, Centre François Baclesse" situé en Normandie, France. La base de données comprend les dossiers cliniques recueillis tout au long de l'histoire médicale d'environ 90 patients souffrant d'un glioblastome. Le glioblastome est un type de cancer du cerveau très agressif qui résiste généralement aux traitements, y compris la chimiothérapie et la radiothérapie. Le glioblastome affecte les patientsà différentsâges, mais touche surtout les patients plusâgés. Les patients présentent souvent une surexpression du R-EGF, des mutations du PTEN (MMAC1) [28] . Les glioblastomes sont l'un des cancers les plus vascularisés et les plus invasifs, Les données cliniques utilisées dans ce travail ontété obtenues du centre de lutte contre le cancer

, Il reste encore beaucoup de travailà faire pour améliorer les pronosticsà partir de la compréhension des mutations génétiques qui y sont associées, ainsi que la détection très précoce. La classification des tumeurs cérébrales va du grade I au grade IV, ce dernie? etant le plus agressif, vol.27

, Un glioblastome multiforme est un cancer de grade IV, c'est donc un cancer très agressif. Dans "la classification des tumeurs du système nerveux central de l'Organisation mondiale de la santé de, 2016.

F. Tercia-rodrigues-alves, . Lima, D. Suzana-assad-kahn, L. Lobo, R. Dubois et al., Helena Borges, and Vivaldo Moura Neto. Glioblastoma cells: A heterogeneous and fatal tumor interacting with the parenchyma, Life Sciences, vol.89, pp.532-539, 2011.

R. Bammer, Basic principles of diffusion-weighted imaging, European journal of radiology, vol.45, issue.3, pp.169-184, 2003.

S. Bates, Progress towards personalized medicine, Drug Discovery Today, vol.15, issue.3-4, pp.115-120, 2010.

S. Bauer, R. Wiest, M. Lutz-p-nolte, and . Reyes, A survey of MRI-based medical image analysis for brain tumor studies, Physics in Medicine and Biology, vol.58, issue.13, pp.97-129, 2013.

J. Bibault, P. Giraud, and A. Burgun, Big Data and machine learning in radiation oncology: State of the art and future prospects, Cancer Letters, vol.382, issue.1, pp.110-117, 2016.

. Ch, G. Brechbuhler, O. Gerig, and . Kubler, Parametrization of closed surfaces for 3-d shape description. Computer Vision and Image Understanding, vol.61, pp.154-170, 1995.

L. Breiman, Random forests. Machine learning, vol.45, pp.5-32, 2001.

C. Castaneda, K. Nalley, C. Mannion, P. Bhattacharyya, P. Blake et al., Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine, Journal of Clinical Bioinformatics, vol.5, issue.1, 2015.

D. Peter, D. S. Chang, P. H. Chow, C. G. Yang, A. Filippi et al., Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images, American Journal of Roentgenology, vol.208, issue.1, pp.57-65, 2017.

C. Chen, M. He, Y. Zhu, L. Shi, and X. Wang, Five critical elements to ensure the precision medicine, Cancer and Metastasis Reviews, vol.34, issue.2, pp.313-318, 2015.

R. Michael, R. A. Chernick, and . Labudde, An introduction to bootstrap methods with applications to R, p.751021626, 2011.

S. Chib and E. Greenberg, Understanding the metropolishastings algorithm, The American Statistician, vol.49, issue.4, pp.327-335, 1995.

J. A. Cruz and D. S. Wishart, Applications of Machine Learning in Cancer Prediction and Prognosis, Cancer Informatics, vol.2, p.117693510600200, 2006.

M. F. Dempsey, B. R. Condon, and D. M. Hadley, Measurement of tumor "size" in recurrent malignant glioma: 1d, 2d, or 3d?, American Journal of Neuroradiology, vol.26, issue.4, pp.770-776, 2005.

. Issam-el-naqa, Perspectives on making big data analytics work for oncology, vol.111, pp.32-44, 2016.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Springer series in statistics, vol.1, 2001.

A. Gelman and J. Bayes, Prior Distributions and the Philosophy of Statistics, Statistical Science, vol.24, issue.2, pp.176-178, 2009.

M. Goitein, The utility of computed tomography in radiation therapy: An estimate of outcome, International Journal of Radiation Oncology? Biology? Physics, vol.5, issue.10, pp.1799-1807, 1979.

V. Joseph and . Hajnal, Use of Fluid Attenuated Inversion Recovery (FLAIR) Pulse Sequences in MRI of the Brain, Journal of Computer Assisted Tomography, vol.16, issue.6, pp.841-844, 1992.

J. W. Henson, P. Gaviani, and R. G. Gonzalez, MRI in treatment of adult gliomas, The lancet oncology, vol.6, issue.3, pp.167-175, 2005.

, Stock assessment for fishery management: a framework guide to the stock assessment tools of the Fisheries Management Science Programme. Number 487 in FAO fisheries technical paper, p.255237023, 2006.

A. I??n, C. Direkoglu, and M. ?ah, Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods, Procedia Computer Science, vol.102, pp.317-324, 2016.

J. James and O. Berger, On the development of the reference prior method, 1991.

, Inflammation: the Common Link in Brain Pathologies, 2016.

R. Jiang, H. Zhu, W. Zeng, X. Yu, Y. Fan et al., Bladder wall flattening with conformal mapping for MR cystography. page 76250E, 2010.

N. S. Khan, A. S. Larik, Q. Rajput, and S. Haider, A BAYESIAN APPROACH FOR SUSPICIOUS FINANCIAL ACTIVITY REPORTING, International Journal of Computers and Applications, vol.35, issue.4, 2013.

P. Kleihues, P. C. Burger, and B. W. Scheithauer, The new WHO classification of brain tumours, Brain Pathology, vol.3, issue.3, pp.255-268

P. Kleihues and H. Ohgaki, Primary and secondary glioblastomas: From concept to clinical diagnosis, Neuro-Oncology, vol.1, issue.1, pp.44-51, 1999.

K. Kono, Y. Inoue, K. Nakayama, M. Shakudo, M. Morino et al., The role of diffusion-weighted imaging in patients with brain tumors, American Journal of Neuroradiology, vol.22, issue.6, pp.1081-1088, 2001.

, Breakthroughs in statistics. 2: Methodology and distribution. Springer series in statistics Perspectives in statistics

K. Kourou, P. Themis, K. P. Exarchos, M. V. Exarchos, D. I. Karamouzis et al., Machine learning applications in cancer prognosis and prediction, Computational and Structural Biotechnology Journal, vol.13, pp.8-17, 2015.

K. Krabbe, P. Gideon, P. Wagn, U. Hansen, C. Thomsen et al., Madsen. MR diffusion imaging of human intracranial tumours, Neuroradiology, vol.39, issue.7, pp.483-489, 1997.

F. Kruggel, Robust Mapping of Brain Surface Meshes onto a Unit Sphere, ISBI, pp.201-204, 2007.

J. K. Kruschke, Doing Bayesian Data Analysis: A Tutorial with R and BUGS, 2010.

D. and L. Bihan, Diffusion/perfusion MR imaging of the brain: from structure to function, Radiology, vol.177, issue.2, pp.328-329, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00349718

D. Le-bihan and M. Iima, Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues, PLOS Biology, vol.13, issue.7, p.1002203, 2015.

E. Lu-lee and L. Westcarth, Neurotoxicity associated with cancer therapy, Journal of the advanced practitioner in oncology, vol.3, issue.1, p.11, 2012.

A. Liaw and M. Wiener, Classification and regression by randomForest, vol.2, pp.18-22, 2002.

X. Liu, J. Bowers, and W. Mio, Parametrization, alignment and shape of spherical surfaces, VISAPP (1), pp.199-206, 2007.

W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, Proceedings of the 14th annual conference on Computer graphics and interactive techniques -SIGGRAPH '87, pp.163-169, 1987.

D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathologica, vol.131, issue.6, pp.803-820, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

T. Lustberg, J. Van-soest, A. Jochems, T. Deist, Y. Van-wijk et al., Big Data in radiation therapy: challenges and opportunities, The British Journal of Radiology, vol.90, p.20160689, 1069.

P. Mayles, A. Nahum, and J. Rosenwald, Handbook of Radiotherapy Physics: Theory and Practice, Handbook of Radiotherapy Physics: Theory and Practice, pp.649-653, 2007.

E. Meyer, Evaluation des facteurs prédictifs clinicoradiologiques de récidive des glioblastomes :étude préalableà la constitution d'une plateforme de modélisation en radiothérapie. Thesis in medicine, UNIVERSITÉ de CAEN

B. Travis, A. S. Murdoch, and . Detsky, The inevitable application of big data to health care, Jama, vol.309, issue.13, pp.1351-1352, 2013.

M. Nakahara, K. Ericson, and B. M. Bellander, DIFFUSION-WEIGHTED MR AND APPARENT DIFFUSION COEFFICIENT IN THE EVALUATION OF SEVERE BRAIN INJURY, Acta Radiologica, vol.42, issue.4, pp.365-369, 2001.

J. and R. Quinlan, Induction of decision trees, Machine learning, vol.1, issue.1, pp.81-106, 1986.

J. Sahand, K. Rahi, and . Sharp, Mapping complicated surfaces onto a sphere, International Journal of Computational Geometry & Applications, vol.17, issue.04, pp.305-329, 2007.

C. P. Robert, N. Chopin, and J. Rousseau, Harold Jeffreys's Theory of Probability Revisited, Statistical Science, vol.24, issue.2, pp.141-172, 2009.

H. Roux and . Lavieille, Imagerie par résonance magnétique nucléaire et rhumatologie, Laboratoires Ciba-Geigy, pp.8-33

M. Berkan-sesen, A. E. Nicholson, R. Banares-alcantara, T. Kadir, and M. Brady, Bayesian Networks for Clinical Decision Support in Lung Cancer Care, PLoS ONE, vol.8, issue.12, p.82349, 2013.

J. P. Snyder, The space oblique Mercator projection, Photogramm. Eng. Remote Sensing, vol.44, pp.585-596, 1978.

P. E. Utgoff, Incremental induction of decision trees. Machine learning, vol.4, pp.161-186, 1989.

K. Theodore, T. J. Yanagihara, and . Wang, Diffusion-weighted imaging of the brain for glioblastoma: Implications for radiation oncology, Appl Radiat Oncol, pp.5-13, 2014.