P. W. Anderson, More is different, Science, vol.177, issue.4047, pp.393-399, 1972.

J. A. Granek and P. M. Magwene, Environmental and Genetic Determinants of Colony Morphology in Yeast, PLoS Genet, vol.6, issue.1, p.1000823, 2010.

J. A. Shapiro, Thinking about bacterial populations as multicellular organisms, Annu. Rev. Microbiol, vol.52, issue.1, pp.81-104, 1998.

D. Botstein and G. R. Fink, Yeast: an experimental organism for 21st Century biology, Genetics, vol.189, issue.3, pp.695-704, 2011.

J. Weiner, Human Cells Make Up Only Half Our Bodies. A New Book Explains Why. -The New York Times, The New York Times, 2016.

S. F. Gilbert, J. Sapp, and A. I. Tauber, A Symbiotic View of Life: We Have Never Been Individuals, Q. Rev. Biol, vol.87, issue.4, pp.325-341, 2012.

J. I. Gordon, Honor Thy Gut Symbionts Redux, Science (80-. ), vol.336, issue.6086, pp.1251-1253, 2012.

L. Galland, The gut microbiome and the brain, J. Med. Food, vol.17, issue.12, pp.1261-72, 2014.

J. M. Lima-ojeda, R. Rupprecht, and T. C. Baghai, I Am I and My Bacterial Circumstances': Linking Gut Microbiome, Neurodevelopment, and Depression, Front. Psychiatry, vol.8, p.153, 2017.

L. T. Geller, Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine, Science, vol.357, issue.6356, pp.1156-1160, 2017.

D. Noble, Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology?, J. Physiol, vol.589, pp.1007-1022, 2011.

M. A. O'malley, Endosymbiosis and its implications for evolutionary theory, Proc. Natl. Acad. Sci. U. S. A, vol.112, issue.33, pp.10270-10277, 2015.

C. Vulin, A quantitative approach to microbial population growth using tailored cylindrical yeast colonies, p.220, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01143499

R. Sender, S. Fuchs, and R. Milo, Revised Estimates for the Number of Human and Bacteria Cells in the Body, PLOS Biol, vol.14, issue.8, p.1002533, 2016.

K. J. Locey and J. T. Lennon, Scaling laws predict global microbial diversity, Proc. Natl. Acad. Sci. U. S. A, vol.113, issue.21, pp.5970-5975, 2016.

R. K. Grosberg and R. R. Strathmann, The Evolution of Multicellularity: A Minor Major Transition?, Annu. Rev. Ecol. Evol. Syst, vol.38, issue.1, pp.621-654, 2007.

M. E. Boraas, D. B. Seale, and J. E. Boxhorn, Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity

G. J. Velicer, L. Kroos, and R. E. Lenski, Loss of social behaviors by myxococcus xanthus during evolution in an unstructured habitat, Proc. Natl. Acad. Sci. U. S. A, vol.95, issue.21, pp.12376-80, 1998.

J. T. Bonner, The origins of multicellularity, Integr. Biol. Issues, News, Rev, vol.1, issue.1, pp.27-36, 1998.

D. Kaiser, Building a Multicellular Organism, Annu. Rev. Genet, vol.35, issue.1, pp.103-123, 2001.

D. Dubravcic, M. Van-baalen, and C. Nizak, An evolutionarily significant unicellular strategy in response to starvation stress in Dictyostelium social amoebae, F1000Research, vol.3, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064077

C. D. Nadell, J. B. Xavier, and K. R. Foster, The sociobiology of biofilms, FEMS Microbiol. Rev, vol.33, issue.1, pp.206-224, 2009.

J. Beardall, Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton, New Phytol, vol.181, issue.2, pp.295-309, 2009.

J. A. Shapiro, Bacteria as Multicellular Organisms, Sci. Am, 1988.

K. Hammerschmidt, C. J. Rose, B. Kerr, and P. B. Rainey, Life cycles, fitness decoupling and the evolution of multicellularity, Nature, vol.515, issue.7525, pp.75-79, 2014.

Z. Palková, Multicellular microorganisms: laboratory versus nature, EMBO Rep, vol.5, issue.5, pp.470-476, 2004.

W. C. Ratcliff, R. F. Denison, M. Borrello, and M. Travisano, Experimental evolution of multicellularity, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.5, pp.1595-600, 2012.

T. B. Reynolds and G. R. Fink, Bakers' Yeast, a Model for Fungal Biofilm Formation, vol.291, pp.878-881, 2001.

M. A. Nowak, Five rules for the evolution of cooperation, Science, vol.314, issue.5805, pp.1560-1563, 2006.

G. M. Dunny, T. J. Brickman, and M. Dworkin, Multicellular behavior in bacteria: communication, cooperation, competition and cheating, BioEssays, vol.30, issue.4, pp.296-298, 2008.
DOI : 10.1002/bies.20740

P. B. Rainey and K. Rainey, Evolution of cooperation and conflict in experimental bacterial populations, Nature, vol.425, issue.6953, pp.72-74, 2003.

J. B. Xavier and K. R. Foster, Cooperation and conflict in microbial biofilms, Proc. Natl. Acad. Sci. U. S. A, vol.104, issue.3, pp.876-81, 2007.

S. A. Frank, Mutual policing and repression of competition in the evolution of cooperative groups, Nature, vol.377, issue.6549, pp.520-522, 1995.

P. B. Rainey and B. Kerr, Cheats as first propagules: A new hypothesis for the evolution of individuality during the transition from single cells to multicellularity, BioEssays, vol.32, issue.10, pp.872-880, 2010.

J. H. Koschwanez, K. R. Foster, and A. W. Murray, Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity, PLoS Biol, vol.9, issue.8, p.1001122, 2011.

J. H. Koschwanez, K. R. Foster, and A. W. Murray, Improved use of a public good selects for the evolution of undifferentiated multicellularity, Elife, vol.2, p.367, 2013.

J. H. Koschwanez, K. R. Foster, and A. W. Murray, Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity, PLoS Biol, vol.9, issue.8, p.1001122, 2011.

M. Cap, L. Stepanek, K. Harant, L. Vachova, and Z. Palkova, Cell Differentiation within a Yeast Colony: Metabolic and Regulatory Parallels with a Tumor-Affected Organism, Mol. Cell, vol.46, issue.4, pp.436-448, 2012.

Z. Palková, D. Wilkinson, and L. Váchová, Aging and differentiation in yeast populations: Elders with different properties and functions, FEMS Yeast Res, vol.14, issue.1, pp.96-108, 2014.

L. Váchová, L. Hatáková, M. ?áp, M. Pokorná, and Z. Palková, Rapidly Developing Yeast Microcolonies Differentiate in a Similar Way to Aging Giant Colonies, Oxid. Med. Cell. Longev, vol.2013, pp.1-9, 2013.

P. Bettencourt, Ferment it yourself, 2015.

. Unibiome, Designing Better Nutrition

M. Pearce, 20 Most Expensive Foods In The World

J. Legras, D. Merdinoglu, J. Cornuet, and F. Karst, Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history, Mol. Ecol, vol.16, issue.10, pp.2091-2102, 2007.

A. A. Duina, M. E. Miller, and J. B. Keeney, Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system, Genetics, vol.197, issue.1, pp.33-48, 2014.

A. M. Selmecki, Polyploidy can drive rapid adaptation in yeast, Nature, vol.519, issue.7543, pp.349-352, 2015.
DOI : 10.1038/nature14187

URL : https://dash.harvard.edu/bitstream/1/22856849/1/4497379.pdf

R. E. Lenski, Convergence and Divergence in a Long-Term Experiment with Bacteria, Am. Nat, vol.190, issue.S1, pp.57-68, 2017.
DOI : 10.1086/691209

P. Wang, Robust growth of Escherichia coli, Curr. Biol, vol.20, issue.12, pp.1099-103, 2010.

S. Fehrmann, C. Paoletti, Y. Goulev, A. Ungureanu, H. Aguilaniu et al., Aging Yeast Cells Undergo a Sharp Entry into Senescence Unrelated to the Loss of Mitochondrial Membrane Potential, CellReports, vol.5, pp.1589-1599, 2013.
URL : https://hal.archives-ouvertes.fr/ensl-01074680

A. Llamosi, Effects of repeated osmotic stress on gene expression and growth: from cell-to-cell variability to cellular individuality in the budding yeast Saccharomyces cerevisiae, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01253235

I. Soifer, L. Robert, and A. Amir, Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy, Curr. Biol, vol.26, issue.3, pp.356-361, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532530

D. Greig and J. Leu, Natural history of budding yeast, Curr. Biol, vol.19, issue.19, pp.886-90, 2009.

M. R. Goddard and D. Greig, Saccharomyces cerevisiae: a nomadic yeast with no niche?, FEMS Yeast Res, vol.15, issue.3, 2015.

M. W. Taylor, P. Tsai, N. Anfang, H. A. Ross, and M. R. Goddard, Pyrosequencing reveals regional differences in fruit-associated fungal communities, Environ. Microbiol, vol.16, issue.9, pp.2848-58, 2014.

M. R. Goddard, Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation, Ecology, vol.89, issue.8, pp.2077-82, 2008.

L. F. Bisson and C. E. Butzke, American journal of enology and viticulture, vol.51, issue.2, 2000.

M. R. Goddard, N. Anfang, R. Tang, R. C. Gardner, and C. Jun, A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels, Environ. Microbiol, vol.12, issue.1, pp.63-73, 2010.

I. Stefanini, Role of social wasps in Saccharomyces cerevisiae ecology and evolution, Proc. Natl. Acad. Sci, vol.109, issue.33, pp.13398-13403, 2012.

M. Reuter, G. Bell, and D. Greig, Increased outbreeding in yeast in response to dispersal by an insect vector, Curr. Biol, vol.17, issue.3, pp.81-83, 2007.

P. G. Becher, Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Funct. Ecol, vol.26, issue.4, pp.822-828, 2012.
DOI : 10.1111/j.1365-2435.2012.02006.x

URL : https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2435.2012.02006.x

C. C. Buser, R. D. Newcomb, A. C. Gaskett, and M. R. Goddard, Niche construction initiates the evolution of mutualistic interactions, Ecol. Lett, vol.17, issue.10, pp.1257-1264, 2014.

J. F. Christiaens, The Fungal Aroma Gene ATF1 Promotes Dispersal of Yeast Cells through Insect Vectors, Cell Rep, vol.9, issue.2, pp.425-432, 2014.

D. Hoang, A. Kopp, and J. A. Chandler, Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?, PeerJ, vol.3, p.1116, 2015.
DOI : 10.7717/peerj.1116

URL : https://peerj.com/articles/1116.pdf

T. Dobzhansky, Nothing in Biology Makes Sense except in the Light of Evolution, Source Am. Biol. Teach, vol.35, issue.3, pp.125-129, 1973.

J. Förster, I. Famili, P. Fu, B. Ø. Palsson, and J. Nielsen, Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network, Genome Res, vol.13, issue.2, pp.244-53, 2003.

J. M. Peregrín-alvarez, C. Sanford, and J. Parkinson, The conservation and evolutionary modularity of metabolism, Genome Biol, vol.10, issue.6, p.63, 2009.

N. Glansdorff, Y. Xu, and B. Labedan, The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner, Biol. Direct, vol.3, p.29, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353516

A. H. Kachroo, J. M. Laurent, C. M. Yellman, A. G. Meyer, C. O. Wilke et al., Systematic humanization of yeast genes reveals conserved functions and genetic modularity, Science, vol.348, issue.6237, pp.921-926, 2015.

A. H. Kachroo, Systematic bacterialization of yeast genes identifies a nearuniversally swappable pathway, Elife, vol.6, p.25093, 2017.

J. J. Heijnen, Impact of Thermodynamic Principles in Systems Biology

M. Conrad, J. Schothorst, H. N. Kankipati, G. Van-zeebroeck, M. Rubio-texeira et al., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.38, issue.2, pp.254-299, 2014.

S. Zaman, S. I. Lippman, X. Zhao, and J. R. Broach, How Saccharomyces Responds to Nutrients, Annu. Rev. Genet, vol.42, issue.1, pp.27-81, 2008.

J. R. Broach, Nutritional control of growth and development in yeast, Genetics, vol.192, issue.1, pp.73-105, 2012.

J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 2012.

M. Costanzo, The genetic landscape of a cell, Science, vol.327, issue.5964, pp.425-456, 2010.

A. P. Oliveira and U. Sauer, The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism, FEMS Yeast Res, vol.12, issue.2, pp.104-117, 2012.

H. G. Crabtree, The carbohydrate metabolism of certain pathological overgrowths, Biochem. J, vol.22, issue.5, pp.1289-98, 1928.

R. Diaz-ruiz, M. Rigoulet, and A. Devin, The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression ?, BBA -Bioenerg, vol.1807, pp.568-576, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00520968

B. M. Bakker, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.25, issue.1, pp.15-37, 2001.

T. Pfeiffer, S. Schuster, and S. Bonhoeffer, Cooperation and Competition in the Evolution of ATP-Producing Pathways, Science (80-. ), vol.292, issue.5516, pp.504-507, 2001.

Z. Lin and W. Li, Expansion of Hexose Transporter Genes Was Associated with the Evolution of Aerobic Fermentation in Yeasts, Mol. Biol. Evol, vol.28, issue.1, pp.131-142, 2011.

J. Piskur, E. Rozpedowska, S. Polakova, A. Merico, and C. Compagno, How did Saccharomyces evolve to become a good brewer?, Trends Genet, vol.22, issue.4, pp.183-189, 2006.

J. M. Thomson, Resurrecting ancestral alcohol dehydrogenases from yeast, Nat. Genet, vol.37, issue.6, pp.630-635, 2005.

A. Hagman, T. Säll, C. Compagno, and J. Piskur, Yeast 'Make-AccumulateConsume' Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication, PLoS One, vol.8, issue.7, p.68734, 2013.

M. L. Sanz, M. Villamiel, and I. Martinez-castro, Inositols and carbohydrates in different fresh fruit juices, Food Chem, vol.87, issue.3, pp.325-328, 2004.

C. Verduyn, T. P. Zomerdijk, J. P. Van-dijken, and W. A. Scheffers, Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode, Appl. Microbiol. Biotechnol, vol.19, issue.3, pp.181-185, 1984.

V. Kowallik, D. Greig, and H. Schulenburg, The natural ecology of Saccharomyces yeasts, 2015.

A. L. Kruckeberg, The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol, vol.166, issue.5, pp.283-292, 1996.

E. Boles and C. P. Hollenberg, The molecular genetics of hexose transport in yeasts, FEMS Microbiol. Rev, vol.21, issue.1, pp.85-111, 1997.

S. Ozcan and M. Johnston, Function and regulation of yeast hexose transporters, Microbiol. Mol. Biol. Rev, vol.63, issue.3, pp.554-69, 1999.

E. Reifenberger, E. Boles, and M. Ciriacy, Kinetic Characterization of Individual Hexose Transporters of Saccharomyces Cerevisiae and their Relation to the Triggering Mechanisms of Glucose Repression, Eur. J. Biochem, vol.245, issue.2, pp.324-333, 1997.

E. Reifenberger, K. Freidel, and M. Ciriacy, Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on qlycolytic flux, Mol. Microbiol, vol.16, issue.1, pp.157-167, 1995.

R. Wieczorke, S. Krampe, T. Weierstall, K. Freidel, C. P. Hollenberg et al., Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae, FEBS Lett, vol.464, issue.3, pp.123-128, 1999.

S. Ozcan, J. Dover, and M. Johnston, Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae, EMBO J, vol.17, issue.9, pp.2566-2573, 1998.

S. Busti, P. Coccetti, L. Alberghina, and M. Vanoni, Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces Cerevisiae, Sensors, vol.10, issue.6, pp.6195-6240, 2010.

J. Horák, Regulations of sugar transporters: insights from yeast, Curr. Genet, pp.1-31, 2013.

J. A. Diderich, Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae, J. Biol. Chem, vol.274, issue.22, pp.15350-15359, 1999.

A. Maier and B. Völker, Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with, FEMS yeast ?, vol.2, pp.539-550, 2002.

M. Conrad, J. Schothorst, H. N. Kankipati, G. Van-zeebroeck, M. Rubio-texeira et al., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.38, issue.2, pp.254-299, 2014.

T. Hirayarna, T. Maeda, H. Saito, and K. Shinozaki, Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae, Mgg Mol. Gen. Genet, vol.249, issue.2, pp.127-138, 1995.

L. Tomás-cobos, L. Casadomé, G. Mas, P. Sanz, and F. Posas, Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways, J. Biol. Chem, vol.279, issue.21, pp.22010-22019, 2004.

S. Zaman, S. I. Lippman, L. Schneper, N. Slonim, and J. R. Broach, Glucose regulates transcription in yeast through a network of signaling pathways, Mol. Syst. Biol, vol.5, p.245, 2009.

L. Tomás-cobos, R. Viana, and P. Sanz, TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1 , a yeast low-affinity glucose transporter, Yeast, vol.22, issue.6, pp.471-479, 2005.

L. Viladevall, Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae, J. Biol. Chem, vol.279, issue.42, pp.43614-43638, 2004.

B. Ren, Genome-wide location and function of DNA binding proteins, Science, vol.290, issue.5500, pp.2306-2315, 2000.

E. Rintala, M. G. Wiebe, A. Tamminen, L. Ruohonen, and M. Penttilä, Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision, BMC Microbiol, vol.8, issue.1, p.53, 2008.

S. Levy and N. Barkai, Coordination of gene expression with growth rate: A feedback or a feed-forward strategy?, FEBS Lett, vol.583, issue.24, pp.3974-3978, 2009.

J. Monod, The Growth of Bacterial Cultures, Annu. Rev. Microbiol, vol.3, issue.1, pp.371-394, 1949.

A. Blomberg, Measuring growth rate in high-throughput growth phenotyping, Curr. Opin. Biotechnol, vol.22, issue.1, pp.94-102, 2011.

A. Gutteridge, P. Pir, J. I. Castrillo, P. D. Charles, K. S. Lilley et al., Nutrient control of eukaryote cell growth: a systems biology study in yeast, BMC Biol, vol.8, issue.1, p.68, 2010.

B. Regenberg, Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae, Genome Biol, vol.7, issue.11, p.107, 2006.

V. M. Boer, C. A. Crutchfield, P. H. Bradley, D. Botstein, and J. D. Rabinowitz, Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations, Mol. Biol. Cell, vol.21, issue.1, pp.198-211, 2010.
DOI : 10.1091/mbc.e09-07-0597

URL : http://europepmc.org/articles/pmc2801714?pdf=render

M. J. Brauer, Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast, Mol. Biol. Cell, vol.19, issue.1, pp.352-67, 2008.

H. Senn, U. Lendenmann, M. Snozzi, G. Hamer, and T. Egli, The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics, Biochim. Biophys. Acta -Gen. Subj, vol.1201, issue.3, pp.424-436, 1994.

A. L. Koch and C. Wang, How close to the theoretical diffusion limit do bacterial uptake systems function?, Arch. Microbiol, vol.131, issue.1, pp.36-42, 1982.

Y. Liu, Overview of some theoretical approaches for derivation of the Monod equation, Appl. Microbiol. Biotechnol, vol.73, issue.6, pp.1241-1250, 2007.

K. Kovárová-kovar and T. Egli, Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics, Microbiol. Mol. Biol. Rev, vol.62, issue.3, pp.646-66, 1998.

N. S. Nikolai? and S. Panikov, Microbial growth kinetics, 1995.

S. J. Pirt, Principles of microbe and cell cultivation, 1975.

D. W. Tempest, The biochemical significance of microbial growth yields: A reassessment, Trends Biochem. Sci, vol.3, issue.3, pp.180-184, 1978.

F. A. Cubillos, High-resolution mapping of complex traits with a four-parent advanced intercross yeast population, Genetics, vol.195, issue.3, pp.1141-55, 2013.

N. Ziv, M. L. Siegal, and D. Gresham, Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy, Mol. Biol. Evol, vol.30, issue.12, p.2568, 2013.

U. N. Lele and M. G. Watve, Bacterial Growth Rate and Growth Yield: Is There A Relationship?, Proc Indian Natn Sci Acad, vol.80, issue.3, pp.537-546, 2014.

T. Ferenci, Growth of bacterial cultures' 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics, Res. Microbiol, vol.150, issue.7, pp.431-438, 1999.

M. L. Siegal, Shifting sugars and shifting paradigms, PLoS Biol, vol.13, issue.2, p.1002068, 2015.

J. Veening, W. K. Smits, and O. P. Kuipers, Bistability, Epigenetics, and BetHedging in Bacteria, Annu. Rev. Microbiol, vol.62, issue.1, pp.193-210, 2008.

J. Gray, G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer et al., Microbiol. Mol. Biol. Rev, vol.68, issue.2, pp.187-206, 2004.

S. Hohmann and W. H. Mager, Yeast stress responses, 2011.

S. Mazzoleni, A novel process-based model of microbial growth: selfinhibition in Saccharomyces cerevisiae aerobic fed-batch cultures, Microb. Cell Fact, vol.14, issue.1, p.109, 2015.

B. F. Gray and N. A. Kirwan, Growth rates of yeast colonies on solid media, Biophys. Chem, vol.1, issue.3, pp.204-213, 1974.

S. J. Pirt, A Kinetic Study of the Mode of Growth of Surface Colonies of Bacteria and Fungi, J. gen. Microbiol, vol.47, pp.181-197, 1967.

J. W. Wimpenny, The Growth and Form of Bacterial Colonies, J. Gen. Microbiol, vol.114, issue.2, pp.483-486, 1979.

D. Moore, G. D. Robson, and A. P. Trinci, , 2011.

S. Mitri, E. Clarke, and K. R. Foster, Resource limitation drives spatial organization in microbial groups, ISME J, vol.10, issue.10, pp.1471-1482, 2015.

O. Hallatschek, P. Hersen, S. Ramanathan, and D. R. Nelson, Genetic drift at expanding frontiers promotes gene segregation, Proc. Natl. Acad. Sci. U. S. A, vol.104, issue.50, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00321262

A. Fick, Ueber Diffusion, Ann. der Phys. und Chemie, vol.170, issue.1, pp.59-86, 1855.

T. W. Patzek, Fick's Diffusion Experiments Revisited -Part I, Adv. Hist. Stud, vol.3, issue.4, pp.194-206, 2014.

J. H. Kim, A. Roy, D. Jouandot, and K. H. Cho, The glucose signaling network in yeast, Biochim. Biophys. Acta -Gen. Subj, vol.1830, issue.11, pp.5204-5210, 2013.

J. Dervaux, J. C. Magniez, and A. Libchaber, On growth and form of Bacillus subtilis biofilms, Interface Focus, vol.4, issue.6, pp.20130051-20130051, 2014.

T. Sams, K. Sneppen, M. Jensen, C. Ellegaard, B. Christensen et al., Morphological Instabilities in a Growing Yeast Colony: Experiment and Theory, Phys. Rev. Lett, vol.79, issue.2, pp.313-316, 1997.

M. Gambino, Colonies of Growing Bacteria Make Psychedelic Art | Science | Smithsonian, Smithsonian.com, 2013.

E. Ben-jacob and P. Garik, The formation of patterns in non-equilibrium growth, Nature, vol.343, issue.6258, pp.523-530, 1990.

I. Golding, I. Cohen, and E. Ben-jacob, Studies of sector formation in expanding bacterial colonies, Europhys. Lett, vol.48, issue.5, pp.587-593, 1999.

H. Fujikawa and M. Matsushita, Fractal Growth of Bacillus subtilis on Agar Plates, J. Phys. Soc. Japan, vol.58, issue.11, pp.3875-3878, 1989.

M. Mimura, H. Sakaguchi, and M. Matsushita, Reaction-diffusion modelling of bacterial colony patterns, Phys. A Stat. Mech. its Appl, vol.282, issue.1-2, pp.283-303, 2000.

A. Marrocco, H. Henry, I. B. Holland, M. Plapp, S. J. Séror et al., Models of self-organizing bacterial communities and comparisons with experimental observations, Math. Model. Nat. Phenom, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00410258

J. Liu, Metabolic co-dependence gives rise to collective oscillations within biofilms, Nature, vol.523, issue.7562, pp.550-554, 2015.

J. Liu, Coupling between distant biofilms and emergence of nutrient timesharing, Science, vol.356, issue.6338, pp.638-642, 2017.

C. Vulin, J. Meglio, A. B. Lindner, A. Daerr, A. Murray et al., Growing yeast into cylindrical colonies, Biophys. J, vol.106, issue.10, pp.2214-2235, 2014.

N. Ziv, B. M. Shuster, M. L. Siegal, and D. Gresham, Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth, Genetics, vol.206, issue.3, pp.1645-1657, 2017.

G. Yvert, Particle genetics': treating every cell as unique, Trends Genet, vol.30, issue.2, p.49, 2014.
URL : https://hal.archives-ouvertes.fr/ensl-01074656

A. Llamosi, What Population Reveals about Individual Cell Identity: SingleCell Parameter Estimation of Models of Gene Expression in Yeast, PLOS Comput. Biol, vol.12, issue.2, p.1004706, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01248298

Y. Xia and G. M. Whitesides, Soft Lithography, Annu. Rev. Mater. Sci, vol.28, pp.153-84, 1998.

D. B. Weibel, W. R. Diluzio, and G. M. Whitesides, Microfabrication meets microbiology, Nat. Rev. Microbiol, vol.5, issue.3, pp.209-218, 2007.

S. N. Bhatia and D. E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol, vol.32, issue.8, pp.760-772, 2014.

D. T. Chiu, Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences, Chem, vol.2, issue.2, pp.201-223, 2017.

K. Son, D. R. Brumley, and R. Stocker, Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics, Nat. Rev. Microbiol, vol.13, issue.12, pp.761-775, 2015.

B. Okumus, S. Yildiz, and E. Toprak, Fluidic and microfluidic tools for quantitative systems biology, Curr. Opin. Biotechnol, vol.25, pp.30-38, 2014.

D. Binder, Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation, PLoS One, vol.11, issue.8, p.160711, 2016.

E. Brouzes, Droplet microfluidic technology for single-cell high-throughput screening

C. Probst, A. Grünberger, W. Wiechert, and D. Kohlheyer, Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes, J. Microbiol. Methods, vol.95, issue.3, pp.470-476, 2013.

T. Ahmed, T. S. Shimizu, and R. Stocker, Microfluidics for bacterial chemotaxis, Integr. Biol, vol.2, issue.11, p.604, 2010.

S. Kim, H. J. Kim, and N. L. Jeon, Biological applications of microfluidic gradient devices, Integr. Biol, vol.2, issue.11, p.584, 2010.

M. Adler, M. Erickstad, E. Gutierrez, and A. Groisman, Studies of bacterial aerotaxis in a microfluidic device, Lab Chip, vol.12, issue.22, pp.4835-4882, 2012.

S. Paliwal, P. A. Iglesias, K. Campbell, Z. Hilioti, A. Groisman et al., MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast, Nature, vol.446, issue.7131, pp.46-51, 2007.

B. Lin and A. Levchenko, Spatial Manipulation with Microfluidics, Front. Bioeng. Biotechnol, vol.3, p.39, 2015.

C. D. Nadell, V. Bucci, K. Drescher, S. A. Levin, B. L. Bassler et al., Cutting through the complexity of cell collectives, Proceedings. Biol. Sci, vol.280, issue.1755, p.20122770, 2013.

C. D. Nadell, K. R. Foster, and J. B. Xavier, Emergence of spatial structure in cell groups and the evolution of cooperation, PLoS Comput. Biol, vol.6, issue.3, p.1000716, 2010.

J. Kim, H. Park, and S. Chung, Microfluidic Approaches to Bacterial Biofilm Formation, Molecules, vol.17, issue.12, pp.9818-9834, 2012.

M. R. Bennett, Metabolic gene regulation in a dynamically changing environment, Nature, vol.454, issue.7208, pp.1119-1122, 2008.

P. Liu, T. Z. Young, and M. Acar, Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging, Cell Rep, vol.13, issue.3, pp.634-644, 2015.

M. C. Jo, W. Liu, L. Gu, W. Dang, and L. Qin, High-throughput analysis of yeast replicative aging using a microfluidic system, Proc. Natl. Acad. Sci, vol.112, issue.30, pp.9364-9369, 2015.

S. S. Lee, I. Vizcarra, D. H. Huberts, L. P. Lee, and M. Heinemann, Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.13, pp.4916-4936, 2012.

M. R. Bennett and J. Hasty, Microfluidic devices for measuring gene network dynamics in single cells, Nat. Rev. Genet, vol.10, issue.9, pp.628-666, 2009.

A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsimring et al., A sensing array of radically coupled genetic 'biopixels, Nature, vol.481, issue.7379, pp.39-44, 2011.

S. Cookson, N. Ostroff, W. L. Pang, D. Volfson, and J. Hasty, Monitoring dynamics of single-cell gene expression over multiple cell cycles, Mol Syst Biol, vol.1, pp.2005-2029, 2005.

A. Park, H. Jeong, J. Lee, K. P. Kim, and C. Lee, Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel, BioChip J, vol.5, issue.3, pp.236-241, 2011.

L. Potvin-trottier, N. D. Lord, G. Vinnicombe, and J. Paulsson, Synchronous longterm oscillations in a synthetic gene circuit, Nature, vol.538, issue.7626, pp.514-517, 2016.

J. B. Lugagne, Real-time control of a genetic toggle switch, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01417700

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, issue.7, pp.671-675, 2012.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man. Cybern, vol.9, issue.1, pp.62-66, 1979.

H. Youk and A. Van-oudenaarden, Growth landscape formed by perception and import of glucose in yeast, Nature, vol.462, issue.7275, pp.875-879, 2009.

M. Sedlak and N. W. Ho, Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinantSaccharomyces yeast, Yeast, vol.21, issue.8, pp.671-684, 2004.

A. Converti, M. Casagrande, M. Giovanni, M. Robatti, and M. D. Borghi, Evaluation of glucose diffusion coefficient through cell layers for the kinetic study of an immobilized cell reactor, Chem. Eng. Sci, vol.51, issue.7, pp.1032-1026, 1996.

, Diffusion coefficient of glucose in water

E. Postma, W. A. Scheffers, and J. P. Van-dijken, Kinetics of growth and glucose transport in glucose-limited chemostat cultures ofSaccharomyces cerevisiae CBS 8066, Yeast, vol.5, issue.3, pp.159-165, 1989.

M. Rieger, O. Kappeli, and A. Fiechter, The Role Of Limited Respiration In The Incomplete Oxidation Of Glucose By Saccharomyces Cerevisiae, Microbiology, vol.129, issue.3, pp.653-661, 1983.

J. Tinevez, TrackMate: An open and extensible platform for singleparticle tracking, Methods, vol.115, pp.80-90, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01799353

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, J. Basic Eng, vol.82, issue.1, p.35, 1960.

K. Jaqaman, Robust single-particle tracking in live-cell time-lapse sequences, Nat. Methods, vol.5, issue.8, pp.695-702, 2008.

F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and G. Danuser, Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint, Dev. Cell, vol.26, issue.3, pp.279-291, 2013.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, issue.5148, pp.802-807, 1994.

D. M. Chudakov, M. Matz, S. Lukyanov, and K. A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues, Physiol. Rev, vol.90, issue.3, pp.1103-63, 2010.

A. Maier, B. Völker, E. Boles, and G. F. Fuhrmann, Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters, FEMS Yeast Res, vol.2, issue.4, pp.539-550, 2002.

C. Snowdon and G. Van-der-merwe, Regulation of Hxt3 and Hxt7 Turnover Converges on the Vid30 Complex and Requires Inactivation of the Ras/cAMP/PKA Pathway in Saccharomyces cerevisiae, PLoS One, vol.7, issue.12, p.50458, 2012.

C. Snowdon, C. Hlynialuk, and G. Van-der-merwe, Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7p in Saccharomyces cerevisiae, FEMS Yeast Res, vol.8, issue.2, pp.204-220, 2008.

S. Krampe and E. Boles, Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease, FEBS Lett, vol.513, issue.2-3, pp.193-199, 2002.

S. Krampe, O. Stamm, C. P. Hollenberg, and E. Boles, Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis, FEBS Lett, vol.441, issue.3, pp.343-350, 1998.

J. Hovsepian, Multilevel regulation of an ?-arrestin by glucose depletion controls hexose transporter endocytosis, J. Cell Biol, vol.216, issue.6, pp.1811-1831, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02110277

V. Scognamiglio, Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years, Biosens. Bioelectron, vol.47, pp.12-25, 2013.

N. Giordano, F. Mairet, J. Gouzé, J. Geiselmann, and H. De-jong, Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies, PLOS Comput. Biol, vol.12, issue.3, p.1004802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332394

H. Jong, J. Geiselmann, and D. Ropers, Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery, Trends Microbiol, vol.25, issue.6, pp.480-493, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01420729

R. Verwaal, M. Arako, R. Kapur, A. J. Verkleij, C. T. Verrips et al., HXT5 expression is under control of STRE and HAP elements in theHXT5 promoter, Yeast, vol.21, issue.9, pp.747-757, 2004.

D. Suylekom, E. Donselaar, C. Blanchetot, L. N. Ngoc, B. M. Humbel et al., Degradation of the hexose transporter Hxt5p in Saccharomyces cerevisiae, Biol. Cell, vol.99, issue.1, pp.13-23, 2007.

R. Escalante-chong, Galactose metabolic genes in yeast respond to a ratio of galactose and glucose, Proc. Natl. Acad. Sci. U. S. A, vol.112, issue.5, pp.1636-1677, 2015.

Y. Lin, C. H. Sohn, C. K. Dalal, L. Cai, and M. B. Elowitz, Combinatorial gene regulation by modulation of relative pulse timing, Nature, vol.527, issue.7576, pp.54-58, 2015.

B. J. De-la-cruz, S. Prieto, and I. E. Scheffler, The role of the 5' untranslated region (UTR) in glucose-dependent mRNA decay, Yeast, vol.19, issue.10, pp.887-902, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02119366

B. M. Zid and E. K. O'shea, Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast, Nature, vol.514, issue.7520, pp.117-121, 2014.

A. Rodríguez, T. De-la, C. , P. Herrero, and F. Moreno, The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae, Biochem. J, 2001.

K. Struhl, The new yeast genetics, Nature, vol.305, issue.5933, pp.391-397, 1983.

S. Mnaimneh, Exploration of Essential Gene Functions via Titratable Promoter Alleles, Cell, vol.118, issue.1, pp.31-44, 2004.

A. B. Canelas, Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains, Nat. Commun, vol.1, issue.9, p.145, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00562005

E. A. Winzeler, Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis, Science, vol.285, issue.5429, pp.901-907, 1999.

M. T. Alam, The metabolic background is a global player in Saccharomyces gene expression epistasis, Nat. Microbiol, vol.1, issue.3, p.15030, 2016.

A. Jacquier, Systems biology: Supplementation is not sufficient, Nat. Microbiol, vol.1, issue.3, p.16016, 2016.

M. Mülleder, A prototrophic deletion mutant collection for yeast metabolomics and systems biology, Nat. Biotechnol, vol.30, issue.12, pp.1176-1184, 2012.

K. B. Lee, J. Wang, J. Palme, R. Escalante-chong, B. Hua et al., Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes, PLOS Genet, vol.13, issue.5, p.1006766, 2017.

K. Campbell, Self-establishing communities enable cooperative metabolite exchange in a eukaryote, Elife, vol.4, pp.1-23, 2015.

P. O. Ljungdahl and B. Daignan-fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae, Genetics, vol.190, issue.3, pp.885-929, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703026

M. D. Barton, D. Delneri, S. G. Oliver, M. Rattray, and C. M. Bergman, Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast, PLoS One, vol.5, issue.8, p.11935, 2010.

C. Bermejo, F. Haerizadeh, M. S. Sadoine, D. Chermak, and W. B. Frommer, Differential regulation of HXT5 glucose transport activity in yeast by specific cAMP signatures, Biochem. J, vol.452, issue.3, pp.489-97, 2013.

J. A. Diderich, J. M. Schuurmans, M. C. Van-gaalen, A. L. Kruckeberg, and K. Van-dam, Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae, Yeast, vol.18, issue.16, pp.1515-1524, 2001.

R. Verwaal, J. W. Paalman, A. Hogenkamp, A. J. Verkleij, C. T. Verrips et al., HXT5 expression is determined by growth rates in Saccharomyces cerevisiae, Yeast, vol.19, issue.12, pp.1029-1038, 2002.

A. P. Gasch, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, vol.11, issue.12, pp.4241-57, 2000.

F. Posas, J. R. Chambers, J. A. Heyman, J. P. Hoeffler, E. De-nadal et al., The transcriptional response of yeast to saline stress, J. Biol. Chem, vol.275, issue.23, pp.17249-55, 2000.

P. Jordan, J. Choe, E. Boles, and M. Oreb, Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters, Sci. Rep, vol.6, p.23502, 2016.

D. Solis-escalante, The genome sequence of the popular hexose-transportdeficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss, FEMS Yeast Res, vol.15, issue.2, 2015.

F. J. Gamo, M. J. Lafuente, and C. Gancedo, The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae, J. Bacteriol, vol.176, issue.24, pp.7423-7432, 1994.

S. Ozcan, K. Freidel, A. Leuker, and M. Ciriacy, Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae, J. Bacteriol, vol.175, issue.17, pp.5520-5528, 1993.

J. Weirich, P. Goffrini, P. Kuger, I. Ferrero, and K. D. Breunig, Influence of Mutations in Hexose-Transporter Genes on Glucose Repression in Kluyveromyces Lactis, Eur. J. Biochem, vol.249, issue.1, pp.248-257, 1997.

L. Ye, A. L. Kruckeberg, J. A. Berden, and K. Van-dam, Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter, J. Bacteriol, vol.181, issue.15, pp.4673-4678, 1999.

L. Ye, J. A. Berden, K. Van-dam, and A. L. Kruckeberg, Expression and activity of the Hxt7 high-affinity hexose transporter ofSaccharomyces cerevisiae, Yeast, vol.18, issue.13, pp.1257-1267, 2001.

W. R. Place and L. F. Bisson, Identification of HXT7 as a Suppressor of the snf3 Growth Defect in Wine and Wild-type Strains of Saccharomyces cerevisiae, Am. J. Enol. Vitic, vol.64, issue.2, pp.251-257, 2013.

L. Ye, Glucose transport in Saccharomyces cerevisiae effects on growth and metabolism, 1999.

M. Lai, D. Y. , .. Liu, and T. Hseu, Cell growth restoration and high level protein expression by the promoter of hexose transporter, HXT7, from Saccharomyces cerevisiae, Biotechnol. Lett, vol.29, issue.8, pp.1287-1292, 2007.

M. Salema-oom, H. R. Sousa, M. Assunção, P. Gonçalves, and I. Spencermartins, Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression, J. Appl. Microbiol, vol.110, issue.1, pp.364-374, 2011.

G. Agrimi, Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis, Appl. Environ. Microbiol, vol.77, issue.7, pp.2239-2285, 2011.

L. F. Bisson and V. Kunathigan, On the trail of an elusive flux sensor, Res. Microbiol, vol.154, issue.9, pp.603-610, 2003.

F. Rodríguez, Mutations in GAL2 or GAL4 alleviate catabolite repression produced by galactose in Saccharomyces cerevisiae, Enzyme Microb. Technol, vol.26, issue.9, pp.748-755, 2000.

H. Schmidt-glenewinkel and N. Barkai, Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms, Mol. Syst. Biol, vol.10, issue.12, p.769, 2014.

D. H. Huberts, B. Niebel, and M. Heinemann, A flux-sensing mechanism could regulate the switch between respiration and fermentation, FEMS Yeast Res, vol.12, issue.2, pp.118-128, 2012.

C. Carmona-fontaine, V. Bucci, L. Akkari, M. Deforet, J. A. Joyce et al., Emergence of spatial structure in the tumor microenvironment due to the Warburg effect, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.48, pp.19402-19409, 2013.