison des résultats de deux essais de pesé d'un porte échantillon : ventilation allumée ou éteinte, p.177

, Il suffit pour cela d'enlever le disque PVC et de plaçer de l'autre coté de l'échantillon une coupelle contenant une solution saline. Le dispositif ne sert plus alors qu'à peser les portes-échantillon. Enfin, les entretoises servent à la fois de pieds et assurent la

, Celui-ci est fixé sur une platine reposant sur une plaque en PVC via trois pieds réglables pour assurer l'alignement avec le plateau de pesée et les contacteurs. Le vérin est activé via un moteur à courant continu. Trois positions verticales sont définies : -une position basse pour la pesée, Cet ensemble réalise les mouvements verticaux assurant la lecture de l'humidité en face arrière par contact temporaire et la pesée

, En effet, plus la position intermédiaire est basse plus le risque que les pieds du porte-échantillon touchent le plateau de pesé est élevé. De même, plus la position basse est haute plus le risque que le porte-échantillon touche la couronne durant la pesée est important. La position haute est définie par un contact entre la cible et un contacteur. Ce contact coupe directement l'alimentation du moteur. Celle-ci est rétablie par le système de contrôle après la mesure d'humidité. Ce dispositif est visible en figure B.7 b). Afin de ne pas risquer un endommagement du dispositif suite à une avarie du système de contrôle, un autre contacteur permet également de limiter la course du vérin vers le bas, Les positions basse et intermédiaire sont définies par deux photodiodes. En effet, une structure montée sur le vérin comporte un doigt qui par son passage entre les photodiodes va donner un signal au système de contrôle qui va arrêter le moteur. Les positions verticales des photodiodes et du doigt peuvent être réglées afin d'ajuster le dispositif