M. J. Engstrom, S. Opdahl, A. I. Hagen, P. R. Romundstad, L. A. Akslen et al., Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients, Breast Cancer Res. Treat, vol.140, pp.463-473, 2013.

J. Zhou, Y. Yan, L. Guo, H. Ou, J. Hai et al., Distinct outcomes in patients with different molecular subtypes of inflammatory breast cancer

, J, vol.35, pp.1324-1330, 2014.

A. Hollestelle, J. H. Nagel, M. Smid, S. Lam, F. Elstrodt et al., Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines, Breast Cancer Res. Treat, vol.121, pp.53-64, 2010.
DOI : 10.1007/s10549-009-0460-8

URL : https://hal.archives-ouvertes.fr/hal-00485063

X. Hu, H. M. Stern, L. Ge, C. O'brien, L. Haydu et al., Genetic alterations and oncogenic pathways associated with breast cancer subtypes, Mol. Cancer Res, vol.7, pp.511-522, 2009.

C. A. Castaneda, E. Andres, C. Barcena, H. L. Gomez, H. Cortes-funes et al., Behaviour of breast cancer molecular subtypes through tumour progression, Clin. Transl. Oncol, vol.14, pp.481-485, 2012.

S. Kimbung, A. Kovacs, A. Danielsson, P. O. Bendahl, K. Lovgren et al., Contrasting breast cancer molecular subtypes across serial tumor progression stages: biological and prognostic implications, Oncotarget, vol.6, pp.33306-33318, 2015.

J. Eswaran, D. Cyanam, P. Mudvari, S. D. Reddy, S. B. Pakala et al., Transcriptomic landscape of breast cancers through mRNA sequencing, Sci. Rep, vol.2, p.264, 2012.

B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J. Clin. Invest, vol.121, pp.2750-2767, 2011.

H. Masuda, K. A. Baggerly, Y. Wang, Y. Zhang, A. M. Gonzalez-angulo et al., Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes, Clin. Cancer Res, vol.19, pp.5533-5540, 2013.

P. R. Graves and T. A. Haystead, Molecular biologist's guide to proteomics, Microbiol, Mol. Biol. Rev, vol.66, pp.39-63, 2002.
DOI : 10.1128/mmbr.66.1.39-63.2002

URL : https://mmbr.asm.org/content/66/1/39.full.pdf

M. R. Wilkins, J. C. Sanchez, K. L. Williams, and D. F. Hochstrasser, Current challenges and future applications for protein maps and post-translational vector maps in proteome projects, Electrophoresis, vol.17, pp.830-838, 1996.

R. T. Lawrence, E. M. Perez, D. Hernandez, C. P. Miller, K. M. Haas et al., The proteomic landscape of triple-negative breast cancer, Cell Rep, vol.11, pp.630-644, 2015.

M. Campone, I. Valo, P. Jezequel, M. Moreau, A. Boissard et al., Prediction of recurrence and survival for triple-negative breast cancer (TNBC) by a protein signature in tissue samples, Mol. Cell. Proteomics, vol.14, pp.2936-2946, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820133

E. Tzima, J. S. Reader, M. Irani-tehrani, K. L. Ewalt, M. A. Schwartz et al., VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function, J. Biol. Chem, vol.280, pp.2405-2408, 2005.

S. M. Hyder, Y. Liang, and J. Wu, Estrogen regulation of thrombospondin-1 in human breast cancer cells, Int. J. Cancer, vol.125, pp.1045-1053, 2009.

M. Lacroix and G. Leclercq, Relevance of breast cancer cell lines as models for breast tumours: an update, Breast Cancer Res. Treat, vol.83, pp.249-289, 2004.

N. Q. Liu, L. J. Dekker, C. Stingl, C. Guzel, T. De-marchi et al., Quantitative proteomic analysis of microdissected breast cancer tissues: comparison of label-free and SILAC-based quantification with shotgun, directed, and targeted MS approaches, J. Proteome Res, vol.12, pp.4627-4641, 2013.

A. Goldhirsch, W. C. Wood, R. D. Gelber, A. S. Coates, B. Thurlimann et al., Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer, J. Clin. Oncol, vol.21, pp.3357-3365, 2003.

P. Eifel, J. A. Axelson, J. Costa, J. Crowley, W. J. Curran et al., National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, J. Natl Cancer Inst, vol.93, pp.979-989, 2000.

E. Maurizio, J. R. Wisniewski, Y. Ciani, A. Amato, L. Arnoldo et al., Translating proteomic into functional data: an high mobility group A1 (HMGA1) proteomic signature has prognostic value in breast cancer, Mol. Cell. Proteomics, vol.15, pp.109-123, 2016.

S. Tyanova, R. Albrechtsen, P. Kronqvist, J. Cox, M. Mann et al., Proteomic maps of breast cancer subtypes, Nat. Commun, vol.7, p.10259, 2016.

P. Ziolkowski, E. Gamian, B. Osiecka, A. Zougman, and J. R. Wisniewski, Immunohistochemical and proteomic evaluation of nuclear ubiquitous casein and cyclin-dependent kinases substrate in invasive ductal carcinoma of the breast, J. Biomed. Biotechnol, p.919645, 2009.

Z. Zhang, S. Wu, D. L. Stenoien, and L. Pasa-tolic, High-throughput proteomics, Annu. Rev. Anal. Chem, vol.7, pp.427-454, 2014.

I. Ntai, R. D. Leduc, R. T. Fellers, P. Erdmann-gilmore, S. R. Davies et al., Integrated bottom-up and top-down proteomics of patient-derived breast tumor xenografts, Mol. Cell. Proteomics, vol.15, pp.45-56, 2016.

D. Gomez-cabrero, I. Abugessaisa, D. Maier, A. Teschendorff, M. Merkenschlager et al., Data integration in the era of omics: current and future challenges, BMC Syst. Biol, vol.8, issue.2, p.1, 2014.

, Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, vol.455, pp.1061-1068, 2008.

T. J. Hudson, W. Anderson, A. Artez, A. D. Barker, C. Bell et al., International network of cancer genome projects, Nature, vol.464, pp.993-998, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00868358

R. G. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, vol.17, pp.98-110, 2010.

R. Raju, A. M. Paul, V. Asokachandran, B. George, L. Radhamony et al., The Triple-Negative Breast Cancer Database: an omics platform for reference, integration and analysis of triple-negative breast cancer data, Breast Cancer Res, vol.16, p.490, 2014.

G. Ha, A. Roth, D. Lai, A. Bashashati, J. Ding et al., Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer, Genome Res, vol.22, pp.1995-2007, 2012.

, Evolution of Translational Omics: Lessons Learned and the Path Forward, 2012.

D. W. Craig, J. A. O'shaughnessy, J. A. Kiefer, J. Aldrich, S. Sinari et al., Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities, Mol. Cancer Ther, vol.12, pp.104-116, 2013.
DOI : 10.1158/1535-7163.mct-12-0781

URL : http://mct.aacrjournals.org/content/12/1/104.full.pdf

M. J. Van-de-vijver, Y. D. He, L. J. Van't-veer, H. Dai, A. A. Hart et al., A gene-expression signature as a predictor of survival in breast cancer, N. Engl. J. Med, vol.347, pp.1999-2009, 2002.

T. A. Traina, K. Miller, D. A. Yardley, J. O'shaughnessy, J. Cortes et al., Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC), J. Clin. Oncol, p.33, 2015.

G. Judes, Cancer Letters, vol.382, pp.77-85, 2016.

R. Judes and N. Rifaï,

F. E. Chen and G. Ghosh, Regulation of DNA binding by Rel/NFkappaB transcription factors: structural views, Oncogene, vol.18, issue.49, pp.6845-6852, 1999.

H. L. Pahl, Activators and target genes of Rel/NFkappaB transcription factors, Oncogene, vol.18, issue.49, pp.6853-6866, 1999.

C. K. Glass, D. W. Rose, and M. G. Rosenfeld, Nuclear receptor coactivators. Curr. Opin. Cell. Biol, vol.9, issue.2, pp.222-232, 1997.

K. A. Sheppard, D. W. Rose, and Z. K. Haque, Transcriptional activation by NFkappaB requires multiple coactivators
DOI : 10.1128/mcb.19.9.6367

URL : http://mcb.asm.org/content/19/9/6367.full.pdf

, Mol. Cell. Biol, vol.19, issue.9, pp.6367-6378, 1999.

M. E. Gerritsen, A. J. Williams, A. S. Neish, S. Moore, Y. Shi et al., CREBbinding protein/p300 are transcriptional coactivators of p65, Proc. Natl Acad. Sci. USA, vol.94, issue.7, pp.2927-2932, 1997.

J. W. Kim, S. M. Jang, C. H. Kim, J. H. An, E. J. Kang et al., New molecular bridge between RelA/p65 and NFkappaB target genes via histone acetyltransferase TIP60 cofactor, J. Biol. Chem, vol.287, issue.10, pp.7780-7791, 2012.

C. E. Nesbit, J. M. Tersak, and E. V. Prochownik, MYC oncogenes and human neoplastic disease, Oncogene, vol.18, issue.19, pp.3004-3016, 1999.

P. C. Fernandez, S. R. Frank, and L. Wang, Genomic targets of the human cMyc protein, Genes Dev, vol.17, issue.9, pp.1115-1129, 2003.

S. B. Mcmahon, H. A. Van-buskirk, K. A. Dugan, T. D. Copeland, and M. D. Cole, The novel ATMrelated protein TRRAP is an essential cofactor for the cMyc and E2F oncoproteins, Cell, vol.94, issue.3, pp.363-374, 1998.

S. W. Cheng, K. P. Davies, Y. E. Beltran, R. J. Yu, J. Kalpana et al., cMYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function, Nat. Genet, vol.22, issue.1, pp.102-105, 1999.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J. Clin, vol.65, pp.87-108, 2012.
DOI : 10.3322/caac.21262

URL : https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21262

M. Esteller, Epigenetics in cancer. N. Engl. J. Med, vol.358, pp.1148-1159, 2008.

S. Ropero and M. Esteller, The role of histone deacetylases (HDACs) in human cancer, Mol. Oncol, vol.1, pp.19-25, 2007.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: Biological insights and disease relevance, Annu. Rev. Pathol, vol.5, pp.253-295, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://europepmc.org/articles/pmc2866163?pdf=render

L. R. Saunders and E. Verdin, Sirtuins: Critical regulators at the crossroads between cancer and aging, Oncogene, vol.26, pp.5489-5504, 2007.
DOI : 10.1038/sj.onc.1210616

URL : https://www.nature.com/articles/1210616.pdf

, Cancers, vol.10, pp.409-420, 2018.

B. Martinez-pastor, R. Mostoslavsky, M. Sirtuins, and C. , Front. Pharmacol, vol.2012

M. Tanno, J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio, Nucleocytoplasmic Shuttling of the NAD + -Dependent Histone Deacetylase SIRT1, J. Biol. Chem, vol.282, pp.6823-6832, 2007.

R. H. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol, vol.13, pp.225-238, 2012.

L. Bosch-presegué and A. Vaquero, Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J, vol.282, pp.1745-1767, 2015.

T. Liu, P. Y. Liu, and G. M. Marshall, The critical role of the class III histone deacetylase SIRT1 in cancer, Cancer Res, vol.69, pp.1702-1705, 2009.

H. Vaziri, S. K. Dessain, E. Ng-eaton, S. I. Imai, R. A. Frye et al., A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase, Cell, vol.107, pp.149-159, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-00746501

J. M. Dai, Z. Y. Wang, D. C. Sun, R. X. Lin, and S. Q. Wang, SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity, J. Cell. Physiol, vol.210, pp.161-166, 2007.

M. C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen et al., Mammalian SIRT1 represses forkhead transcription factors, Cell, vol.116, pp.551-563, 2004.
DOI : 10.1016/s0092-8674(04)00126-6

URL : https://doi.org/10.1016/s0092-8674(04)00126-6

C. Wang, L. Chen, X. Hou, Z. Li, N. Kabra et al., Interactions between E2F1 and SIRT1 regulate apoptotic response to DNA damage, Nat. Cell Biol, vol.8, pp.1025-1031, 2006.
DOI : 10.1038/ncb1468

S. Wong and J. D. Weber, Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1, Biochem. J, vol.407, pp.451-460, 2007.

A. Menssen, P. Hydbring, K. Kapelle, J. Vervoorts, J. Diebold et al., The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop, Proc. Natl. Acad. Sci, vol.109, pp.187-196, 2012.

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov et al., SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability, 2011.

Y. Zhang, M. Zhang, H. Dong, S. Yong, X. Li et al., Deacetylation of cortactin by SIRT1 promotes cell migration, Oncogene, vol.28, pp.445-460, 2009.

F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones et al., Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J, vol.23, pp.2369-2380, 2004.

R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth, PLoS ONE, vol.3, 2008.

J. Lim, Y. Lee, Y. Chun, J. Chen, J. Kim et al., Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1?, Mol. Cell, vol.38, pp.864-878, 2010.
DOI : 10.1016/j.molcel.2010.05.023

URL : https://doi.org/10.1016/j.molcel.2010.05.023

T. Bouras, M. Fu, A. A. Sauve, F. Wang, A. A. Quong et al., SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1, J. Biol. Chem, vol.280, pp.10264-10276, 2005.

L. Peng, H. Ling, Z. Yuan, B. Fang, G. Bloom et al., SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60, Mol. Cell. Biol, vol.32, pp.2823-2836, 2012.

M. Fulco, R. L. Schiltz, S. Iezzi, M. T. King, P. Zhao et al., Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state, Mol. Cell, vol.12, pp.51-62, 2003.

M. M. Dobbin, R. Madabhushi, L. Pan, Y. Chen, D. Kim et al., SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons, Nat. Neurosci, vol.16, pp.1008-1015, 2013.

L. Peng, Z. Yuan, H. Ling, K. Fukasawa, K. Robertson et al., SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities, Mol. Cell. Biol, vol.31, pp.4720-4734, 2011.

K. Rifaï, M. Idrissou, M. Daures, Y. Bignon, and F. Penault-llorca, Bernard-Gallon, D. SIRT1 in Colorectal Cancer: A Friend or Foe?, OMICS A J. Integr. Biol, vol.22, pp.298-300, 2018.

A. Kuzmichev, R. Margueron, A. Vaquero, T. S. Preissner, M. Scher et al., Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation, Proc. Natl. Acad. Sci, vol.102, pp.1859-1864, 2005.

E. Viré, C. Brenner, R. Deplus, L. Blanchon, M. Fraga et al., The Polycomb group protein EZH2 directly controls DNA methylation, Nature, vol.439, pp.871-874, 2006.

X. Liu, E. Ehmed, B. Li, J. Dou, X. Qiao et al., Breast cancer metastasis suppressor 1 modulates SIRT1-dependent p53 deacetylation through interacting with DBC1, Am. J. Cancer Res, vol.6, pp.1441-1449, 2016.

W. Zhao, J. Kruse, Y. Tang, S. Y. Jung, J. Qin et al., Negative regulation of the deacetylase SIRT1 by DBC1, Nature, vol.451, pp.587-590, 2008.

H. Abdelmawgoud and R. R. El-awady, Effect of Sirtuin 1 inhibition on matrix metalloproteinase 2 and Forkhead box O3a expression in breast cancer cells, Genes Dis, vol.4, pp.240-246, 2017.

J. Sung, R. Kim, J. Kim, and J. Lee, Balance between SIRT1 and DBC1 expression is lost in breast cancer, Cancer Sci, vol.101, pp.1738-1744, 2010.

M. Wu, W. Wei, X. Xiao, J. Guo, X. Xie et al., Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer, Med. Oncol, vol.29, pp.3240-3249, 2012.

X. Jin, Y. Wei, F. Xu, M. Zhao, K. Dai et al., SIRT1 promotes formation of breast cancer through modulating Akt activity, J. Cancer, vol.9, pp.2012-2023, 2018.

Y. Xu, Q. Qin, R. Chen, C. Wei, and Q. Mo, SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerase delta1 (POLD1), Biochem. Biophys. Res. Commun, vol.502, pp.351-357, 2018.

H. Ota, E. Tokunaga, K. Chang, M. Hikasa, K. Iijima et al., Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells, Oncogene, vol.25, pp.176-185, 2006.

H. Karbasforooshan, A. Roohbakhsh, and G. Karimi, SIRT1 and microRNAs: The role in breast, lung and prostate cancers, Exp. Cell Res, vol.367, pp.1-6, 2018.

Q. Zou, Q. Tang, Y. Pan, X. Wang, X. Dong et al., MicroRNA-22 inhibits cell growth and metastasis in breast cancer via targeting of SIRT1, Exp. Ther. Med, vol.14, pp.1009-1016, 2017.

X. Zhang, Y. Li, D. Wang, and X. Wei, miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1, Biol. Res, vol.50, 2017.

M. Yamakuchi, M. Ferlito, and C. J. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis, Proc. Natl. Acad. Sci, vol.105, pp.13421-13426, 2008.
DOI : 10.1073/pnas.0801613105

URL : http://www.pnas.org/content/105/36/13421.full.pdf

L. Li, L. Yuan, J. Luo, J. Gao, J. Guo et al., MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1, Clin. Exp. Med, vol.13, pp.109-117, 2013.

W. Ma, G. G. Xiao, J. Mao, Y. Lu, B. Song et al., Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness, Oncotarget, vol.6, pp.10432-10444, 2015.

P. Oberdoerffer, S. Michan, M. Mcvay, R. Mostoslavsky, J. Vann et al., SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging, vol.135, pp.907-918, 2008.

M. T. Borra, B. C. Smith, and J. M. Denu, Mechanism of human SIRT1 activation by resveratrol, J. Biol. Chem, vol.280, pp.17187-17195, 2005.

R. Wang, K. Sengupta, C. Li, H. Kim, L. Cao et al., Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice, Cancer Cell, vol.14, pp.312-323, 2008.

W. Zhang, J. Luo, F. Yang, Y. Wang, Y. Yin et al., BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1, Sci. Rep, 2016.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward et al., Global cancer statistics, CA Cancer J Clin, vol.61, pp.69-90, 2011.

A. Goldhirsch, E. P. Winer, A. S. Coates, R. D. Gelber, M. Piccartgebhart et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer, Ann. Oncol, vol.24, pp.2206-2229, 2013.

L. A. Carey, C. M. Perou, C. A. Livasy, L. G. Dressler, D. Cowan et al., breast cancer subtypes, and survival in the Carolina Breast Cancer Study, JAMA, vol.295, pp.2492-502, 2006.

T. Sorlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc Natl Acad Sci USA, vol.98, pp.10869-74, 2001.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: biological insights and disease relevance, Annu Rev Pathol, vol.5, pp.253-95, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://europepmc.org/articles/pmc2866163?pdf=render

H. Yuan, L. Su, and W. Y. Chen, The emerging and diverse roles of sirtuins in cancer: a clinical perspective, Onco Targets Ther, vol.6, pp.1399-416, 2013.

N. Dali-youcef, M. Lagouge, S. Froelich, C. Koehl, K. Schoonjans et al., Sirtuins: the 'magnificent seven', Oncotarget 110929 www.impactjournals.com/oncotarget function, metabolism and longevity, Ann. Med, vol.39, pp.335-380, 2007.

T. Liu, P. Y. Liu, and G. M. Marshall, The critical role of the class III histone deacetylase SIRT1 in cancer, Cancer Res, vol.69, pp.1702-1707, 2009.

C. X. Deng and . Sirt1, is it a tumor promoter or tumor suppressor?, Int J Biol Sci, vol.5, pp.147-52, 2009.
DOI : 10.7150/ijbs.5.147

URL : http://www.ijbs.com/v05p0147.pdf

J. Yi and J. Luo, SIRT1 and p53, effect on cancer, senescence and beyond, Biochim Biophys Acta, vol.1804, pp.1684-1693, 2010.
DOI : 10.1016/j.bbapap.2010.05.002

URL : http://europepmc.org/articles/pmc2989880?pdf=render

J. M. Dai, Z. Y. Wang, D. C. Sun, R. X. Lin, and S. Q. Wang, SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity, J Cell Physiol, vol.210, pp.161-167, 2007.
DOI : 10.1002/jcp.20831

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcp.20831

R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth, PloS one, vol.3, issue.2020, 2008.

R. H. Wang, Y. Zheng, H. S. Kim, X. Xu, L. Cao et al., Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis, Mol Cell, vol.32, pp.11-20, 2008.
DOI : 10.1016/j.molcel.2008.09.011

URL : https://doi.org/10.1016/j.molcel.2008.09.011

K. Y. Jang, S. J. Noh, N. Lehwald, G. Z. Tao, D. I. Bellovin et al., SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas, PloS one, vol.7, 2012.

L. Li, T. Osdal, Y. Ho, S. Chun, T. Mcdonald et al., SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells, Cell Stem cell, vol.15, pp.431-477, 2014.

N. Zhang, T. Xie, M. Xian, Y. J. Wang, H. Y. Li et al., SIRT1 promotes metastasis of human osteosarcoma cells, Oncotarget, vol.7, pp.79654-69, 2016.

D. Herranz, M. Canamero, M. Gomez-lopez, G. Inglada-perez, L. Robledo et al., SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency, Oncogene, vol.32, pp.4052-4058, 2013.
DOI : 10.1038/onc.2012.407

URL : https://www.nature.com/articles/onc2012407.pdf

M. Ohanna, C. Bonet, K. Bille, A. M. Davidson, I. Bahadoran et al., SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells, Oncotarget, vol.5, pp.2085-95, 2014.

I. C. Chen, W. F. Chiang, H. H. Huang, P. F. Chen, Y. Y. Shen et al., Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis, Mol Cancer, vol.13, p.254, 2014.

R. H. Wang, K. Sengupta, C. Li, H. S. Kim, L. Cao et al., Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice, Cancer Cell, vol.14, pp.312-335, 2008.

Y. W. Cao, Y. C. Li, G. X. Wan, X. M. Du, and F. Li, Clinicopathological and prognostic role of SIRT1 in breast cancer patients: a meta-analysis, Int J Clin Exp Med, vol.8, pp.616-640, 2015.

L. Y. Bourguignon, W. Xia, and G. Wong, Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates betacatenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells, J Biol Chem, vol.284, pp.2657-71, 2009.

N. Y. Song and Y. J. Surh, Janus-faced role of SIRT1 in tumorigenesis, Ann N Y Acad Sci, vol.1271, pp.10-19, 2012.

C. Wang, W. Yang, F. Dong, Y. Guo, J. Tan et al., The prognostic role of Sirt1 expression in solid malignancies: a meta-analysis, Oncotarget, 2017.

X. Chen, K. Sun, and S. Jiao, High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients, p.7481, 2014.

L. Lv, Z. Shen, and J. Zhang, Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma, 2014.

, Med Oncol, vol.31, p.965

K. Rifaï, G. Judes, and M. Idrissou, Dual SIRT1 expression patterns strongly suggests its bivalent role in human breast cancer, Oncotarget, vol.8, pp.110922-110930, 2017.

Z. L. Shen, B. Wang, and K. W. Jiang, Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/ KISS1 signaling, Oncotarget, vol.7, pp.35092-35105, 2016.

L. N. Sun, Z. Zhi, and L. Y. Chen, SIRT1 suppresses colorectal cancer metastasis by transcriptional repression of miR-15b-5p, Cancer Lett, vol.409, pp.104-115, 2017.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J Clin, vol.65, pp.87-108, 2012.
DOI : 10.3322/caac.21262

URL : https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21262

L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjöblom et al., The genomic landscapes of human breast and colorectal cancers, Science, vol.318, pp.1108-1121, 2007.

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc Natl Acad Sci U S A, vol.98, pp.10869-74, 2001.

A. Goldhirsch, E. P. Winer, A. S. Coates, R. D. Gelber, M. Piccartgebhart et al., Senn HJ; Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer, Ann Oncol, vol.24, pp.2206-2229, 2013.

L. A. Carey, C. M. Perou, C. A. Livasy, L. G. Dressler, D. Cowan et al., breast cancer subtypes, and survival in the Carolina Breast Cancer Study, JAMA, vol.295, pp.2492-502, 2006.

A. Fucito, C. Lucchetti, A. Giordano, and G. Romano, Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice?, Int J Biochem Cell Biol, vol.40, pp.565-75, 2008.

M. Esteller, Epigenetics in cancer, N Engl J Med, vol.358, pp.1148-59, 2008.

S. K. Kurdistani, Histone modifications as markers of cancer prognosis: a cellular view, Br J Cancer, vol.97, pp.1-5, 2007.

Y. Chervona and M. Costa, Histone modifications and cancer: biomarkers of prognosis?, Am J Cancer Res, vol.2, pp.589-97, 2012.

S. E. Elsheikh, A. R. Green, E. A. Rakha, D. G. Powe, R. A. Ahmed et al., Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome, Cancer Res, vol.69, pp.3802-3811, 2009.

Y. Li, S. Li, J. Chen, T. Shao, C. Jiang et al., Comparative epigenetic analyses reveal distinct patterns of oncogenic pathways activation in breast cancer subtypes, Hum Mol Genet, vol.23, pp.5378-93, 2014.

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

URL : https://doi.org/10.1016/j.cell.2007.02.005

Z. Wang, C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nat Genet, vol.40, pp.897-903, 2008.

A. Vaquero, M. Scher, D. Lee, H. Erdjument-bromage, P. Tempst et al., Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin, Mol Cell, vol.16, pp.93-105, 2004.

A. Vaquero, M. Scher, H. Erdjument-bromage, P. Tempst, L. Serrano et al., SIRT1 regulates the histone methyltransferase SUV39H1 during heterochromatin formation, Nature, vol.450, pp.440-444, 2007.
DOI : 10.1038/nature06268

M. F. Fraga, E. Ballestar, A. Villar-garea, M. Boix-chornet, J. Espada et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat Genet, vol.37, pp.391-400, 2005.

B. Guillemette, P. Drogaris, H. Lin, H. Armstrong, K. Hiragami-hamada et al., H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation, PLoS Genet, vol.7, 2011.
DOI : 10.1371/journal.pgen.1001354

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001354&type=printable

T. L. Messier, J. A. Gordon, J. R. Boyd, C. E. Tye, G. Browne et al., Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes
DOI : 10.18632/oncotarget.6922

URL : http://europepmc.org/articles/pmc4868673?pdf=render

, Oncotarget, vol.7, pp.5094-109, 2016.

M. A. Glozak and E. Seto, Histone deacetylases and cancer, Oncogene, vol.26, pp.5420-5452, 2007.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: biological insights and disease relevance, Annu Rev Pathol, vol.5, pp.253-95, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://europepmc.org/articles/pmc2866163?pdf=render

T. Liu, P. Y. Liu, and G. M. Marshall, The critical role of the class III histone deacetylase SIRT1 in cancer, Cancer Res, vol.69, pp.1702-1707, 2009.

L. Bosch-presegué and A. Vaquero, Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J, vol.282, pp.1745-67, 2015.

H. Vaziri, S. K. Dessain, N. Eaton, E. Imai, S. I. Frye et al., hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase, Cell, vol.107, pp.149-59, 2001.
DOI : 10.1016/s0092-8674(01)00527-x

URL : https://doi.org/10.1016/s0092-8674(01)00527-x

J. M. Dai, Z. Y. Wang, D. C. Sun, R. X. Lin, and S. Q. Wang, SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity, J Cell Physiol, vol.210, pp.161-167, 2007.
DOI : 10.1002/jcp.20831

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcp.20831

C. Wang, L. Chen, X. Hou, Z. Li, N. Kabra et al., Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage, Nat Cell Biol, vol.8, pp.1025-1056, 2006.
DOI : 10.1038/ncb1468

M. C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen et al., Mammalian SIRT1 represses forkhead transcription factors, Cell, vol.116, pp.551-63, 2004.
DOI : 10.1016/s0092-8674(04)00126-6

URL : https://doi.org/10.1016/s0092-8674(04)00126-6

F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones et al., Modulation of NF-?B-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J, vol.23, pp.2369-80, 2004.

J. Lu, L. Zhang, X. Chen, Q. Lu, Y. Yang et al., SIRT1 counteracted the activation of STAT3 and NF-?B to repress the gastric cancer growth, Int J Clin Exp Med, vol.7, pp.5050-5058, 2014.

R. H. Wang, Y. Zheng, H. S. Kim, X. Xu, L. Cao et al., Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis, Mol Cell, vol.32, pp.11-20, 2008.
DOI : 10.1016/j.molcel.2008.09.011

URL : https://doi.org/10.1016/j.molcel.2008.09.011

R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth, PLoS One, vol.3, issue.2020, 2008.
DOI : 10.1371/journal.pone.0002020

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002020&type=printable

K. Y. Jang, S. J. Noh, N. Lehwald, G. Z. Tao, D. I. Bellovin et al., SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas, PLoS One, vol.7, 2012.

A. Laemmle, A. Lechleiter, V. Roh, C. Schwarz, S. Portmann et al., Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1? protein under hypoxic conditions, PLoS One, vol.7, 2012.

N. Y. Song and Y. J. Surh, Janus-faced role of SIRT1 in tumorigenesis, Ann N Y Acad Sci, vol.1271, pp.10-19, 2012.

C. Wang, W. Yang, F. Dong, Y. Guo, J. Tan et al., The prognostic role of Sirt1 expression in solid malignancies: a meta-analysis, Oncotarget, vol.8, pp.66343-51, 2017.

K. Rifaï, G. Judes, M. Idrissou, M. Daures, Y. J. Bignon et al., Dual SIRT1 expression patterns strongly suggests its bivalent role in human breast cancer, Oncotarget, vol.8, pp.110922-110952, 2017.

B. Xhemalce and T. Kouzarides, A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly, Genes Dev, vol.24, pp.647-52, 2010.
DOI : 10.1101/gad.1881710

URL : http://genesdev.cshlp.org/content/24/7/647.full.pdf

J. Jovanovic, J. A. Rønneberg, J. Tost, and V. Kristensen, The epigenetics of breast cancer, Mol Oncol, vol.4, pp.242-54, 2010.

S. Sharma, T. K. Kelly, and P. A. Jones, Epigenetics in cancer, Carcinogenesis, vol.31, pp.27-36, 2010.

C. M. Perou, T. Sørlie, M. B. Eisen, M. Van-de-rijn, S. S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, vol.406, pp.747-52, 2000.
DOI : 10.1038/35021093

B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J Clin Invest, vol.121, pp.2750-67, 2011.

J. Feng, L. Li, N. Zhang, J. Liu, L. Zhang et al., Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms, Oncogene, vol.36, pp.2775-90, 2017.

B. J. Deroo and K. S. Korach, Estrogen receptors and human disease, J Clin Invest, vol.116, pp.561-70, 2006.

K. H. Yoo and L. Hennighausen, EZH2 methyltransferase and H3K27 methylation in breast cancer, Int J Biol Sci, vol.8, pp.59-65, 2012.
DOI : 10.7150/ijbs.8.59

URL : http://www.ijbs.com/v08p0059.pdf

B. D. Jeffy, J. K. Hockings, M. Q. Kemp, S. S. Morgan, J. A. Hager et al.,

S. Fan, J. Wang, R. Yuan, Y. Ma, Q. Meng et al., BRCA1 inhibition of estrogen receptor signaling in transfected cells, Science, vol.284, pp.1354-1360, 1999.

G. P. Skliris, K. Munot, S. M. Bell, P. J. Carder, S. Lane et al., Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model, J Pathol, vol.201, pp.213-233, 2003.

T. Bouras, M. Fu, A. A. Sauve, F. Wang, A. A. Quong et al., SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1, J Biol Chem, vol.280, pp.10264-76, 2005.

L. Lu, L. Li, X. Lv, X. S. Wu, D. P. Liu et al., Modulations of hMOF autoacetylation by SIRT1 regulate hMOF recruitment and activities on the chromatin, Cell Res, vol.21, pp.1182-95, 2011.

K. Rifaï, M. Idrissou, M. Daures, Y. J. Bignon, F. Penault-llorca et al., SIRT1 in Colorectal Cancer: A Friend or Foe?, OMICS, vol.22, pp.298-300, 2018.

S. Elangovan, S. Ramachandran, N. Venkatesan, S. Ananth, J. P. Gnana-prakasam et al., SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor ? in breast cancer, Cancer Res, vol.71, pp.6654-64, 2011.

A. Farria, W. Li, and S. Y. Dent, KATs in cancer: functions and therapies, Oncogene, vol.34, issue.38, pp.4901-4913, 2015.
DOI : 10.1038/onc.2014.453

URL : http://europepmc.org/articles/pmc4530097?pdf=render

E. Piccinni, A. Chelstowska, and J. Hanus, Direct interaction of Gas41 and Myc encoded by amplified genes in nervous system tumours, Acta Biochim. Pol, vol.58, issue.4, pp.529-534, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00978665

N. Avvakumov and J. Cote, The MYST family of histone acetyltransferases and their intimate links to cancer, Oncogene, vol.26, issue.37, pp.5395-5407, 2007.

Y. Tang, J. Luo, W. Zhang, and W. Gu, Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis, Mol. Cell, vol.24, issue.6, pp.827-839, 2006.

V. Sapountzi, I. R. Logan, and C. N. Robson, Cellular functions of TIP60, Int. J. Biochem. Cell Biol, vol.38, issue.9, pp.1496-1509, 2006.

M. Squatrito, C. Gorrini, and B. Amati, Tip60 in DNA damage response and growth control: many tricks in one HAT, Trends Cell Biol, vol.16, issue.9, pp.433-442, 2006.

S. Jha, E. Shibata, and A. Dutta, Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage, Mol. Cell. Biol, vol.28, issue.8, pp.2690-2700, 2008.

S. M. Sykes, H. S. Mellert, and M. A. Holbert, Acetylation of the p53 DNA-binding domain regulates apoptosis induction, Mol. Cell, vol.24, issue.6, pp.841-851, 2006.

K. W. Jeong, K. Kim, A. J. Situ, T. S. Ulmer, W. An et al., Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation, Nat. Struct. Mol. Biol, vol.18, issue.12, pp.1358-1365, 2011.

?. , Outlines the involvement of TIP60 in estrogen-induced transcription by its interaction with ER-? and H3K4me1

G. Judes, K. Rifai, and M. Ngollo, A bivalent role of TIP60 histone acetyl transferase in human cancer, Epigenomics, vol.7, issue.8, pp.1351-1363, 2015.

L. L. Me, F. Vidal, and D. Gallardo, New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas, Oncol. Rep, vol.16, issue.3, pp.603-608, 2006.

K. Sakuraba, T. Yasuda, and M. Sakata, Downregulation of Tip60 gene as a potential marker for the malignancy of colorectal cancer, Anticancer Res, vol.29, issue.10, pp.3953-3955, 2009.

C. Gorrini, M. Squatrito, and L. C. , Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response, Nature, vol.448, issue.7157, pp.1063-1067, 2007.

?. , Highlights a monoallelic loss of TIP60 gene in human breast cancer leading to a reduction of mRNA and protein levels

G. Chen, Y. Cheng, Y. Tang, M. Martinka, and G. Li, Role of Tip60 in human melanoma cell migration, metastasis and patient survival, J. Invest. Dermatol, vol.132, issue.11, pp.2632-2641, 2012.

J. H. Kim, B. Kim, and L. Cai, Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes, Nature, vol.434, issue.7035, pp.921-926, 2005.

A. Grezy, M. Chevillard-briet, D. Trouche, and F. Escaffit, Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase, Mol. Biol. Cell, vol.27, issue.4, pp.599-607, 2016.

, ? Demonstrates the role of TIP60 in compaction pathway of heterochromatin via H4K12 acetylation

M. Chevillard-briet, M. Quaranta, and A. Grezy, Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling, Hum. Mol. Genet, vol.23, issue.8, pp.2120-2131, 2014.

G. E. Zentner and S. Henikoff, Regulation of nucleosome dynamics by histone modifications, Nat. Struct. Mol. Biol, vol.20, issue.3, pp.259-266, 2013.

B. Xhemalce and T. Kouzarides, A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly, Genes Dev, vol.24, issue.7, pp.647-652, 2010.

, ? Identifies in Schizosaccharomyces pombe, H3K4ac as an important histone modification involved in heterochromatine formation

G. Judes, A. Dagdemir, and S. Karsli-ceppioglu, H3K4 acetylation, H3K9 acetylation and H3K27 methylation in breast tumor molecular subtypes, Epigenomics, vol.8, issue.7, pp.909-924, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02023563

G. Judes, A. Dagdemir, and S. Karsli-ceppioglu, Molecular and epigenetic biomarkers in luminal androgen receptor: a triple negative breast cancer subtype, OMICS, vol.20, issue.10, pp.610-613, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02120769

A. Dagdemir, G. Judes, and A. Lebert, Epigenetic modifications with DZNep, NaBu and SAHA in luminal and mesenchymal-like breast cancer subtype cells, Cancer Genomics Proteomics, vol.13, issue.4, pp.291-303, 2016.

M. Ngollo, A. Lebert, and A. Dagdemir, The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters, BMC Cancer, vol.14, p.994, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02120774

A. Dagdemir, J. Durif, M. Ngollo, Y. J. Bignon, and D. Bernard-gallon, Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines, Epigenomics, vol.5, issue.1, pp.51-63, 2013.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-408, 2001.

R. Hashizume, N. Andor, and Y. Ihara, Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma, Nat. Med, vol.20, issue.12, pp.1394-1396, 2014.

B. A. Garcia, S. B. Hake, and R. L. Diaz, Organismal differences in post-translational modifications in histones H3 and H4, J. Biol. Chem, vol.282, issue.10, pp.7641-7655, 2007.

B. Guillemette, P. Drogaris, and H. H. Lin, H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation, PLoS Genet, vol.7, issue.3, p.1001354, 2011.

Z. Wang, C. Zang, and K. Cui, Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes, Cell, vol.138, issue.5, pp.1019-1031, 2009.

Z. Wang, C. Zang, and J. A. Rosenfeld, Combinatorial patterns of histone acetylations and methylations in the human genome, Nat. Genet, vol.40, issue.7, pp.897-903, 2008.

N. Saksouk, E. Simboeck, and J. Dejardin, Constitutive heterochromatin formation and transcription in mammals, Epigenetics Chromatin, vol.8, p.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144005

C. Bassi, Y. T. Li, and K. Khu, The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair, Cell Death Differ, vol.23, issue.7, pp.1198-1208, 2016.

A. S. Clarke, E. Samal, and L. Pillus, Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing, Mol. Biol. Cell, vol.17, issue.4, pp.1744-1757, 2006.

. Research-article, . Judes, and R. Dubois,

K. Berns, E. M. Hijmans, and J. Mullenders, A large-scale RNAi screen in human cells identifies new components of the p53 pathway, Nature, vol.428, issue.6981, pp.431-437, 2004.

G. Legube, L. K. Linares, and S. Tyteca, Role of the histone acetyl transferase Tip60 in the p53 pathway, J. Biol. Chem, vol.279, issue.43, pp.44825-44833, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00022400

Y. Sun, X. Jiang, S. Chen, N. Fernandes, and B. D. Price, A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM, Proc. Natl Acad. Sci. USA, vol.102, issue.37, pp.13182-13187, 2005.

A. K. Pandey, Y. Zhang, and S. Zhang, TIP60-miR-22 axis as a prognostic marker of breast cancer progression, Oncotarget, vol.6, issue.38, pp.41290-41306, 2015.

Y. Zhang, V. K. Subbaiah, and D. Rajagopalan, TIP60 inhibits metastasis by ablating DNMT1-SNAIL2-driven epithelial-mesenchymal transition program, J. Mol. Cell Biol, vol.8, issue.5, pp.384-399, 2016.
DOI : 10.1093/jmcb/mjw038

URL : https://academic.oup.com/jmcb/article-pdf/8/5/384/18157321/mjw038.pdf

J. S. Carroll, C. A. Meyer, and J. Song, Genome-wide analysis of estrogen receptor binding sites, Nat. Genet, vol.38, issue.11, pp.1289-1297, 2006.

C. Y. Lin, V. B. Vega, and J. S. Thomsen, Whole-genome cartography of estrogen receptor alpha binding sites, PLoS Genet, vol.3, issue.6, p.87, 2007.

W. J. Welboren, M. A. Van-driel, and E. M. Janssen-megens, ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands, EMBO J, vol.28, issue.10, pp.1418-1428, 2009.

M. D. Althuis, J. M. Dozier, W. F. Anderson, S. S. Devesa, and L. A. Brinton, , 2005.

, Global trends in breast cancer incidence and mortality 1973-1997, Int J Epidemiol, vol.34, pp.405-412

M. Arif, P. Senapati, J. Shandilya, and T. K. Kundu, Protein lysine acetylation in cellular function and its role in cancer manifestation, Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms, vol.1799, pp.702-716, 2010.

C. H. Arrowsmith, C. Bountra, P. V. Fish, K. Lee, and M. Schapira, Epigenetic protein families: a new frontier for drug discovery, Nat Rev Drug Discov, vol.11, pp.384-400, 2012.

N. Avvakumov and J. Côté, The MYST family of histone acetyltransferases and their intimate links to cancer, Oncogene, vol.26, pp.5395-5407, 2007.

X. Bai, L. Yao, X. Ma, and X. Xu, Small Molecules as SIRT Modulators, Mini Rev Med Chem, vol.18, pp.1151-1157, 2018.
DOI : 10.2174/1389557516666160620095103

K. V. Balakin, Y. A. Ivanenkov, A. S. Kiselyov, and S. E. Tkachenko, Histone deacetylase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective, Anticancer Agents Med Chem, vol.7, pp.576-592, 2007.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

V. Bardou, G. Arpino, R. M. Elledge, C. K. Osborne, and G. M. Clark, , 2003.

, J. Clin. Oncol, vol.21, pp.1973-1979

B. Barneda-zahonero and M. Parra, Histone deacetylases and cancer, Mol Oncol, vol.6, pp.579-589, 2012.

T. Bartke, M. Vermeulen, B. Xhemalce, S. C. Robson, M. Mann et al.,

, Nucleosome-interacting proteins regulated by DNA and histone methylation, Cell, vol.143, pp.470-484

S. B. Baylin and J. E. Ohm, Epigenetic gene silencing in cancer -a mechanism for early oncogenic pathway addiction?, Nat. Rev. Cancer, vol.6, pp.107-116, 2006.

D. C. Bedford, L. H. Kasper, T. Fukuyama, and P. K. Brindle, Target gene context influences the transcriptional requirement for the KAT3 family of CBP, p.300, 2010.

A. Benard, I. J. Goossens-beumer, A. Q. Van-hoesel, W. De-graaf, H. Horati et al., Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer, BMC Cancer, vol.14, p.531, 2014.

R. Benedetti, M. Conte, C. Iside, A. , and L. , Epigenetic-based therapy: From single-to multi-target approaches, Int. J. Biochem. Cell Biol, vol.69, pp.121-131, 2015.
DOI : 10.1016/j.biocel.2015.10.016

S. L. Berger, T. Kouzarides, R. Shiekhattar, and A. Shilatifard, An operational definition of epigenetics, Genes Dev, vol.23, pp.781-783, 2009.

S. Biswas and C. M. Rao, Epigenetics in cancer: Fundamentals and Beyond, Pharmacol. Ther, vol.173, pp.118-134, 2017.
DOI : 10.1016/j.pharmthera.2017.02.011

H. J. Bloom and W. W. Richardson, Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years, Br. J. Cancer, vol.11, pp.359-377, 1957.

M. T. Borra, B. C. Smith, and J. M. Denu, Mechanism of human SIRT1 activation by resveratrol, J. Biol. Chem, vol.280, pp.17187-17195, 2005.

L. Bosch-presegué and A. Vaquero, The dual role of sirtuins in cancer, Genes Cancer, vol.2, pp.648-662, 2011.

L. Bosch-presegué and A. Vaquero, Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J, vol.282, pp.1745-1767, 2015.

R. M. Campbell and P. J. Tummino, Cancer epigenetics drug discovery and development: the challenge of hitting the mark, J Clin Invest, vol.124, pp.64-69, 2014.

Y. Cao, Y. Li, G. Wan, X. Du, L. et al., Clinicopathological and prognostic role of SIRT1 in breast cancer patients: a meta-analysis, Int J Clin Exp Med, vol.8, pp.616-624, 2015.

L. A. Carey, C. M. Perou, C. A. Livasy, L. G. Dressler, D. Cowan et al., Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study, JAMA, vol.295, pp.2492-2502, 2006.

H. Cedar and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nat. Rev. Genet, vol.10, pp.295-304, 2009.
DOI : 10.1038/nrg2540

A. Chalkiadaki and L. Guarente, The multifaceted functions of sirtuins in cancer, Nat. Rev. Cancer, vol.15, pp.608-624, 2015.

M. C. Cheang, S. K. Chia, D. Voduc, D. Gao, S. Leung et al., Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer, J. Natl. Cancer Inst, vol.101, pp.736-750, 2009.

I. Chen, W. Chiang, H. Huang, P. Chen, Y. Shen et al.,

J. Chen, A. W. Chan, K. To, W. Chen, Z. Zhang et al., SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3?/?-catenin signaling, Hepatology, vol.57, pp.2287-2298, 2013.

Y. Chen, T. Wang, W. Wang, J. Hu, R. Li et al., Prognostic and clinicopathological significance of SIRT1 expression in NSCLC: a meta-analysis, Oncotarget, vol.8, pp.62537-62544, 2017.

Y. Chen, S. Kao, H. Wang, Y. , and M. , Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma, Cancer, vol.119, pp.4259-4267, 2013.

Y. Chervona, C. , and M. , Histone modifications and cancer: biomarkers of prognosis?, Am J Cancer Res, vol.2, pp.589-597, 2012.

I. Cho, S. S. Koh, W. Malilas, R. Srisuttee, J. Moon et al., SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of ?-catenin, Biochem. Biophys. Res. Commun, vol.423, pp.270-275, 2012.

C. Choudhary, C. Kumar, F. Gnad, M. L. Nielsen, M. Rehman et al., Lysine acetylation targets protein complexes and co-regulates major cellular functions, Science, vol.325, pp.834-840, 2009.
DOI : 10.1126/science.1175371

A. S. Coates, E. P. Winer, A. Goldhirsch, R. D. Gelber, M. Gnant et al., Tailoring therapies--improving the management of early breast cancer, St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer, vol.26, pp.1533-1546, 2015.

K. Coffey, T. J. Blackburn, S. Cook, B. T. Golding, R. J. Griffin et al., Characterisation of a Tip60 Specific Inhibitor, NU9056, in Prostate Cancer, PLOS ONE, vol.7, p.45539, 2012.

A. Csibi, S. Fendt, C. Li, G. Poulogiannis, A. Y. Choo et al., The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4, Cell, vol.153, pp.840-854, 2013.
DOI : 10.1016/j.cell.2013.04.023

URL : https://doi.org/10.1016/j.cell.2013.04.023

X. Cui, R. Schiff, G. Arpino, C. K. Osborne, and A. V. Lee, Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy, J. Clin. Oncol, vol.23, pp.7721-7735, 2005.

G. Curigliano, H. J. Burstein, E. Winer, M. Gnant, P. Dubsky et al., De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus | REFERENCES P a g e | 75, 2017.

, Conference on the Primary Therapy of Early Breast Cancer, vol.28, pp.1700-1712, 2017.

N. Dali-youcef, M. Lagouge, S. Froelich, C. Koehl, K. Schoonjans et al., Sirtuins: the "magnificent seven", function, metabolism and longevity, Ann. Med, vol.39, pp.335-345, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189161

C. Damaskos, N. Garmpis, S. Valsami, M. Kontos, E. Spartalis et al., Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer, Anticancer Res, vol.37, pp.35-46, 2017.

L. Dan, O. Klimenkova, M. Klimiankou, J. Klusman, M. M. Van-den-heuvel-eibrink et al., , 2012.

N. Dandachi, O. Dietze, and C. Hauser-kronberger, Chromogenic in situ hybridization: a novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma, Lab. Invest, vol.82, pp.1007-1014, 2002.

V. Davalos, A. Martinez-cardus, and M. Esteller, The Epigenomic Revolution in Breast Cancer: From Single-Gene to Genome-Wide Next-Generation Approaches, Am. J. Pathol, vol.187, pp.2163-2174, 2017.

M. A. Dawson and T. Kouzarides, Cancer epigenetics: from mechanism to therapy, Cell, vol.150, pp.12-27, 2012.
DOI : 10.1016/j.cell.2012.06.013

URL : https://doi.org/10.1016/j.cell.2012.06.013

D. Souza, C. Chatterji, and B. P. , HDAC Inhibitors as Novel Anti-Cancer Therapeutics, Recent Pat Anticancer Drug Discov, vol.10, pp.145-162, 2015.
DOI : 10.2174/1574892810666150317144511

F. J. Dekker and H. J. Haisma, Histone acetyl transferases as emerging drug targets, Drug Discov. Today, vol.14, pp.942-948, 2009.

G. P. Delcuve, D. H. Khan, D. , and J. R. , Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors, Clin Epigenetics, vol.4, p.5, 2012.

B. J. Deroo and K. S. Korach, Estrogen receptors and human disease, J. Clin. Invest, vol.116, pp.561-570, 2006.

R. S. Derr, A. Q. Van-hoesel, A. Benard, I. J. Goossens-beumer, A. Sajet et al.,

D. Giorgio, E. Gagliostro, E. Brancolini, and C. , Selective class IIa HDAC inhibitors: myth or reality, Cell. Mol. Life Sci, vol.72, pp.73-86, 2015.

M. Di-martile, D. Del-bufalo, and D. Trisciuoglio, The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target, Oncotarget, vol.7, pp.55789-55810, 2016.

G. Donmez, The neurobiology of sirtuins and their role in neurodegeneration, Trends Pharmacol. Sci, vol.33, pp.494-501, 2012.

Y. Doyon, W. Selleck, W. S. Lane, S. Tan, and J. Côté, Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans, Mol. Cell. Biol, vol.24, pp.1884-1896, 2004.

L. K. Dunnwald, M. A. Rossing, and C. I. Li, Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients, Breast Cancer Res, vol.9, p.6, 2007.

A. Eberharter and P. B. Becker, Histone acetylation: a switch between repressive and permissive chromatin, EMBO Rep, vol.3, pp.224-229, 2002.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone Deacetylase Inhibitors as Anticancer Drugs, Int J Mol Sci, vol.18, 2017.
DOI : 10.3390/ijms18071414

URL : https://doi.org/10.3390/ijms18071414

S. B. Edge and C. C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM, Ann. Surg. Oncol, vol.17, pp.1471-1474, 2010.

S. Elangovan, S. Ramachandran, N. Venkatesan, S. Ananth, J. P. Gnana-prakasam et al., , 2011.

S. E. Elsheikh, A. R. Green, E. A. Rakha, D. G. Powe, R. A. Ahmed et al., Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome, Cancer Res, vol.69, pp.3802-3809, 2009.

C. W. Elston and I. O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up, Histopathology, vol.19, pp.152-153, 1991.

M. Esteller, Cancer epigenomics: DNA methylomes and histone-modification maps, Nat. Rev. Genet, vol.8, pp.286-298, 2007.

M. Esteller, Epigenetics in cancer, N. Engl. J. Med, vol.358, pp.1148-1159, 2008.

S. Fan, J. Wang, R. Yuan, Y. Ma, Q. Meng et al., BRCA1 inhibition of estrogen receptor signaling in transfected cells, Science, vol.284, pp.1354-1356, 1999.

S. Fan, Y. X. Ma, C. Wang, R. Yuan, Q. Meng et al., p300 Modulates the BRCA1 inhibition of estrogen receptor activity, Cancer Res, vol.62, pp.141-151, 2002.

Y. Fang and M. B. Nicholl, Sirtuin 1 in malignant transformation: friend or foe?, Cancer Lett, vol.306, pp.10-14, 2011.

A. Farria, W. Li, and S. Y. Dent, KATs in cancer: functions and therapies, Oncogene, vol.34, pp.4901-4913, 2015.

P. Fedele, L. Orlando, and S. Cinieri, Targeting triple negative breast cancer with histone deacetylase inhibitors, Expert Opin Investig Drugs, vol.26, pp.1199-1206, 2017.

L. P. Feeley, A. M. Mulligan, D. Pinnaduwage, S. B. Bull, and I. L. Andrulis, , 2014.

, Distinguishing luminal breast cancer subtypes by Ki67, progesterone receptor or TP53 status provides prognostic information, Mod. Pathol, vol.27, pp.554-561

J. Feng, L. Li, N. Zhang, J. Liu, L. Zhang et al., Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms, Oncogene, vol.36, pp.2775-2790, 2017.

L. W. Finley and M. C. Haigis, Metabolic regulation by SIRT3: implications for tumorigenesis, Trends Mol Med, vol.18, pp.516-523, 2012.
DOI : 10.1016/j.molmed.2012.05.004

URL : http://europepmc.org/articles/pmc4765807?pdf=render

R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino et al., The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth, PLoS ONE, vol.3, 2008.
DOI : 10.1371/journal.pone.0002020

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002020&type=printable

M. F. Fraga and M. Esteller, Epigenetics and aging: the targets and the marks, Trends Genet, vol.23, pp.413-418, 2007.

M. F. Fraga, E. Ballestar, A. Villar-garea, M. Boix-chornet, J. Espada et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat. Genet, vol.37, pp.391-400, 2005.

M. Fu, M. Liu, A. A. Sauve, X. Jiao, X. Zhang et al., Hormonal control of androgen receptor function through SIRT1, Mol. Cell. Biol, vol.26, pp.8122-8135, 2006.

A. Fucito, C. Lucchetti, A. Giordano, and G. Romano, Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice?, Int J Biochem Cell Biol, vol.40, pp.565-575, 2008.

C. Gao, E. Bourke, M. Scobie, M. A. Famme, T. Koolmeister et al., Rational design and validation of a Tip60, 2014.

L. Gao, M. A. Cueto, F. Asselbergs, A. , and P. , Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family, J. Biol. Chem, vol.277, pp.25748-25755, 2002.

N. Garmpis, C. Damaskos, A. Garmpi, E. Kalampokas, T. Kalampokas et al., Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises, vol.14, pp.299-313, 2017.

C. Gerhauser, Epigenetics, Plant (Poly)phenolics, and Cancer Prevention, Recent Advances in Polyphenol Research, pp.143-207, 2014.
DOI : 10.1002/9781118329634.ch6

S. Giulianelli, J. P. Vaqué, R. Soldati, V. Wargon, S. I. Vanzulli et al., Estrogen receptor alpha mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the cyclin D1/MYC promoters, Cancer Res, vol.72, pp.2416-2427, 2012.

M. A. Glozak and E. Seto, Histone deacetylases and cancer, Oncogene, vol.26, pp.5420-5432, 2007.

A. Goldhirsch, E. P. Winer, A. S. Coates, R. D. Gelber, M. Piccart-gebhart et al., Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer, and Panel members, vol.24, pp.2206-2223, 2013.

V. R. Grann, A. B. Troxel, N. J. Zojwalla, J. S. Jacobson, D. Hershman et al., Hormone receptor status and survival in a population-based cohort of patients with breast carcinoma, Cancer, vol.103, pp.2241-2251, 2005.

B. Guillemette, P. Drogaris, H. S. Lin, H. Armstrong, K. Hiragami-hamada et al., H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation, PLoS Genet, vol.7, p.1001354, 2011.
DOI : 10.1371/journal.pgen.1001354

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001354&type=printable

M. Haberland, R. L. Montgomery, and E. N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nat. Rev. Genet, vol.10, pp.32-42, 2009.

M. Haberland, A. Johnson, M. H. Mokalled, R. L. Montgomery, and E. Olson,

, Genetic dissection of histone deacetylase requirement in tumor cells, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.7751-7755

A. Hagelkruys, A. Sawicka, M. Rennmayr, and C. Seiser, The biology of HDAC in cancer: the nuclear and epigenetic components, Handb Exp Pharmacol, vol.206, pp.13-37, 2011.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: biological insights and disease relevance, Annu Rev Pathol, vol.5, pp.253-295, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://europepmc.org/articles/pmc2866163?pdf=render

J. A. Hall, J. E. Dominy, Y. Lee, and P. Puigserver, The sirtuin family's role in aging and age-associated pathologies, J. Clin. Invest, vol.123, pp.973-979, 2013.

M. E. Hammond, D. F. Hayes, M. Dowsett, D. C. Allred, K. L. Hagerty et al., American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version), Arch. Pathol. Lab. Med, vol.134, pp.48-72, 2010.

D. Herranz, A. Maraver, M. Cañamero, G. Gómez-lópez, L. Inglada-pérez et al., SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency, Oncogene, vol.32, pp.4052-4056, 2013.
DOI : 10.1038/onc.2012.407

URL : https://www.nature.com/articles/onc2012407.pdf

D. S. Hewings, T. P. Rooney, L. E. Jennings, D. A. Hay, C. J. Schofield et al., Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions, J. Med. Chem, vol.55, pp.9393-9413, 2012.

Y. Hida, Y. Kubo, K. Murao, A. , and S. , Strong expression of a longevityrelated protein, SIRT1, in Bowen's disease, Arch. Dermatol. Res, vol.299, pp.103-106, 2007.

M. Hiratsuka, T. Inoue, T. Toda, N. Kimura, Y. Shirayoshi et al., Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene, Biochem. Biophys. Res. Commun, vol.309, pp.558-566, 2003.

R. Holliday, Epigenetics: a historical overview, Epigenetics, vol.1, pp.76-80, 2006.
DOI : 10.4161/epi.1.2.2762

R. H. Houtkooper, E. Pirinen, A. , and J. , Sirtuins as regulators of metabolism and healthspan, Nat Rev Mol Cell Biol, vol.13, pp.225-238, 2012.
DOI : 10.1038/nrm3293

URL : http://europepmc.org/articles/pmc4872805?pdf=render

J. Hu, H. Jing, L. , and H. , Sirtuin inhibitors as anticancer agents, Future Med Chem, vol.6, pp.945-966, 2014.
DOI : 10.4155/fmc.14.44

URL : http://europepmc.org/articles/pmc4384657?pdf=render

Y. Huang, S. Nayak, R. Jankowitz, N. E. Davidson, and S. Oesterreich, , 2011.

, Epigenetics in breast cancer: what's new?, Breast Cancer Res, vol.13, p.225

D. M. Huffman, W. E. Grizzle, M. M. Bamman, J. Kim, I. A. Eltoum et al., SIRT1 is significantly elevated in mouse and human prostate cancer, Cancer Res, vol.67, pp.6612-6618, 2007.
DOI : 10.1158/0008-5472.can-07-0085

URL : http://cancerres.aacrjournals.org/content/67/14/6612.full.pdf

I. , H. Ko, E. Kim, Y. Cho, E. Y. Han et al., Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas, Cancer Epidemiol. Biomarkers Prev, vol.19, pp.566-573, 2010.

M. Igci, M. E. Kalender, E. Borazan, I. Bozgeyik, R. Bayraktar et al., , 2016.

S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature, vol.403, pp.795-800, 2000.
DOI : 10.1038/35001622

T. Inoue, M. Hiratsuka, M. Osaki, and M. Oshimura, The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation, Cell Cycle, vol.6, pp.1011-1018, 2007.

H. Inuzuka, D. Gao, L. W. Finley, W. Yang, L. Wan et al., Acetylation-dependent regulation of Skp2 function, Cell, vol.150, pp.179-193, 2012.
DOI : 10.1016/j.cell.2012.05.038

URL : https://doi.org/10.1016/j.cell.2012.05.038

A. Izzo and R. Schneider, Chatting histone modifications in mammals, Brief Funct Genomics, vol.9, pp.429-443, 2010.
DOI : 10.1093/bfgp/elq024

URL : https://academic.oup.com/bfg/article-pdf/9/5-6/429/441603/elq024.pdf

S. M. Jeong, C. Xiao, L. W. Finley, T. Lahusen, A. L. Souza et al., SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism, Cancer Cell, vol.23, pp.450-463, 2013.
DOI : 10.1016/j.ccr.2013.02.024

URL : https://doi.org/10.1016/j.ccr.2013.02.024

H. Jiang, X. Zhang, Y. Tao, L. Shan, Q. Jiang et al., , 2017.

, Prognostic and clinicopathologic significance of SIRT1 expression in hepatocellular carcinoma, Oncotarget, vol.8, pp.52357-52365

K. Jiang, L. Lyu, Z. Shen, J. Zhang, H. Zhang et al., Overexpression of SIRT1 is a poor prognostic factor for advanced colorectal cancer, Chin. Med. J, vol.127, pp.2021-2024, 2014.

Q. Jin, L. Yu, L. Wang, Z. Zhang, L. H. Kasper et al., Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation, EMBO J, vol.30, pp.249-262, 2011.

P. A. Jones and S. B. Baylin, The fundamental role of epigenetic events in cancer, Nat. Rev. Genet, vol.3, pp.415-428, 2002.

G. Judes, A. Dagdemir, S. Karsli-ceppioglu, A. Lebert, M. Echegut et al., H3K4 acetylation, H3K9 acetylation and H3K27 methylation in breast tumor molecular subtypes, Epigenomics, vol.8, pp.909-924, 2016.
DOI : 10.2217/epi-2016-0015

URL : https://hal.archives-ouvertes.fr/hal-02023563

M. Kai, N. Kanaya, S. V. Wu, C. Mendez, D. Nguyen et al., , 2015.

S. Kaypee, D. Sudarshan, M. K. Shanmugam, D. Mukherjee, G. Sethi et al., Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics, Pharmacol. Ther, vol.162, pp.98-119, 2016.

T. J. Key, P. K. Verkasalo, and E. Banks, , 2001.

Y. Z. Kim, Altered Histone Modifications in Gliomas, Brain Tumor Res Treat, vol.2, pp.7-21, 2014.
DOI : 10.14791/btrt.2014.2.1.7

URL : http://europepmc.org/articles/pmc4049557?pdf=render

J. K. Kim, J. H. Noh, K. H. Jung, J. W. Eun, H. J. Bae et al., Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b, Hepatology, vol.57, pp.1055-1067, 2013.

S. C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball et al., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey, Mol. Cell, vol.23, pp.607-618, 2006.

H. Kimura, Histone modifications for human epigenome analysis, J. Hum. Genet, vol.58, pp.439-445, 2013.
DOI : 10.1038/jhg.2013.66

URL : https://www.nature.com/articles/jhg201366.pdf

B. A. Kohler, R. L. Sherman, N. Howlader, A. Jemal, A. B. Ryerson et al., Featuring Incidence of Breast Cancer Subtypes by Race/Ethnicity, Poverty, and State, J. Natl. Cancer Inst, vol.107, p.48, 1975.

G. E. Konecny, C. Thomssen, H. J. Lück, M. Untch, H. Wang et al., Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer, J. Natl. Cancer Inst, vol.96, pp.1141-1151, 2004.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.
DOI : 10.1016/j.cell.2007.02.005

URL : https://doi.org/10.1016/j.cell.2007.02.005

T. Kouzarides, SnapShot: Histone-modifying enzymes, Cell, vol.128, 2007.
DOI : 10.1016/j.cell.2007.02.018

URL : https://doi.org/10.1016/j.cell.2007.02.018

T. Kozako, T. Suzuki, M. Yoshimitsu, N. Arima, S. Honda et al., , 2014.

, Anticancer agents targeted to sirtuins, Molecules, vol.19, pp.20295-20313

S. Kuo, H. Lin, S. Chien, C. , and D. , SIRT1 suppresses breast cancer growth through downregulation of the Bcl-2 protein, Oncol. Rep, vol.30, pp.125-130, 2013.

S. K. Kurdistani, Histone modifications as markers of cancer prognosis: a cellular view, British Journal of Cancer, vol.97, pp.1-5, 2007.

A. Lahm, C. Paolini, M. Pallaoro, M. C. Nardi, P. Jones et al., Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases, Proc Natl Acad Sci U S A, vol.104, pp.17335-17340, 2007.

C. Lai, P. Lin, S. Lin, C. Hsu, H. Lin et al., Altered expression of SIRT gene family in head and neck squamous cell carcinoma, Tumour Biol, vol.34, pp.1847-1854, 2013.

S. W. Lam, C. R. Jimenez, and E. Boven, Breast cancer classification by proteomic technologies: current state of knowledge, Cancer Treat. Rev, vol.40, pp.129-138, 2014.

H. Lee, K. R. Kim, S. J. Noh, H. S. Park, K. S. Kwon et al., Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma, Hum. Pathol, vol.42, pp.204-213, 2011.

B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J. Clin. Invest, vol.121, pp.2750-2767, 2011.

V. Lennerz, M. Fatho, C. Gentilini, R. A. Frye, A. Lifke et al., The response of autologous T cells to a human melanoma is dominated by mutated neoantigens, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16013-16018, 2005.

Z. Li and W. Zhu, Targeting Histone Deacetylases for Cancer Therapy: From Molecular Mechanisms to Clinical Implications, Int J Biol Sci, vol.10, pp.757-770, 2014.

Y. Li, S. Li, J. Chen, T. Shao, C. Jiang et al., , 2014.

, Comparative epigenetic analyses reveal distinct patterns of oncogenic pathways activation in breast cancer subtypes, Hum. Mol. Genet, vol.23, pp.5378-5393

N. Liu, S. Li, N. Wu, and K. Cho, Acetylation and deacetylation in cancer stem-like cells, Oncotarget, vol.8, pp.89315-89325, 2017.

P. Y. Liu, N. Xu, A. Malyukova, C. J. Scarlett, Y. T. Sun et al., The histone deacetylase SIRT2 stabilizes Myc oncoproteins, Cell Death Differ, vol.20, pp.503-514, 2013.

T. Liu, P. Y. Liu, and G. M. Marshall, The critical role of the class III histone deacetylase SIRT1 in cancer, Cancer Res, vol.69, pp.1702-1705, 2009.

Y. Liu, T. Yin, Y. Feng, M. M. Cona, G. Huang et al., Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research, Quant Imaging Med Surg, vol.5, pp.708-729, 2015.

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, R. et al., , 1997.

, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260

L. Lv, Z. Shen, J. Zhang, H. Zhang, J. Dong et al., Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma, Med. Oncol, vol.31, p.965, 2014.

N. Ma, Y. Luo, Y. Wang, C. Liao, W. Ye et al., Selective Histone Deacetylase Inhibitors with Anticancer Activity, Curr Top Med Chem, vol.16, pp.415-426, 2016.

S. S. Mahajan, V. Leko, J. A. Simon, and A. Bedalov, Sirtuin modulators, Handb Exp Pharmacol, vol.206, pp.241-255, 2011.

M. Manal, M. J. Chandrasekar, J. Gomathi-priya, and M. J. Nanjan, Inhibitors of histone deacetylase as antitumor agents: A critical review, Bioorg. Chem, vol.67, pp.18-42, 2016.

A. Manuyakorn, R. Paulus, J. Farrell, N. A. Dawson, S. Tze et al., Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704, J. Clin. Oncol, vol.28, pp.1358-1365, 2010.

P. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller et al., , 2001.

, Histone deacetylases and cancer: causes and therapies, Nat. Rev. Cancer, vol.1, pp.194-202

R. Marmorstein and M. Zhou, Writers and readers of histone acetylation: structure, mechanism, and inhibition, Cold Spring Harb Perspect Biol, vol.6, p.18762, 2014.

C. M. Marson, Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer, Anticancer Agents Med Chem, vol.9, pp.661-692, 2009.
DOI : 10.2174/187152009788679976

C. Martin and Y. Zhang, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol, vol.6, pp.838-849, 2005.

B. Martinez-pastor and R. Mostoslavsky, Sirtuins, Metabolism, and Cancer, Front Pharmacol, vol.3, 2012.
DOI : 10.3389/fphar.2012.00022

URL : https://www.frontiersin.org/articles/10.3389/fphar.2012.00022/pdf

P. Martínez-redondo and A. Vaquero, The diversity of histone versus nonhistone sirtuin substrates, Genes Cancer, vol.4, pp.148-163, 2013.

S. Matsushima and J. Sadoshima, The role of sirtuins in cardiac disease, Am. J. Physiol. Heart Circ. Physiol, vol.309, pp.1375-1389, 2015.

D. Mcguinness, D. H. Mcguinness, J. A. Mccaul, and P. G. Shiels, Sirtuins, Bioageing, and Cancer, 2011.

Z. Mei, X. Zhang, J. Yi, J. Huang, J. He et al., Sirtuins in metabolism, DNA repair and cancer, J. Exp. Clin. Cancer Res, vol.35, p.182, 2016.
DOI : 10.1186/s13046-016-0461-5

URL : https://jeccr.biomedcentral.com/track/pdf/10.1186/s13046-016-0461-5

P. Mellini, T. Kokkola, T. Suuronen, H. S. Salo, L. Tolvanen et al., Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells, J. Med. Chem, vol.56, pp.6681-6695, 2013.

P. Mellini, S. Valente, M. , and A. , Sirtuin modulators: an updated patent review (2012 -2014), Expert Opin Ther Pat, vol.25, pp.5-15, 2015.
DOI : 10.1517/13543776.2014.982532

J. Mellor, Dynamic nucleosomes and gene transcription, Trends Genet, vol.22, pp.320-329, 2006.

P. Mertins, J. W. Qiao, J. Patel, N. D. Udeshi, K. R. Clauser et al., Integrated proteomic analysis of post-translational modifications by serial enrichment, Nat. Methods, vol.10, pp.634-637, 2013.

T. L. Messier, J. A. Gordon, J. R. Boyd, C. E. Tye, G. Browne et al., , 2016.

J. C. Milne and J. M. Denu, The Sirtuin family: therapeutic targets to treat diseases of aging, Curr Opin Chem Biol, vol.12, pp.11-17, 2008.

S. J. Mitchell, A. Martin-montalvo, E. M. Mercken, H. H. Palacios, T. M. Ward et al., The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet, Cell Rep, vol.6, pp.836-843, 2014.

B. J. Morris, Seven sirtuins for seven deadly diseases of aging. Free Radic, Biol. Med, vol.56, pp.133-171, 2013.

M. A. Moser, A. Hagelkruys, and C. Seiser, Transcription and beyond: the role of mammalian class I lysine deacetylases, Chromosoma, vol.123, pp.67-78, 2014.

B. M. Müller, L. Jana, A. Kasajima, A. Lehmann, J. Prinzler et al., Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer--overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression, BMC Cancer, vol.13, p.215, 2013.

R. Mundade, H. G. Ozer, H. Wei, L. Prabhu, and T. Lu, Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond, Cell Cycle, vol.13, pp.2847-2852, 2014.

Z. Nagy, T. , and L. , Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation, Oncogene, vol.26, pp.5341-5357, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189146

Z. Nagy, A. Riss, S. Fujiyama, A. Krebs, M. Orpinell et al., The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes, Cell. Mol. Life Sci, vol.67, pp.611-628, 2010.

S. J. Noh, H. A. Baek, H. S. Park, K. Y. Jang, W. S. Moon et al., Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer, Pathol. Res. Pract, vol.209, pp.365-370, 2013.

K. M. O'brien, S. R. Cole, C. Tse, C. M. Perou, L. A. Carey et al., Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study, Clin. Cancer Res, vol.16, pp.6100-6110, 2010.

C. O'callaghan and A. Vassilopoulos, Sirtuins at the crossroads of stemness, aging, and cancer, Aging Cell, vol.16, pp.1208-1218, 2017.

M. Ohanna, C. Bonet, K. Bille, M. Allegra, I. Davidson et al., SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells, Oncotarget, vol.5, pp.2085-2095, 2014.

J. V. Olsen and M. Mann, Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry, Mol Cell Proteomics, vol.12, pp.3444-3452, 2013.

S. Parbin, S. Kar, A. Shilpi, D. Sengupta, M. Deb et al., , 2014.

, Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer, J. Histochem. Cytochem, vol.62, pp.11-33

Y. S. Park, M. Y. Jin, Y. J. Kim, J. H. Yook, B. S. Kim et al., The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma, Ann. Surg. Oncol, vol.15, pp.1968-1976, 2008.

J. S. Parker, M. Mullins, M. C. Cheang, S. Leung, D. Voduc et al., Supervised risk predictor of breast cancer based on intrinsic subtypes, J. Clin. Oncol, vol.27, pp.1160-1167, 2009.

N. Patani, L. Martin, and M. Dowsett, Biomarkers for the clinical management of breast cancer: international perspective, Int. J. Cancer, vol.133, pp.1-13, 2013.

L. Peng, H. Ling, Z. Yuan, B. Fang, G. Bloom et al., SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60, Mol. Cell. Biol, vol.32, pp.2823-2836, 2012.

K. I. Pritchard, L. E. Shepherd, F. P. O'malley, I. L. Andrulis, D. Tu et al., HER2 and Responsiveness of Breast Cancer to Adjuvant Chemotherapy, New England Journal of Medicine, vol.354, pp.2103-2111, 2006.

K. Pruitt, R. L. Zinn, J. E. Ohm, K. M. Mcgarvey, S. L. Kang et al., Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation, 2006.

E. A. Rakha, M. E. El-sayed, A. H. Lee, C. W. Elston, M. J. Grainge et al., Prognostic significance of Nottingham histologic grade in invasive breast carcinoma, J. Clin. Oncol, vol.26, pp.3153-3158, 2008.

E. A. Rakha, J. S. Reis-filho, and I. O. Ellis, Combinatorial biomarker expression in breast cancer, Breast Cancer Res. Treat, vol.120, pp.293-308, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00535436

P. M. Ravdin, S. Green, T. M. Dorr, W. L. Mcguire, C. Fabian et al., Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study, J. Clin. Oncol, vol.10, pp.1284-1291, 1992.

E. Renaud, A. Barascu, and F. Rosselli, Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells, Nucleic Acids Res, vol.44, pp.648-656, 2016.

S. Ropero and M. Esteller, The role of histone deacetylases (HDACs) in human cancer, Mol Oncol, vol.1, pp.19-25, 2007.

J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark et al., The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy, Oncologist, vol.8, pp.307-325, 2003.

M. Roth, C. , and W. Y. , Sorting out functions of sirtuins in cancer, Oncogene, vol.33, pp.1609-1620, 2014.

J. A. Rusiecki, T. R. Holford, S. H. Zahm, and T. Zheng, Breast cancer risk factors according to joint estrogen receptor and progesterone receptor status, Cancer Detect. Prev, vol.29, pp.419-426, 2005.
DOI : 10.1016/j.cdp.2005.07.004

K. Sadoul, C. Boyault, M. Pabion, and S. Khochbin, Regulation of protein turnover by acetyltransferases and deacetylases, Biochimie, vol.90, pp.306-312, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00176724

I. Santos-barriopedro, H. Raurell-vila, and A. Vaquero, The Role of HATs and HDACs in Cell Physiology and Disease, Gene Regulation, Epigenetics and Hormone Signaling, pp.101-136, 2017.

H. Santos-rosa and C. Caldas, Chromatin modifier enzymes, the histone code and cancer, Eur. J. Cancer, vol.41, pp.2381-2402, 2005.
DOI : 10.1016/j.ejca.2005.08.010

G. Schotta, M. Lachner, K. Sarma, A. Ebert, R. Sengupta et al., A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes Dev, vol.18, pp.1251-1262, 2004.
DOI : 10.1101/gad.300704

URL : http://genesdev.cshlp.org/content/18/11/1251.full.pdf

D. Schübeler, D. M. Macalpine, D. Scalzo, C. Wirbelauer, C. Kooperberg et al., , 2004.

, Genes Dev, vol.18, pp.1263-1271

C. Sebastián, B. M. Zwaans, D. M. Silberman, M. Gymrek, A. Goren et al., The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism, Cell, vol.151, pp.1185-1199, 2012.

D. B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze et al.,

, Global histone modification patterns predict risk of prostate cancer recurrence, Nature, vol.435, pp.1262-1266

D. B. Seligson, S. Horvath, M. A. Mcbrian, V. Mah, H. Yu et al., Global levels of histone modifications predict prognosis in different cancers, Am. J. Pathol, vol.174, pp.1619-1628, 2009.

L. Serrano, P. Martínez-redondo, A. Marazuela-duque, B. N. Vazquez, S. J. Dooley et al., The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation, Genes Dev, vol.27, pp.639-653, 2013.

E. Seto, Y. , and M. , Erasers of histone acetylation: the histone deacetylase enzymes, Cold Spring Harb Perspect Biol, vol.6, 2014.

S. Shankar and R. K. Srivastava, Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis, Adv. Exp. Med. Biol, vol.615, pp.261-298, 2008.

P. Simic, E. O. Williams, E. L. Bell, J. J. Gong, M. Bonkowski et al., SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis, Cell Rep, vol.3, pp.1175-1186, 2013.

G. P. Skliris, K. Munot, S. M. Bell, P. J. Carder, S. Lane et al., , 2003.

D. Slamon, W. Eiermann, N. Robert, T. Pienkowski, M. Martin et al., Adjuvant trastuzumab in HER2-positive breast cancer, N. Engl. J. Med, vol.365, pp.1273-1283, 2011.

N. Song and Y. Surh, Janus-faced role of SIRT1 in tumorigenesis, Ann N Y Acad Sci, vol.1271, pp.10-19, 2012.

J. S. Song, Y. S. Kim, D. K. Kim, S. I. Park, and S. J. Jang, Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients, Pathol. Int, vol.62, pp.182-190, 2012.

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.10869-10874, 2001.

T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. S. Marron et al., Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.8418-8423, 2003.

M. R. Stratton and N. Rahman, The emerging landscape of breast cancer susceptibility, Nat. Genet, vol.40, pp.17-22, 2008.

W. Stünkel and R. M. Campbell, Sirtuin 1 (SIRT1): the misunderstood HDAC, J Biomol Screen, vol.16, pp.1153-1169, 2011.

J. Sung, R. Kim, J. Kim, and J. Lee, Balance between SIRT1 and DBC1 expression is lost in breast cancer, Cancer Sci, vol.101, pp.1738-1744, 2010.

J. Suzuki, Y. Chen, G. K. Scott, S. Devries, K. Chin et al., Protein acetylation and histone deacetylase expression associated with malignant breast cancer progression, Clin. Cancer Res, vol.15, pp.3163-3171, 2009.

M. Taipale, S. Rea, K. Richter, A. Vilar, P. Lichter et al., , 2005.

, Histone Acetyltransferase Is Required for Histone H4 Lysine 16 Acetylation in Mammalian Cells, Mol Cell Biol, vol.25, pp.6798-6810

H. Tamagawa, T. Oshima, M. Shiozawa, S. Morinaga, Y. Nakamura et al., , 2012.

C. R. Tate, L. V. Rhodes, H. C. Segar, J. L. Driver, F. N. Pounder et al., Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat, Breast Cancer Res, vol.14, p.79, 2012.

F. Thaler, Current trends in the development of histone deacetylase inhibitors: a review of recent patent applications, Pharm Pat Anal, vol.1, pp.75-90, 2012.

A. E. Toland, Aberrant Epigenetic Regulation in Breast Cancer, pp.91-122, 2012.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J Clin, vol.65, pp.87-108, 2012.
DOI : 10.3322/caac.21262

URL : https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21262

K. Turkmen, A. Karagoz, and A. Kucuk, Sirtuins as novel players in the pathogenesis of diabetes mellitus, World J Diabetes, vol.5, pp.894-900, 2014.

B. M. Turner, Histone acetylation and an epigenetic code, Bioessays, vol.22, pp.836-845, 2000.

F. A. Urra, F. Muñoz, M. Córdova-delgado, M. P. Ramírez, B. Peña-ahumada et al., , pp.58-59, 2018.

A. Urruticoechea, I. E. Smith, and M. Dowsett, Proliferation marker Ki-67 in early breast cancer, J. Clin. Oncol, vol.23, pp.7212-7220, 2005.

R. T. Utley and J. Côté, The MYST family of histone acetyltransferases, Curr. Top. Microbiol. Immunol, vol.274, pp.203-236, 2003.

R. Vajpeyi, WHO Classification of Tumours: Pathology and Genetics of Tumours of the Breast and Female Genital Organs, J Clin Pathol, vol.58, pp.671-672, 2005.

A. Vaquero, M. Scher, D. Lee, H. Erdjument-bromage, P. Tempst et al.,

, Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin, Mol. Cell, vol.16, pp.93-105

A. Vaquero, M. Scher, H. Erdjument-bromage, P. Tempst, L. Serrano et al., SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation, Nature, vol.450, pp.440-444, 2007.
DOI : 10.1038/nature06268

J. Veeck and M. Esteller, Breast cancer epigenetics: from DNA methylation to microRNAs, J Mammary Gland Biol Neoplasia, vol.15, pp.5-17, 2010.
DOI : 10.1007/s10911-010-9165-1

URL : https://link.springer.com/content/pdf/10.1007%2Fs10911-010-9165-1.pdf

E. Verdin, M. D. Hirschey, L. W. Finley, and M. C. Haigis, Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling, Trends Biochem. Sci, vol.35, pp.669-675, 2010.

J. M. Villalba, A. , and F. J. , Sirtuin activators and inhibitors, Biofactors, vol.38, pp.349-359, 2012.
DOI : 10.1002/biof.1032

URL : http://europepmc.org/articles/pmc3467333?pdf=render

S. Voelter-mahlknecht and U. Mahlknecht, The sirtuins in the pathogenesis of cancer, Clin Epigenetics, vol.1, pp.71-83, 2010.

J. Wang, C. , and J. , SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60, J. Biol. Chem, vol.285, pp.11458-11464, 2010.

C. Wang, W. Yang, F. Dong, Y. Guo, J. Tan et al., The prognostic role of Sirt1 expression in solid malignancies: a meta-analysis, Oncotarget, vol.8, pp.66343-66351, 2017.

H. Wang, R. Cao, L. Xia, H. Erdjument-bromage, C. Borchers et al., Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase, Mol. Cell, vol.8, pp.1207-1217, 2001.

R. Wang, K. Sengupta, C. Li, H. Kim, L. Cao et al., Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice, Cancer Cell, vol.14, pp.312-323, 2008.
DOI : 10.1016/j.ccr.2008.09.001

URL : https://doi.org/10.1016/j.ccr.2008.09.001

R. Wang, Y. Zheng, H. Kim, X. Xu, L. Cao et al., Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis, Mol. Cell, vol.32, pp.11-20, 2008.
DOI : 10.1016/j.molcel.2008.09.011

URL : https://doi.org/10.1016/j.molcel.2008.09.011

Z. Wang, C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nat Genet, vol.40, pp.897-903, 2008.

Z. Wang, C. Zang, K. Cui, D. E. Schones, A. Barski et al., , 2009.

, Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes, Cell, vol.138, pp.1019-1031

W. Weichert, HDAC expression and clinical prognosis in human malignancies, Cancer Letters, vol.280, pp.168-176, 2009.

M. T. Weigel and M. Dowsett, Current and emerging biomarkers in breast cancer: prognosis and prediction, Endocr. Relat. Cancer, vol.17, pp.245-262, 2010.
DOI : 10.1677/erc-10-0136

URL : https://erc.bioscientifica.com/downloadpdf/journals/erc/17/4/R245.pdf

B. T. Weinert, T. Moustafa, V. Iesmantavicius, R. Zechner, and C. Choudhary, Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions, EMBO J, vol.34, pp.2620-2632, 2015.

S. Wu, J. Jiang, J. Liu, X. Wang, Y. Gan et al., Meta-analysis of SIRT1 expression as a prognostic marker for overall survival in gastrointestinal cancer, Oncotarget, vol.8, pp.62589-62599, 2017.

B. Xhemalce and T. Kouzarides, A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly, Genes Dev, vol.24, pp.647-652, 2010.

J. Xu, W. Wang, X. Wang, L. Zhang, and P. Huang, Expression of SIRT1, H3K9me3, H3K9Ac and E-cadherin and its correlations with clinicopathological characteristics in gastric

K. Yamagata and I. Kitabayashi, Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX, Biochem. Biophys. Res. Commun, vol.390, pp.1355-1360, 2009.

X. Yang and E. Seto, HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention, Oncogene, vol.26, pp.5310-5318, 2007.

X. Yang and E. Seto, The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men, Nat. Rev. Mol. Cell Biol, vol.9, pp.206-218, 2008.

Y. Yao, H. Li, Y. Gu, N. E. Davidson, and Q. Zhou, Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling, Carcinogenesis, vol.31, pp.382-387, 2010.

Y. W. Yi, H. J. Kang, H. J. Kim, Y. Kong, M. L. Brown et al., Targeting Mutant p53 by a SIRT1 Activator YK-3-237 Inhibits the Proliferation of Triple-Negative Breast Cancer Cells, Oncotarget, vol.4, pp.984-994, 2013.

K. H. Yoo and L. Hennighausen, EZH2 methyltransferase and H3K27 methylation in breast cancer, Int. J. Biol. Sci, vol.8, pp.59-65, 2012.
DOI : 10.7150/ijbs.8.59

URL : http://www.ijbs.com/v08p0059.pdf

Y. K. Yoon, M. A. Ali, A. C. Wei, T. S. Choon, H. Osman et al., Synthesis and evaluation of novel benzimidazole derivatives as sirtuin inhibitors with antitumor activities, Bioorg. Med. Chem, vol.22, pp.703-710, 2014.

Y. K. Yoon, M. A. Ali, A. C. Wei, A. N. Shirazi, K. Parang et al., , 2014.

, Benzimidazoles as new scaffold of sirtuin inhibitors: green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties, Eur J Med Chem, vol.83, pp.448-454

H. Yuan, L. Su, C. , and W. Y. , The emerging and diverse roles of sirtuins in cancer: a clinical perspective, Onco Targets Ther, vol.6, pp.1399-1416, 2013.

G. E. Zentner and S. Henikoff, Regulation of nucleosome dynamics by histone modifications, Nat. Struct. Mol. Biol, vol.20, pp.259-266, 2013.

W. Zhang, J. Luo, F. Yang, Y. Wang, Y. Yin et al., BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1, 2016.

W. Zhu and G. A. Otterson, The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells, Curr Med Chem Anticancer Agents, vol.3, pp.187-199, 2003.