C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, vol.79, issue.6, pp.667-677, 1997.

Y. Zheng, X. Gao, and L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matter, vol.3, issue.2, pp.178-182, 2007.

T. Wong, T. Sun, L. Feng, and J. Aizenberg, Interfacial materials with special wettability, MRS Bulletin, vol.38, pp.366-371, 2013.

B. Zhu, J. Liu, Y. Chen, Y. Liu, Z. Yang et al., Superhydrophobic coating with multiscale structure based on crosslinked silanized polyacrylate and nanoparticles, Surface and Coatings Technology, vol.331, pp.40-47, 2017.

Y. Lu, Fabrication of a lotus leaf-like hierarchical structure to induce an air lubricant for drag reduction, Surface and Coatings Technology, vol.331, pp.48-56, 2017.

C. Schlaich, Q. Wei, and R. Haag, Mussel-Inspired Polyglycerol Coatings with Controlled Wettability : From Superhydrophilic to Superhydrophobic Surface Coatings, Langmuir, 2017.

P. Wang, T. Zhao, R. Bian, G. Wang, and H. Liu, Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures, ACS Nano, vol.11, pp.12385-12391, 2017.
DOI : 10.1021/acsnano.7b06371

M. J. Nine, T. T. Tung, F. Alotaibi, D. N. Tran, and D. Losic, Facile AdhesionTuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties, ACS Appl. Mater. Interfaces, 2017.

C. Zhang, M. Cao, H. Ma, C. Yu, K. Li et al., Morphology-Control Strategy of the Superhydrophobic Poly(Methyl Methacrylate) Surface for Efficient Bubble Adhesion and Wastewater Remediation, Advanced Functional Materials, p.1702020, 2017.

M. Gürsoy, M. Harris, A. Carletto, A. Yaprak, M. Karaman et al., Bioinspired asymmetric-anisotropic (directional) fog harvesting based on the arid climate plant Eremopyrum orientale, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.529, pp.959-965, 2017.

Z. Yu, F. F. Yun, Y. Wang, L. Yao, S. Dou et al., Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting, Small, vol.13, p.1701403, 2017.
DOI : 10.1002/smll.201701403

Y. Song, Y. Liu, H. Jiang, Y. Zhang, Z. Han et al., Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology, Surface and Coatings Technology, vol.328, pp.152-160, 2017.
DOI : 10.1016/j.surfcoat.2017.08.031

F. Wang, S. Li, and L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.513, pp.389-395, 2017.

F. Wang, L. Wang, H. Wu, J. Pang, D. Gu et al., A lotus-leaf-like SiO 2 superhydrophobic bamboo surface based on soft lithography, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.520, pp.834-840, 2017.
DOI : 10.1016/j.colsurfa.2017.02.043

T. Zhu, C. Cai, J. Guo, R. Wang, N. Zhao et al., Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion, ACS Appl. Mater. Interfaces, vol.9, pp.10224-10232, 2017.
DOI : 10.1021/acsami.7b00149

H. J. Perera, H. Mortazavian, and F. D. Blum, Surface Properties of Silane-Treated Diatomaceous Earth Coatings : Effect of Alkyl Chain Length, Langmuir, 2017.

V. Satulu, M. D. Ionita, S. Vizireanu, B. Mitu, and G. Dinescu, Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability, Molecules, vol.21, p.1711, 2016.

K. Golovin, M. Boban, J. M. Mabry, and A. Tuteja, Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability, ACS Appl. Mater. Interfaces, vol.9, pp.11212-11223, 2017.
DOI : 10.1021/acsami.6b15491

J. Duchet, J. Gerard, J. Chapel, and B. Chabert, Grafting of alkylchlorosilanes onto silica from solution for adhesion enhancement, Journal of Adhesion Science and Technology, vol.14, pp.691-718, 2000.

J. Fresnais, J. Chapel, and F. Poncin-epaillard, Synthesis of transparent superhydrophobic polyethylene surfaces, Surface and Coatings Technology, vol.200, pp.5296-5305, 2006.

J. Fresnais, J. P. Chapel, L. Benyahia, and F. Poncin-epaillard, Plasma-Treated Superhydrophobic Polyethylene Surfaces : Fabrication, Wetting and Dewetting Properties, Journal of Adhesion Science and Technology, vol.23, pp.447-467, 2009.
DOI : 10.1163/ej.9789004165939.i-496.118

T. Ren and J. He, Substrate-Versatile Approach to Robust Antireflective and Superhydrophobic Coatings with Excellent Self-Cleaning Property in Varied Environments, ACS Applied Materials & Interfaces, vol.9, pp.34367-34376, 2017.

G. Li, B. Wang, Y. Liu, T. Tan, X. Song et al., Stable superhydrophobic surface : fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering, Sci Technol Adv Mater, vol.9, 2008.

H. Alamri, A. Al-shahrani, E. Bovero, T. Khaldi, G. Alabedi et al., Self-cleaning superhydrophobic epoxy coating based on fibrous silica-coated iron oxide magnetic nanoparticles, Journal of Colloid and Interface Science, vol.513, pp.349-356, 2018.
DOI : 10.1016/j.jcis.2017.11.042

N. Sharifi, F. Ben-ettouil, C. Moreau, A. Dolatabadi, and M. Pugh, Engineering surface texture and hierarchical morphology of suspension plasma sprayed TiO 2 coatings to control wetting behavior and superhydrophobic properties, Surface and Coatings Technology, vol.329, pp.139-148, 2017.

H. Ye, L. Zhu, W. Li, H. Liu, and H. Chen, Constructing Fluorine-Free and CostEffective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles, ACS Appl. Mater. Interfaces, vol.9, pp.858-867, 2017.
DOI : 10.1021/acsami.6b12820

P. Zhang, L. Yang, Q. Li, S. Wu, S. Jia et al., Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering : Building Blocks for Liquid Marbles and Superhydrophobic Surfaces, ACS Appl. Mater. Interfaces, 2017.

J. Zhang, B. Yu, Z. Gao, B. Li, and X. Zhao, Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes, Langmuir, 2016.
DOI : 10.1021/acs.langmuir.6b04213

M. Qu, X. Ma, J. He, J. Feng, S. Liu et al., Facile Selective and Diverse Fabrication of Superhydrophobic, Superoleophobic-Superhydrophilic and Superamphiphobic Materials from Kaolin, ACS Appl. Mater. Interfaces, vol.9, pp.1011-1020, 2017.

A. M. Brzozowska, S. Maassen, R. Goh-zhi-rong, P. I. Benke, C. Lim et al., Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers, ACS Appl. Mater. Interfaces, vol.9, pp.17508-17516, 2017.

A. R. Bielinski, M. Boban, Y. He, E. Kazyak, D. H. Lee et al., Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition, ACS Nano, 2016.

J. Choi, W. Jo, S. Y. Lee, Y. S. Jung, S. Kim et al., Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars, ACS Nano, 2017.
DOI : 10.1021/acsnano.7b01783

A. Fernández, A. Francone, L. H. Thamdrup, A. Johansson, B. Bilenberg et al., Design of Hierarchical Surfaces for Tuning Wetting Characteristics, ACS Appl. Mater. Interfaces, vol.9, pp.7701-7709, 2017.

N. R. Bernardino, V. Blickle, and S. Dietrich, Wetting of Surfaces Covered by Elastic Hairs, Langmuir, vol.26, pp.7233-7241, 2010.
DOI : 10.1021/la904345r

T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, vol.95, pp.65-87, 1805.
URL : https://hal.archives-ouvertes.fr/hal-00662779

R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem, vol.28, pp.988-994, 1936.

A. Cassie and S. Baxter, Wettability of porous surfaces.pdf, Trans. Faraday Soc, vol.40, pp.546-551, 1944.

A. B. Cassie, Contact angles, Discussions of the Faraday Society, vol.3, p.11, 1948.

J. F. Joanny and P. G. De-gennes, A model for contact angle hysteresis, The Journal of Chemical Physics, vol.81, pp.552-562, 1984.
DOI : 10.1142/9789812564849_0048

D. Quéré, M. Azzopardi, and L. Delattre, Drops at rest on a tilted plane, Langmuir, vol.14, issue.8, pp.2213-2216, 1998.

C. Furmidge, Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention, Journal of Colloid Science, vol.17, pp.309-324, 1962.

S. Chen, B. Zhang, X. Gao, Z. Liu, and X. Zhang, Direction Dependence of Adhesion Force for Droplets on Rough Substrates, Langmuir, 2017.

K. Kawasaki, Study of wettability of polymers by sliding of water drop, Journal of Colloid Science, vol.15, issue.5, pp.402-407, 1960.

E. B. Dussan, V. , R. T. , and -. Chow, On the ability of drops or bubbles to stick to non-horizontal surfaces of solids, Journal of Fluid Mechanics, vol.137, p.1, 1983.

D. Quéré, M. Azzopardi, and L. Delattre, Drops at rest on a tilted plane, Langmuir, vol.14, issue.8, pp.2213-2216, 1998.

N. A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces, Langmuir, vol.19, issue.4, pp.1249-1253, 2003.

J. Bico, C. Tordeux, and D. Quéré, Rough wetting, Europhysics Letters, vol.55, issue.2, pp.214-220, 2001.
DOI : 10.1209/epl/i2001-00402-x

J. Bico, U. Thiele, and D. Quéré, Wetting of textured surfaces, Colloids and Surfaces A, vol.206, pp.41-46, 2002.

D. Quere, A. Lafuma, and J. Bico, Slippy and sticky microtextured solids, Nanotechnology, vol.14, pp.1109-1112, 2003.

A. Lafuma and D. Quéré, Superhydrophobic states, Nature Materials, vol.2, pp.457-460, 2003.

D. Quéré, Wetting and Roughness, Annual Review of Materials Research, vol.38, pp.71-99, 2008.

D. Quéré, Rough ideas on wetting, Physica A : Statistical Mechanics and its Applications, vol.313, issue.1, pp.32-46, 2002.

S. Brandon, A. Wachs, and A. Marmur, Simulated Contact Angle Hysteresis of a Three-Dimensional Drop on a Chemically Heterogeneous Surface : A Numerical Example, Journal of Colloid and Interface Science, vol.191, pp.110-116, 1997.

E. L. Decker and S. Garoff, Contact Line Structure and Dynamics on Surfaces with Contact Angle Hysteresis, vol.13, pp.6321-6332, 1997.

E. Rolley, C. Guthmann, R. Gombrowicz, and V. Repain, Roughness of the Contact Line on a Disordered Substrate, Physical Review Letters, vol.80, pp.2865-2868, 1998.

G. Mchale, Cassie and Wenzel : were they really so wrong ?, Langmuir, vol.23, pp.8200-8205, 2007.

H. Y. Erbil and C. E. Cansoy, Range of Applicability of the Wenzel and CassieBaxter Equations for Superhydrophobic Surfaces, Langmuir, vol.25, pp.14135-14145, 2009.

X. Zhang, B. Kong, O. K. Tsui, X. Yang, Y. Mi et al., Effect of pattern topology on the self-cleaning properties of textured surfaces, The Journal of Chemical Physics, vol.127, p.14703, 2007.

N. J. Shirtcliffe, S. Aqil, C. Evans, G. Mchale, M. I. Newton et al., The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping, Journal of Micromechanics and Microengineering, vol.14, issue.10, p.1384, 2004.

C. Dorrer and J. Rühe, Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces, Langmuir, vol.22, pp.7652-7657, 2006.

L. Zhu, Y. Feng, X. Ye, and Z. Zhou, Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures, Sensors and Actuators A : Physical, pp.595-600, 2006.

K. Yeh, L. Chen, and J. Chang, Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces, Langmuir, vol.24, pp.245-251, 2008.
DOI : 10.1021/la7020337

L. Barbieri, E. Wagner, and P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles, Langmuir, vol.23, pp.1723-1734, 2007.

B. Bhushan, Y. , and C. Jung, Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, vol.107, pp.1033-1041, 2007.

S. Suzuki and K. Ueno, Apparent Contact Angle Calculated from a Water Repellent Model with Pinning Effect, Langmuir, 2016.
DOI : 10.1021/acs.langmuir.6b03832

L. Gao and T. J. Mccarthy, How Wenzel and Cassie Were Wrong, Langmuir, vol.23, pp.3762-3765, 2007.
DOI : 10.1021/la062634a

A. Marmur, Wetting on Hydrophobic Rough Surfaces : To Be Heterogeneous or Not To Be ?, Langmuir, vol.19, pp.8343-8348, 2003.
DOI : 10.1021/la0344682

A. Marmur, The Lotus Effect : Superhydrophobicity and Metastability, Langmuir, vol.20, pp.3517-3519, 2004.
DOI : 10.1021/la036369u

A. Marmur, Soft contact : measurement and interpretation of contact angles, Soft Matter, vol.2, issue.1, pp.12-17, 2006.

T. S. Meiron, A. Marmur, and I. S. Saguy, Contact angle measurement on rough surfaces, Journal of Colloid and Interface Science, vol.274, pp.637-644, 2004.
DOI : 10.1016/j.jcis.2004.02.036

J. W. Gibbs-;-of and J. W. Gibbs, The scientific papers, 1961.

A. Marmur and E. Bittoun, When Wenzel and Cassie Are Right : Reconciling Local and Global Considerations, Langmuir, vol.25, pp.1277-1281, 2009.
DOI : 10.1021/la802667b

J. Bico, C. Marzolin, and D. Quere, Pearl drops, Europhysics Letters, vol.47, issue.2, pp.220-226, 1999.
DOI : 10.1209/epl/i1999-00453-y

URL : http://iopscience.iop.org/article/10.1209/epl/i1999-00453-y/pdf

S. Shibuichi, T. Onda, N. Satoh, and K. Tsujii, Super water-repellent surfaces resulting from fractal structure, The Journal of Physical Chemistry, vol.100, issue.50, pp.19512-19517, 1996.
DOI : 10.1021/jp9616728

T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Super-water-repellent fractal surfaces, Langmuir, vol.12, issue.9, pp.2125-2127, 1996.
DOI : 10.1021/la950418o

P. Wang, J. Su, M. Shen, M. Ruths, and H. Sun, Detection of Liquid Penetration of a Micropillar Surface Using the Quartz Crystal Microbalance, Langmuir, 2016.

Y. He, Q. Zhou, S. Wang, R. Yang, C. Jiang et al., Situ Observation of Dynamic Wetting Transition in Re-Entrant Microstructures, 2017.

E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces : is the dynamic CassieWenzel wetting transition a 2d or 1d affair ?, Langmuir, vol.23, pp.6501-6503, 2007.

E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface, Langmuir, vol.23, pp.12217-12221, 2007.
DOI : 10.1021/la7016374

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb et al., Environmental Scanning Electron Microscopy Study of the Fine Structure of the Triple Line and Cassie-Wenzel Wetting Transition for Sessile Drops Deposited on Rough Polymer Substrates, Langmuir, vol.23, pp.4378-4382, 2007.

C. Dorrer and J. Rühe, Condensation and Wetting Transitions on Microstructured Ultrahydrophobic Surfaces, Langmuir, vol.23, pp.3820-3824, 2007.
DOI : 10.1021/la063130f

Y. Li, D. Quéré, C. Lv, and Q. Zheng, Monostable superrepellent materials, PNAS, vol.114, pp.3387-3392, 2017.
DOI : 10.1073/pnas.1614667114

URL : https://www.pnas.org/content/pnas/114/13/3387.full.pdf

J. Y. Quek, C. L. Magee, and H. Y. Low, Physical Texturing for Superhydrophobic Polymeric Surfaces : A Design Perspective, Langmuir, 2017.
DOI : 10.1021/acs.langmuir.7b01175

S. Kojevnikova and A. Marmur, Multi-scale roughness and the Lotus effect : Discontinuous liquid-air interfaces, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.521, pp.78-85, 2017.
DOI : 10.1016/j.colsurfa.2016.10.005

S. Shibuichi, T. Onda, N. Satoh, and K. Tsujii, Super water-repellent surfaces resulting from fractal structure, The Journal of Physical Chemistry, vol.100, issue.50, pp.19512-19517, 1996.
DOI : 10.1021/jp9616728

A. T. Mulroney and M. C. Gupta, Optically transparent superhydrophobic polydimethylsiloxane by periodic surface microtexture, Surface and Coatings Technology, vol.325, pp.308-317, 2017.
DOI : 10.1016/j.surfcoat.2017.06.066

V. Hisler, L. Vonna, V. L. Houerou, S. Knopf, C. Gauthier et al., Model Experimental Study of Scale Invariant Wetting Behaviors in Cassie-Baxter and Wenzel Regimes, Langmuir, vol.30, pp.9378-9383, 2014.

S. Qiao, S. Li, Q. Li, B. Li, K. Liu et al., Friction of Droplets Sliding on Microstructured Superhydrophobic Surfaces, Langmuir, vol.33, pp.13480-13489, 2017.

M. Reyssat and D. Quéré, Contact Angle Hysteresis Generated by Strong Dilute Defects, The Journal of Physical Chemistry B, vol.113, pp.3906-3909, 2009.
DOI : 10.1021/jp8066876

URL : http://www.pmmh.espci.fr/fr/gouttes/Publications_files/Hysteresis.pdf

A. L. Dubov, J. Teisseire, and E. Barthel, Elastic instability and contact angles on hydrophobic surfaces with periodic textures, Europhysics Letters), vol.97, p.26003, 2012.
DOI : 10.1209/0295-5075/97/26003

URL : https://hal.archives-ouvertes.fr/hal-00649142

K. M. Jansons, Moving contact lines on a two-dimensional rough surface, Journal of Fluid Mechanics, vol.154, pp.1-28, 1985.
DOI : 10.1017/s0022112085001392

M. Rivetti, J. Teisseire, and E. Barthel, Surface Fraction Dependence of Contact Angles Induced by Kinks in the Triple Line, Physical Review Letters, vol.115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184918

A. Gauthier, M. Rivetti, J. Teisseire, and E. Barthel, Role of Kinks in the Dynamics of Contact Lines Receding on Superhydrophobic Surfaces, Phys. Rev. Lett, vol.110, p.46101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00771656

S. V. Lishchuk and R. Ettelaie, Detachment Force of Particles with Pinning of Contact Line from Fluid Bubbles/Droplets, Langmuir, vol.32, pp.13040-13045, 2016.

M. Reyssat and D. Quéré, Contact Angle Hysteresis Generated by Strong Dilute Defects, The Journal of Physical Chemistry B, vol.113, pp.3906-3909, 2009.

T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black et al., Antifogging abilities of model nanotextures, Nat Mater, 2017.

M. Kanungo, S. Mettu, K. Law, and S. Daniel, Effect of Roughness Geometry on Wetting and Dewetting of Rough PDMS Surfaces, Langmuir, vol.30, pp.7358-7368, 2014.

A. Al-azawi, M. Latikka, V. Jokinen, S. Franssila, and R. H. Ras, Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces, Small, p.1700860, 2017.

T. Kamegawa, K. Irikawa, and H. Yamashita, Multifunctional surface designed by nanocomposite coating of polytetrafluoroethylene and TiO2 photocatalyst : selfcleaning and superhydrophobicity, Scientific Reports, vol.7, 2017.

J. Park and S. Kumar, Droplet Sliding on an Inclined Substrate with a Topographical Defect, Langmuir, 2017.

H. Gelderblom, .. G. Marín, H. Nair, A. Van-houselt, L. Lefferts et al., How water droplets evaporate on a superhydrophobic substrate, Physical Review E, vol.83, 2011.

A. Gauthier, M. Rivetti, J. Teisseire, and E. Barthel, Finite Size Effects on Textured Surfaces : Recovering Contact Angles from Vagarious Drop Edges, vol.30, pp.1544-1549, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988827

X. Chen, R. Ma, J. Li, C. Hao, W. Guo et al., Evaporation of Droplets on Superhydrophobic Surfaces : Surface Roughness and Small Droplet Size Effects, Physical Review Letters, vol.109, 2012.

M. R. Gunjan and R. Raj, Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation, Langmuir, 2017.

S. Moulinet and D. Bartolo, Life and death of a fakir droplet : Impalement transitions on superhydrophobic surfaces, The European Physical Journal E, vol.24, pp.251-260, 2007.

M. Reyssat, J. M. Yeomans, and D. Quéré, Impalement of fakir drops, EPL (Europhysics Letters), vol.81, p.26006, 2008.

A. L. Dubov, K. Perez-toralla, A. Letailleur, E. Barthel, and J. Teisseire, Superhydrophobic silica surfaces : fabrication and stability, Journal of Micromechanics and Microengineering, vol.23, p.125013, 2013.
DOI : 10.1088/0960-1317/23/12/125013

URL : https://hal.archives-ouvertes.fr/hal-00903577

M. Sbragaglia, A. M. Peters, C. Pirat, B. M. Borkent, R. G. Lammertink et al., Spontaneous Breakdown of Superhydrophobicity, Physical Review Letters, vol.99, p.156001, 2007.

G. Mchale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, Analysis of droplet evaporation on a superhydrophobic surface, Langmuir, vol.21, issue.24, pp.11053-11060, 2005.

K. Khare, J. Zhou, and S. Yang, Tunable Open-Channel Microfluidics on Soft Poly(dimethylsiloxane) (PDMS) Substrates with Sinusoidal Grooves, Langmuir, vol.25, pp.12794-12799, 2009.

E. Lee, M. Zhang, Y. Cho, Y. Cui, J. Van-der-spiegel et al., Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window, Advanced Materials, vol.26, pp.4127-4133, 2014.

H. Jang, H. S. Lee, K. Lee, and D. R. Kim, Facile Fabrication of Superomniphobic Polymer Hierarchical Structures for Directional Droplet Movement, ACS Appl. Mater. Interfaces, vol.9, pp.9213-9220, 2017.

D. Öner and T. J. Mccarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, vol.16, pp.7777-7782, 2000.

L. Tie, Z. Guo, and W. Liu, Anisotropic wetting properties on various shape of parallel grooved microstructure, Journal of Colloid and Interface Science, vol.453, pp.142-150, 2015.

T. Dong and T. J. Mccarthy, Superhydrophobic, Low-Hysteresis Patterning Chemistry for Water-Drop Manipulation, ACS Applied Materials & Interfaces, vol.9, pp.41126-41130, 2017.

E. Gogolides, K. Ellinas, and A. Tserepi, Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems, Microelectronic Engineering, vol.132, pp.135-155, 2015.

Y. Li, L. He, X. Zhang, N. Zhang, and D. Tian, External-Field-Induced Gradient Wetting for Controllable Liquid Transport : From Movement on the Surface to Penetration into the Surface, Advanced Materials, vol.29, p.1703802, 2017.

M. Tenjimbayashi, M. Higashi, T. Yamazaki, I. Takenaka, T. Matsubayashi et al., Droplet Motion Control on Dynamically Hydrophobic Patterned Surfaces as Multifunctional Liquid Manipulators, ACS Appl. Mater. Interfaces, vol.9, pp.10371-10377, 2017.

J. E. Longley, E. Dooley, D. M. Givler, W. J. Napier, M. K. Chaudhury et al., Drop Motion Induced by Repeated Stretching and Relaxation on a Gradient Surface with Hysteresis, Langmuir, vol.28, pp.13912-13918, 2012.

X. Yang, S. Huang, X. Liu, W. Xu, J. Song et al., Directional transport of water droplets on superhydrophobic aluminium alloy surface, Nano Letters, vol.10, pp.343-346, 2015.

A. Shastry, M. J. Case, and K. F. Böhringer, Directing Droplets Using Microstructured Surfaces, Langmuir, vol.22, pp.6161-6167, 2006.
DOI : 10.1021/la0601657

Y. Hirai, H. Mayama, Y. Matsuo, and M. Shimomura, Uphill Water Transport on a Wettability-Patterned Surface : Experimental and Theoretical Results, ACS Applied Materials & Interfaces, 2017.

M. K. Chaudhury, A. Chakrabarti, and S. Daniel, Generation of Motion of Drops with Interfacial Contact, Langmuir, vol.31, pp.9266-9281, 2015.

P. Ge, S. Wang, W. Liu, T. Wang, N. Yu et al., Unidirectional Wetting of Liquids on, Nanostructure Arrays under Various Media, 2017.

C. Q. Lai, C. V. Thompson, and W. K. Choi, Uni-, Bi-, and Tri-Directional Wetting Caused by Nanostructures with Anisotropic Surface Energies, Langmuir, vol.28, pp.11048-11055, 2012.

K. Chu, R. Xiao, and E. N. Wang, Uni-directional liquid spreading on asymmetric nanostructured surfaces, Nature Materials, vol.9, pp.413-417, 2010.

M. K. Kwak, H. Jeong, T. Kim, H. Yoon, and K. Y. Suh, Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion, Soft Matter, vol.6, issue.9, pp.1849-1857, 2010.

M. Cao, X. Jin, Y. Peng, C. Yu, K. Li et al., Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia, Adv. Mater, p.1606869, 2017.

D. Li, S. Feng, Y. Xing, S. Deng, H. Zhou et al., Directional bouncing of droplets on oblique two-tier conical structures, RSC Advances, vol.7, issue.57, pp.35771-35775, 2017.

C. Huang, M. Lai, W. Liu, and Z. Wei, Anisotropic Wettability of Biomimetic Micro/Nano Dual-Scale Inclined Cones Fabricated by Ferrofluid-Molding Method, Advanced Functional Materials, vol.25, pp.2670-2676, 2015.

K. Kubiak and T. Mathia, Anisotropic Wetting of Hydrophobic and Hydrophilic Surfaces-Modelling by Lattice Boltzmann Method, Procedia Engineering, vol.79, pp.45-48, 2014.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari et al., Imbibition by polygonal spreading on microdecorated surfaces, Nature Materials, vol.6, pp.661-664, 2007.

Z. Jahed, H. Shahsavan, M. S. Verma, J. L. Rogowski, B. B. Seo et al., Bacterial Networks on Hydrophobic Micropillars, 2017.

E. Verneuil, B. Ladoux, A. Buguin, and P. Silberzan, Adhesion on microstructured surfaces, The Journal of Adhesion, vol.83, pp.449-472, 2007.
DOI : 10.1080/00218460701377529

N. Biais, D. Higashi, M. So, and B. Ladoux, Techniques to Measure Pilus Retraction Forces, Methods in Molecular Biology (M. Christodoulides, vol.799, pp.197-216, 2012.
DOI : 10.1007/978-1-61779-346-2_13

URL : http://europepmc.org/articles/pmc5160128?pdf=render

A. Saez, M. Ghibaudo, B. Ladoux, A. Buguin, and P. Silberzan, Les cellules vivantes répondent à la rigidité de leur substrat, Images de la Physique, vol.2, pp.94-100, 2007.

J. Le-digabel, M. Ghibaudo, L. Trichet, A. Richert, and B. Ladoux, Microfabricated substrates as a tool to study cell mechanotransduction, Medical & Biological Engineering & Computing, vol.48, pp.965-976, 2010.

S. C. Fischer, E. Arzt, and R. Hensel, Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates, ACS Appl. Mater. Interfaces, vol.9, pp.1036-1044, 2017.

P. Wang, R. Bian, Q. Meng, H. Liu, and L. Jiang, Bioinspired Dynamic Wetting on Multiple Fibers, Advanced Materials, vol.29, p.1703042, 2017.

B. Pokroy, S. H. Kang, L. Mahadevan, and J. Aizenberg, Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies, Science, vol.323, pp.237-240, 2009.

I. Schoen, W. Hu, E. Klotzsch, and V. Vogel, Probing Cellular Traction Forces by Micropillar Arrays : Contribution of Substrate Warping to Pillar Deflection, Nano Letters, vol.10, pp.1823-1830, 2010.

Y. Wang, K. Ma, and J. H. Xin, Stimuli-Responsive Bioinspired Materials for Controllable Liquid Manipulation : Principles, Fabrication, and Applications, vol.28, p.1705128, 2018.

M. Luo, R. Gupta, and J. Frechette, Modulating Contact Angle Hysteresis To Direct Fluid Droplets along a Homogenous Surface, ACS Appl. Mater. Interfaces, vol.4, pp.890-896, 2012.

S. Mettu and M. K. Chaudhury, Motion of Drops on a Surface Induced by Thermal Gradient and Vibration, Langmuir, vol.24, pp.10833-10837, 2008.

X. Noblin, A. Buguin, and F. Brochard-wyart, Vibrated sessile drops : Transition between pinned and mobile contact line oscillations, The European Physical Journal E, vol.14, pp.395-404, 2004.
DOI : 10.1140/epje/i2004-10021-5

J. K. Park, Z. Yang, and S. Kim, Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain, ACS Applied Materials & Interfaces, vol.9, pp.33333-33340, 2017.

M. Coux, C. Clanet, and D. Quéré, Soft, elastic, water-repellent materials, Applied Physics Letters, vol.110, p.251605, 2017.
DOI : 10.1063/1.4985011

J. Ju, X. Yao, X. Hou, Q. Liu, Y. S. Zhang et al., A highly stretchable and robust non-fluorinated superhydrophobic surface, Journal of Materials Chemistry A, vol.5, issue.31, pp.16273-16280, 2017.

G. Lin, P. Chandrasekaran, C. Lv, Q. Zhang, Y. Tang et al., Selfsimilar Hierarchical Wrinkles as a Potential Multifunctional Smart Window with Simultaneously Tunable Transparency, Structural Color, and Droplet Transport, ACS Applied Materials & Interfaces, vol.9, pp.26510-26517, 2017.

N. Yu, S. Wang, Y. Liu, P. Xue, P. Ge et al., Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics, Langmuir, 2016.

M. A. Frysali and S. H. Anastasiadis, Temperature-and/or pH-Responsive Surfaces with Controllable Wettability : From Parahydrophobicity to Superhydrophilicity, Langmuir, 2017.

T. N. Banuprasad, T. V. Vinay, C. K. Subash, S. Varghese, S. D. George et al., Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.pdf, ACS Applied Materials & Interfaces, vol.9, issue.33, pp.28046-28054, 2017.

Z. Cheng, D. Zhang, T. Lv, H. Lai, E. Zhang et al., Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting, Advanced Functional Materials, p.1705002, 2017.
DOI : 10.1002/adfm.201705002

J. K. Park and S. Kim, Droplet manipulation on a structured shape memory polymer surface, Lab Chip, 2017.
DOI : 10.1039/c6lc01354f

URL : https://www.ideals.illinois.edu/bitstream/2142/97459/1/PARK-THESIS-2017.pdf

S. Nagappan and C. Ha, Emerging trends in superhydrophobic surface based magnetic materials : fabrications and their potential applications, J. Mater. Chem. A, vol.3, issue.7, pp.3224-3251, 2015.
DOI : 10.1039/c4ta05078a

G. Huang, M. Li, Q. Yang, Y. Li, H. Liu et al., Magnetically Actuated Droplet Manipulation and Its Potential Biomedical Applications, ACS Appl. Mater. Interfaces, 2016.
DOI : 10.1021/acsami.6b09017

A. Egatz-gómez, J. Schneider, P. Aella, D. Yang, P. Domínguez-garcía et al., Silicon nanowire and polyethylene superhydrophobic surfaces for discrete magnetic microfluidics, Applied Surface Science, vol.254, pp.330-334, 2007.

Z. Cheng, L. Feng, and L. Jiang, Tunable Adhesive Superhydrophobic Surfaces for Superparamagnetic Microdroplets, Advanced Functional Materials, vol.18, pp.3219-3225, 2008.
DOI : 10.1002/adfm.200800481

A. Egatz-gómez, S. Melle, A. A. García, S. A. Lindsay, M. Márquez et al., Discrete magnetic microfluidics, Applied Physics Letters, vol.89, p.34106, 2006.

X. Hong, X. Gao, and L. Jiang, Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet, Journal of the American Chemical Society, vol.129, pp.1478-1479, 2007.

J. V. Timonen, M. Latikka, L. Leibler, R. H. Ras, and O. Ikkala, Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces, Science, vol.341, pp.253-257, 2013.
DOI : 10.1126/science.1233775

URL : https://hal.archives-ouvertes.fr/hal-00979710

S. Damodara and A. K. Sen, Magnetic field assisted droplet manipulation on a sootwax coated superhydrophobic surface of a PDMS-iron particle composite substrate, Sens. Actuator B-Chem, vol.239, pp.816-823, 2017.

K. S. Seo, R. Wi, S. G. Im, and D. H. Kim, A superhydrophobic magnetic elastomer actuator for droplet motion control, Polymers for Advanced Technologies, vol.24, pp.1075-1080, 2013.
DOI : 10.1002/pat.3190

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, Precise determination of the Poisson ratio in soft materials with 2d digital image correlation, Soft Matter, vol.9, issue.26, p.6037, 2013.

T. Chudoba, High resolution lateral force-displacement measurements as a tool for the determination of lateral contact stiffness and Poisson's ratio, Surface and Coatings Technology, vol.330, pp.17-25, 2017.

O. Du-roure, C. Dequidt, A. Richert, R. H. Austin, A. Buguin et al., Microfabricated arrays of elastomeric posts to study cellular mechanics, p.26, 2004.

M. Gupta, L. Kocgozlu, B. R. Sarangi, F. Margadant, M. Ashraf et al., Micropillar substrates : A tool for studying cell mechanobiology, Methods in Cell Biology, vol.125, pp.289-308, 2015.
DOI : 10.1016/bs.mcb.2014.10.009

URL : https://hal.archives-ouvertes.fr/hal-01219411

E. Guth, Theory of Filler Reinforcement, Journal of Applied Physics, vol.16, pp.20-25, 1945.

H. M. Smallwood, Limiting Law of the Reinforcement of Rubber, Journal of Applied Physics, vol.15, pp.758-766, 1944.

H. Denver, T. Heiman, E. Martin, A. Gupta, and D. Borca-tasciuc, Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties, Journal of Applied Physics, vol.106, issue.6, p.64909, 2009.

C. Sötebier, A. Michel, and J. Fresnais, Polydimethylsiloxane (PDMS) Coating onto Magnetic Nanoparticles Induced by Attractive Electrostatic Interaction, Applied Sciences, vol.2, pp.485-495, 2012.

P. S. Antonel, G. Jorge, O. E. Perez, A. Butera, A. G. Leyva et al., Magnetic and elastic properties of CoFe2o4-polydimethylsiloxane magnetically oriented elastomer nanocomposites, Journal of Applied Physics, vol.110, issue.4, p.43920, 2011.

B. A. Evans, B. L. Fiser, W. J. Prins, D. J. Rapp, A. R. Shields et al., A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity, Journal of Magnetism and Magnetic Materials, vol.324, pp.501-507, 2012.
DOI : 10.1016/j.jmmm.2011.08.045

URL : http://europepmc.org/articles/pmc3241051?pdf=render

A. Deman, S. Mekkaoui, D. Dhungana, J. Chateaux, A. Tamion et al., Anisotropic composite polymer for high magnetic force in microfluidic systems, Microfluidics and Nanofluidics, vol.21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01986038

G. Y. Zhou, Shear properties of a magnetorheological elastomer, Smart materials and structures, vol.12, p.139, 2003.

J. L. Digabel, N. Biais, J. Fresnais, J. Berret, P. Hersen et al., Magnetic micropillars as a tool to govern substrate deformations, Lab Chip, vol.11, pp.2630-2636, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01378197

M. Riahi and E. Alizadeh, Fabrication of a 3d active mixer based on deformable Fe-doped PDMS cones with magnetic actuation, Journal of Micromechanics and Microengineering, vol.22, p.115001, 2012.

Z. Yang, J. K. Park, and S. Kim, Magnetically Responsive Elastomer-Silicon Hybrid Surfaces for Fluid and Light Manipulation, Small, vol.14, p.1702839, 2018.

B. A. Evans, A. R. Shields, R. L. Carroll, S. Washburn, M. R. Falvo et al., Magnetically Actuated Nanorod Arrays as Biomimetic Cilia, Nano Letters, vol.7, pp.1428-1434, 2007.
DOI : 10.1021/nl070190c

L. D. Landau and E. M. Lifshitz, J. R. Arrowsmith Ltd, vol.7, 1970.

E. C. Stoner and E. P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.240, pp.599-642, 1948.

A. Alfadhel and J. Kosel, Magnetic micropillar sensors for force sensing, Sensors Applications Symposium (SAS), pp.1-4, 2015.

S. Lee, C. Yim, W. Kim, and S. Jeon, Magnetorheological Elastomer Films with Tunable Wetting and Adhesion Properties, ACS Applied Materials & Interfaces, vol.7, pp.19853-19856, 2015.

Y. Zhu, D. S. Antao, R. Xiao, and E. N. Wang, Real-Time Manipulation with Magnetically Tunable Structures, Advanced Materials, vol.26, pp.6442-6446, 2014.

D. Drotlef, P. Blümler, and A. Del-campo, Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet), Advanced Materials, vol.26, pp.775-779, 2014.

D. Drotlef, P. Blümler, P. Papadopoulos, and A. Del-campo, Magnetically Actuated Micropatterns for Switchable Wettability, ACS Applied Materials & Interfaces, vol.6, pp.8702-8707, 2014.

L. Wang, C. Gao, Y. Hou, Y. Zheng, and L. Jiang, Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface, J. Mater. Chem. A, vol.4, issue.47, pp.18289-18293, 2016.

Y. Huang, B. B. Stogin, N. Sun, J. Wang, S. Yang et al., A Switchable Cross-Species Liquid Repellent Surface, Adv. Mater, p.1604641, 2016.

A. L. Dubov, J. Teisseire, and E. Barthel, Elastic instability and contact angles on hydrophobic surfaces with periodic textures, Europhysics Letters), vol.97, p.26003, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649142

Y. Choi, R. Powers, V. Vernekar, A. B. Frazier, M. C. Laplaca et al., High aspect ratio SU-8 structures for 3-D culturing of neurons, ASME 2003 International Mechanical Engineering Congress and Exposition, pp.651-654, 2003.

E. Koukharenko, M. Kraft, G. J. Ensell, and N. Hollinshead, A comparative study of different thick photoresists for MEMS applications, Mater Sci : Mater Electron, vol.16, issue.11-12, pp.741-747, 2005.

B. Bilenberg, T. Nielsen, B. Clausen, and A. Kristensen, PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics, Journal of Micromechanics and Microengineering, vol.14, pp.814-818, 2004.

K. Y. Lee, Micromachining applications of a high resolution ultrathick photoresist, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.13, p.3012, 1995.

V. Seidemann, J. Rabe, M. Feldmann, and S. Büttgenbach, SU8-micromechanical structures with in situ fabricated movable parts, Microsystem Technologies, vol.8, pp.348-350, 2002.

J. Liu, H. Sun, L. Li, and D. Chen, A novel method to fabricate complex three-dimensional microstructures -Springer, Microsystem Technologies, vol.12, pp.786-789, 2006.

E. F. Reznikova, J. Mohr, and H. Hein, Deep photo-lithography characterization of SU-8 resist layers, Microsystem Technologies, vol.11, pp.282-291, 2005.

G. Liu, Y. Tian, and Y. Kan, Fabrication of high-aspect-ratio microstructures using SU8 photoresist, Microsystem Technologies, vol.11, pp.343-346, 2005.

A. D. Campo and C. Greiner, SU-8 : a photoresist for high-aspect-ratio and 3d submicron lithography, Journal of Micromechanics and Microengineering, vol.17, pp.81-95, 2007.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger et al., Highaspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sensors and Actuators A : Physical, vol.64, pp.33-39, 1998.

J. Liu, B. Cai, J. Zhu, G. Ding, X. Zhao et al., Process research of HAR microstructure using SU-8 resist, Microsystem Technologies, vol.10, pp.265-268, 2004.

P. K. Dey, B. Pramanick, A. Ravishankar, P. Ganguly, and S. Das, Microstructuring of SU-8 resist for MEMS and bio-applications, Int. J. Smart Sens. Intell. Syst, vol.3, pp.118-129, 2010.

J. B. Lee, H. R. Gwon, S. H. Lee, and M. Cho, Wetting transition characteristics on microstructured hydrophobic surfaces, Materials transactions, vol.51, issue.9, pp.1709-1711, 2010.

A. Gauthier, M. Rivetti, J. Teisseire, and E. Barthel, Finite Size Effects on Textured Surfaces : Recovering Contact Angles from Vagarious Drop Edges, vol.30, pp.1544-1549, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988827

J. Gu, R. Gupta, C. Chou, Q. Wei, and F. Zenhausern, A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature, Lab on a Chip, vol.7, issue.9, p.1198, 2007.

S. M. Rowan, M. I. Newton, and G. Mchale, Evaporation of microdroplets and the wetting of solid surfaces, The Journal of Physical Chemistry, vol.99, pp.13268-13271, 1995.

D. Vella and L. Mahadevan, The "Cheerios effect, American Journal of Physics, vol.73, pp.817-825, 2005.

, Pendant ce temps, couvrir le fond et les bords du spin coater avec du papier aluminium (pour récupérer la résine excédente)

. Placer-le-wafer-sur-le-spin and . Coater,

, Pour nettoyer le wafer, recouvrir le wafer d'isopropanol, et lancer un cycle de 30 s à 500 rpm

, Une fois que l'isopropanol est totalement évaporé

, Lancer le cycle de spin coating : 500 rpm pour étaler et une vitesse supérieure pour réduire à l'épaisseur désirée

, A la fin du cycle, sortir le wafer avec la pince à wafer et le déposer sur la plaque à 65°C

, Le laisser le temps indiqué sur le tableau Tableau A.1, et pendant ce temps, retirer le bourrelet de résine situé sur le bord du wafer avec le plat de la spatule

, Déposer ensuite le wafer sur l'autre plaque (95°C)

, Insolation 1. A la fin de la cuisson

L. , UV KUB sur le disque de PDMS puis placer par-dessus le masque puis la plaque de quartz

, Choisir une épaisseur de wafer de 1500 µm et une distance de travail de 0 µm (pour avoir la plaque de quartz et le masque en contact avec la résine)

. Choisir-le-cycle,

, Bake Retirer la plaque de quartz et le masque puis sortir le wafer et cuire la résine suivant les temps indiqués

, Développement 1. Après cuisson, laisser refroidir le wafer

. Le,

, Sinon, sécher à l'azote et observer ma surface au microscope pour vérifier l'état de la texturation

, Postbake Pour durcir la résine, faire chauffer le wafer à 150°C pendant 15 minutes

. Jeter-le-développeur and C. Dans-le-bidon,