J. Danielli, H. Frederic, and . Davson, A Contribution to the Theory of Permeability of Thin Films, Journal of Cellular and Comparative Physiology, vol.5, issue.4, pp.495-508, 1935.

C. Dietrich, Lipid Rafts Reconstituted in Model Membranes, Biophysical Journal, vol.80, issue.3, pp.1417-1445, 2001.
DOI : 10.1016/s0006-3495(01)76114-0

URL : https://doi.org/10.1016/s0006-3495(01)76114-0

M. Edidin, Shrinking Patches and Slippery Rafts: Scales of Domains in the Plasma Membrane, Trends in Cell Biology, vol.11, pp.492-96, 2001.

A. M. Farnoud, Raft-Like Membrane Domains in Pathogenic Microorganisms Amir, Curr Top Membr, vol.347, issue.6224, pp.882-86, 2015.
DOI : 10.1016/bs.ctm.2015.03.005

URL : http://europepmc.org/articles/pmc5023442?pdf=render

G. W. Feigenson and J. T. Buboltz, Ternary Phase Diagram of Dipalmitoyl-PC / Dilauroyl-PC / Cholesterol : Nanoscopic Domain Formation Driven by Cholesterol, p.80, 2001.

L. D. Frye and M. Edidin, The Rapid Intermixing of Cell Surface Antigens After Formation of Mouse-Human Heterokaryons, Journal of Cell Science, vol.7, issue.2, pp.319-354, 1970.

G. Wood, W. , U. Igbavboa, W. Muller, and G. Eckert, Cholesterol Asymmetry in Synaptic Plasma Membranes, j neurochem, vol.116, issue.5, pp.684-89, 2011.

D. W. Grainger, A. Reichert, H. Ringsdorf, and C. Salesse, Hydrolytic Action of Phospholipase A 2 in Monolayers in the Phase Transition Region : Direct Observation of Enzyme Domain Formation Using Fluorescence Microscopy, vol.1023, pp.365-79, 1990.

Y. H. Hao and J. Chen, Influence of Cholesterol on the Biophysical Properties of the Sphingomyelin/DOPC Binary System, vol.92, pp.85-92, 2001.

T. Heimburg, A Model for the Lipid Pretransition: Coupling of Ripple Formation with the Chain-Melting Transition, Biophysical Journal, vol.78, issue.3, pp.1154-65, 2000.

J. M. Holopainen, L. Howard, . Brockman, E. Rhoderick, P. Brown et al., Interfacial Interactions of Ceramide with Dimyristoylphosphatidylcholine : Impact of the N-Acyl Chain, Biophysical Journal, vol.80, pp.50-60, 2001.

W. Huttner and J. Zimmerberg, Implications of Lipid Microdomains for Membrane Curvature, Budding and Fission, Elsevier Science, vol.13, pp.478-84, 2001.

K. Jacobson, E. D. Sheets, and R. Simson, Revisiting the Fluid Mosaic Model of Membranes Published by : American Association for the Advancement of Science Revisiting the Fluid Mosaic Model of Membranes, Europhysics Letters), vol.268, issue.5216, pp.27-32, 1995.

M. J. Karnovsky, A. M. Kleinfeld, R. L. Hoover, and R. D. Klausner, The Concept of Lipid Domains in Membranes, The journal of cell biology, vol.94, issue.17, 1982.

S. Kirchner and G. Cevc, On the Origin of Thermal L?' ? P?' Pretransition in the Lamellar Phospholipid Membranes S, Europhysics Letters), vol.28, issue.1, p.28, 1994.

J. Korlach, S. Petra, W. Watt, G. W. Webb, and . Feigenson, Characterization of Lipid Bilayer Phases by Confocal Microscopy, PNAS, vol.96, pp.8461-66, 1999.

C. V. Kulkarni, Self-Assembled Lipid Cubic Phase and Cubosomes for the Delivery of Aspirin as a Model Drug, Langmuir, vol.33, issue.38, pp.9907-9922, 2017.

L. De, J. Serna, J. Bernardino, A. C. Perez-gil, L. A. Simonsen et al., Cholesterol Rules: Direct Observation of the Coexistence of Two Fluid Phases in Native Pulmonary Surfactant Membranes at Physiological Temperatures, Journal of Biological Chemistry, vol.279, issue.39, pp.40715-40737, 2004.

A. Laganowsky, Membrane Proteins Bind Lipids Selectively to Modulate Their Structure and Function, Nature, vol.510, issue.7503, pp.172-75, 2014.
DOI : 10.1038/nature13419

URL : http://europepmc.org/articles/pmc4087533?pdf=render

T. J. Larocca, Cholesterol Lipids of Borrelia Burgdorferi Form Lipid Rafts and Are Required for the Bactericidal Activity of a Complement-Independent Antibody, Cell Host and Microbe, vol.8, issue.4, pp.331-373, 2010.

T. J. Larocca, Proving Lipid Rafts Exist : Membrane Domains in the Prokaryote Borrelia Burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts, PloS one, vol.9, issue.4, pp.331-373, 2013.

A. Lee, Clusters in Lipid Bilayers and the Interpretation of Thermal Effects in Biological Membranes, Biochemistry, vol.13, issue.18, pp.3699-3705, 1974.

S. Leibler and D. Andelman, Ordered and Curved Meso-Structures in Membranes and Amphiphilic Films, J. Physique, vol.48, pp.2013-2031, 1987.
URL : https://hal.archives-ouvertes.fr/jpa-00210644

C. Leidy, Ripples and the Formation of Anisotropic Lipid Domains : Imaging Two-Component Supported Double Bilayers by Atomic Force Microscopy, vol.83, pp.2625-2658, 2002.

D. Lingwood, Cholesterol Modulates Glycolipid Conformation and Receptor Activity, Nature Chemical Biology, vol.7, issue.5, pp.260-62, 2011.
DOI : 10.1038/nchembio.551

M. Lorizate, Comparative Lipidomics Analysis of HIV-1 Particles and Their Producer Cell Membrane in Different Cell Lines, Cellular Microbiology, vol.15, issue.2, pp.292-304, 2013.

M. M. Lozano, Colocalization of the Ganglioside GM1 and Cholesterol Chapitre 1 : Membranes cellulaires 59, 2013.

, Detected by Secondary Ion Mass Spectrometry, Journal of the American Chemical Society, vol.135, issue.15, pp.5620-5650

V. Luzzati, T. Tardieu, and . Gulik-krzywicki, Polymorphism of Lipids, Nature, vol.217, pp.652-56, 1968.
URL : https://hal.archives-ouvertes.fr/jpa-00215355

J. Majewski, T. Kuhl, K. Kjaer, and G. Smith, Packing of GangliosidePhospholipid Monolayers : An X-Ray Diffraction and Reflectivity Study, Biophysical Journal, vol.81, pp.2707-2722, 2001.

M. Marder, H. Frisch, J. Langer, and H. Mcconnell, Theory of the Intermediate Rippled Phase of Phospholipid Bilayers, Proceedings of the National Academy of Sciences of the United States of America, vol.81, issue.20, pp.6559-61, 1984.

S. Meinhardt, R. Vink, and F. Schmid, Monolayer Curvature Stabilizes Nanoscale Raft Domains in Mixed Lipid Bilayers, 2013.

P. Milhiet, Spontaneous Insertion and Partitioning of Alkaline Phosphatase into Model Lipid Rafts, EMBO, vol.3, issue.5, pp.485-90, 2002.

D. Owen, A. Magenau, D. Williamson, and K. Gaus, The Lipid Raft Hypothesis Revisited -New Insights on Raft Composition and Function from Super-Resolution Fluorescence Microscopy, pp.739-786, 2012.

L. J. Pike, Report Rafts Defined : A Report on the Keystone Symposium on Lipid Rafts and Cell Function, vol.47, pp.1597-98, 2006.

L. J. Pike, X. Han, K. Chung, and R. W. Gross, Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their Composition Is Independent of Caveolin-1 Expression : A Quantitative Electrospray Ionization / Mass Spectrometric Analysis ?, pp.2075-88, 2002.

A. Prinetti, V. Chigorno, G. Tettamanti, and S. Sonnino, Sphingolipid-Enriched Membrane Domains from Rat Cerebellar Granule Cells Differentiated in Culture, The Journal of Biological Chemistry, vol.275, issue.16, pp.11658-65, 2000.

M. Rappolt, New Evidence for Gel-Liquid Crystalline Phase Coexistence in the Ripple Phase of Phosphatidylcholines, European biophysics journal : EBJ, vol.29, pp.125-158, 2000.

J. Robertson, The Molecular Structure and Contact Relationships of Cell Membranes, 1960.

C. M. Rosetti, A. Mangiarotti, and N. Wilke, Biochimica et Biophysica Acta Sizes of Lipid Domains : What Do We Know from Arti Fi Cial Lipid Membranes ? What Are the Possible Shared Features with Membrane Rafts in Cells ?, BBA -Biomembranes, vol.1859, issue.5, pp.789-802, 2017.

M. Ross and C. Steinem, Visualization of Chemical and Physical Properties of Calcium-Induced Domains in 60, Hans-joachim Galla, and Andreas Janshoff, 2001.

D. Layers, Langmuir, vol.17, issue.18, pp.2437-2482

M. B. Sankaram and T. Thompson, Cholesterol-Induced Fluid-Phase Immiscibility in Membranes, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.8686-90, 1991.

. Sankaram, B. Mantripragada, and T. E. Thompson, Interaction of Cholesterol with Various Glycerophospholipids and Sphingomyelin1, Biochemistry, vol.29, pp.10670-75, 1990.

E. Schechter, Biochimie et Biophysique Des Membranes, vol.27, p.4412, 1990.

P. Scheiffele, A. Rietveld, T. Wilk, and K. Simons, Influenza Viruses Select Ordered Lipid Domains during Budding from the Plasma Membrane *, The Journal of biological chemistry, vol.274, issue.4, pp.2038-2082, 1999.

F. Schmid, Physical Mechanisms of Micro-and Nanodomain Formation in Multicomponent Lipid Membranes, BBA -Biomembranes, vol.1859, issue.4, pp.509-537, 2017.

E. Sezgin, A Comparative Study on Fluorescent Cholesterol Analogs as Versatile Cellular Reporters, Journal of Lipid Research, vol.57, issue.2, pp.299-309, 2016.

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts, Nature Reviews Molecular Cell Biology, vol.18, issue.6, pp.361-74, 2017.

K. Simons and G. Van-meer, Lipid Sorting in Epithelial Cells, Biochemistry, vol.27, 1988.

K. Simons and M. J. Gerl, Revitalizing Membrane Rafts: New Tools and Insights, Nature Reviews Molecular Cell Biology, vol.11, issue.10, pp.688-99, 2010.
DOI : 10.1038/nrm2977

K. Simons, J. Julio, and L. Sampaio, Membrane Organization and Lipid Rafts, Cold Spring Harbor ?, vol.3, issue.10, pp.1-18, 2011.

K. Simons and E. Ikonen, Functional Rafts in Cell Membranes, Nature, vol.387, issue.6633, pp.569-72, 1997.

. Singer, S. Author, and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes Published by : American Association for the Advancement of Science Stable URL, vol.175, pp.720-751, 1972.

A. Tardieu, F. C. Vittorio-luzzati, and . Reman, Structure and Polymorphism of the Hydrocarbon Chains of Lipids: A Study of Lecithin-Water Phases, Journal of Molecular Biology, vol.75, issue.4, pp.711-744, 1973.
URL : https://hal.archives-ouvertes.fr/jpa-00215355

H. C. Christianson and M. Belting, Heparan Sulfate Proteoglycan as a Cell-Surface Endocytosis Receptor, Matrix Biology, vol.35, pp.51-55, 2014.

A. I. Dayton, The Trans-Activator Gene of the Human T Cell Lymphotropic Virus Type Ill Is Required for Replication, vol.44, pp.941-988, 1988.

D. Delaroche, Tracking a New Cell-Penetrating (W/R) Nonapeptide, through an Enzyme-Stable Mass Spectrometry Reporter Tag, Analytical Chemistry, vol.79, issue.5, pp.1932-1970, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00678718

D. Derossi, S. Calvet, and A. Trembleau, Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-Independent *, vol.271, pp.18188-93, 1996.

D. Derossi, G. Chassaing, and A. Prochiantz, Trojan Peptides : The Penetratin System for Intracellular Delivery, vol.8, 1998.

D. Derossi, A. Joliot, G. Chassaing, and A. Prochiantz, The Third Helix of the Antennapedia Homeodornain Translocates through Biological Membranes, J Biol Chem, vol.269, issue.14, pp.10444-50, 1994.

S. Deshayes, Insight into the Mechanism of Internalization of the Cell-Penetrating Carrier Peptide Pep-1 through Conformational Analysis ? Se, Biochemistry, vol.43, pp.1449-57, 2004.

S. Deshayes, Formation of Transmembrane Ionic Channels of Primary Amphipathic Cell-Penetrating Peptides . Consequences on the Mechanism of Cell Penetration, vol.1758, pp.1846-51, 2006.

B. Ding and Z. Chen, Molecular Interactions between Cell Penetrating Peptide Pep-1 and Model Cell Membranes, The Journal of Physical Chemistry, vol.116, pp.2545-52, 2012.

S. Dissanayake, W. A. Denny, S. Gamage, and V. Sarojini, Recent Developments in Anticancer Drug Delivery Using Cell Penetrating and Tumor Targeting Peptides, Journal of Controlled Release, vol.250, pp.62-76, 2017.

G. Drin, Physico-Chemical Requirements for Cellular Uptake of pAntp Peptide Role of Lipid-Binding Affinity, vol.1314, pp.1304-1318, 2001.

F. Duchardt, M. Fotin-mleczek, H. Schwarz, and R. Fischer, A Comprehensive Model for the Cellular Uptake of Cationic Cell-Penetrating Peptides, pp.848-66, 2007.

. El-andaloussi, . Samir, J. Peter, H. J. Arver, and . Johansson, Cargo-Dependent Cytotoxicity and Delivery Efficacy of Cell-Penetrating Peptides : A Comparative Study, vol.292, pp.285-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478786

A. Elmquist and Ü. Langel, In Vitro Uptake and Stability Study of P VEC and Its All-D Analog, vol.384, pp.387-93, 2003.

K. Ezzat, Scavenger Receptor-Mediated Uptake of Cell-Penetrating Peptide Nanocomplexes with Oligonucleotides, vol.26, pp.1172-80, 2017.

S. Fawell, Tat-Mediated Delivery of Heterologous Proteins into Cells, Proceedings of the National Academy of Sciences, vol.91, issue.2, pp.664-68, 1994.

A. Ferrari, Caveolae-Mediated Internalization of Extracellular HIV-1 Tat Fusion Proteins Visualized in Real Time, Molecular Therapy, vol.8, issue.2, pp.122-131, 2003.

P. Fischer, Structure ± Activity Relationship of Truncated and Substituted Analogues of the Intracellular Delivery Vector Penetratin, pp.163-72, 2000.

A. D. Frankel and C. Pabo, Cellular Uptake of the Tat Protein from Human Lmmunodeficiency Virus, vol.55, pp.1189-93, 1988.

M. Fretz, Effects of Na + / H + Exchanger Inhibitors on Subcellular Localisation of Endocytic Organelles and Intracellular Dynamics of Protein Transduction Domains HIV -TAT Peptide and Octaarginine, Science Direct, vol.116, pp.247-54, 2006.

M. M. Fretz, Temperature-, Concentration-and CholesterolDependent Translocation of L-and D-Octa-Arginine across the Plasma and Nuclear Membrane of CD34+ Leukaemia Cells, Biochemistry, vol.342, pp.335-377, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478709

S. Futaki, Arginine-Rich Peptides, The Journal of biological chemistry, vol.276, issue.8, pp.5836-5876, 2001.
DOI : 10.1074/jbc.m007540200

URL : http://www.jbc.org/content/276/8/5836.full.pdf

S. Gerbal-chaloin, C. Gondeau, and G. Aldrian-herrada, First Step of the Cell-Penetrating Peptide Mechanism Involves Rac1 Remodelling, vol.99, pp.223-261, 2007.

M. Green and . Paul-m-loewenstein, Autonomous Functional Domains of Chemically Synthesized Human Lmmunodeficiency Virus Tat Trans-Activator Protein, p.55, 1988.
DOI : 10.1016/0092-8674(88)90262-0

E. Gros, A Non-Covalent Peptide-Based Strategy for Protein and Peptide Nucleic Acid Transduction, BBA -Biomembranes, vol.1758, pp.384-93, 2006.

J. M. Gump, K. Ronald, S. June, and . Dowdy, Revised Role of Glycosaminoglycans in TAT Protein Transduction Domain-Mediated Cellular Transduction ?, vol.285, pp.1500-1507, 2010.

T. Hara, Heterodimer Formation between the Antimicrobial Peptides Magainin 2 and PGLa in Lipid Bilayers : A Cross-Linking Study ?, pp.12395-99, 2001.

H. Herce, Arginine-Rich Peptides Destabilize the Plasma Membrane , Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides, Biophysj, vol.97, issue.7, pp.1917-1942, 2009.

H. Hirose, By Arginine-Rich Peptides Leads to Their Direct Penetration into Cells, Molecular Therapy, vol.20, issue.5, pp.984-93, 2012.
DOI : 10.1038/mt.2011.313

URL : https://doi.org/10.1038/mt.2011.313

Z. Islam, E Ff Ects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles, PloS one, vol.3, issue.4, 2017.

A. Lamazière, Lipid Domain Separation, Bilayer Thickening and Pearling Induced by the Cell Penetrating Peptide Penetratin, Biochimica et Biophysica Acta -Biomembranes, vol.1798, issue.12, pp.2223-2253, 2010.

A. Lamazière, G. Chassaing, G. Trugnan, and J. Ayala-sanmartin, Tubular Structures in Heterogeneous Membranes Induced by the Cell Penetrating Peptide Penetratin, Communicative integrative biology, vol.2, issue.3, pp.223-247, 2009.

U. Langel, A Galanin-Mastoparan Chimeric Peptide Activates the Na+,K +-ATPase and Reverses Its Inhibition by Ouabain, vol.62, pp.47-52, 1996.

Ü. Langel, Handbook of cell penetrating peptides, 2007.

J. Lee, P. Kennedy, and J. Waugh, Experiences with CPP-Based Self Assembling Peptide, Methods in Molecular Biology, vol.1324, pp.397-415, 2015.

M. -. Lee, W. Tao, F. Hung, H. W. Chen, and . Huang, Many-Body Effect of Antimicrobial Peptides : On the Correlation Between Lipid ' S Spontaneous Curvature and Pore Formation, Biophysical Journal, vol.89, pp.4006-4022, 2005.

Y. Lee, S. Datta, and J. Pellois, Real-Time Fluorescence Detection of Protein Transduction into Live Cells, vol.3, pp.2398-99, 2008.

. Levadny, T. Victor, M. Aki-tsuboi, M. Belaya, and . Yamazaki, Rate Constant of Tension-Induced Pore Formation in Lipid Membranes, Langmuir, vol.29, issue.12, pp.3848-52, 2013.

M. Lundberg and M. Johansson, Positively Charged DNA-Binding Proteins Cause Apparent Cell Membrane Translocation, vol.371, pp.367-71, 2002.

S. Ma, Electroporation-Based Delivery of Cell-Penetrating Peptide Conjugates of Peptide Nucleic Acids for Antisense Inhibition of Intracellular Bacteria, Integrative Biology, 2014.

F. Madani, Mechanisms of Cellular Uptake of Cell-Penetrating Peptides, 2011.

G. Mainguy, An Induction Gene Trap for Identifying a HomeoproteinRegulated Locus, vol.18, pp.16-19, 2000.

A. Maizel and O. Bensaude, A Short Region of Its Homeodomain Is Necessary for Engrailed Nuclear Export and Secretion, Alain Prochiantz, and Alain Joliot, vol.3190, pp.3183-90, 1999.

O. Maniti, Metabolic Energy-Independent Mechanism of Internalization for the Cell Penetrating Peptide Penetratin, International Journal of Biochemistry and Cell Biology, vol.44, issue.6, pp.869-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00688621

,

O. Maniti, I. Alves, G. Trugnan, and J. Ayala-sanmartin, Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids, PloS one, vol.5, issue.12, p.15819, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618692

O. Maniti, H. R. Piao, and J. Ayala-sanmartin, Basic Cell Penetrating Peptides Induce Plasma Membrane Positive Curvature, Lipid Domain Separation and Protein Redistribution, International Journal of Biochemistry and Cell Biology, vol.50, issue.1, pp.73-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00955205

. Mayor, R. E. Satyajit, R. Pagano, and . Gtpase, Pathways of ClathrinIndependent Endocytosis, Nature Reviews Molecular Cell Biology, vol.8, pp.603-615, 2007.

M. Mazel, Doxorubicin ± Peptide Conjugates Overcome Multidrug Resistance, pp.107-123, 2001.

K. Melikov, Efficient Entry of Cell-Penetrating Peptide Nona-Arginine into Adherent Cells Involves a Transient Increase in Intracellular Calcium, pp.221-251, 2015.

F. Milletti, Cell-Penetrating Peptides: Classes, Origin, and Current Landscape, Drug Discovery Today, vol.17, pp.850-60, 2012.

A. Mishra, Translocation of HIV TAT Peptide and Analogues Induced by Multiplexed Membrane and Cytoskeletal Interactions, p.108, 2011.

D. J. Mitchell, Polyarginine Enters Cells More Efficiently than Other Polycationic Homopolymers, Journal of Peptide Research, vol.56, issue.5, pp.318-343, 2000.

M. C. Morris, A New Peptide Vector for Efficient Delivery of Oligonucleotides into Mammalian Cells, Nucleic Acids Research, vol.25, issue.14, pp.2730-2766, 1997.

M. C. Morris, A Peptide Carrier for the Delivery of Biologically Active Proteins into Mammalian Cells, Nature, vol.19, pp.1173-76, 2001.

I. Nakase, Cellular Uptake of Arginine-Rich Peptides : Roles for Macropinocytosis and Actin Rearrangement, Molecular Therapy, vol.10, issue.6, pp.1011-1033, 2004.

I. Nakase, Interaction of Arginine-Rich Peptides with MembraneAssociated Proteoglycans Is Crucial for Induction of Actin Organization and Macropinocytosis ?, pp.492-501, 2007.

J. Oehlke, Cellular Uptake of an Alpha-Helical Amphipathic Model Peptide with the Potential to Deliver Polar Compounds into the Cell Interior NonEndocytically, Biochimica et Biophysica Acta -Biomembranes, vol.1414, issue.1-2, pp.127-166, 1998.

J. Oehlke, Enhancement of Intracellular Concentration and Application in Transgenesis, Journal of Biotechnology, vol.252, pp.15-26, 2004.

J. Richard and . Philippe, Cell-Penetrating Peptides, The Journal of biological chemistry, vol.278, issue.1, pp.585-90, 2003.

J. Richard and . Philippe, Cellular Uptake of Unconjugated TAT Peptide Involves Clathrin-Dependent Endocytosis and Heparan Sulfate Receptors *, vol.280, pp.15300-306, 2005.

P. Saalik, Protein Cargo Delivery Properties of Cell-Penetrating Peptides. A Comparative Study, Bioconjugate Chemistry, pp.1246-53, 2004.

P. Säälik, Penetration without Cells: Membrane Translocation of CellPenetrating Peptides in the Model Giant Plasma Membrane Vesicles, Journal of Controlled Release, vol.153, issue.2, pp.117-142, 2011.

J. Sabatier, E. Vives, K. Mabrouk, and A. Benjouad, Evidence for Neurotoxic Activity of Tat from Human Immunodeficiency Virus Type 1, vol.65, pp.961-67, 1991.

T. Salditt, A. Spaar, and C. Mu, Conformation of Peptides in Lipid Membranes Studied by X-Ray Grazing Incidence Scattering, vol.87, pp.396-407, 2004.

F. Schmid, Physical Mechanisms of Micro-and Nanodomain Formation in Multicomponent Lipid Membranes, BBA -Biomembranes, vol.1859, issue.4, pp.509-537, 2017.

S. Schwarze, K. A. Hruska, and S. Dowdy, Protein Transduction : Unrestricted Delivery into All, vol.10, pp.290-95, 2000.

S. Sharmin, Effects of Lipid Composition on the Entry of CellPenetrating Peptide Oligoarginine into Single Vesicles, Biochemistry, vol.55, issue.30, pp.4154-65, 2016.

C. G. Simmons, Synthesis and Membrane Permeability of P N aPeptide Conjugates, vol.7, pp.3001-3007, 1997.

U. Soomets, Deletion Analogues of Transportan, Biochimica et biophysica acta, 1467.

U. Soomets, M. Hällbrink, M. Zorko, and Ü. Langel, From Galanin and Mastoparan to Galparan and Transportan, 1997.

V. Steiner, M. Schar, O. Bornsen, and M. Mutter, Retention Behaviour of a Template-Assembled Synthetic Protein and Its Amphiphilic Building Blocks on Reversed-Phase Columns, journal of Cromatography, vol.586, pp.43-50, 1991.

R. Sugioka, BH4-Domain Peptide from Bcl-xL Exerts Anti-Apoptotic Activity in Vivo, Oncogene, vol.22, issue.52, pp.8432-8472, 2003.

. Macropinocytosis, Nature Medicine, vol.10, issue.3, pp.310-325

R. Wallbrecher, Membrane Permeation of Arginine-Rich CellPenetrating Peptides Independent of Transmembrane Potential as a Function of Lipid Composition and Membrane Fluidity, Journal of Controlled Release, vol.256, pp.68-78, 2017.

A. Walrant, Direct Translocation of Cell-Penetrating Peptides in Liposomes: A Combined Mass Spectrometry Quantification and Fluorescence Detection Study, Analytical Biochemistry, vol.438, issue.1, pp.1-10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00805222

K. Weller, Biophysical and Biological Studies of End-Group-Modified Derivatives of Pep-1, pp.15799-811, 2005.

P. A. Wender, The Design , Synthesis , and Evaluation of Molecules That Enable or Enhance Cellular Uptake : Peptoid Molecular Transporters, vol.97, pp.13003-13011, 2000.

P. A. Wender, The Design of Guanidinium-Rich Transporters and Their Internalization Mechanisms, Advanced Drug Delivery Reviews, vol.60, pp.452-72, 2008.

E. J. Williams, Selective Inhibition of Growth Factor-Stimulated Mitogenesis by a Cell-Permeable Grb2-Binding Peptide, vol.272, pp.22349-54, 1997.

K. Witte, Structure and Dynamics of the Two Amphipathic ArginineRich Peptides RW9 and RL9 in a Lipid Environment Investigated by Solid-State NMR and MD Simulations, Biochimica et Biophysica Acta -Biomembranes, vol.1828, issue.2, pp.824-857, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839914

L. E. Yandek, Mechanism of the Cell-Penetrating Peptide Transportan 10 Permeation of Lipid Bilayers, vol.92, pp.2434-2478, 2007.

L. Yang, Barrel-Stave Model or Toroidal Model ? A Case Study on Melittin Pores, Biophysical Journal, vol.81, issue.3, p.75802, 2001.

S. Yang, E. Zaitseva, L. V. Chernomordik, and K. Melikov, Cell-Penetrating Peptide Induces Leaky Fusion of Liposomes Containing Late Endosome-Specific Anionic Lipid, Biophysj, vol.99, issue.8, pp.2525-2558, 2010.

L. Zhang, A. Rozek, and R. Hancock, Interaction of Cationic Antimicrobial Peptides with Model Membranes, The Journal of Biological Chemistry, vol.276, issue.38, pp.35714-35736, 2001.

A. Ziegler, Thermodynamic Studies and Binding Mechanisms of CellPenetrating Peptides with Lipids and Glycosaminoglycans, Advanced Drug Delivery Reviews, vol.60, pp.580-97, 2008.

E. Bellet-amalric, Interaction of the Third Helix of Antennapedia Homeodomain and a Phospholipid Monolayer , Studied by Ellipsometry and PM-IRRAS at the Air ^ Water Interface, 1467.
URL : https://hal.archives-ouvertes.fr/hal-01550506

C. E. Caesar, E. K. Esbjörner, P. Lincoln, and B. Nordén, Membrane Interactions of Cell-Penetrating Peptides Probed by Tryptophan Fluorescence and Dichroism Techniques: Correlations of Structure to Cellular Uptake, Biochemistry, vol.45, issue.24, pp.7682-92, 2006.

A. M. Cardoso, S4(13)-PV Cell-Penetrating Peptide Induces Physical and Morphological Changes in Membrane-Mimetic Lipid Systems and Cell Membranes: Implications for Cell Internalization, Biochimica et biophysica acta, vol.1818, issue.3, pp.877-88, 2012.

B. Christiaens, Tryptophan Fluorescence Study of the Interaction of Penetratin Peptides with Model Membranes, Eur J Biochem, vol.269, issue.12, pp.2918-2944, 2002.

D. Derossi, A. Joliot, G. Chassaing, and A. Prochiantz, The Third Helix of the Antennapedia Homeodornain Translocates through Biological Membranes, J Biol Chem, vol.269, issue.14, pp.10444-50, 1994.

S. Deshayes, M. Decaffmeyer, R. Brasseur, and A. Thomas, Structural Polymorphism of Two CPP : An Important Parameter of Activity, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1778, issue.5, pp.1197-1205, 2008.

E. Eiríksdóttir, Biochimica et Biophysica Acta Secondary Structure of Cell-Penetrating Peptides Controls Membrane Interaction and Insertion, BBABiomembranes, vol.1798, issue.6, pp.1119-1147, 2010.

,

T. Heimburg, A Model for the Lipid Pretransition: Coupling of Ripple Formation with the Chain-Melting Transition, Biophysical Journal, vol.78, issue.3, pp.1154-65, 2000.

M. Janiak, D. Small, and G. Shipley, Nature of the Thermal Pretransition of Synthetic Phospholipids: Dimyristolyl-and Dipalmitoyllecithin, vol.15, pp.4575-80, 1976.

A. Lamazière, Non-Metabolic Membrane Tubulation and Permeability Induced by Bioactive Peptides, PloS one, vol.2, issue.2, p.201, 2007.

A. Lamazière, The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains, PloS one, vol.3, issue.4, p.1938, 2008.

A. Lamazière, Lipid Domain Separation, Bilayer Thickening and Pearling Induced by the Cell Penetrating Peptide Penetratin, Biochimica et Biophysica Acta -Biomembranes, vol.1798, issue.12, pp.2223-2253, 2010.

,

A. Lamazière, G. Chassaing, G. Trugnan, and J. Ayala-sanmartin, Tubular Structures in Heterogeneous Membranes Induced by the Cell Penetrating Peptide Penetratin, Communicative integrative biology, vol.2, issue.3, pp.223-247, 2009.

P. Lundin, Distinct Uptake Routes of Cell-Penetrating Peptide Conjugates, Bioconjug Chem, vol.19, issue.12, pp.2535-2577, 2008.

M. Magzoub, L. E. Go, and A. Gra, Conformational States of the CellPenetrating Peptide Penetratin When Interacting with Phospholipid Vesicles : Effects of Surface Charge and Peptide Concentration, vol.1563, pp.53-63, 2002.

O. Maniti, I. Alves, G. Trugnan, and J. Ayala-sanmartin, Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids, PloS one, vol.5, issue.12, p.15819, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618692

F. Milletti, Cell-Penetrating Peptides: Classes, Origin, and Current Landscape, Drug Discovery Today, vol.17, pp.850-60, 2012.

R. Barenholz, T. Yechezkel, E. Cohen, M. Haas, and . Ottolenghi, Lateral Organization of Pyrene-Labeled Lipids in Bilayers as Determined from the Deviation from Equilibrium between Pyrene Monomers and Excimers, Journal of Biological Chemistry, vol.271, issue.6, pp.3085-90, 1996.

D. A. Brown and E. London, Functions of Lipid Rafts in Biological Membranes, Annu rev Cell Dev Biol, vol.14, pp.111-147, 1998.

J. B. Busto, Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase, Biophysical Journal, vol.99, pp.1119-1147, 2010.

C. Chachaty, Building Up of the Liquid-Ordered Phase Formed by Sphingomyelin and Cholesterol, Biophysical Journal, vol.88, issue.6, pp.4032-4076, 2005.

P. Chong, I. Tang, and . Sugar, Exploration of Physical Principles Underlying Lipid Regular Distribution: Effects of Pressure, Temperature, and Radius of Curvature on E/M Dips in Pyrene-Labeled PC/DMPC Binary Mixtures, Biophysical journal, vol.66, issue.6, pp.2029-2067, 1994.

L. Guyader, L. , C. L. Roux, and S. Mazeres, Changes of the Membrane Lipid Organization Characterized by Means of a New Cholesterol-Pyrene Probe, Biophys J, vol.93, issue.12, pp.4462-73, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00266759

K. Kalyanasundaram and J. K. Thomas, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems, Journal of the American Chemical Society, vol.99, issue.7, pp.2039-2083, 1977.

S. Kim, J. M. Dug, and . Torkelson, Nanoscale Confinement and Temperature Effects on Associative Polymers in Thin Films : Fluorescence Study of a Telechelic , Pyrene-Labeled Poly ( Dimethylsiloxane ), Macromolecules, vol.35, pp.5943-52, 2002.

M. London and E. London, Ceramide Selectively Displaces Cholesterol from Ordered Lipid Domains (Rafts): Implications for Lipid Raft Structure and Function, Journal of Biological Chemistry, vol.279, issue.11, pp.9997-10004, 2004.

S. N. Pinto, Confocal and 2-Photon Microscopy Approach to Re-Evaluate the Properties of Sphingolipid Domains, Biochimica et Biophysica Acta A Combined Fl Uorescence Spectroscopy, vol.1828, issue.9, pp.2099-2110, 2013.

E. Sezgin, A Comparative Study on Fluorescent Cholesterol Analogs as Versatile Cellular Reporters, Journal of Lipid Research, vol.57, issue.2, pp.299-309, 2016.

L. C. Silva, H. Anthony, M. Futerman, and . Prieto, Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations, Biophysical Journal, vol.96, issue.8, pp.3210-3232, 2009.

Y. Taniguchi, T. Ohba, H. Miyata, and K. Ohki, Rapid Phase Chapitre 4 : Utilisation de la sonde cholestérol-pyrène, 2006.

, Change of Lipid Microdomains in Giant Vesicles Induced by Conversion of Sphingomyelin to Ceramide, Biochimica et Biophysica Acta -Biomembranes, vol.1758, issue.2, pp.145-53

C. Tessier, Colloids and Surfaces B : Biointerfaces Liquid -Liquid Immiscibility under Non-Equilibrium Conditions in a Model Membrane : An X-Ray Synchrotron Study, Biointerfaces, vol.74, pp.293-97, 2009.

H. A. Wilson-ashworth, Differential Detection of Phospholipid Fluidity, Order, and Spacing by Fluorescence Spectroscopy of Bis-Pyrene, Prodan, Nystatin, and Merocyanine 540, Biophysical journal, vol.91, issue.11, pp.4091-4101, 2006.

F. Winnik, Temperature-Induced Phase Transition of Pyrene-Labeled (Hydroxypropyl)cellulose in Water: Picosecond Fluorescence Studies, Journal of Physical Chemistry, vol.96, issue.2, pp.1967-72, 1992.

D. Delaroche, Cell-Penetrating Peptides with Intracellular ActinRemodeling Activity in Malignant Fibroblasts, Journal of Biological Chemistry, vol.285, issue.10, pp.7712-7733, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00464266

P. Joanne, Lipid Reorganization Induced by Membrane-Active Peptides Probed Using Differential Scanning Calorimetry, Biochimica et Biophysica Acta -Biomembranes, vol.1788, issue.9, pp.1772-81, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00639180

,

O. Maniti, I. Alves, G. Trugnan, and J. Ayala-sanmartin, Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids, PLoS ONE, vol.5, issue.12, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618692

J. Pan and . Khadka, Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study, vol.120, pp.4625-4659, 1920.

C. G. Simmons, Synthesis and Membrane Permeability of PNa -Peptide Conjugates, vol.7, pp.3001-3007, 1997.

J. Swiecicki and . Marie, Accumulation of Cell-Penetrating Peptides in Large Unilamellar Vesicles: A Straightforward Screening Assay for Investigating the Internalization Mechanism, Biopolymers, vol.104, issue.5, pp.533-576, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140970

C. Tessier, Colloids and Surfaces B : Biointerfaces Liquid -Liquid Immiscibility under Non-Equilibrium Conditions in a Model Membrane : An X-Ray Synchrotron Study, Biointerfaces, vol.74, pp.293-97, 2009.

R. Villa, Inhibition of Telomerase Activity by a Cell-Penetrating Peptide Nucleic Acid Construct in Human Melanoma Cells, FEBS Letters, vol.473, pp.241-289, 2000.

A. Walrant, Different Membrane Behaviour and Cellular Uptake of Three Basic Arginine-Rich Peptides, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1808, issue.1, pp.382-93, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00599704

C. Almeida, Membrane Re-Arrangements and Rippled Phase Stabilisation by the Cell Penetrating Peptide Penetratin, Biochimica et Biophysica Acta -Biomembranes, vol.1858, issue.11, pp.2584-91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376840

I. D. Alves, The Interaction of Cell-Penetrating Peptides with Lipid Model Systems and Subsequent Lipid Reorganization: Thermodynamic and Structural Characterization, Journal of Peptide Science, vol.15, issue.3, pp.200-209, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411007

C. E. Brattwall, P. Lincoln, and B. Norde, Orientation and Conformation of Cell-Penetrating Peptide Penetratin in Phospholipid Vesicle Membranes Determined by Polarized-Light Spectroscopy, JACS, vol.125, pp.14214-14229, 2003.

D. Delaroche, Tracking a New Cell-Penetrating (W/R) Nonapeptide, through an Enzyme-Stable Mass Spectrometry Reporter Tag, Analytical Chemistry, vol.79, issue.5, pp.1932-1970, 2007.
DOI : 10.1021/ac061108l

URL : https://hal.archives-ouvertes.fr/hal-00678718

D. Delaroche, Cell-Penetrating Peptides with Intracellular ActinRemodeling Activity in Malignant Fibroblasts, Journal of Biological Chemistry, vol.285, issue.10, pp.7712-7733, 2010.
DOI : 10.1074/jbc.m109.045872

URL : https://hal.archives-ouvertes.fr/hal-00464266

L. Guyader and L. , Changes of the Membrane Lipid Organization Characterized by Means of a New Cholesterol-Pyrene Probe, vol.93, pp.4462-73, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00266759

L. Guyader and L. , Utilisation de Sondes Pyréniques in Vivo Pour Caractériser L'état de Phase Global de La Membrane Plasmique de Cellules Eucaryotes. Application À La Détection de La Liaison D'agonistes Au Récepteur ?opioïde Murin, 2007.

T. Heimburg, A Model for the Lipid Pretransition: Coupling of Ripple Formation with the Chain-Melting Transition, Biophysical Journal, vol.78, issue.3, pp.1154-65, 2000.

K. Kalyanasundaram and J. K. Thomas, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems, Journal of the American Chemical Society, vol.99, issue.7, pp.2039-2083, 1977.

O. Maniti, Metabolic Energy-Independent Mechanism of Internalization for the Cell Penetrating Peptide Penetratin, International Journal of Biochemistry and Cell Biology, vol.44, issue.6, pp.869-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00688621

J. Pae, Translocation of Cell-Penetrating Peptides across the Plasma Membrane Is Controlled by Cholesterol and Microenvironment Created by Membranous Proteins, Journal of Controlled Release, vol.192, pp.103-116, 2014.

L. J. Pike, Lipid Rafts : Heterogeneity on the High Seas, Biochemical Journal, vol.292, pp.281-92, 2004.

D. Pisa, G. Margherita, J. Chassaing, and . Swiecicki, Translocation Mechanism(s) of Cell-Penetrating Peptides: Biophysical Studies Using Artificial Membrane Bilayers, Biochemistry, vol.54, issue.2, pp.194-207, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01093113

M. Rappolt, New Evidence for Gel-Liquid Crystalline Phase Coexistence in the Ripple Phase of Phosphatidylcholines, European biophysics journal : EBJ, vol.29, pp.125-158, 2000.

C. M. Rosetti, A. Mangiarotti, and N. Wilke, Biochimica et Biophysica Acta Sizes of Lipid Domains : What Do We Know from Arti Fi Cial Lipid Membranes ? What Are the Possible Shared Features with Membrane Rafts in Cells ?, BBA -Biomembranes, vol.1859, issue.5, pp.789-802, 2017.

H. A. Rydberg, Effects of Tryptophan Content and Backbone Spacing on the Uptake E Ffi Ciency of Cell-Penetrating Peptides, Biochemistry, vol.51, pp.5531-5570, 2012.

F. Schmid, Physical Mechanisms of Micro-and Nanodomain Formation in Multicomponent Lipid Membranes, Biochimica et Biophysica ActaBiomembranes, vol.1859, issue.4, pp.509-537, 2017.

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts, Nature Reviews Molecular Cell Biology, vol.18, issue.6, pp.361-74, 2017.

K. Simons and M. J. Gerl, Revitalizing Membrane Rafts: New Tools and Insights, Nature Reviews Molecular Cell Biology, vol.11, issue.10, pp.688-99, 2010.
DOI : 10.1038/nrm2977

J. Swiecicki, A. Bartsch, J. Tailhades, and D. Pisa, The Efficacies of Cell-Penetrating Peptides in Accumulating in Large Unilamellar Vesicles Depend on Their Ability To Form Inverted Micelles, pp.884-91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967862

J. Swiecicki and . Marie, Accumulation of Cell-Penetrating Peptides in Large Unilamellar Vesicles: A Straightforward Screening Assay for Investigating the Internalization Mechanism, Biopolymers, vol.104, issue.5, pp.533-576, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140970

A. Tardieu, F. C. Vittorio-luzzati, and . Reman, Structure and Polymorphism of the Hydrocarbon Chains of Lipids: A Study of Lecithin-Water Phases, Journal of Molecular Biology, vol.75, issue.4, pp.711-744, 1973.
URL : https://hal.archives-ouvertes.fr/jpa-00215355

B. G. Tenchov, H. Yao, and I. Hatta, Time-Resolved X-Ray Diffraction and Calorimetric Studies at Low Scan Rates Sample Preparation, Biophysical Journal, vol.56, issue.4, pp.82723-82730, 1989.

A. Walrant, Biochimica et Biophysica Acta Different Membrane Behaviour and Cellular Uptake of Three Basic Arginine-Rich Peptides, BBABiomembranes, vol.1808, issue.1, pp.382-93, 2011.

K. Witte, Structure and Dynamics of the Two Amphipathic ArginineRich Peptides RW9 and RL9 in a Lipid Environment Investigated by Solid-State NMR and MD Simulations, Biochimica et Biophysica Acta -Biomembranes, vol.1828, issue.2, pp.824-857, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839914

J. R. Alcala, E. Gratton, and F. G. Prendergast, Fluorescence Lifetime Distributions in Proteins, Biophysical Journal, vol.51, issue.4, pp.597-604, 1987.

C. Bechara, Tryptophan within Basic Peptide Sequences Triggers Glycosaminoglycan-Dependent Endocytosis, The FASEB Journal, vol.27, issue.2, pp.738-787, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00744509

A. Bree and V. Vilkos, Assignment of the {Two} {Lowest} {Singlet} {States} of {Pyrene}, The Journal of Chemical Physics, vol.40, issue.10, pp.3125-3151, 1964.

K. G. Casey and E. L. Quitevis, Effect of Solvent Polarity on Nonradiative Processes in Xanthene Dyes: Rhodamine B in Normal Alcohols, The Journal of Physical Chemistry, vol.92, issue.23, pp.6590-94, 1988.

M. Dembo, V. Glushko, M. Aberlin, and M. Sonenberg, A Method for Measuring Membrane Microviscosity, Biochimica et biophysica acta, vol.522, pp.201-212, 1978.

. Diaspro, M. Diaspro, M. Robello, and . Robello, Two-Photon Excitation of Fluorescence for Three-Dimensional Optical Imaging of Biological Structures, Journal of photochemistry and photobiology. B, Biology, vol.55, issue.1, pp.1-8, 2000.

M. Donner, M. Andre, and . Bouchy, Kinetics of Partly Diffusion Controlled Reactions, Biochemical and biophysical research communications, vol.97, issue.3, pp.1183-91, 1980.

K. Fushimi and A. S. Verkman, Low Viscosity in the Aqueous Domain of Cell Cytoplasm Measured by Picosecond Polarization Microfluorimetry, Journal of Cell Biology, vol.112, issue.4, pp.719-744, 1991.

H. J. Galla and W. Hartmann, Excimer-Forming Lipids in Membrane Research, Chemistry and Physics of Lipids, vol.27, issue.3, pp.199-219, 1980.

H. J. Galla, W. Hartmann, E. Theilen, and . Sackmann, On Two-Dimensional Passive Random Walk in Ipid Bilayers and Fluid Pathways in Biomembranes, J. Membrane Biol, vol.48, pp.215-236, 1979.

É. Gavilan, One-Pot Synthesis of Fluorescent Porous Aluminosilicate Nanoparticles, Comptes Rendus Chimie, vol.8, pp.1946-53, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079789

L. Guyader and L. , Changes of the Membrane Lipid Organization Characterized by Means of a New Cholesterol-Pyrene Probe, vol.93, pp.4462-73, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00266759

L. Guyader and L. , Utilisation de Sondes Pyréniques in Vivo Pour Caractériser L'état de Phase Global de La Membrane Plasmique de Cellules Eucaryotes. Application À La Détection de La Liaison D'agonistes Au Récepteur ?opioïde Murin, 2007.

H. Hotelling, Analysis of a Complex of Statistical Variables into Principal Components, Journal of Educational Psychology, vol.24, issue.6, pp.417-458, 1933.

R. Hovius, P. Vallotton, T. Wohland, and H. Vogel, Fluorescence Techniques: Shedding Light on Ligand-Receptor Interactions, vol.21, pp.266-73, 2000.

C. G. Hübner, A. Renn, I. Renge, and U. P. Wild, Direct Observation of the Triplet Lifetime Quenching of Single Dye Molecules by Molecular Oxygen, Journal of Chemical Physics, vol.115, issue.21, pp.9619-9641, 2001.

D. M. Jameson and G. Weber, Gregorio Weber, 1916-1997: A Fluorescent Lifetime, Biophysical Journal, vol.75, issue.1, pp.419-440, 1998.

A. T. Jones and E. J. Sayers, Cell Entry of Cell Penetrating Peptides: Tales of Tails Wagging Dogs, Journal of Controlled Release, vol.161, issue.2, pp.582-91, 2012.

K. Kalyanasundaram and J. K. Thomas, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems, Journal of the American Chemical Society, vol.2039, 1976.

D. S. Karpovich and G. J. Blanchard, Relating the Polarity-Dependent Fluorescence Response of Pyrene to Vibronic Coupling. Achieving a Fundamental Understanding of the Py Polarity Scale, The Journal of Physical Chemistry, vol.99, issue.12, pp.3951-58, 1995.

N. Kido, F. Tanaka, N. Kaneda, and K. Yagi, Pulse Fluorimetry of N-(1-Pyrenesulfonyl)dipalmitoyl-L-?-Phosphatidylethanolamine in Concanavalin A-Stimulated Human Lymphocytes, BBA -Biomembranes, vol.603, issue.2, pp.255-65, 1980.

N. Klonis, Fluorescence Photobleaching Analysis for the Study of Cellular Dynamics, European Biophysics Journal, vol.31, issue.1, pp.36-51, 2002.

J. R. Lakowicz, Principles of fluorescence spectroscopy, Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy, 2006.

A. Lamazière, Lipid Domain Separation, Bilayer Thickening and Pearling Induced by the Cell Penetrating Peptide Penetratin, Biochimica et Biophysica ActaBiomembranes, vol.1798, issue.12, pp.2223-2253, 2010.

P. Luly, R. Crifo, and . Strom, Effect of Insulin on Lateral Diffusion of Pyrene in Rat Liver Plasma Membrane, Experientia, vol.35, pp.1-2, 1979.

N. Marmé, J. P. Knemeyer, M. Sauer, and J. Wolfrum, Inter-and Intramolecular Fluorescence Quenching of Organic Dyes by Tryptophan, Bioconjugate Chemistry, vol.14, issue.6, pp.1133-1172, 2003.

A. Mecke, Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers, Biophysical Journal, vol.89, issue.6, pp.4043-50, 2005.

R. S. Moog, M. D. Ediger, S. G. Boxer, and M. D. Fayer, Viscosity Dependence of the Rotational Reorientation of Rhodamine B in Mono-and Polyalcohols. Picosecond Transient Grating Experiments, Journal of Physical Chemistry, vol.86, issue.24, pp.4694-4700, 1982.

A. Nakajima, Fluorescence Spectra of Pyrene in Chlorinated Aromatic Solvents, Journal of Luminescence, vol.11, issue.5-6, pp.429-461, 1976.

A. Nakajima, Solvent Effect on the Vibrational Structures of the Fluorescence and Absorption Spectra of Pyrene, Bulletin of the Chemical Society of Japan, vol.44, issue.12, pp.3272-77, 1971.

R. De-oliveira, Electrochemical Quenching of the Fluorescence Produced by NBD-Labelled Cell Penetrating Peptides: A Contribution to the Study of Their Internalization in Large Unilamellar Vesicles, Journal of Electroanalytical Chemistry, vol.788, pp.225-256, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01469377

R. Pal, Y. Barenholz, and R. R. Wagner, Pyrene Phospholipid as a Biological Fluorescent Probe for Studying Fusion of Virus Membrane with Liposomes, Biochemistry, vol.27, issue.1, pp.30-36, 1988.

R. B. Pansu, K. Yoshibara, T. Arai, and K. Tokumaru, Convolution Analysis of the Pyrene Excimer Formation in Membranes, Journal of Physical Chemistry, vol.97, pp.1125-1158, 1993.

T. Parasassi and E. Gratton, Membrane Lipid Domains and Dynamics as Detected by Laurdan Fluorescence, Journal of Fluorescence, vol.5, issue.1, pp.59-69, 1995.
DOI : 10.1007/bf00718783

URL : https://cloudfront.escholarship.org/dist/prd/content/qt54x5q1gs/qt54x5q1gs.pdf?t=oen6e2

C. A. Parker, , 1968.

M. A. Roseman and T. E. Thompson, Mechanism of the Spontaneous Transfer of Phospholipids between Bilayers, Biochemistry, vol.19, issue.3, pp.439-483, 1980.

E. Rusinova, Alexa and Oregon Green Dyes as Fluorescence Anisotropy Probes for Measuring Protein-Protein and Protein-Nucleic Acid Interactions, Analytical Biochemistry, vol.308, issue.1, pp.18-25, 2002.
DOI : 10.1016/s0003-2697(02)00325-1

S. Sanchez, . Tricerri, E. Gunther, and . Gratton, Laurdan Generalized Polarization: From Cuvette to Microscope, Modern Research and Educational Topics in Microscopy, vol.2, pp.1007-1021, 2007.

D. Schachter, U. Cogan, and R. E. Abbott, Asymmetry of Lipid Dynamics in Human Erythrocyte Membranes Studied with Permeant Fluorophores, Biochemistry, vol.21, issue.9, pp.2146-50, 1982.

J. Swiecicki and . Marie, Accumulation of Cell-Penetrating Peptides in Large Unilamellar Vesicles: A Straightforward Screening Assay for Investigating the Internalization Mechanism, Biopolymers, vol.104, issue.5, pp.533-576, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140970

C. Tessier, Colloids and Surfaces B : Biointerfaces Liquid -Liquid Immiscibility under Non-Equilibrium Conditions in a Model Membrane : An X-Ray Synchrotron Study, Biointerfaces, vol.74, pp.293-97, 2009.

A. C. Vaiana, Fluorescence Quenching of Dyes by Tryptophan: Interactions at Atomic Detail from Combination of Experiment and Computer Simulation, Journal of the American Chemical Society, vol.125, issue.47, pp.14564-72, 2003.

B. Valeur, 8 Molecular Fluorescence Principles and Applications, 2001.

J. Vanderkooi, Diffusion in Two Dimensions: Comparison between Diffusional Fluorescence Quenching in Phospholipid Vesicles and in Isotropic Solution, J.Chem.Phys, vol.63, pp.3661-66, 1975.

N. L. Vekshin, On Measuring Biomembrane Microviscosity Using Pyrene Luminescence in Aerobic Conditions, Journal of Biochemical and Biophysical Methods, vol.15, issue.2, pp.97-104, 1987.

P. Viallet and R. Serrou, Fluorescent Techniques and Membranes Markers, 1985.

G. Weber and F. Farris, Synthesis and Spectral Properties of a Hydrophobic Fluorescent Probe : 6-Propionyl-2-( Dimethylamino ) Naphthalenet, vol.79, 1979.

F. Winnik, Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media, Chemical Reviews, vol.93, issue.2, pp.587-614, 1993.

K. Witte, Structure and Dynamics of the Two Amphipathic Arginine-Rich Peptides RW9 and RL9 in a Lipid Environment Investigated by Solid-State NMR and MD Simulations, Biochimica et Biophysica Acta -Biomembranes, vol.1828, issue.2, pp.824-857, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839914

S. Wold, Pattern Recognition by Means of Disjoint Principal Components Models, Pattern Recognition, vol.8, issue.3, pp.127-166, 1976.

M. Zibouche, The N-Terminal Domain of Annexin 2 Serves as a Secondary Binding Site during Membrane Bridging, The Journal of biological chemistry, vol.283, issue.32, pp.22121-22148, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00425201

C. Almeida, A. Lamazière, A. Filleau, Y. Corvis, P. Espeau et al., Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin, Biochim. Biophys. Acta, vol.1858, pp.2584-2591, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376840

J. Ayala-sanmartin, M. Vincent, J. Sopkova, and J. Gallay, Modulation by Ca(2+) and by Membrane Binding of the Dynamics of Domain, 2000.

, Complex (p90): Implications for Their Biochemical Properties, Biochemistry (Mosc.), vol.39, pp.15179-15189

J. Ayala-sanmartin, M. Zibouche, F. Illien, M. Vincent, and J. Gallay, Insight into the location and dynamics of the annexin A2 N-terminal domain during Ca(2+)-induced membrane bridging, Biochim Biophys Acta, vol.1778, pp.472-482, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00779692

L. A. Bagatolli, To see or not to see: lateral organization of biological membranes and fluorescence microscopy, Biochim. Biophys. Acta, vol.1758, pp.1541-1556, 2006.

Y. Barenholz, T. Cohen, E. Haas, and M. Ottolenghi, Lateral organization of pyrenelabeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers, J. Biol. Chem, vol.271, pp.3085-3090, 1996.

D. A. Brown and E. London, Structure and origin of ordered lipid domains in biological membranes, J. Membr. Biol, vol.164, pp.103-114, 1998.

J. V. Busto, J. Sot, J. Requejo-isidro, F. M. Goñi, A. et al., Cholesterol displaces palmitoylceramide from its tight packing with palmitoylsphingomyelin in the absence of a liquid-disordered phase, Biophys. J, vol.99, pp.1119-1128, 2010.

C. Chachaty, D. Rainteau, C. Tessier, P. J. Quinn, and C. Wolf, Building up of the liquidordered phase formed by sphingomyelin and cholesterol, Biophys J, vol.88, pp.4032-4044, 2005.

P. L. Chong, D. Tang, and I. P. Sugar, Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures, Biophys. J, vol.66, pp.2029-2038, 1994.

F. M. Goñi, The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model, Biochim. Biophys. Acta, vol.1838, pp.1467-1476, 2014.

M. Hao, S. Mukherjee, and F. R. Maxfield, Cholesterol depletion induces large scale domain segregation in living cell membranes, Proc. Natl. Acad. Sci, vol.98, pp.13072-13077, 2001.
DOI : 10.1073/pnas.231377398

URL : http://www.pnas.org/content/98/23/13072.full.pdf

D. Huster, K. Arnold, and K. Gawrisch, Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures, Biochemistry (Mosc.), vol.37, pp.17299-17308, 1998.

K. Kalyanasundaram and J. K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc, vol.99, pp.2039-2044, 1977.

S. D. Kim and J. M. Torkelson, Nanoscale Confinement and Temperature Effects on Associative Polymers in Thin Films: Fluorescence Study of a Telechelic, Pyrene-Labeled Poly(dimethylsiloxane), Macromolecules, vol.35, pp.5943-5952, 2002.

B. Lagane, S. Mazères, C. Le-grimellec, L. Cézanne, and A. Lopez, Lateral distribution of cholesterol in membranes probed by means of a pyrene-labelled cholesterol: effects of acyl chain unsaturation, Biophys. Chem, vol.95, pp.7-22, 2002.

A. Lamaziere, G. Chassaing, G. Trugnan, and J. Ayala-sanmartin, Tubular structures in heterogeneous membranes induced by the cell penetrating peptide penetratin, Commun Integr Biol, vol.2, pp.223-224, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00639220

L. Guyader, L. Le-roux, C. Mazeres, S. Gaspard-iloughmane, H. Gornitzka et al., Changes of the membrane lipid organization characterized by means of a new cholesterol-pyrene probe, Biophys J, vol.93, pp.4462-4473, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00266759

I. Levental, F. J. Byfield, P. Chowdhury, F. Gai, T. Baumgart et al., , 2009.

, Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles, Biochem J, vol.424, pp.163-167

P. Lianos and S. Georghiou, Solute-Solvent Interaction and Its Effect on the Vibronic and Vibrational Structure of Pyrene Spectra, Photochem. Photobiol, vol.30, pp.355-362, 1979.

D. Lingwood, J. Ries, P. Schwille, and K. Simons, Plasma membranes are poised for activation of raft phase coalescence at physiological temperature, Proc Natl Acad Sci U A, vol.105, pp.10005-10010, 2008.
DOI : 10.1073/pnas.0804374105

URL : http://www.pnas.org/content/105/29/10005.full.pdf

O. Maniti, I. Alves, G. Trugnan, and J. Ayala-sanmartin, Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids, PLoS One, vol.5, p.15819, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618692

O. Maniti, H. R. Piao, and J. Ayala-sanmartin, Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution, Int J Biochem Cell Biol, vol.50, pp.73-81, 2014.
DOI : 10.1016/j.biocel.2014.02.017

URL : https://hal.archives-ouvertes.fr/hal-00955205

. Megha and E. London, Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem, vol.279, pp.9997-10004, 2004.

M. Pasenkiewicz-gierula, W. K. Subczynski, and A. Kusumi, Influence of phospholipid unsaturation on the cholesterol distribution in membranes, Biochimie, vol.73, pp.1311-1316, 1991.

L. J. Pike, Lipid rafts: heterogeneity on the high seas, Biochem. J, vol.378, pp.281-292, 2004.

S. N. Pinto, F. Fernandes, A. Fedorov, A. H. Futerman, L. C. Silva et al., A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to reevaluate the properties of sphingolipid domains, Biochim. Biophys. Acta, vol.1828, pp.2099-2110, 2013.

F. Schmid, Physical mechanisms of micro-and nanodomain formation in multicomponent lipid membranes, Biochim. Biophys. Acta, vol.1859, pp.509-528, 2017.

E. Sezgin, D. Waithe, . Bernardino-de-la, J. Serna, and C. Eggeling, Spectral Imaging to Measure Heterogeneity in Membrane Lipid Packing, vol.16, pp.1387-1394, 2015.

S. R. Shaikh, M. R. Brzustowicz, N. Gustafson, W. Stillwell, and S. R. Wassall, , 2002.

, Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation?, Biochemistry (Mosc.), vol.41, pp.10593-10602

L. C. Silva, A. H. Futerman, and M. Prieto, Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations, Biophys. J, vol.96, pp.3210-3222, 2009.

Y. Taniguchi, T. Ohba, H. Miyata, and K. Ohki, Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide, Biochim. Biophys. Acta, vol.1758, pp.145-153, 2006.

C. Tessier, G. Staneva, G. Trugnan, C. Wolf, and P. Nuss, Liquid-liquid immiscibility under non-equilibrium conditions in a model membrane: an X-ray synchrotron study, Colloids Surf. B Biointerfaces, vol.74, pp.293-297, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00656592

S. L. Veatch and S. L. Keller, Organization in lipid membranes containing cholesterol, Phys Rev Lett, vol.89, 2002.

Y. Wang, P. Gkeka, J. E. Fuchs, K. R. Liedl, and Z. Cournia, DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations, Biochim. Biophys. Acta, vol.1858, pp.2846-2857, 2016.

R. Waris, W. E. Acree, and K. W. Street, Py and BPe solvent polarity scales: effect of temperature on pyrene and benzo[ghi]perylene fluorescence spectra, The Analyst, vol.113, pp.1465-1467, 1988.

H. A. Wilson-ashworth, Q. Bahm, J. Erickson, A. Shinkle, M. P. Vu et al., Differential detection of phospholipid fluidity, order, and spacing by fluorescence spectroscopy of bis-pyrene, prodan, nystatin, and merocyanine 540, Biophys. J, vol.91, pp.4091-4101, 2006.

F. M. Winnik, N. Tamai, J. Yonezawa, Y. Nishimura, Y. et al., Temperatureinduced phase transition of pyrene-labeled (hydroxypropyl) cellulose in water: peakosecond fluorescence studies, J. Phys. Chem, vol.96, pp.1967-1972, 1992.

. Sm/chol and . Luvs, Continuous lines heating protocol and dotted lines cooling protocol, Means ± SEM of 4 and 7 independent experiments for PC and 5 and 8 for SM/Chol

, Fluorescence anisotropy (r) of py-met-chol. LUVs were incubated at (A) 15°C, (B) 35°C and (C) 50°C. Py-met-chol at 3.6%, PC LUVs in black and SM/Chol LUVs in red. Curves are the mean ± SEM of four independent experiments

, Ratios of Py-met-chol fluorescence wavelengths in function of temperature. The probe concentration in LUVs is 3.6%. (A), Ld/iso during heating and cooling

, Lo/Ld during heating and cooling. (E) exci/iso during heating. (F) isci/iso during cooling, Black lines (?,?) PC LUVs, red lines (?,?) SM/Chol LUVs and green lines (?,?) PC/SM/Chol LUVs. Continuous lines heating protocol and dotted lines cooling protocol

, Means ± SEM of 7 independent experiments for PC, 8 for SM/Chol and 6 for PC/SM/Chol. Annexes Supplementary material

S. Fig, Mean spectra of LUV PC and SM/Chol at different temperatures after cooling and heating. (A) spectra at 10°C, (B) at 35°C and (C) at 55°C. Red lines PC LUVs, black lines SM/Chol LUVs. Continuous lines from heating protocol and dotted lines from cooling protocol, Each line is the mean of 7 (PC LUVs) and 8 (SM/Chol LUVs) spectra from independent experiments

S. Fig, Subtraction of Ld-Lo Py-met-chol spectra (3.6%) at different temperatures. PC mean spectrum minus SM/Chol mean spectrum at (A) 10°C, (B) 35°C and (C) 55°C. Continuous lines for heating protocol and dotted line for cooling protocol

S. Fig, 474 nm excimer peak or multimer marker. Black lines PC LUVs, red lines SM/Chol LUVs. Continuous lines heating protocol and dotted lines cooling protocol, Evolution of Py-met-chol fluoescence wavelengths in function of temperature. The probe concentration in LUVs is 1.8%. (A)