Thèse
Présentée par
Khaled MAAFA

pour obtenir le grade de

Docteur d'Université

Spécialité : Informatique

Titre de la thèse

Jeux et Treillis : Aspects Algorithmiques,

Soutenue publiquement le 29/10/2018 devant le jury :

Professeur Mohand Ouamer BIBI Président
Professeur Isma BOUCHEMAKH Rapporteur
Professeur Michel GRABISCH Rapporteur
Professeur Lakhdar SAIS Examinateur
Docteur Kamal AMROUN Examinateur
Professeur Lhouari NOURINE Codirecteur de thèse
Professeur Mohammed Said RADJEF Codirecteur de thèse
Je suis heureux de saisir cette occasion pour remercier mes directeurs de thèse, le Professeur Mohammed Said RADJEF et le Professeur Lhouari NOURINE. Je les remercie pour toute l’aide qu’ils m’ont apportée pour la réalisation de ce modeste travail, leurs nombreux conseils et leur grande disponibilité.

Je remercie vivement le Professeur BIBI Mohand Ouamer, qui me fait un grand honneur en acceptant de présider le jury de ma thèse.

Je remercie le Professeur BOUCHEMAKH ISMA pour avoir accepté d’examiner ce travail.

Je remercie le Professeur Michel GRABISCH pour avoir accepté d’examiner ce travail.

Je remercie le Professeur Lakhdar SAIS pour avoir accepté d’examiner ce travail.

Je remercie Mr AMROUN Kamal pour avoir accepté d’examiner ce travail.
Je suis heureux de dédier ce modeste travail à :

* Mes parents et mes enseignants.
* Ma femme qui m’a beaucoup encouragé et soutenu.
* Tous mes amis et collègues.
Table des matières

Introduction générale

1 Généralités
 1.1 Rappels mathématiques
 1.1.1 Éléments d’analyse convexe
 1.1.2 Polytopes et polyèdres
 1.2 Théorie des jeux
 1.2.1 Les jeux non coopératifs
 1.2.2 Les jeux coopératifs
 1.3 Ensembles partiellement ordonnés
 1.3.1 Ordres partiels
 1.3.2 Treillis
 1.4 Algorithmes et complexité
 1.4.1 La NP-Complétude

2 Jeux multicritères avec interactions entre critères
 2.1 Généralités
 2.2 Jeux multicritères avec interactions entre les critères
 2.2.1 Equilibre de Choquet-Nash
 2.2.2 Existence de l’équilibre de Choquet-Nash
 2.2.3 Relation avec d’autres concepts de solution

3 Présence de la structure de treillis dans la théorie de la décision
 3.1 Mariages stables
 3.1.1 Approche par la méthode du point fixe
 3.2 Jeux à complémentarités stratégiques
 3.2.1 Statiques comparatives
 3.2.2 Jeux sur-modulaires :
 3.2.3 Jeux à complémentarités stratégiques
 3.2.4 Calcul des équilibres dans un jeu à complémentarités stratégiques
 3.3 Jeux coopératifs sur un treillis
 3.3.1 Jeux sous forme de fonction de partition
 3.3.2 Jeux globaux
 3.3.3 Jeux multi-choix
 3.3.4 Jeux bi-coopératifs

4 Jeux coopératifs à coopération restreinte
 4.1 Systèmes d’ensembles
 4.1.1 Anneau d’ensembles, famille d’intersections, famille de croisements
 4.1.2 Géométries convexes
 4.1.3 Antimatroides
 4.1.4 Systèmes augmentants
 4.2 Jeux coopératifs sur des systèmes d’ensembles
 4.3 Cœur d’un jeu coopératif à coopération restreinte

1
3
3
4
9
9
10
17
17
19
19
22
23
24
25
30
35
37
37
39
41
41
42
42
42
42
45
46
46
46
47
47
48
4.3.1 Non vacuité du cœur d’un jeu à coopération restreinte 48
4.3.2 Structure du cœur d’un jeu à coopération restreinte 49
4.4 Relation entre le cœur et l’ensemble de Weber ... 50
4.4.1 Systèmes réguliers .. 51
4.4.2 Systèmes k-réguliers .. 53
4.4.3 Systèmes arbitraires .. 53
4.5 Jeux coopératifs sur un ordre coloré .. 55
4.6 Conclusion .. 57

5 Calcul de la valeur de Shapley d’un jeu coopératif sur un treillis 59
5.1 Introduction ... 59
5.2 Préaliminaires et travaux connexes ... 60
5.3 Position du problème .. 62
5.4 Deux algorithmes pour le calcul de la valeur de Shapley 64
 5.4.1 Énumération des chaînes maximales de \mathcal{L}_Σ 64
 5.4.2 Construction du treillis \mathcal{L}_Σ ... 65
5.5 Jeux de graphes pondérés sur un produit de chaînes 66
5.6 Calcul de la valeur de Shapley par les dividendes de Harsanyi 75
5.7 Conclusion .. 77

Conclusion ... 79

Bibliographie ... 81
Table des figures

1.1 Diagramme de Hasse du treillis des sous-ensembles de $N = \{1, 2, 3\}$.

1.2 Diagramme de Hasse du treillis des diviseurs de 24.

1.3 Un treillis \mathcal{L} et ses représentations.

2.1 Capacité induite par un graphe.

3.1 Diagramme de Hasse de l’ordre des rotations de l’instance du tableau 3.1.

4.1 La structure du cœur d’un jeu v sur un système d’ensembles \mathcal{F} sur N.

4.2 Le cœur et l’ensemble de Weber d’un jeu v sur un système \mathcal{F} sur N.

5.1 Le treillis \mathcal{L}_Σ associé à $\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$ sur $N = \{1, \ldots, 6\}$.

5.2 Le treillis \mathcal{L}_Σ associé à $\Sigma = \{1 \rightarrow 2, 3 \rightarrow 4, 5 \rightarrow 2, 5 \rightarrow 4, 24 \rightarrow 5\}$ sur $N = \{1, \ldots, 5\}$.

5.3 Les lignes discontinues correspondent aux éléments de \mathcal{A}_5.

5.4 Rajout d’un joueur fictif au bas de chaque chaîne de P.

5.5 Le treillis \mathcal{L}_Σ est isomorphe $(C'_1, \preceq_1) \times (C'_2, \preceq_2) \times (C'_3, \preceq_3)$.
Liste des tableaux

2.1 Notes des candidats ... 20
2.2 Valeurs de la capacité v .. 22

3.1 Une instance du problème des mariages stables 31
3.2 Les shortlists de l’instance du tableau 3.1 31
3.3 Les shortlists après élimination de la rotation ρ_1 33
3.4 Les shortlists après élimination de la rotation ρ_2 33
3.5 Les shortlists après élimination des rotation ρ_1 et ρ_2 34
3.6 Liste des rotations de l’instance du tableau 3.1 34
Introduction

Ce travail a commencé par une recherche sur le thème « Jeux multicritères avec interactions entre critères ». Notre intérêt pour cette thématique était motivé par le développement soutenu qu’a connu la théorie des jeux multicritères ces dernières années. Cette théorie a suscité l’intérêt de beaucoup de chercheurs car elle permet une meilleure modélisation d’un large éventail de situations réelles où les joueurs évaluent les issues du jeu selon plusieurs points de vue ou critères. Nous nous sommes fixés comme premier objectif l’étude des jeux multicritères marqués par la présence d’interactions entre les critères de chaque joueur. La présence d’interactions entre les critères soulève de nouveaux problèmes. A titre d’exemple, l’importance relative de deux critères peut dépendre de la valeur prise par un troisième critère. On peut rencontrer des interactions positives ou synergies entre deux critères : une petite augmentation dans les scores de deux critères simultanément est préférée à une forte augmentation sur un seul des deux critères. Des interactions négatives entre critères peuvent également exister : une augmentation simultanée des scores de deux critères donnés n’améliore pas la performance globale d’une alternative car les deux critères considérés présentent par exemple une certaine redondance. Les problèmes soulevés par la présence des interactions entre critères mettent en échec le procédé classique en décision multicritère qui consiste à allouer un poids à chaque critère et évaluer les alternatives selon la moyenne pondérée des scores obtenus selon chaque critère. Il faut prendre en considération les interactions entre les critères dans le calcul du score global d’une alternative. Ceci est fait en affectant des poids non seulement à chaque critère individuellement mais aussi à chaque groupe ou coalition de critères définissant ainsi une capacité sur l’ensemble des coalitions de critères. Il faut alors trouver un moyen d’agrégation des scores obtenus sur chaque critère qui tient compte des poids de toutes les coalitions de critères. La réponse est donnée par les intégrales par rapport à des capacités, dont l’intégrale de Choquet est la plus utilisée en aide multicritère à la décision. Cet opérateur offre de nombreux avantages : il possède de belles propriétés mathématiques comme la continuité et la croissance par rapport à chaque argument et permet de retrouver plusieurs fonctions d’agrégation classiques comme cas particulier. Ainsi la moyenne pondérée peut être retrouvée comme une intégrale de Choquet par rapport à une capacité additive. Nous avons dû revisiter les concepts et notions de la théorie classique des jeux multicritères à la lumière des nouvelles informations que possèdent les joueurs sur les interactions entre les critères de chacun d’eux car de nouveaux problèmes surgissent : quel est le sens à donner à la notion de meilleure réponse d’un joueur face aux stratégies des autres joueurs ? La notion d’optimality d’une réponse doit tenir compte des interactions entre critères. Des concepts de solution adaptés devraient être définis et étudiés. En supposant que les capacités définissant les interactions entre les critères de chaque joueur sont connaissance commune, chaque joueur essayera de maximiser l’intégrale de Choquet de son vecteur de gain en tenant compte des choix des autres joueurs. La dynamique de meilleure réponse enclenchée repose sur la notion de réponse Choquet-optimale. Nous avons introduit le concept d’équilibre Choquet-Nash et étudié quelques conditions qui garantissent son existence. En travaillant sur l’étude des jeux multicritères avec interactions entre critères, il nous est apparu que le problème étudié se prête mieux à l’analyse s’il est posé dans un cadre plus général qui est celui des interactions entre la théorie des jeux et la théorie des treillis. En effet, lors de la modélisation des interactions entre les critères de chaque joueur, nous avons observé que, dans la pratique, les interactions entre les critères peuvent se limiter aux critères appartenant à des catégories prédéterminées. Il n’y a donc pas lieu de considérer toutes les coalitions possibles entre tous les critères. Cette observation nous a conduit à étudier les jeux coopératifs avec structure de coopération restreinte : l’ensemble des coalitions permises n’est qu’une partie de l’ensemble de toutes les coalitions possibles. Dans plusieurs cas d’intérêt pratique, cet ensemble de coalitions permises possède une structure algébrique particulière :
c’est un treillis. Nous nous sommes alors lancés dans une investigation sur la structure de treillis, et nous avons conclu à l’omniprésence de cette structure en théorie des jeux. Donnons quelques exemples parmi les plus connus : le premier est l’exemple des jeux à complémentarités stratégiques où chaque joueur a intérêt à augmenter, dans un sens, sa stratégie si les autres joueurs font de même. L’ensemble des équilibres de Nash d’un jeu à complémentarités stratégiques a une structure de treillis. Les jeux coopératifs sur une structure combinatoire constituent un autre exemple des synergies entre théorie des jeux et structure de treillis. Ici l’ensemble des coalitions réalisables est un treillis. Cette approche permet de modéliser les contraintes de communication et/ou hiérarchie entre les joueurs. Le dernier exemple est celui des mariages stables. Nous avons deux ensembles disjoints de joueurs, hommes et femmes. Chaque joueur possède un ordre total sur les joueurs de l’ensemble qui ne le contient pas. On veut former des mariages stables, c’est-à-dire, il n’y a pas un homme et une femme qui ne sont pas mariés et qui se préfèrent mutuellement à leurs partenaires actuels. Il a été établi depuis longtemps que l’ensemble des mariages stables est un treillis distributif, et cette propriété est derrière beaucoup d’algorithmes efficaces pour l’énnumération de tous les mariages stables ou la recherche d’un mariage stable avec une propriété donnée.

La thèse est organisée en cinq chapitres. Le premier chapitre est une présentation des notions de base de la théorie des jeux et de celle des treillis. Dans le deuxième chapitre, nous introduisons les jeux multicritères avec interactions entre critères. Nous proposons un concept de solution pour ces jeux ; l’équilibre de Choquet-Nash, et nous en étudions quelques conditions d’existence. Le troisième chapitre est une exploration, à travers une revue de la littérature, de la présence de la structure de treillis en théorie des jeux. Dans le quatrième chapitre, nous introduisons les jeux coopératifs à coopération restreinte et citons les principaux résultats connus sur ces jeux. Nous introduisons également dans ce chapitre le modèle des jeux coopératifs sur un ordre coloré. Dans le cinquième chapitre, l’accent est mis sur les aspects algorithmiques. Ainsi, nous proposons des algorithmes pour le calcul de la valeur de Shapley pour un jeu coopératif sur un treillis. Nous montrons que la valeur de Shapley peut être calculée en temps polynomial lorsque on se restreint à la classe des jeux de graphes pondérés sur un produit de chaînes.
Chapitre 1

Généralités

Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Rappels mathématiques</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Éléments d’analyse convexe</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Polytopes et polyèdres</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Théorie des jeux</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Les jeux non coopératifs</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Les jeux coopératifs</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Ensembles partiellement ordonnés</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Ordres partiels</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Treillis</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Algorithmes et complexité</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1</td>
<td>La NP-Complétude</td>
<td>17</td>
</tr>
</tbody>
</table>

Introduction

Ce chapitre est consacré à la présentation des notions de base et les outils mathématiques dont nous aurons besoin dans le reste des chapitres. La section 1.1 rappelle certaines notions mathématiques dont nous aurons besoin par la suite. Les sections 1.2 et 1.3 présentent quelques notions de base de la théorie des jeux et de la théorie des treillis respectivement. La section 1.4 est, quand à elle, une introduction informelle à l’algorithmique et à la théorie de la complexité.

1.1 Rappels mathématiques

1.1.1 Éléments d’analyse convexe

Soit \(x_1, x_2, \ldots, x_k \in \mathbb{R}^n; \theta_1, \theta_2, \ldots, \theta_k \in \mathbb{R}\) et \(y = \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \cdots + \theta_k \cdot x_k\).

Si \(\theta_1 + \theta_2 + \cdots + \theta_k = 1\), alors le point \(y\) est dit une combinaison affine des points \(x_1, x_2, \ldots, x_k\).

Si \(\theta_1 + \theta_2 + \cdots + \theta_k = 1\) et \(\theta_i \geq 0, \ i = 1, 2, \ldots, k\), alors le point \(y\) est dit une combinaison convexe des points \(x_1, x_2, \ldots, x_k\).

Si \(\theta_i \geq 0, \ i = 1, 2, \ldots, k\), alors le point \(y\) est dit une combinaison conique des points \(x_1, x_2, \ldots, x_k\).

Un ensemble \(C \subseteq \mathbb{R}^n\) est affine s’il contient toute combinaison affine de ses points. Il est un cône s’il contient toute combinaison conique de ses points. \(C\) est convexe s’il contient toute combinaison convexe de ses points. L’enveloppe affine de \(C \subseteq \mathbb{R}^n\) est l’ensemble \(\operatorname{aff}(C)\) des combinaisons affines des points de \(C\). De
mêmes, l’enveloppe conique de C est l’ensemble $\text{cone}(C)$ des combinaisons coniques des points de C, et l’enveloppe convexe de C est l’ensemble $\text{conv}(C)$ des combinaisons convexes des points de C.

Un demi-espace fermé dans \mathbb{R}^n est un ensemble de la forme $\{x \in \mathbb{R}^n \mid a^T \cdot x \leq b\}$, où $a \in \mathbb{R}^n$, $a \neq 0$ et $b \in \mathbb{R}$.

Un rayon est une translation d’un ensemble de la forme : $\{ \alpha \cdot x \mid \alpha \geq 0 \}$ où $x \in \mathbb{R}^n$.

1.1.2 Polytopes et polyèdres

Définition 1. Un V-polytope est l’enveloppe convexe d’un ensemble fini de points appelés sommets.

Définition 2. Un H-polyèdre est l’intersection d’un nombre fini de demi-espaces fermés. Un H-polytope est un H-polyèdre borné.

Autrement dit, un H-polyèdre est l’ensemble des solutions d’un système d’inéquations linéaires.

Le théorème fondamental des polytopes stipule que les notions de V-polytope et H-polytope sont deux représentations du même objet.

Théorème 1. Un sous-ensemble P de \mathbb{R}^n est un V-polytope si et seulement si P est un H-polytope

On définit la somme de Minkowski de deux ensembles $E, F \subseteq \mathbb{R}^n$ par :

$$E + F = \{x + y \mid x \in E, y \in F\}.$$

Le théorème de décomposition des polyèdres établit que tout polyèdre est la somme de Minkovsky d’un cône est d’un polytope.

Théorème 2. Un sous-ensemble P de \mathbb{R}^n est un H-polyèdre si et seulement si :

$$P = \text{conv}(V) + \text{cone}(Y)$$

où V est un ensemble fini de vecteurs de \mathbb{R}^n et Y un ensemble fini de vecteurs de \mathbb{R}^n.

1.2 Théorie des jeux

En mathématique, le terme « jeu » est utilisé pour décrire une situation où plusieurs décideurs sont en interaction. Chaque décideur peut choisir librement son action. Cependant, le profit qu’il tirera dépendra de son choix à lui et des choix des autres décideurs. Cette situation se rencontre fréquemment dans les jeux de société, comme les échecs ou les jeux de cartes, ce qui justifie le terme utilisé pour les désigner. Les décideurs sont alors appelés « joueurs ». On distingue deux grandes classes de jeux, les jeux non coopératifs et les jeux coopératifs. Nous présenterons brièvement dans ce qui suit ces deux classes de jeux.

1.2.1 Les jeux non coopératifs

Un jeu est non coopératif si les joueurs ne peuvent pas conclure des accords contraignants concernant les stratégies qu’il vont adopter. Ceci peut être dû à diverses raisons, comme l’évolution des joueurs dans un environnement de défiance générale, ou l’absence d’une entité capable d’imposer le respect des accords conclus. Une manière très naturelle de représenter un jeu non coopératif est de donner sa forme normale ou stratégique. Un jeu sous forme normale est un quadruplet :

$$J = \langle N, \{X_j\}_{j \in N}, \{f_j\}_{j \in N} \rangle,$$

où :
1.2. THÉORIE DES JEUX

1. N = \{1, 2, \ldots, n\} est l’ensemble des joueurs ;
2. X_j est l’ensemble des stratégies du joueur j \in N ;
3. f_j : X = \prod_{i=1}^{n} X_i \to \mathbb{R} est la fonction de gain du joueur j.

Un profil de stratégies est un vecteur \(x = (x_1, x_2, \ldots, x_n) \in \prod_{i=1}^{n} X_i \), où \(x_j \) est la stratégie du joueur \(j \). Pour \(j \in N \) donné, on notera par \((y_j, x_{\sim j}) \) le profil de stratégies \((x_1, \ldots, x_{j-1}, y_j, x_{j+1}, \ldots, x_n) \in X \) pour souligner que le joueur \(j \in N \) joue sa stratégie \(y_j \in X_j \) et les autres joueurs leurs stratégies \(x_k \in X_k, k \in N \setminus j \). \(x_{\sim j} \) représentera alors le vecteur des stratégies des joueurs autres que \(j \). Un concept de solution est une prévision de l’issue du jeu, c’est à dire de la stratégie jouée par chaque joueur. Le concept de solution le plus connu pour les jeux non coopératifs est celui de l’équilibre de Nash :

Définition 3. (NASH, 1950) Un profil de stratégies \(x \in X \) est un équilibre de Nash du jeu non coopératif sous forme normale (1.1) si :
\[\forall j \in N, \forall y_j \in X_j : f_j(y_j, x_{\sim j}) \leq f_j(x_j, x_{\sim j}). \]

Cette définition signifie qu’un profil de stratégies est un équilibre de Nash du jeu si aucun joueur n’a intérêt à changer unilatéralement sa stratégie si les autres joueurs gardent leurs stratégies d’équilibre.

1.2.2 Les jeux coopératifs

Lorsque les joueurs peuvent conclure entre eux des accords contraignants, le jeu est dit coopératif. Ici, de nouvelles entités vont jouer un rôle : les coalitions. Une coalition est un sous-ensemble de joueurs qui choisissent d’agir en bloc pour s’offrir de meilleures perspectives de gain. Ceci est possible grâce à la possibilité de conclure un accord contraignant sur les stratégies à jouer. L’unité de décision devient alors la coalition, et la question devient le choix de la meilleure répartition du gain obtenu et non la possibilité de conclure un accord contraignant sur les stratégies à jouer. Pour répondre à cette question, une nouvelle représentation du jeu, appelée la forme coalitionelle, est souvent utilisée. Dans la forme coalitionnelle, on dispose d’une fonction de coalitions \(v \) qui associe à chaque coalition possible, l’ensemble des paiements qu’elle peut garantir à ses membres. La forme de la fonction \(v \) dépend de la réponse à la question suivante : Les joueurs peuvent ils transférer leurs gains entre eux ? La réponse à cette question détermine les deux grandes classes de jeux coopératifs, les jeux coopératifs à gains non transférables (NTU games), et les jeux coopératifs à gains transférables (TU games).

Jeux coopératifs à gains non transférables

Les gains peuvent être non transférables pour des considérations d’ordre pratique :
— Les transferts de gains peuvent être prohibés par la loi.
— Souvent les gains ne sont pas monétaires, il n’existe pas alors un moyen permettant leur transfert.
— Même lorsqu’il existe une monnaie d’échange, les joueurs peuvent ne pas accorder tous la même valeur à cette monnaie. Le modèle des jeux coopératifs à gains transférables suppose que tous les joueurs accordent la même valeur pour la monnaie d’échange.

Lorsque les gains ne sont pas transférables entre les joueurs d’une coalition, les paiements des membres d’une coalition \(S \) à \(s \) membres seront donnés par des vecteurs de \(\mathbb{R}^s \). Par conséquent, la fonction de coalition \(v \) associée à toute coalition \(S \subseteq N \), avec \(|S| = s \) membres, un sous-ensemble \(v(S) \) de \(\mathbb{R}^s \). La fonction \(v \) devra satisfaire la condition suivante :
\(v \) est dite compréhensive, si :
\[\forall S \subseteq N, \forall x^S, y^S \in \mathbb{R}^s : (x^S \in v(S) \ et \ x^S \geq y^S) \Rightarrow y^S \in v(S). \]

Définition 4. (AUMANN, 1961 ; PELEG et SUDHÖLTER, 2007) Un jeu coalitionnel à gains non transférables est un couple
\[(N, v), \]

(1.2)
où N est un ensemble fini non vide de joueurs et v une fonction qui associe, à toute coalition $S \subseteq N$, un sous-ensemble $v(S)$ de \mathbb{R}^s, tel que :

\[
\begin{align*}
 v(S) \neq \emptyset, & \text{ si } S \neq \emptyset \text{ et } v(\emptyset) = \emptyset; \\
 \text{la fonction } v(S) & \text{ est compréhensive}; \\
 v(S) & \text{ est fermé}; \\
 v(S) \cap (x^s + \mathbb{R}_+^s) & \text{ est borné, } \forall x^s \in \mathbb{R}^s.
\end{align*}
\]

(1.3) (1.4) (1.5) (1.6)

Commentaires

— La condition (1.3) signifie que toute coalition peut garantir un certain gain pour ses membres. \emptyset ne représente pas une coalition.
— Il est naturel d’exiger qu’une fonction de coalition soit compréhensive : si une coalition peut garantir à ses membres au moins un vecteur de paiements α, et si $\alpha \geq \beta$, alors il va de soi qu’elle peut leur garantir des paiements au moins aussi bons que ceux du vecteur β.
— La fermeture de $v(S)$ est une condition topologique qui sert à établir certains résultats.
— La condition (1.6) signifie qu’il ne peut y avoir de paiements infinis.

Jeux coopératifs à gains transférables

Lorsque les gains sont transférables, si la coalition S peut garantir le vecteur de paiements $x^s \in \mathbb{R}^s$ à ses membres, alors ceux-ci peuvent redistribuer entre eux la valeur $\sum_{i \in S} x_i^s$ comme bon leur semble.

Les possibilités garanties par les coalitions S à ses membres sont alors déterminées par le nombre réel $\sum_{i \in S} x_i^s$. On peut alors simplifier le modèle de jeu coopératif, en définissant $v(S) = \sum_{i \in S} x_i^s$. On obtient alors la définition suivante d’un jeu coopératif à gains transférables.

Définition 5. (Von Neumann et Morgenstern, 1944) Un jeu coopératif à gains transférables est un couple

\[
(N, v),
\]

où :

i) N est un ensemble fini de joueurs.
ii) $v : 2^N \rightarrow \mathbb{R}$ une fonction telle que $v(\emptyset) = 0$.

Le nombre réel $v(S)$, $S \subseteq N$ est interprété comme la valeur que les joueurs de S peuvent gagner sans la coopération des joueurs de $N \setminus S$. Lorsque l’ensemble des joueurs N est compris du contexte, on parlera du jeu coopératif v pour désigner le jeu coopératif (N, v). Si $x \in \mathbb{R}^n$ et $S \subseteq N$, alors $x(S) = \sum_{i \in S} x_i$. On notera par $|S|$ le cardinal de S.

Concepts de solution

Nous travaillerons dans cette thèse sur les jeux coopératifs à gains transférables. Néanmoins, les concepts de solution présentés dans cette question sont également définis pour les jeux coopératifs à gains non transférables avec les adaptations nécessaires. Les concepts de solutions les plus connus pour les jeux coopératifs sont le cœur et la valeur de Shapley.

Le cœur :

Soit $x \in \mathbb{R}^n$. Pour être considéré comme une issue raisonnable du jeu, le vecteur x doit être efficace, dans le sens où toute la valeur $v(N)$ est partagée entre les joueurs, i.e : $x(N) = v(N)$. D’autre part, aucune coalition ne doit remettre en cause le partage x, i.e; $x(S) \geq v(S) \forall S \subseteq N$. Ces exigences sur le vecteur de partage x donnent le concept de cœur :

Définition 6. Le cœur du jeu coopératif \((N,v)\) est l'ensemble :

\[
\text{cœur}(v) = \{x \in \mathbb{R}^n; \ x(N) = v(N), \ x(S) \geq v(S), \ \forall S \subseteq N\}.
\]

De la définition, on voit que \(\text{cœur}(v)\) est un polyèdre fermé et borné de \(\mathbb{R}^n\). \(\text{cœur}(v)\) peut être vide. Une des premières préoccupations de la théorie des jeux coopératifs était de déterminer des conditions sous lesquelles \(\text{cœur}(v)\) n’est pas vide. Pour pouvoir énoncer ces conditions, nous allons d’abord introduire quelques concepts.

Définition 7. On associe à chaque coalition \(S \subseteq N\) son vecteur caractéristique \(\chi_S \in \mathbb{R}^n\) défini par :

\[
\chi_S(i) = \begin{cases} 1, & \text{si } i \in S, \\ 0, & \text{sinon.} \end{cases}
\]

Soit \(P\) une collection de parties de \(N\). On appelle un système de poids sur \(P\) une famille de nombres strictement positifs \((\delta_S)_{S \in P}\).

Définition 8. Une collection \(P\) de parties de \(N\) est dite équilibrée, s’il existe un système de poids \((\delta_S)_{S \in P}\) tel que :

\[
\sum_{S \in P} \delta_S \chi_S = \chi_N.
\]

Les collections équilibrées sont une généralisation de la notion de partition dans le sens qu’elles permettent à un joueur d’être « partiellement » présent dans des coalitions différentes, avec une fraction \(\delta_S\), de son temps consacré dans la coalition \(S\), à condition que la somme de toutes ces fractions soit égale à l’unité.

Exemple 1. Soit \(N = \{1,2,3\}\) La collection \(P_1 = \{\{1,2\}, \{1,3\}, \{2,3\}\}\) est équilibrée car :

\[
\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]

Le lemme suivant se déduit du Lemme 3 de Derks et Peters (1998) :

Lemme 1. Soit \(P\) une collection de parties de \(N\). Alors une et une seule des deux alternatives suivantes a lieu :

a) Soit \(P\) est équilibrée.

 Ou bien ;

b) \(\exists w \in \mathbb{R}^n\) tel que : \(w(N) = 0\) et \(w(S) > 0, \ \forall S \in P\).

Exemple 2. Soit \(N = \{1,2,3\}\) La collection \(P_2 = \{\{1,2\}, \{2,3\}, \{\}\}\) n’est pas équilibrée car la deuxième alternative du Lemme 1 est vérifiée, avec \(w = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}\), en effet ;

\(w_1 + w_2 + w_3 = 0, \ w_1 + w_2 > 0, \ w_2 + w_3 > 0, \ w_2 > 0\).

Définition 9. Le jeu \((N,v)\) est équilibré, si pour toute collection équilibrée \(P\) de parties de \(N\), avec un système de poids \((\delta_S)_{S \in P}\), on a :

\[
\sum_{S \in P} \delta_S v(S) \leq v(N).
\]

Intuitivement, cette définition signifie que dans un jeu équilibré, on ne peut pas organiser les joueurs de façon à faire mieux que la coalitions de tous les joueurs même si on autorise les partitions « fractionnaires » i.e : les familles équilibrées.

Théorème 3. (Bondareva, 1963 ; Shapley, 1967) \(\text{cœur}(v) \neq \emptyset \iff (N,v)\) est équilibré.
La valeur de Shapley :

A la question de trouver un partage juste \(x \in \mathbb{R}^n \), appelé une imputation dans la terminologie de la théorie des jeux coopératifs, de la valeur \(v(N) \) entre les joueurs, SHAPLEY (1953) apporte une réponse en imposant un système d’axiomes que la solution doit vérifier. Il conclut à l’existence d’une solution unique qui associe à chaque jeu coopératif \((N,v)\) un vecteur de partage \(\varphi \) dont la \(j \)ème composante \(\varphi_j \) représente le gain du joueur \(j \) :

\[
\varphi_j = \sum_{S \ni j} \frac{(|S| - 1)! \cdot (n - |S|)!}{n!} [v(S) - v(S \setminus \{j\})].
\] (1.9)

Le vecteur \(\varphi \) est appelé le vecteur de Shapley du jeu \((N,v)\). Une interprétation de la valeur de Shapley consiste à supposer que les joueurs arrivent selon un ordre donné pour former la grande coalition. Si à l’arrivée du joueur \(j \), la coalition \(S \) est formée, alors la contribution du joueur \(j \) est égale à \(v(S) - v(S \setminus \{j\}) \). \(\varphi_j \) représente la contribution moyenne du joueur \(j \) sur l’ensemble de tous les ordres possibles des joueurs.

La valeur de Shapley est l’un des concepts de solution les plus populaires en théorie des jeux. Elle a été appliquée avec succès à de nombreuses situations réelles. Nous donnons dans ce qui suit deux exemples d’application de la valeur de Shapley.

Exemple 3. (ROTH, 1988) Le conseil de sécurité de l’ONU est constitué de 15 membres, dont 5 permanents possédant un droit de veto. Une motion est acceptée si elle rassemble 9 votes favorables et aucun veto. Cette situation peut être modélisée par le jeu coopératif suivant : \(N = \{1, 2, \cdots , 14, 15\} \). Les membres permanents sont numérotés de 1 à 5. Nous définissons la fonction de coalition \(v : 2^N \rightarrow \mathbb{R} \) par : \(v(S) = 1 \) si la coalition \(S \) contient tous les membres permanents et au moins 4 des membres non permanents et \(v(S) = 0 \) dans tous les autres cas. Nous obtenons les résultats suivants :

\[
\varphi_j = \begin{cases}
0.196, & \text{si } j \text{ est un membre permanent,} \\
0.00186, & \text{sinon.}
\end{cases}
\]

Ces résultats dévoilent que l’avis d’un membre permanent du conseil de sécurité est plus de 100 fois plus important que celui d’un membre non permanent.

Exemple 4. Considérons un réseau de \(n \) villes \(N = \{1, 2, \cdots , n\} \). Soit \(v_{ij} \) le montant annuel des péages des automobilistes circulant entre les villes \(i \) et \(j \). Le montant des recettes collectées par un ensemble \(S \) de villes est

\[
v(S) = \sum_{\{i,j\} \subseteq S} v_{ij}.
\]

La question est comment partager ces recettes entre les \(n \) villes. DENG et PAPADIMITRIOU (1994) ont montré que la valeur de Shapley pour la ville \(j \) est donnée par :

\[
\varphi_j = \frac{1}{2} \sum_{i \neq j} v_{ij}.
\]

Ce résultat rejoint l’intuition que chaque ville devrait recevoir la moitié des péages des routes qui la relient aux autres villes.

La théorie « classique » des jeux coopératifs traite du cas où toutes les coalitions \(S \subseteq N \) peuvent se former. Les applications réelles suggèrent cependant que la collection des coalitions formables est souvent différente de \(2^N \), on parle alors de coopération restreinte entre les joueurs de \(N \). Cette extension de la théorie des jeux coopératifs sera traitée dans le Chapitre 4.
1.3 Ensembles partiellement ordonnés

1.3.1 Ordres partiels

Définition 10. Soit L un ensemble. Une relation binaire R sur L est un sous-ensemble du produit cartésien $L \times L$.

On dira que a et b sont en relation par R si $(a, b) \in R$ et on notera $a R b$.

Définition 11. Une relation binaire \leq sur un ensemble L est un ordre partiel sur L si elle vérifie les propriétés suivantes :

\leq est réflexive : $\forall a \in L : a \leq a$

\leq est antisymétrique : $\forall a, b \in L : (a \leq b \ et \ b \leq a) \Rightarrow a = b$

\leq est transitive : $\forall a, b, c \in L ; (a \leq b \ et \ b \leq c) \Rightarrow a \leq c$

Dans la suite du document le couple (L, \leq) désignera un ensemble L sur lequel est défini un ordre partiel \leq. On notera $a \prec b$ pour signifier $a \leq b$ et $a \neq b$.

Définition 12. Soit (L, \leq) un ensemble partiellement ordonné et $Y \subseteq L$.

Un élément $u \in L$ est un majorant de Y si : $\forall y \in Y : y \leq u$.

Si pour tout majorant $v \in L$ de Y, on a $u \leq v$, alors, u est une borne supérieure de Y.

Un élément $l \in L$ est un minorant de Y si : $\forall y \in Y : l \leq y$.

Si pour tout minorant $k \in L$ de Y, on a $k \leq l$, alors l est une borne inférieure de Y.

On montrera sans peine la proposition suivante :

Proposition 1. Soit (L, \leq) un ensemble partiellement ordonné. Soit $Y \subseteq L$ tel que $Y \neq \emptyset$. On a :

Si Y possède une borne supérieure, alors celle-ci est unique.

Si Y possède une borne inférieure, alors celle-ci est unique.

On parlera donc de la borne supérieure et de la borne inférieure de Y lorsque elles existent.

Définition 13. Soit (L, \leq) un ensemble partiellement ordonné et $a, b \in L$. On dira que a est couvert par b si $a \leq b$ et qu’il n’existe aucun élément $c \in L$ tel que $a \prec c \prec b$.

Un ordre partiel fini est complètement déterminé par la donnée de la relation de couverture entre ces éléments. Ceci permet de visualiser un ordre partiel fini (L, \leq) en représentant graphiquement la relation de couverture. Les éléments de L seront représentés par de petits cercles. Si a est couvert par b, alors le cercle représentant b sera dessiné plus haut que le cercle représentant a et les deux cercles seront reliés par une arête. Le diagramme résultant est appelé le diagramme de Hasse de l’ordre partiel (L, \leq). On voit sur la Figure 1.1 le diagramme de Hasse des sous-ensembles de $N = \{1, 2, 3\}$ ordonnés par inclusion.

Dans beaucoup de situations en mathématiques, on s’intéresse aux relations qui existent entre les objets et non aux noms des-dits objets ou à la manière de les noter. Dans le cas des ordres partiels, cette idée est formalisée par la notion d’isomorphisme. Deux ordres partiels isomorphes sont essentiellement les mêmes.
Définition 14. Les deux ordres partiels \((L_1, \preceq_1)\), \((L_2, \preceq_2)\) sont isomorphes, en notation \((L_1, \preceq_1) \cong (L_2, \preceq_2)\), s’il existe une bijection \(\varphi : L_1 \rightarrow L_2\) telle que :
\[
\forall a, b \in L_1, \ a \preceq_1 b \iff \varphi(a) \preceq_2 \varphi(b).
\]
L’application \(\varphi\) est alors dite un isomorphisme de \((L_1, \preceq_1)\) vers \((L_2, \preceq_2)\).

Tout ordre partiel est isomorphe à une collection d’ensembles ordonnée par l’inclusion. Pour voir ceci, introduisons la notion d’idéal d’un ordre partiel.

Définition 15. Soit \((L, \preceq)\) un ordre partiel et \(H \subseteq L\). L’idéal de \(H\) est l’ensemble
\[
\downarrow H = \{ x \in L \mid \exists a \in H, x \preceq a \}.
\]
Pour \(a \in L\), on notera \(\downarrow \{ a \}\) par \(\downarrow a\) et on l’appellera l’idéal principal de \((L, \preceq)\) associé à \(a\). La proposition suivante est facile à montrer.

Proposition 2. Soit \((L, \preceq)\) un ordre partiel et \(E\) l’ensemble de tous les idéaux principaux de \((L, \preceq)\). L’application \(\varphi : L \rightarrow E, a \mapsto \varphi(a) = \downarrow a\) est un isomorphisme de \((L, \preceq)\) vers \((E, \subseteq)\).

1.3.2 Treillis

Les treillis constituent une classe importante parmi les ordres partiels.

Définition 16. Soit un ensemble \(L\) partiellement ordonné par la relation \(\preceq\). \((L, \preceq)\) est dit un treillis, si pour tout \(a, b \in L\), l’ensemble \(\{a, b\}\) possède une borne supérieure et une borne inférieure.

Si \((L, \preceq)\) est un treillis et \(a, b \in L\), alors la borne supérieure de \(\{a, b\}\) sera notée \(a \lor b\) et la borne inférieure de \(\{a, b\}\) sera notée \(a \land b\). On donne ci-après deux exemples connus de treillis :

Exemple 5. Soit l’ensemble \(N = \{1, 2, 3\}\). L’ensemble \(2^N\) des parties de \(N\) est partiellement ordonné par la relation d’inclusion d’ensembles \(\subseteq\).

Si \(A, B \in 2^N\) alors l’ensemble \(\{A, B\}\) possède une borne supérieure, qui est \(A \cup B\). En effet : \(A \cup B\) est un majorant de \(\{A, B\}\) dans \(2^N\), car \(A \subseteq A \cup B\) et \(B \subseteq A \cup B\). D’autre part, si \(M\) est un majorant de \(\{A, B\}\) dans \(2^N\) alors \(A \subseteq M\) et \(B \subseteq M\) entraînent \(A \cup B \subseteq M\). \(A \cup B\) est donc bien la borne supérieure de \(\{A, B\}\). On notera : \(A \lor B = A \cup B\). On montrera de même que \(\{A, B\}\) admet une borne inférieure qui est \(A \cap B\). On notera \(A \land B = A \cap B\). Le couple \((2^N, \subseteq)\) est donc un treillis. On peut représenter graphiquement notre treillis à l’aide d’un diagramme de Hasse :

\[
\begin{align*}
&\{1, 2, 3\} \\
&\{1, 3\} \quad \{2, 3\} \\
&\{1\} \quad \{2\} \quad \{3\} \\
&\emptyset
\end{align*}
\]

Figure 1.1 – Diagramme de Hasse du treillis des sous-ensembles de \(N = \{1, 2, 3\}\).

Exemple 6. Soit \(X\) l’ensemble des diviseurs de \(24\) dans \(\mathbb{N}\), on a \(X = \{1, 2, 3, 4, 6, 8, 12, 24\}\). On vérifiera facilement que \(X\) est partiellement ordonné par la relation \(\preceq\) définie par : \(x \preceq y \iff x\text{ divise } y\).

Pour tout \(x, y \in X\) on a : \(x \lor y = P.P.C.M^1\{x, y\}\) et \(x \land y = P.G.C.D^2\{x, y\}\).

1. Plus Petit Commun Multiple
2. Plus Grand Commun Diviseur
Définition 17. Soit \((L, \leq)\) un treillis. Si toute partie \(A \subseteq L\) admet une borne inférieure et une borne supérieure, le treillis \((L, \leq)\) est dit complet. On notera alors la borne inférieure et la borne supérieure de \(A \subseteq L\) par \(\bigwedge A\) et \(\bigvee A\) respectivement.

Si \((L_i, \leq_i), \ i = 1, ..., n\) sont des ensembles partiellement ordonnés, on peut munir leur produit cartésien \(L = \prod_{i=1}^{n} L_i\) de l’ordre partiel \(\leq\) défini par :

\[
(x_1, x_2, ..., x_n) \leq (y_1, y_2, ..., y_n) \iff \forall i \in \{1, 2, ..., n\} : x_i \leq_i y_i.
\]

L’ordre partiel \(\leq\) sur \(L\) est appelé l’ordre produit. Sauf mention contraire, le produit cartésien de plusieurs ensembles partiellement ordonnés, est toujours muni de l’ordre produit. On peut montrer que si \((L_i, \leq_i)\) est un treillis pour tout \(i = 1, ..., n\), alors \(L = \prod_{i=1}^{n} L_i\) muni de l’ordre produit est un treillis.

Le treillis comme structure algébrique

Soit \((L, \leq)\) un treillis. On définit sur \(L\) les deux lois de composition internes \(\lor\) et \(\land\) :

\[
\lor : L \times L \to L \quad (a, b) \mapsto a \lor b = \text{La borne supérieure de } \{a, b\}.
\]

\[
\land : L \times L \to L \quad (a, b) \mapsto a \land b = \text{La borne inférieure de } \{a, b\}.
\]

Les deux lois \(\lor\) et \(\land\) possèdent alors les propriétés énoncées dans le théorème suivant :

Théorème 4. Si \((L, \leq)\) est un treillis, alors les deux lois de composition internes \(\lor\) et \(\land\) possèdent les propriétés suivantes, pour tout \(a, b, c \in L\) :

1. commutativité : \(a \lor b = b \lor a\) et \(a \land b = b \land a\).
2. associativité : \((a \lor b) \lor c = a \lor (b \lor c)\) et \((a \land b) \land c = a \land (b \land c)\).
3. Idempotence : \(a \lor a = a\) et \(a \land a = a\).
4. Absorption : \(a \lor (a \land b) = a\) et \(a \land (a \lor b) = a\).

Tout treillis \((L, \leq)\) induit une structure algébrique \((L, \lor, \land)\) possédant les propriétés énoncées dans le Théorème 4. Inversement, toute structure algébrique \((L, \lor, \land)\) possédant les propriétés énoncées dans le Théorème 4, peut être considérée comme émanant d’un treillis \((L, \leq)\) par rapport à un ordre partiel donné \(\leq\).
Théorème 5. Soit L un ensemble non vide muni de deux lois de composition internes \lor et \land vérifiant les propriétés de commutativité, d’associativité, d’idempotence et d’absorption. On peut alors définir un ordre partiel \leq sur L par : $a \leq b \Leftrightarrow a \lor b = b$. L’ensemble L est alors un treillis par rapport à l’ordre partiel \leq ; la borne supérieure et la borne inférieure de $\{a, b\}$ sont alors $a \lor b$ et $a \land b$ respectivement.

On utilisera donc le terme treillis pour désigner, selon le contexte, un couple (L, \leq).

Remarque 2. Dans la définition précédente on a utilisé la distributivité de la loi \land par rapport à la loi \lor. Il se trouve que lorsque cette propriété est vérifiée, la loi \lor est également distributive par rapport à \land.

Démonstration 3. Dans un treillis distributif (L, \lor, \land), on a :

$$\forall a, b, c \in L : \quad a \land (b \lor c) = (a \land b) \lor (a \land c).$$

Dans la définition précédente on a utilisé la distributivité de la loi \land par rapport à la loi \lor. Il se trouve que lorsque cette propriété est vérifiée, la loi \lor est également distributive par rapport à \land.

Démonstration 4. Dans un treillis distributif et complémenté (L, \lor, \land), tout élément $a \in L$ admet un unique complémentaire $a' \in L$.

Démonstration 22. Un treillis distributif et complémenté est appelé une algèbre de Boole.

Éléments irréductibles

Certains éléments du treillis (L, \lor, \land) jouent un rôle important dans la détermination de sa structure. Ce sont les éléments irréductibles.

Démonstration 23. Soit (L, \lor, \land) un treillis ayant pour top et bottom \top et \bot respectivement. Un élément $j \in L$ est \lor-irréductible si $j \neq \bot$ et $u \lor v = j \Rightarrow (u = j \text{ ou } v = j)$.

Un élément $m \in L$ est \land-irréductible si $m \neq \top$ et $u \land v = m \Rightarrow (u = m \text{ ou } v = m)$.
On peut repérer facilement les éléments irréductibles d’un treillis fini en inspectant son diagramme de Hasse, grâce aux propriétés suivantes. Un éléments $j \in L$ est \lor-irréductible si et seulement si il couvre exactement un élément de L, et un élément $m \in L$ est \land-irréductible si et seulement si il est couvert par exactement un élément de L.

On notera par J_L, l’ensemble des éléments \lor-irréductibles et par M_L l’ensemble des éléments \land-irréductibles du treillis (L, \lor, \land).

Représentation d’un treillis distributif

Birkhoff (1967) a établi la dualité entre les treillis distributifs finis et les ordres partiels finis. Soit (P, \leq) un ordre partiel et notons par $Id(P)$ l’ensemble de de tous les idéaux de (P, \leq). Alors $(Id(P), \subseteq)$ est un treillis distributif dont les opérations \lor et \land sont \cup et \cap respectivement.

Inversement, tout treillis distributif (\mathcal{L}, \preceq) est isomorphe au treillis des idéaux de l’ordre induit (J_L, \preceq) des \lor-irréductibles de (\mathcal{L}, \preceq) par l’isomorphisme $\varphi : \mathcal{L} \rightarrow Id(J_L)$, $x \mapsto \varphi(x) = \{ j \in J_L \mid j \preceq x \}$. Un treillis distributif est complètement déterminé par la donnée de l’ordre induit de ses \lor-irréductibles.

On aura souvent recours à cette représentation des treillis distributifs.

Treillis et systèmes de fermeture

Pour les définitions et résultats de cette section, voir Monjardet (2003).

Définition 24. Un système de fermeture sur un ensemble E est une famille \mathcal{C} de parties de E, telle que :

- $E \in \mathcal{C}$;
- $(C_1 \in \mathcal{C} \text{ et } C_1 \in \mathcal{C}) \Rightarrow C_1 \cap C_2 \in \mathcal{C}$.

Les éléments d’un système de fermeture sont appelés des fermés. Les systèmes de fermeture se rencontrent un peu partout en mathématiques. Une source naturelle des systèmes de fermeture est donnée par ce qu’on appelle les opérateurs de fermeture.

Définition 25. Un opérateur de fermeture sur un ensemble E est une application $\sigma : 2^E \rightarrow 2^E$ qui a les propriétés suivantes :

- Extension : $\forall S \subseteq E, \ S \subseteq \sigma(S)$;
- Isotonie : $\forall S,T \subseteq E, \ S \subseteq T \Rightarrow \sigma(S) \subseteq \sigma(T)$;
- Idempotence : $\forall S \subseteq E, \ \sigma(\sigma(S)) = \sigma(S)$.

Un ensemble $S \subseteq E$ est un point fixe de σ si $\sigma(S) = S$. On peut vérifier que l’ensemble des points fixes d’un opérateur de fermeture sur E est un système de fermeture sur E. Inversement, on peut associer à tout système de fermeture \mathcal{C} sur E un opérateur de fermeture $\sigma_{\mathcal{C}}$ sur E défini par :

$$\forall S \subseteq E, \ \sigma_{\mathcal{C}}(S) = \bigcap\{ C \in \mathcal{C} \mid S \subseteq C \}.$$

Si \mathcal{C} est un système de fermeture sur un ensemble E, alors (\mathcal{C}, \subseteq) est un treillis dont les opérations \lor et \land sont données par :

$$S \lor T = \bigcap\{ C \in \mathcal{C} \mid S \cup T \subseteq C \};$$

$$S \land T = S \cap T.$$

Inversement, tout treillis (\mathcal{L}, \preceq) est isomorphe au treillis $(\mathcal{C}_L, \subseteq)$, où \mathcal{C}_L est un système de fermeture défini sur l’ensemble J_L des \lor-irréductibles de \mathcal{L}. Pour tout $x \in \mathcal{L}$, on pose $J(x) = \{ j \in J_L \mid j \preceq x \}$. Alors :

$$\mathcal{C}_L = \{ J(x), x \in \mathcal{L} \}.$$

En effet l’application $J : \mathcal{L} \rightarrow \mathcal{C}_L$, $x \mapsto J(x)$ est un isomorphisme.
En ce qui suit, nous rappelons les différentes représentations d’un système de fermeture à travers son treillis d’ensembles fermés.

Une manière de représenter un treillis \mathcal{L} est un contexte formel $\mathbb{K}_\mathcal{L} = (G, M, I)$ où $G = J_\mathcal{L}$, $M = M_\mathcal{L}$ et gIm si et seulement si $g \leq m$. Le treillis \mathcal{L} est alors isomorphe au treillis de concepts $\mathbb{B}(G, M, I)$.

Pour la prochaine représentation d’un treillis, introduite par Habib et Nourine (2018) nous avons besoin des notations suivantes :

Soit $(j, m) \in J_\mathcal{L} \times M_\mathcal{L}$. Alors :

1. $j \downarrow m$ si j est minimal dans l’ensemble $\mathcal{L} \downarrow m$.
2. $j \uparrow m$ si m est maximal dans l’ensemble $\mathcal{L} \uparrow j$.
3. $j \uparrow m$ si $j \downarrow m$ et $j \not\uparrow m$.

Étant donné un ordre partiel $P = (X, \leq)$ et un ensemble de couleurs M, un coloriage de P est une application $\gamma : X \rightarrow 2^M$ telle que $x < y \Rightarrow \gamma(x) \cap \gamma(y) = \emptyset$. On dit alors que (X, \leq, γ, M) est un ordre coloré.

Nous associons au treillis $\mathcal{L} = (E, \wedge, \vee, \leq)$ l’ordre coloré $P_\mathcal{L} = (J_\mathcal{L}, \leq, \gamma, M_\mathcal{L})$, où γ est un coloriage des éléments de $J_\mathcal{L}$ par des sous-ensembles de $M_\mathcal{L}$ défini par :

$$\gamma : J_\mathcal{L} \rightarrow 2^{M_\mathcal{L}}, \quad \gamma(j) = \{m \in M_\mathcal{L} \mid j \downarrow m\}.$$

Pour tout sous-ensemble F de $J_\mathcal{L}$, on définit $\gamma(F) = \bigcup_{x \in F} \gamma(x)$. Un idéal coloré de $P_\mathcal{L}$ est un ensemble $F \subseteq M_\mathcal{L}$ tel qu’il existe un idéal I de $P_\mathcal{L}$ avec $F = \gamma(I)$. Notons par $F(P_\mathcal{L})$ l’ensemble de tous les idéaux colorés de $P_\mathcal{L}$. Alors $(\mathcal{C}(P_\mathcal{L}), \subseteq)$ est un treillis isomorphe à \mathcal{L}. Un isomorphisme de \mathcal{L} vers $(F(P_\mathcal{L}), \subseteq)$ est donné par l’application :

$$\varphi : \mathcal{L} \rightarrow F(P_\mathcal{L}), \quad \varphi(a) = \{m \in M_\mathcal{L} \mid a \not\leq m\}$$

Les deux représentations d’un treillis, par un contexte ou par un ordre coloré sont équivalentes, car on peut passer d’une représentation à une autre en temps polynomial. La figure (4.10) illustre les deux représentations d’un treillis \mathcal{L}.

![Figure 1.3 – Un treillis \mathcal{L} et ses représentations](image)

Topologie dans un treillis

Une topologie τ sur un ensemble E est la donnée d’une collection de sous-ensembles de E, appelés ouverts de E, vérifiant les propriétés suivantes :

1. \emptyset et E sont des ouverts.
2. Toute union d’ouverts est un ouvert.
3. L’intersection d’un nombre fini d’ouverts est un ouvert.

Le couple (E, τ), où τ est une topologie sur l’ensemble E, est appelé un espace topologique. Un sous-ensemble F de E est un fermé si son complémentaire est un ouvert. On peut définir une topologie sur E en donnant les fermés de E au lieu des ouverts qui seront alors les complémentaires des fermés de E. Les fermés de E doivent alors vérifier les propriétés suivantes :

- \emptyset et E sont des fermés.
- Toute intersection d’un nombre fini de fermés est un fermé.
- L’union d’un nombre fini de fermés est un fermé.
1. \(\emptyset \) et \(E \) sont des fermés.
2. Toute intersection de fermés est un fermé.
3. L’union d’un nombre fini de fermés est un fermé.

Si \(\tau \) et \(\tau' \) sont deux topologies sur \(E \), on dira que \(\tau \) est plus fine que \(\tau' \) si tout ouvert de \((E, \tau') \) est un ouvert de \((E, \tau) \).

Un voisinage d’un élément \(x \in E \) est une partie de \(E \) contenant un ouvert contenant \(x \). L’ensemble des voisinages de \(x \) sera noté \(\mathcal{V}(x) \). L’espace topologique \((E, \tau) \) est séparé si pour tout couple de points distincts \((x, y) \) de \(E \), on peut trouver deux voisinages \(V \in \mathcal{V}(x) \) et \(W \in \mathcal{V}(y) \) tels que \(V \cap W = \emptyset \).

L’espace topologique \((E, \tau) \) est compact s’il est séparé et si de tout recouvrement d’ouverts de \(E \) on peut extraire un sous-recouvrement fini. Une famille \(B \) d’ouverts d’un espace topologique \((E, \tau) \) est une base d’ouverts de \((E, \tau) \) si tout ouvert de \(E \) s’écrit comme réunion d’intersections finies d’éléments de \(B \).

Si \((E, \preceq_E) \) est un treillis, et \(a, b \in E \), alors l’intervalle \([a, b] \) sera l’ensemble :

\[[a, b] = \{ x \in E : \ a \preceq x \preceq b \}. \]

On peut vérifier que \(([a, b], \preceq_E) \) est un treillis. Il est complet lorsque \((E, \preceq_E) \) est un treillis complet. On définit également les intervalles de \(E \) :

\[[a, +\infty[= \{ x \in E : \ a \preceq x \}. \]
\[] -\infty, b] = \{ x \in E : \ x \preceq b \}. \]

Frink (1942), a introduit la topologie d’intervalle d’un treillis. Il définit les intervalles fermés de \(E \), comme étant l’ensemble \(E \) lui même, et tout intervalle de la forme \([a, b], [a, +\infty[,] -\infty, b] \) avec \(a, b \in E \).

La topologie d’intervalle du treillis \(E \) est la topologie dans laquelle les intervalles fermés de \(E \) forment une sous-base des fermés de \(E \), i.e. les fermés de \(E \) sont les intersections des unions finies des intervalles fermés de \(E \). L’auteur montre que tout treillis complet est compact dans sa topologie d’intervalle.

Inversement, Birkhoff (1967) montre que tout treillis compact dans sa topologie d’intervalle est complet.

Fonctions définies sur un treillis

Nous allons dans cette partie introduire certaines propriétés de fonctions, et plus généralement de correspondances, ayant des treillis pour ensembles de départ et d’arrivée.

Considérons deux treillis \((E, \preceq_E) \) et \((F, \preceq_F) \). On omettra l’indice de la relation d’ordre lorsque l’ensemble auquel appartiennent les éléments comparés est clair du contexte. Soit une fonction \(f : E \to F \).

On dit que \(f \) est isotone, ou croissante, si :

\[\forall x, y \in E, \ x \preceq y \Rightarrow f(x) \preceq f(y). \] (1.11)

On dit que \(f \) est antitone, ou décroissante, si :

\[\forall x, y \in E, \ x \preceq y \Rightarrow f(y) \preceq f(x). \] (1.12)

Si \(X \) et \(T \) sont deux ensembles partiellement ordonnés, et \(f \) une fonction de \(X \times T \) dans \(\mathbb{R} \), alors on dit que \(f \) est à différences isotones, ou croissantes, en \((x, t) \) sur \(X \times T \), si pour tous \(t_1, t_2 \in T \) avec \(t_1 \preceq t_2 \), la fonction : \(x \mapsto f(x, t_1) - f(x, t_2) \) est isotone sur \(X \). On définit de manière analogue une fonction à différences antitones en \((x, t) \) sur \(X \times T \).

Si \(f \) est une fonction de \(E \) dans \(\mathbb{R} \), on dira que \(f \) est surmodulaire si :

\[\forall x, y \in E : \ f(x \lor y) + f(x \land y) \geq f(x) + f(y). \] (1.13)

\(f \) sera dite sous-modulaire si :

\[\forall x, y \in E : \ f(x \lor y) + f(x \land y) \leq f(x) + f(y). \] (1.14)

L’ensemble des points qui minimisent une fonction sous-modulaire possède une structure particulière.

On peut énoncer un résultat analogue pour l’ensemble des points qui maximisent une fonction sur-modulaire sur un treillis.

Si (E, τ) est un espace topologique et f une fonction de E dans $\mathbb{R} \cup \{-\infty, +\infty\}$, alors f est semi-continue supérieurement en $x_0 \in E$ si :
\[
\begin{cases}
\text{pour tout } \epsilon > 0 \text{ il existe un voisinage } V \text{ de } x_0 \text{ tel que } f(x) \leq f(x_0) + \epsilon, \forall x \in V, & \text{si } f(x_0) > -\infty; \\
\lim_{x \to x_0} f(x) = -\infty, & \text{si } f(x_0) = -\infty.
\end{cases}
\]

f sera semi-continue inférieurement en x_0 si :
\[
\begin{cases}
\text{pour tout } \epsilon > 0 \text{ il existe un voisinage } V \text{ de } x_0 \text{ tel que } f(x) \geq f(x_0) + \epsilon, \forall x \in V, & \text{si } f(x_0) < +\infty; \\
\lim_{x \to x_0} f(x) = +\infty, & \text{si } f(x_0) = +\infty.
\end{cases}
\]

L’ensemble des points qui minimisent une fonction semi-continue inférieurement sur un compact est non vide et compact, de même que l’ensemble des points qui maximisent une fonction semi-continue supérieurement sur un compact. Le Théorème 6 peut être amélioré en introduisant des conditions topologiques, en :

Théorème 7. (Topkis, 1978) Si S est un treillis non vide et compact dans une topologie plus fine que sa topologie d’intervalle, et f une fonction sous-modulaire et semi-continue inférieurement sur S, alors l’ensemble S^* des points qui minimisent f sur S est un sous-treillis compact, complet et non vide de S et possède, par conséquent, un plus petit et un plus grand élément.

Si G est un ensemble, on notera par 2^G l’ensemble des parties de G. Une correspondance de A dans G est une fonction $C : A \to 2^G$.

Définition 26. Soit T un ensemble partiellement ordonné et (E, \preceq) un treillis. Une correspondance $C : T \to 2^E$ est dite ascendante, si pour tous $x, y \in T$ tels que $x \preceq y$, on a :
\[
\forall s, t \in E : [s \in C(x) \quad \text{et} \quad t \in C(y)] \Rightarrow [s \wedge t \in C(x) \quad \text{et} \quad s \vee t \in C(y)].
\]

Soit C une correspondance ascendante de T dans E. Soient $t_1, t_2 \in T$, $t_1 \preceq t_2$.

Si $C(t_1)$ et $C(t_2)$ admettent respectivement p_1 et p_2 pour plus petits éléments, alors on a : $p_1 \preceq p_2$.

De même, lorsque les plus grands éléments g_1 et g_2 de $C(t_1)$ et $C(t_2)$ respectivement existent, on a l’inégalité : $g_1 \preceq g_2$.

Un point fixe d’une fonction $f : E \to E$ est un élément $x \in E$ tel que $f(x) = x$.

Un point fixe d’une correspondance $C : E \to 2^E$ est un élément $x \in E$ tel que $x \in C(x)$.

Les théorèmes du point fixe jouent un rôle important en théorie des jeux. Ils sont particulièrement utiles dans l’établissement de résultats d’existence de certains équilibres qu’on peut exprimer comme points fixes de fonctions particulières. Nous donnons dans ce qui suit deux résultats importants sur les points fixes de fonctions définies sur un treillis.

Théorème 8. (Tarski, 1955) Soit :

- (L, \preceq) un treillis complet.
- $f : L \to L$ une fonction croissante.
- P l’ensemble de tous les points fixes de f.

Alors l’ensemble P est non vide et le système (P, \preceq) est un treillis complet. En particulier, nous avons :
\[
\forall P = \vee\{x \in L : f(x) \geq x\} \in P. \\
\land P = \wedge\{x \in L : f(x) \leq x\} \in P.
\]

Zhou (1994) a généralisé ce théorème au cas des correspondances.

Théorème 9. (Zhou, 1994) Soit S un treillis complet, C une correspondance de S dans 2^S et E l’ensemble des points fixes de C. Si $C(s)$ est un sous-treillis non vide et fermé de S pour tout $s \in S$ et C est ascendante en s, alors E est un treillis complet non vide.

On notera que dans le Théorème 9, l’ensemble E des points fixes de la correspondance C est un treillis, mais pas nécessairement un sous-treillis de S.

1.4 Algorithmes et complexité

Dans cette section, nous introduisons quelques définitions qui seront nécessaires dans la suite de la thèse. Le matériel de cette section est basé sur GAREY et JOHNSON (1979) et KORTE et VYGEN (2002).

Un algorithme est une description d’une séquence d’opérations élémentaires qui, effectuées sur une donnée appelée entrée, conduit à un résultat désiré, appelé sortie. Dans le modèle RAM, l’affectation d’une valeur à une variable, l’addition ou la comparaison de deux nombres sont des exemples d’opérations élémentaires. L’efficacité d’un algorithme est mesurée par le nombre d’opérations élémentaires nécessaires pour traiter l’entrée en fonction de la taille de celle-ci.

Définition 27. Soient \(f \) et \(g \) deux fonctions d’un domaine \(D \subseteq \mathbb{R} \) dans \(\mathbb{R}_+ \). Alors \(f = O(g) \) s’il existe deux constantes \(\alpha, \beta > 0 \) telles que \(\forall x \in D, \ f(x) \leq \alpha \cdot g(x) + \beta \).

Définition 28. Un algorithme avec une entrée rationnelle est dit fonctionner en temps polynomial s’il existe une constante \(k \) telle qu’il s’exécute en \(O(n^k) \) temps, où \(n \) est la taille de l’entrée.

1.4.1 La NP-Complétude

Réductibilité polynomiale entre problèmes

Lorsqu’on est face à un problème \(A \) qu’on ne sait pas résoudre, on essaie de transformer toute instance de \(A \) en une instance d’un problème \(B \). Si cette transformation se fait en temps polynomial, on dit que le problème \(A \) se réduit en un temps polynomial au problème \(B \). Cette réduction peut nous servir de deux façons. En premier lieu, si on sait résoudre le problème \(B \) en temps polynomial, alors on dispose directement d’un algorithme polynomial pour résoudre le problème \(A \). Supposons à présent que l’on sache, par un moyen quelconque, que le problème \(A \) est difficile à résoudre. Nous pouvons alors conclure que le problème \(B \) est au moins aussi difficile que \(A \), car tout algorithme polynomial pour résoudre \(B \) servira aussi à résoudre \(A \) via la réduction polynomiale.

La classe NP

Définition 29. Un problème \(A \) est dans la classe \(NP \) si on peut vérifier en temps polynomial qu’une solution candidate \(S \) est réellement une solution pour \(A \).

Les problèmes les plus difficiles de la classe \(NP \) sont appelés les problèmes \(NP \)-complets. La notion de réductibilité polynomiale que nous avons définie, permet de définir précisément les problèmes \(NP \)-complets.

Définition 30. Un problème \(A \) est \(NP \)-complet si \(A \) est dans la classe \(NP \) et que tout problème dans \(NP \) peut être réduit à \(A \) en temps polynomial.

En pratique, pour montrer qu’un problème est \(NP \)-complet, on cherche à réduire par une transformation polynomiale un problème déjà connu être \(NP \)-complet à notre problème de départ. Le premier problème dont la \(NP \)-complétude fut établie est le problème SAT (Cook, 1971) qui consiste à décider s’il existe une affectation de valeurs de vérité aux variables d’une expression booléenne qui rende cette expression vraie. KARP (1972) a établi une liste de 19 problèmes \(NP \)-complets en optimisation combinatoire.

La classe \#P

La classe de complexité \#P, lue Sharp-P ou nombre-P, a été introduite par VALIANT (1979), pour décrire la classe des problèmes de comptage des solutions d’un problème qui est dans \(NP \).

Les problèmes les plus difficiles de la classe \#P, sont dits \#P-complets. Les problèmes de comptage qui sont au moins aussi difficiles qu’un problème \#P-complet sont dit \#P-difficiles. Comme nous allons le voir dans le chapitre 5, le calcul de la valeur de Shapley d’un jeu donné par un oracle est \#P-difficile (FAIGLE et KERN, 1992).
Chapitre 2

Jeux multicritères avec interactions entre critères

Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Généralités</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Jeux multicritères avec interactions entre les critères</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Equilibre de Choquet-Nash</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Existence de l’équilibre de Choquet-Nash</td>
<td>24</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Relation avec d’autres concepts de solution</td>
<td>25</td>
</tr>
</tbody>
</table>

Introduction

La théorie des jeux multicritères a pour objet l’étude des interactions entre plusieurs décideurs ayant chacun plusieurs critères à optimiser. Les problèmes rencontrés dans la pratique sont souvent de nature multicritère, ce qui justifie l’intérêt croissant attaché à cette théorie. Dans le contexte de la décision multicritère, des interactions entre les critères du décideur peuvent exister. Les mesures floues se sont avérées un outil intéressant pour modéliser ces situations et de nombreux travaux ont été menés dans cette direction, dans le cas des problèmes multicritères avec un seul décideur. On trouvera dans Grabisch et Labreuche (2008) une revue des avancées réalisées dans ce domaine dans la dernière décennie. Nous nous intéressons ici à la prise en compte des interactions entre critères dans les situations de décision multicritères avec plusieurs décideurs, c’est à dire à des jeux multicritères avec interactions entre les critères de chaque décideur. Ce chapitre est organisé comme suit : dans la section 2.1, nous présentons quelques notions de base nécessaires à l’étude des interactions entre critères. Dans la section 2.2, nous introduisons les jeux multicritères avec interactions entre critères et nous définissons l’équilibre de Choquet-Nash. Dans la section 2.2.2, un résultat d’existence de l’équilibre de Choquet-Nash est donné.

2.1 Généralités

Considérons le problème multi-objectifs

\[(X, f), \quad (2.1)\]

où \(X\) est l’espace de décisions et \(f : X \to \mathbb{R}^n\) une fonction vectorielle avec \(n\) composantes \(f_j : X \to \mathbb{R}, j = 1, \ldots, n\). En absence d’une solution idéale qui maximise toutes les fonctions objectifs \(f_j, j = 1, \ldots, n,\) sur \(X,\) la résolution du problème (2.1) consiste à chercher une décision \(x \in X\) qui engendre la plus grande valeur possible pour chacune des \(n\) fonctions et répondant aux préférences du preneur de décision.

La méthode généralement utilisée pour résoudre le problème (2.1) consiste à utiliser une somme pondérée pour classer les différentes décisions. Ainsi, si on affecte à chaque critère \(j\) un poids \(\omega_j\)
CHAPITRE 2. JEUX MULTICRITÈRES AVEC INTERACTIONS ENTRE CRITÈRES

<table>
<thead>
<tr>
<th>Candidat</th>
<th>Mathématiques</th>
<th>Statistiques</th>
<th>Langues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2.1 – Notes des candidats

avec $\omega_j \geq 0$; $j = 1, ..., n$, et $\sum_{j=1}^{n} \omega_j = 1$, alors le problème revient à maximiser la somme pondérée $\sum_{j=1}^{n} \omega_j f_j(x)$ sur X. Cette approche ne permet pas cependant de modéliser certaines situations marquées par l’interaction entre les différents critères. L’exemple suivant, adapté de Grabisch et Labreuche (2004), illustre bien cette situation :

Exemple 7. Une université classe les candidats pour suivre des études supérieures en management selon les notes obtenues en mathématiques, statistiques, et langues. Les candidats bons en mathématiques sont le plus souvent bons en statistiques. Cette redondance fait que l’université, pour les étudiants bons en mathématiques, préfère un étudiant bon en langues à un étudiant bon en statistiques, tandis que pour les étudiants faibles en mathématiques, un étudiant bon en statistiques est préféré à un étudiant bon en langues. Ainsi dans la situation décrite dans le tableau 2.1, le candidat B est préféré au candidat A, et le candidat C est préféré au candidat D.

Aucun système de poids ne peut représenter les préférences de l’université sur l’ensemble des candidats. En effet, supposons l’existence d’un tel système de poids ; ω_M pour la note de mathématique, ω_S pour la note de statistiques et ω_L pour la note de langues avec $\omega_M \geq 0, \omega_S \geq 0, \omega_L \geq 0$ et $\omega_M + \omega_S + \omega_L = 1$. Le candidat B étant préféré à A, on aura :

$$16\omega_M + 11\omega_S + 9\omega_L > 16\omega_M + 13\omega_S + 7\omega_L,$$

soit

$$\omega_L - \omega_S > 0.$$ \hspace{1cm} (2.3)

De même, le candidat C étant préféré au candidat D, on aura :

$$6\omega_M + 13\omega_S + 7\omega_L > 6\omega_M + 11\omega_S + 9\omega_L,$$

soit

$$\omega_S - \omega_L > 0.$$ \hspace{1cm} (2.5)

Les inégalités (2.3) et (2.5) sont incompatibles \Box.

L’impossibilité de trouver un système de poids représentant les préférences de l’université est dû au fait que l’importance relative des deux critères « statistiques » et « langues » dépend de la note obtenue en mathématiques. Une idée intéressante pour modéliser ces situations consiste alors à affecter des poids non pas à chaque critère uniquement, mais à chaque coalition de critères. Ceci revient à définir une fonction de l’ensemble des coalitions possibles entre critères, dans \mathbb{R}. Cette fonction sera appelée une capacité, ou mesure floue, sur l’ensemble des critères.

Définition 31. (Grabisch et Labreuche, 2008) Soit $N = \{1,2,...,n\}$ un ensemble fini à n éléments. Une capacité sur N est une fonction $v : 2^N \rightarrow \mathbb{R}$ vérifiant les deux conditions suivantes :

$\text{a) } v(\emptyset) = 0$.

$\text{b) } \forall S, T \subseteq N : S \subseteq T \Rightarrow v(S) \leq v(T)$.

Si, de plus, on a $v(N) = 1$, alors la capacité v est dite normalisée.

De nombreux concepts et propriétés ont été définis pour les capacités répondant souvent à leurs diverses applications.
Définition 32. Une capacité v sur un ensemble N est dite :

- **Additive** : si $\forall E, F \subseteq N, tels que $ E \cap F = \emptyset $: $ v(E \cup F) = v(E) + v(F) $.
- **Sur-modulaire ou convexe** : si $\forall E, F \subseteq N$, $ v(E \cup F) + v(E \cap F) \leq v(E) + v(F) $.
- **Sur-additive** : si $\forall E, F \subseteq N$ tels que $ E \cap F = \emptyset $: $ v(E \cup F) \geq v(E) + v(F) $.

Exemple 8. Soit $N = \{1, 2, 3, 4, 5, 6, 7\}$ une organisation composée de 7 membres. Chaque sommet du graphe correspond à un membre de l’organisation. Deux sommets sont liés par une arrête si et seulement si les deux membres correspondants sont en relation. Cette relation peut être l’existence d’un canal de communication directe entre les deux membres par exemple. Si $S \subset N$, alors la capacité de la coalition S à influencer les décisions de l’organisation N dépendra de sa cohésion interne. On mesurera cette cohésion par le nombre $v(S)$ d’arêtes qui lient les membres de S. Ainsi, dans la Figure 2.1, on aura $v(\{1, 2, 3\}) = 3$ et $v(\{4, 5, 6, 7\}) = 2$. On pourra montrer que la capacité v ainsi définie est convexe.

Définition 33. ([Grabisch et Labreuche, 2008]) Soit $N = \{1, 2, ..., n\}$, v une capacité sur N et une fonction $f : N \to \mathbb{R}$. L’intégrale de Choquet de f par rapport à la capacité v est définie par :

$$ C_v(f) = \sum_{i=1}^{n} [f(\sigma(i)) - f(\sigma(i-1))]v(A_i), $$

où σ est une permutation sur N telle que $ f(\sigma(1)) \leq f(\sigma(2)) \leq ... \leq f(\sigma(n)) $, $f(\sigma(0)) = 0$ et $A_i = \{\sigma(i), ..., \sigma(n)\}$.

Remarque 3. Une fonction $f : N \to \mathbb{R}$ peut être identifiée avec le vecteur x des images des éléments de N par f. On parlera alors de $C_v(x)$ au lieu de $C_v(f)$ et l’intégrale de Choquet est vue comme une fonction $C_v : \mathbb{R}^n \to \mathbb{R}$.

Nous donnons dans ce qui suit un exemple de calcul de l’intégrale de Choquet.

Exemple 9. Considérons un problème de décision avec 3 critères $N = \{1, 2, 3\}$. Les alternatives A et B sont caractérisées par deux vecteurs de \mathbb{R}^3 qui donnent le score de chaque alternative selon chacun des 3 critères : $A = (2, 5, 3)$, $B = (5, 2, 1)$.
Supposons que les préférences du décideur sont décrites par la capacité : \(v : 2^N \rightarrow [0, 1] \), dont les valeurs sont décrites dans le tableau 2.2.

Remarquons que \(v\{1,3\} = 0.4 < v\{1\} + v\{3\} \), ce qui signifie qu’il y a une interaction négative entre les critères 1 et 3. Par contre \(v\{2,3\} = 0.7 > v\{2\} + v\{3\} \) il y a donc synergie entre les critères 2 et 3.

Pour calculer \(C_v(A) \) on commence par ordonner les scores de l’alternative A par ordre croissant : 2 (sur le premier critère) \(\leq \) 3 (sur le troisième critère) \(\leq \) 5 (sur le deuxième critère). On aura alors la permutation \(\sigma \) représentant cet ordre : \(\sigma(1) = 1, \ \sigma(2) = 3, \ \sigma(3) = 2 \)
et les ensembles : \(A_1 = \{\sigma(1), \sigma(2), \sigma(3)\} = \{1, 2, 3\}, \ A_2 = \{\sigma(2), \sigma(3)\} = \{2, 3\}, \ A_3 = \{\sigma(3)\} = \{2\} \).

L’application de la formule (2.6) donne :
\[
C_v(A) = [2 - 0]v(\{1, 2, 3\}) + [3 - 2]v(\{2, 3\}) + [5 - 3]v(\{2\}) = 2 \times 1 + 1 \times 0.7 + 2 \times 0.3 = 3.3.
\]

Pour l’alternative B on aura :
\[
\sigma(1) = 3, \ \sigma(2) = 2, \ \sigma(3) = 1 \text{ et } A_1 = \{1, 2, 3\}, \ A_2 = \{1, 2\}, \ A_3 = \{1\} \text{ et } C_v(B) = [1 - 0]v(\{1, 2, 3\}) + [2 - 1]v(\{1, 2\}) + [5 - 2]v(\{1\}) = 1 \times 1 + 1 \times 0.5 + 3 \times 0.2 = 2.1.
\]

Comme 3.3 > 2.1, le décideur préférera l’alternative A à B.

Remarque 4. Le package Kappalab (Grabisch, Kojadinovic et Meyer, 2012) de R Core Team, 2013 permet d’accomplir différents calculs liés aux capacités et à l’intégrale de Choquet.

L’intégrale de Choquet est un opérateur d’agrégation très général. En effet, comme le montre la proposition suivante, beaucoup de fonctions d’agrégation classiques, comme la moyenne pondérée ou les opérateurs Max et Min, peuvent être retrouvés comme une intégrale de Choquet par rapport à des capacités particulières.

Proposition 5. (Murofushi et Sugeno, 1995) Soit \(v \) une capacité normalisée sur \(N = \{1, 2, ..., n\} \) et \(x \in \mathbb{R}^n \). On a :

1. \(C_v(x) = \min_{i \in N} x_i \) si et seulement si \(v(S) = 0 \quad \forall S \subset N. \)
2. \(C_v = \max_{i \in N} x_i \) si et seulement si \(v(S) = 1 \quad \forall S \subset N, \ S \neq \emptyset. \)
3. \(C_v(x) \) est une moyenne pondérée des \(x_i \) si et seulement si \(v \) est additive.
4. \(C_v(x) \) est une moyenne pondérée ordonnée des \(x_i \) si et seulement si \(v \) est symétrique.

Remarque 5. L’intégrale de Choquet d’une fonction \(f : N \rightarrow \mathbb{R} \) où \(N = \{1, 2, ..., n\} \) par rapport à une capacité \(v \) peut être vue comme une application \(C_v : \mathbb{R}^n \rightarrow \mathbb{R} \).

Deux propriétés importantes de l’intégrale de Choquet (voir par exemple Marichal, 2000) sont énumérées dans la proposition suivante.

Proposition 6. Soit \(N = \{1, 2, ..., n\} \) et \(v \) une capacité sur \(N \). L’application \(C_v : \mathbb{R}^n \rightarrow \mathbb{R} \) est :

1. Continue sur \(\mathbb{R}^n \).
2. Croissante par rapport à chaque argument.

2.2 Jeux multicritères avec interactions entre les critères

Pour tenir compte des possibilités d’interaction entre les critères de chaque joueur, on lui associe une capacité qui caractérise ces interactions. Nous proposons la définition suivante d’un jeu multicritère sous forme stratégique avec interactions entre critères.

<table>
<thead>
<tr>
<th>(S)</th>
<th>(\emptyset)</th>
<th>{1}</th>
<th>{2}</th>
<th>{3}</th>
<th>{1,2}</th>
<th>{1,3}</th>
<th>{2,3}</th>
<th>{1,2,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(S))</td>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.2 – Valeurs de la capacité \(v \)
2.2. JEUX MULTICRITÈRES AVEC INTERACTIONS ENTRE LES CRITÈRES

Définition 34. Un jeu multicritère sous forme stratégique, avec interactions entre critères est un quadruplet :

\[(N, \{X_j\}_{j \in N}, \{F_j\}_{j \in N}, \{v_j\}_{j \in N}) \] (2.7)

qui a les propriétés suivantes :

1. \(N = \{1, 2, ..., n\} \) est un ensemble fini non vide de joueurs ;
2. Pour chaque joueur \(j \in N \), \(X_j \) est un ensemble non vide de stratégies du joueur \(j \);
3. Pour tout \(j \in N \), \(F_j : x \in \prod_{j=1}^{n} X_j \rightarrow F_j(x) = (F_{j1}(x), ..., F_{jr(j)}(x)) \in \mathbb{R}^{r(j)} \) est une fonction vectorielle de gain du joueur \(j \).
4. Pour tout \(j \in N \), \(v_j : 2^{C_j} \rightarrow \mathbb{R} \) où \(C_j = \{1, 2, ..., r(j)\} \) est la capacité caractérisant les interactions entre les critères du joueur \(j \).

Ce modèle est particulièrement adapté à la description et l’analyse de la compétition entre organisations. Chaque joueur \(j \) est interprété comme une organisation composée de \(r(j) \) membres. Le membre \(k \) de l’organisation, \(k \in \{1, 2, ..., r(j)\} \), possède une fonction de gain \(F_{jk} \). Les membres de l’organisation n’ont pas tous, en général, le même poids dans la détermination de l’action de l’organisation, et la formation de coalitions à l’intérieur du joueur-organisation est de mise. La capacité \(v_j \) décrit la puissance relative des membres de l’organisation, et les interactions entre eux.

2.2.1 Équilibre de Choquet-Nash

Considérons le jeu multicritère (2.7). Tous les éléments du jeu sont supposés connaissance commune pour tous les joueurs.

On pose \(X = \prod_{j=1}^{n} X_j \). On notera le profil de stratégies \((x_1, ..., x_{j-1}, y_j, x_{j+1}, ..., x_n) \in X \) par \((y_j, x_{-j}) \).

Face au profil \(x_{-j} \) des stratégies des joueurs dans \(N \setminus \{j\} \), le joueur \(j \) jouera une stratégie \(y_j \in X_j \) qui maximisera l’intégrale de Choquet de son vecteur de gain \(F_j(y_j, x_{-j}) \), par rapport à la capacité \(v_j \). Ceci justifie la définition suivante :

Définition 35. Un équilibre de Choquet-Nash\(^1\) du jeu multicritère (2.7) est un profil de stratégies : \(\pi = (\pi_1, \pi_2, ..., \pi_n) \in X \) tel que :

\[
\forall j \in N, \quad \forall x_j \in X_j, \quad C_{v_j}(F_j(\pi_j, \pi_{-j})) \geq C_{v_j}(F_j(x_j, \pi_{-j})). \] (2.8)

On associe à chaque joueur \(j \) la fonction de gain :

\[
f_j : X \rightarrow \mathbb{R}
\]

\[
x \rightarrow C_{v_j}(F_j(x))
\]

Considérons le jeu non coopératif :

\[(N, \{X_j\}_{j \in N}, \{f_j\}_{j \in N}). \] (2.9)

Il est clair qu’un profil de stratégies \(\pi \in X \) est un équilibre de Choquet-Nash du jeu (2.7) si et seulement si \(\pi \) est un équilibre de Nash du jeu (2.9). En effet, si \(\pi = (\pi_1, \pi_2, ..., \pi_n) \in X \). On a :

\[
\pi \text{ équilibre de Choquet-Nash du jeu (2.7)} \iff \forall j \in N, \forall x_j \in X_j, \quad C_{v_j}(F_j(\pi_j, \pi_{-j})) \geq C_{v_j}(F_j(x_j, \pi_{-j}))
\]

\[
\iff \forall j \in N, \forall x_j \in X_j, \quad f_j(x_j(\pi_j, \pi_{-j})) \geq f_j(x_j(\pi_j, \pi_{-j}))
\]

\[\iff \pi \text{ est un équilibre de Nash du jeu (2.9)}. \]

On appellera le jeu (2.9), le jeu de Choquet associé au jeu (2.7). Un profil de stratégies est donc un équilibre de Choquet-Nash d’un jeu multicritère avec interactions si et seulement si il est un équilibre de Nash de son jeu de Choquet associé.

\(^1\) Le terme « équilibre de Choquet-Nash » a été utilisé par J. Rothe dans (ROTHE, 2009), dans le contexte de la décision dans l’incertain. Nous l’utilisons dans un sens différent ici.
2.2.2 Existence de l’équilibre de Choquet-Nash

Considérons le jeu multicritère avec interactions (2.7) et son jeu de Choquet associé (2.9). Le théorème d’existence d’un équilibre de Nash, appliqué au jeu (2.9), s’énonce comme suit :

Théorème 10. (Arrow et Debreu, 1954) Si :
1. \(\forall j \in N, \ X_j \) est un sous ensemble convexe et compact d’un espace vectoriel topologique.
2. \(\forall j \in N, \ f_j \) est continue.
3. \(\forall j \in N, \ \forall x_{-j} \in X_{-j} \) : La fonction \(f_j(.,x_{-j}) : x_j \mapsto f_j(x_j,x_{-j}) \) est quasiconcave.

Alors le jeu (2.9) admet un équilibre de Nash.

La question à laquelle on devrait répondre est : sous quelles conditions sur les fonctions \(F_{jk} \ k \in \{1,...,r(j)\} \) et éventuellement sur les capacités \(v_j \), les fonctions \(f_j \) satisfont-elles les conditions du Théorème 10 ?

Proposition 7. (Boyd et Vandenberghe, 2004) Soit \(h : \mathbb{R}^k \to \mathbb{R} \) et

\[
g : \mathbb{R}^n \to \mathbb{R}^k \quad (x_1,x_2,...,x_n) \to g(x) = (g_1(x),g_2(x),...,g_k(x))
\]

où : \(g_i : \mathbb{R}^n \to \mathbb{R} \ \forall i = 1,2,...,k \).

Si
1. \(\forall i = 1,2,...,k, \ g_i \) est concave,
2. \(h \) est concave,
3. \(h \) est croissante par rapport à chaque argument ;

alors la fonction composée \(h \circ g \) est concave.

Les résultats établis dans Schmeidler (1986) permettent de montrer la proposition suivante :

Proposition 8. Soit \(N = \{1,2,...,n\} \) et \(v \) une capacité sur \(N \). Soit \(C_v : \mathbb{R}^n \to \mathbb{R} \) l’application associant à tout \(x \in \mathbb{R}^n \) son intégrale de Choquet par rapport à la capacité \(v \). On a :

\[
v \ \text{est convexe} \iff C_v \ \text{est concave}
\]

On est en mesure à présent d’énoncer le théorème suivant :

Théorème 11. Si dans le jeu multicritère avec interactions (2.7), on a :
1. \(\forall j \in N, \ X_j \) est un sous ensemble convexe et compact d’un espace vectoriel topologique,
2. \(\forall j \in N, \ \forall k \in \{1,...,r(j)\} \) \(F_{jk} \) est continue,
3. \(\forall j \in N, \ \forall k \in \{1,...,r(j)\}, \ \forall x_{-j} \in X_{-j} \) : La fonction \(F_{jk}(.,x_{-j}) : x_j \mapsto F_{jk}(x_j,x_{-j}) \) est concave,
4. \(\forall j \in N, \) la capacité \(v_j \) est convexe,

alors le jeu (2.7) admet un équilibre de Choquet-Nash.

Démonstration. Considérons le jeu de Choquet (2.9) associé au jeu (2.7). Soit \(j \in N \) on a : \(f_j = C_{v_j} \circ F_j \). Compte tenu la Proposition 6, la continuité de \(F_j \) et de \(C_{v_j} \) entraîne la continuité de \(f_j \) sur \(X \) comme composée de fonctions continues. D’autre part, pour \(x_{-j} \in X_{-j} \) fixé, considérons la fonction :\(F_j(.,x_{-j}) : X_j \to \mathbb{R}^{r(j)}, x_j \mapsto (F_{j1}(x_j,x_{-j}),...,F_{jr(j)}(x_j,x_{-j})) \).

On a alors

\[
f_j(.,x_{-j}) = C_{v_j} \circ F_j(.,x_{-j}). \quad (2.10)
\]

En vertu des Propositions 7 et 8, la convexité de \(v_j \), la concavité des \(F_{jk}(.,x_{-j}) \ k \in \{1,...,r(j)\} \), et l’équation (2.10), on a pour tout \(j \in N \) et pour tout \(x_{-j} \in X_{-j} \), la fonction \(f_j(.,x_{-j}) : X_j \to \mathbb{R} \) est concave et à fortiori quasi-concave.

Les conditions du Théorème 10 étant toutes vérifiées, le jeu (2.7) admet un équilibre de Choquet-Nash.
Corollaire 1. Tout jeu fini multicritère avec interactions, à capacités convexes, admet un équilibre de Choquet-Nash en stratégies mixtes.

Démonstration. Considérons le jeu fini multicritère avec interactions entre critères :

\[\langle N, \{X_j\}_{j \in N}, \{F_j\}_{j \in N}, \{v_j\}_{j \in N} \rangle, \quad (2.11) \]

où chaque ensemble de stratégies \(X_j \ j \in N \) est constitué d’un nombre fini \(n_j < +\infty \) de stratégies pures :
\[X_j = \{a_{1,j}^j, \ldots, a_{n,j}^j\} \].
L’extension mixte du jeu (2.11) est le jeu :

\[\langle N, \{\Delta_j\}_{j \in N}, \{\tilde{F}_j\}_{j \in N}, \{v_j\}_{j \in N} \rangle, \quad (2.12) \]

où : \(\Delta_j = \{(\alpha_1, ..., \alpha_{n,j}) \in \mathbb{R}^{n,j}, \quad \alpha_k \geq 0, k = 1, ..., n_j, \quad \sum_{k=1}^{n_j} \alpha_k = 1 \} \). Avec l’interprétation usuelle, adopter la stratégie mixte \(\alpha^j = (\alpha_1, ..., \alpha_{n,j}) \in \Delta_j \) par le joueur \(j \) signifie qu’il jouera la stratégie pure \(a_{k,j}^j \) avec la probabilité \(\alpha_k, \ k = 1, ..., n_j \). Les ensembles \(\Delta_j \ j \in N \) sont convexes et compacts.

Posons : \(\Delta = \bigoplus_{j=1}^{N} \Delta_j \). Soit le profil de stratégies \(\alpha = (\alpha^1, ..., \alpha^n) \in \Delta \). où : \(\alpha^j = (\alpha_{1,j}^j, ..., \alpha_{n,j}^j) \) est la stratégie mixte du joueur \(j \). Le profil de stratégies pures \(x = (a_{1,k}^1, ..., a_{n,j}^j, ..., a_{n,k}^n) \) avec \(k_j \in \{1, ..., n_j\} \) sera joué avec une probabilité \(\prod_{j=1}^{n} \alpha_{k,j}^j \) et le gain du joueur \(j \) selon le critère \(l \) est alors

\[\tilde{F}_jl(a_{1,k}^1, ..., a_{k,j}^j, ..., a_{n,k}^n) \] avec la probabilité \(\prod_{j=1}^{n} \alpha_{k,j}^j \). On définira alors \(\tilde{F}_jl(\alpha) \) comme l’espérance mathématique :

\[\tilde{F}_jl(\alpha) = \sum_{x \in X} (\prod_{j=1}^{n} \alpha_{k,j}^j) Fjl(x). \quad (2.13) \]

L’expression (2.13) entraîne la continuité de \(\tilde{F}_jl \) sur \(\Delta \) puisque c’est une fonction polynomiale des \(a_{k,j}^j \).

De plus pour \(\alpha^{-j} \) fixé, l’expression (2.13) est linéaire par rapport à \(\alpha^j = (\alpha_{1,j}^j, ..., \alpha_{n,j}^j) \). L’application \(\tilde{F}_jl(., \alpha^{-j}) : \alpha^j \mapsto \tilde{F}_jl(., \alpha^{-j}) \) est linéaire par rapport à \(\alpha^j \), elle est donc concave.

Les capacités \(v_j, \ j \in N \) étant supposées convexes, toutes les conditions du Théorème 11 sont vérifiées pour le jeu (2.12) qui admet alors un équilibre de Choquet-Nash. Ceci revient à dire que le jeu (2.11) admet un équilibre de Choquet-Nash en stratégies mixtes.

2.2.3 Relation avec d’autres concepts de solution

Soient deux vecteurs \(x, y \in \mathbb{R}^n, x = (x_1, ..., x_n), y = (y_1, ..., y_n) \). On définit les inégalités vectorielles suivantes :

1. \(x \geq y \iff x_i \geq y_i \ \forall i \in \{1, ..., n\} \).
2. \(x \geq y \iff x_i \geq y_i \ \forall i \in \{1, ..., n\} \) et \(x \neq y \).
3. \(x > y \iff x_i > y_i \ \forall i \in \{1, ..., n\} \).

La proposition suivante donne quelques propriétés de monotonicité de l’intégral de Choquet :

Proposition 9. Soit \(N = \{1,2, ..., n\} \) et \(v \) une capacité sur \(N \). Nous avons :

1. \(\forall x, y \in \mathbb{R}^n : \ x \geq y \Rightarrow \mathbf{C}_v(x) \geq \mathbf{C}_v(x) \)
2. \(\forall x, y \in \mathbb{R}^n : \ x > y \Rightarrow \mathbf{C}_v(x) > \mathbf{C}_v(x) \)
3. \((\forall x, y \in \mathbb{R}^n : \ x \geq y \Rightarrow \mathbf{C}_v(x) > \mathbf{C}_v(x)) \) si et seulement si \(v \) est strictement monotone, i.e. : \(A \subseteq B \Rightarrow v(A) < v(B) \).
Nous rappellerons dans ce qui suit les définitions des principaux concepts de solutions d’un jeu non coopératif multicritère sous forme stratégique :

Définition 36. *(VOORNEVELD, GRAHN et DUFWENBURG, 2000 ; RADJEF et FAHEM, 2008)* Un équilibre idéal de Nash du jeu multicritère (2.7) est un profil de stratégies :

\[x^* = (x_1^*, x_2^*, ..., x_n^*) \in X \]

\[\forall j \in N, \; \forall x_j \in X_j, \; F_j(x_j^*, x_{-j}^*) \geq F_j(x_j, x_{-j}^*). \] \hfill (2.14)

Définition 37. Un équilibre Slater-Nash du jeu multicritère (2.7), est un profil de stratégies :

\[x^* = (x_1^*, x_2^*, ..., x_n^*) \in X \]

\[\forall j \in N, \; \forall x_j \in X_j, \; F_j(x_j, x_{-j}^*) \neq F_j(x_j^*, x_{-j}^*). \] \hfill (2.15)

Définition 38. Un équilibre Pareto-Nash du jeu multicritère (2.7) est un profil de stratégies :

\[x^* = (x_1^*, x_2^*, ..., x_n^*) \in X \]

\[\forall j \in N, \; \forall x_j \in X_j, \; F_j(x_j, x_{-j}^*) \neq F_j(x_j^*, x_{-j}^*). \] \hfill (2.16)

Notons par :
- \(X^{IDN} \) l’ensemble des équilibres idéaux de Nash du jeu ,
- \(X^S \) l’ensemble des équilibres Slater-Nash du jeu ,
- \(X^P \) l’ensemble des équilibres Pareto-Nash du jeu ,
- \(X^C \) l’ensemble des équilibres Choquet-Nash du jeu .

On sait que \(X^{IDN} \subseteq X^P \subseteq X^S \) *(RADJEF et FAHEM, 2008)*. Notre objectif est de placer \(X^C \) dans cette chaîne.

Proposition 10. Nous avons :

1. \(X^{ID} \subseteq X^C \subseteq X^S \)

2. Si \(\forall j \in N, \; v_j \) est strictement monotone, alors \(X^{ID} \subseteq X^C \subseteq X^P \subseteq X^S \).

Démonstration. Soit \(x^* = (x_1^*, x_2^*, ..., x_n^*) \in X \) un équilibre idéal de Nash du jeu (2.7). On a alors :

\[\forall j \in N, \; \forall x_j \in X_j, \; F_j(x_j^*, x_{-j}^*) \geq F_j(x_j, x_{-j}^*). \] \hfill (2.17)

Compte tenu de la Proposition 9 on aura :

\[\forall j \in N, \; \forall x_j \in X_j, \; C_{v_j}(F_j(x_j^*, x_{-j}^*)) \geq C_{v_j}(F_j(x_j, x_{-j}^*)), \] \hfill (2.18)

ce qui signifie que \(x^* \) est un équilibre de Choquet-Nash du jeu .

Soit \(x^* = (x_1^*, x_2^*, ..., x_n^*) \in X \) un de Choquet-Nash du jeu . On a alors (2.18) vérifiée. Si \(x^* \) n’était pas un équilibre de Slater-Nash du jeu , alors \(x^* \) n’aurait pas de stratégie \(x_j \in X_j \) telle que : \(F_j(x_j, x_{-j}^*) > F_j(x_j^*, x_{-j}^*) \). On aura alors, en vertu de la Proposition 9 \(C_{v_j}(F_j(x_j, x_{-j}^*)) > C_{v_j}(F_j(x_j^*, x_{-j}^*)) \), qui contredit (2.18), ce qui termine la preuve du point 1 de la proposition. Si la capacité \(v_j \) est strictement monotone pour tout \(j \in N \), alors \(x^* \) est aussi un équilibre Pareto-Nash du jeu . En effet, l’existence d’un joueur \(j \in N \) qui a une stratégie \(x_j \in X_j \) telle que : \(F_j(x_j, x_{-j}^*) \geq F_j(x_j^*, x_{-j}^*) \), entraînera d’après la proposition (9) : \(C_{v_j}(F_j(x_j, x_{-j}^*)) > C_{v_j}(F_j(x_j^*, x_{-j}^*)) \). Contradiction avec (2.18).

\[\square \]

Conclusion

Nous avons introduit dans ce chapitre un modèle de jeux non coopératifs multicritères qui permet de prendre en compte les interactions entre les différents critères de chaque joueur. Nous avons défini un concept de solution pour cette classe de jeux, l’équilibre de Choquet-Nash, et nous avons donné un résultat sur les conditions de son existence. Ce résultat s’applique en particulier à tout jeu fini multicritère en stratégies mixtes avec interactions et à capacité convexes. Nous avons également étudié la relation entre l’équilibre de Choquet-Nash et d’autres concepts de solution classiques, ce qui nous a permis d’établir que :

...

Chapitre 3

Présence de la structure de treillis dans la théorie de la décision

Introduction

La présence de la structure de treillis a été observée dans diverses branches de la théorie de la décision. Cette présence a conduit à une meilleure compréhension de beaucoup de situations de jeux et a été exploitée notamment pour l’obtention d’algorithmes efficaces. L’objet de ce chapitre est de mettre en exergue, à travers des exemples, la présence de la théorie des treillis dans la théorie de la décision. La section 3.1 est consacrée à la théorie des mariages stables, qui étudie la constitution de couples à partir de deux ensembles hommes et femmes, de façon à ce que chaque couple soit stable en ce sens qu’aucun des deux conjoints n’a intérêt à rompre cette liaison pour chercher une autre. Il s’avère que l’ensemble des mariages stables possède la structure de treillis. Dans la section 3.2, nous présentons les jeux à complémentarités stratégiques, une classe de jeux sous forme normale où les ensembles de stratégies des joueurs sont des treillis, caractérisée par la propriété suivante : la meilleure réponse de chaque joueur augmente, dans un sens que l’on précisera, avec l’augmentation des stratégies des autres joueurs. Cette classe de jeux a trouvé beaucoup d’applications et possède des propriétés intéressante : un jeu à complémentarités stratégiques possède toujours un équilibre de Nash en stratégies pures. L’ensemble des équilibres de Nash d’un jeu à complémentarités stratégiques est un treillis complet, et nous disposons d’un algorithme simple et efficace pour le calcul de tous les équilibres de Nash, en stratégies pures, d’un jeu fini à complémentarités stratégiques. Les jeux coopératifs sur un treillis sont abordés dans la section 3.3.
3.1 Mariages stables

Cette présentation de la théorie des mariages stables est basée sur Knuth (1976).

Soit deux ensembles $H = \{h_1, h_2, \ldots, h_n\}$ et $F = \{f_1, f_2, \ldots, f_n\}$ deux ensembles de même cardinal n. H peut être interprété comme un ensemble d’hommes et F un ensemble de femmes.

Définition 39. Un mariage est une bijection M de H vers F.

Si M est un mariage on notera M^{-1} sa bijection réciproque.

Si X est l’ensemble des alternatives disponibles pour un décideur, une relation de préférence sur X est une relation binaire \succeq sur X. $a \succeq b$ signifie que l’alternative a est au moins aussi bonne que b pour le décideur. \succeq est dite une relation de préférence rationnelle si elle est complète et transitive.

Etant donnée une relation de préférence \succeq sur X, on peut lui associer :

- la relation de préférence stricte \succ : $a \succ b \iff [a \succeq b \text{ et } b \not\succeq a]$.
- La relation d’indifférence \sim : $a \sim b \iff [a \succeq b \text{ et } b \succeq a]$.

Chaque homme $h \in H$ possède une relation de préférence rationnelle \succeq_h sur F. On supposera que h ne peut pas être indifférent entre deux éléments quelconques de F. Le comportement de h est alors complètement décrit par la relation de préférence stricte \succ_h. De même, chaque femme $f \in F$ possède une relation de préférence rationnelle \succeq_f sur H et n’est pas indifférente entre deux éléments quelconques de H. La relation de préférence stricte associée à \succeq_f est \succ_f.

Un mariage $M : H \to F$ est instable si on peut trouver un homme h et une femme f, avec $f \not= M(h)$, qui se préfèrent mutuellement à leurs conjoints dans M, c’est à dire :

$$f \succ_h M(h) \text{ et } h \succ_f M^{-1}(f).$$

On dira qu’un mariage est stable s’il n’est pas instable.

Gale et Shapley (1962) ont montré qu’un mariage stable existe toujours et ont donné un algorithme permettant de trouver un tel mariage. Nous décrivons dans ce qui suit cet algorithme. Choisir un homme m non encore engagé avec une femme. Cet homme va faire une proposition de mariage à la femme f la mieux classée sur sa liste qui ne l’a pas encore rejeté. Si f est libre on forme, pour le moment le couple (m,f). Si f s’est déjà engagée avec un homme m', alors elle va rejeter l’homme qu’elle préfère le moins entre m et m' et formera un couple avec l’autre. L’homme qui vient d’être rejeté reprend le processus de proposition. Lorsque tous les hommes deviennent engagés, on obtient un mariage stable qui possède la propriété suivante : Chaque homme est marié au meilleur partenaire possible qu’il puisse avoir dans un mariage stable. Pour cet raison, ce mariage stable est dit hommes-optimal. En inversant les rôles des hommes et des femmes dans l’algorithme, on obtient un mariage stable femmes-optimal. Une version améliorée de l’algorithme de Gale-Shapley repose sur la remarque suivante. Si à un moment donné une femme f reçoit une proposition de l’homme m, alors elle ne peut avoir dans un quelconque mariage stable un partenaire qu’elle classe après m dans sa liste de préférences. Par conséquent, dès que f reçoit la proposition de m, on efface tous les hommes classés après m dans la liste des préférences de f et on efface f de la liste des préférences de ces hommes. A la fin de l’algorithme on obtient des shortlists qui contiennent toutes l’information sur les mariages stables de l’instance considérée. Nous illustrons le fonctionnement de l’algorithme amélioré de Gale-Shapley dans l’exemple suivant.

3.1. MARIAGES STABLES

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Préférences des hommes.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Préférences des femmes.

Table 3.1 – Une instance du problème des mariages stables

L’homme 1 fait une proposition à la femme 3, son premier choix. Alors, dans la liste des préférences de la femme 3, on supprime tous les hommes classés après l’homme 1, c’est à dire on supprime l’homme 4. Ayant supprimé l’homme 4 de la liste de la femme 3, il faut supprimer la femme 3 de la liste de l’homme 4. On passe ensuite à l’homme 2 qui va faire une proposition à la femme 6. On supprime de la liste de la femme 6 les hommes 8,3 et 1 classés après 2, et on supprime de ce fait la femme 6 des listes des hommes 8,3,1. On continue le processus avec l’homme 3 et ainsi de suite. A la fin de l’algorithme on obtient les shortlists décrites dans le tableau 3.2.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

(a) Les shortlists des hommes.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Les shortlists des femmes.

Table 3.2 – Les shortlists de l’instance du tableau 3.1

On peut lire directement le mariage stable hommes-optimal M_h en affectant à chaque homme son premier choix dans le tableau 3.2a. On obtient :

$$M_h = \{(1,3),(2,1),(3,7),(4,5),(5,4),(6,6),(7,8),(8,2)\}.$$

Le mariage stable femmes-optimal, M_f s’obtient du tableau 3.2b en mariant chaque femme avec son premier choix. On obtient :

$$M_f = \{(1,7),(2,8),(3,2),(4,1),(5,6),(6,4),(7,3),(8,5)\}.$$

En plus de mariages stables hommes-optimal et femmes-optimal, il peut y avoir beaucoup d’autres mariages stables. Pour déterminer tous les mariages stables d’une instance donnée, on bénéfice du fait que l’ensemble de ces mariages stables possède une structure de treillis par rapport à l’ordre partiel suivant :

Notons par S l’ensemble des mariages stables de H vers F. Si M_1 et M_2 sont deux éléments de S, $M_1 \leq M_2$ si chaque homme préfère son conjoint dans M_2 à son conjoint dans M_1.

Pour mettre en évidence la structure de treillis de l’ensemble des mariages stables, définissons les deux applications $M_1 \vee M_2$ et $M_1 \wedge M_2$ par :

$$M_1 \vee M_2 : H \rightarrow F.$$

$$h \mapsto \max_h \{M_1(h), M_2(h)\}$$
32

CHAPITRE 3. PRÉSENCE DE LA STRUCTURE DE TREILLIS DANS LA THÉORIE DE LA DÉCISION

\[
\begin{cases}
M_1 \land M_2 : H \rightarrow F, \\
h \mapsto \min_{\sim h} \{M_1(h), M_2(h)\}
\end{cases}
\]

Ainsi, \(M_1 \lor M_2 \) associe à \(h \in H \) celui qu’il préfère le plus parmi ses deux conjoints dans \(M_1 \) et \(M_2 \), et \(M_1 \land M_2 \) lui associe celui qu’il préfère le moins.

Proposition 11. (Knuth, 1976) Si \(M_1 \) et \(M_2 \) sont deux mariages stables, il en est de même de \(M_1 \lor M_2 \) et \(M_1 \land M_2 \).

\(\lor \) et \(\land \) sont donc deux lois de composition internes à \(S \). On peut vérifier que les deux lois \(\lor \) et \(\land \) possèdent les propriétés de commutativité, d’associativité, d’idempotence et d’absorption. Ce qui confère à \((S, \lor, \land) \) la structure de treillis. De plus \(\lor \) est distributive par rapport à \(\land \). On a donc le résultat suivant :

Théorème 12. (Knuth, 1976) L’ensemble des mariages stables de \(H \) vers \(F \) est un treillis distributif.

Inversement, Blair (1984), montre que tout treillis distributif fini, peut être vu comme le treillis des mariages stables d’un problème de mariage :

Théorème 13. (Blair, 1984) Si \(L \) est un treillis fini distributif à \(n \) éléments, il existe un ensemble d’hommes et un ensemble de femmes, tels que le treillis de leurs mariages stables est isomorphe à \(L \). De plus, le nombre d’hommes, qui est aussi le nombre de femmes, est inférieur à \(2^n \).

Comme l’ensemble des mariage stables d’une instances donnée est un treillis distributif, on bénéficie du théorème de Birkhoff (1967) qui établit que tout treillis distributif est isomorphe au treillis des idéaux d’un ordre partiel. Cet ordre partiel a été identifié par Irving et Leather (1986) comme l’ordre partiel des rotations.

Définition 40. Etant données les shortlists d’une instance de mariage stable, une rotation est une séquence

\[\rho = (m_0, w_0), (m_1, w_1), \ldots, (m_{r-1}, w_{r-1}). \]

de couples (homme, femme) telle que pour \(0 \leq i \leq r - 1 \) :

- \(w_i \) est la première dans la shortlist de \(m_i \),
- \(w_{i+1} \) est la deuxième dans la shortlist de \(m_i \), \(i + 1 \) étant pris modulo \(r \).

La rotation \(\rho \) est alors dite exposée dans les shortlists considérées.

Une fois une rotation \(\rho = (m_0, w_0), (m_1, w_1), \ldots, (m_{r-1}, w_{r-1}) \) identifiée, on procède à son élimination dans les shortlists, c’est à dire que \(m_0 \) va faire une proposition à \(w_1 \), \(m_1 \) va faire une proposition à \(w_2 \), \ldots, \(m_{r-1} \) une proposition à \(w_0 \), avec les modification associées dans les shortlists comme dans l’algorithme étendu de Gale-Shapley. On obtient de nouvelles shortlists qui induisent un nouveau mariage stable en affectant à chaque homme son premier choix dans les nouvelles shortlists.

Exemple 11. (suite de l’exemple 3.1) En inspectant le tableau 3.2a, on identifie trois rotations :

\[
\begin{align*}
\rho_1 &= (1,3), (2,1) \\
\rho_2 &= (3,7), (5,4), (8,2) \\
\rho_3 &= (4,5), (7,8), (6,6)
\end{align*}
\]

L’élimination de la rotation \(\rho_1 \) donnera les shortlists suivantes :

3.1. MARIAGES STABLES

(a) Les shortlists des hommes.

(b) Les shortlists des femmes.

Table 3.3 – Les shortlists après élimination de la rotation ρ_1.

Le mariage stable résultant est :

$$M_1 = \{(1,1), (2,3), (3,7), (4,5), (5,4), (6,6), (7,8), (8,2)\}.$$

L’élimination de la rotation ρ_2 donnera les shortlists suivantes :

(a) Les shortlists des hommes.
(b) Les shortlists des femmes.

Table 3.4 – Les shortlists après élimination de la rotation ρ_2.

Le mariage stable résultant est :

$$M_2 = \{(1,3), (2,1), (3,4), (4,5), (5,2), (6,6), (7,8), (8,7)\}.$$

Notez que nous avons éliminé la rotation ρ_2 sans avoir éliminé la rotation ρ_1.

De même, en éliminant la rotation ρ_3, on obtient le mariage stable :

$$M_3 = \{(1,3), (2,1), (3,7), (4,8), (5,4), (6,5), (7,6), (8,2)\}.$$

Nous venons à présent à la détermination de l’ordre partiel des rotations. Dans l’exemple précédent, nous avons pu éliminer la rotation ρ_2 sans avoir éliminé la rotation ρ_1. Ceci est dû au fait que ces deux rotations sont toutes deux exposées (cf. Définition 40) dans les shortlists du tableau 3.2, de même que la rotation ρ_3.

Définition 41. La rotation ρ_i précède la rotation ρ_j, si ρ_i doit être éliminée des shortlists pour que ρ_j devienne exposée.

Exemple 12. (suite de l’exemple 3.1) En inspectant les shortlists obtenues après l’élimination de ρ_1 toute seule, ou ρ_2 toute seule, ou ρ_3 toute seule, on ne découvre aucune nouvelle rotation.

En éliminant ρ_1 et ρ_2, on obtient les shortlists suivantes :
Table 3.5 – Les shortlists après élimination des rotation ρ_1 et ρ_2.

On obtient le mariage stable :

$$M_2 = \{(1,1), (2,3), (3,4), (4,5), (5,2), (6,6), (7,8), (8,7)\}.$$

Dans les nouvelles shortlists, on identifie une nouvelle rotation :

$$\rho_4 = (2,3), (3,4)$$

La rotation ρ_4 n’était pas exposée avant l’élimination de ρ_1 et ρ_2. Donc ρ_4 est précédée par ρ_1 et ρ_2 dans l’ordre des rotations, et on note $\rho_1 < \rho_4$ et $\rho_2 < \rho_4$.

En continuant de la sorte, on obtient toutes les rotations de notre instance de mariage stable ainsi que leur ordre partiel. L’algorithme s’arrête lorsqu’il n’y a plus de rotations à identifier, i.e lorsque on arrive au mariage stable femmes-optimal. On obtient les résultats suivants

<table>
<thead>
<tr>
<th>rotation</th>
<th>Prédécesseurs immédiats</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1 = (1,3), (2,1)$</td>
<td>/</td>
</tr>
<tr>
<td>$\rho_2 = (3,7), (5,4), (8,2)$</td>
<td>/</td>
</tr>
<tr>
<td>$\rho_3 = (4,5), (7,8), (6,6)$</td>
<td>/</td>
</tr>
<tr>
<td>$\rho_4 = (2,3), (3,4)$</td>
<td>ρ_1, ρ_2</td>
</tr>
<tr>
<td>$\rho_5 = (1,1), (6,7), (8,5)$</td>
<td>ρ_1, ρ_2, ρ_3</td>
</tr>
<tr>
<td>$\rho_6 = (4,8), (7,6), (5,2)$</td>
<td>ρ_2, ρ_3</td>
</tr>
<tr>
<td>$\rho_7 = (3,3), (8,1)$</td>
<td>ρ_4, ρ_5</td>
</tr>
<tr>
<td>$\rho_8 = (2,4), (5,8), (6,7)$</td>
<td>ρ_4, ρ_5, ρ_6</td>
</tr>
<tr>
<td>$\rho_9 = (1,5), (5,7), (8,3)$</td>
<td>ρ_7, ρ_8</td>
</tr>
<tr>
<td>$\rho_{10} = (3,1), (7,2), (5,3), (4,6)$</td>
<td>ρ_9</td>
</tr>
</tbody>
</table>

Table 3.6 – Liste des rotations de l’instance du tableau 3.1

La Figure 3.1 montre le diagramme de Hasse de l’ordre des rotations.
3.1. MARIAGES STABLES

Le treillis des mariages stables de l’instance considérée, est isomorphe au treillis des idéaux de l’ordre des rotations.

Il existe plusieurs extensions de la théorie des mariages stables. A titre d’exemple, Blair (1988) a étudié les mariages polygames, un contexte dans lequel chaque objet peut être marié à plusieurs objets au même temps. Par exemple : on peut s’intéresser aux mariages entre firmes et ouvrier ; chaque firme emploie plusieurs ouvriers, et un ouvrier peut travailler pour plusieurs firmes. Il montre que l’ensemble des mariages stables peut être muni d’une structure de treillis, mais celui-ci ne sera pas nécessairement distributif comme dans le cas monogame. Dias et al. (2003) ont étudié les mariages stables avec ensembles de paires interdites ou foncées, c’est à dire que le mariage stable doit contenir, ou éviter dans le cas des paires interdites, certaines paires prédéfinies. Ils établissent plusieurs résultats structurels et généralisent les résultats connus dans le cas classique.

3.1.1 Approche par la méthode du point fixe

Adachi (2000) montre qu’on peut retrouver la structure de treillis de l’ensemble des mariages stables, en utilisant le théorème du point fixe de Tarski (1955). Dans son modèle il considère deux ensembles disjoints et finis, \(M = \{m_1, m_2, ..., m_n\} \) ensemble des hommes, et \(W = \{w_1, w_2, ..., w_k\} \), ensemble des femmes. Tout \(m \in M \) possède une relation de préférence rationnelle \(\succeq_m \) sur l’ensemble \(W \cup \{m\} \). Ceci permet de modéliser le fait que \(m \) puisse préférer rester célibataire à être marié à un certain \(w \in W \), en posant \(m \succ_m w \). De même, tout \(w \in W \) possède une relation de préférence rationnelle \(\succeq_w \) sur l’ensemble \(M \cup \{w\} \). Dans ce contexte, il donne la définition suivante d’un mariage :

Définition 42. Un mariage \(\mu \) est une bijection de l’ensemble \(M \cup W \) dans lui même, d’ordre 2, c’est à dire \(\mu^2(x) = x \), telle que si \(\mu(m) \neq m \) alors \(\mu(m) \in W \) et si \(\mu(w) \neq w \) alors \(\mu(w) \in M \).

La stabilité d’un mariage se traduit par :

Définition 43. Un mariage \(\mu \) est stable si :

\[
\forall m \in M, \; \forall w \in W : \; \mu(m) \succeq_m m \; et \; \mu(w) \succeq_w w. \tag{3.1}
\]

\[\exists (m, w) \in M \times W \; tel \; que \; : \; w \succ_m \mu(m) \; et \; m \succ_w \mu(w). \tag{3.2}\]

Dans un premier temps, l’auteur suppose que les préférences des agents sont strictes, c’est à dire qu’ils ne sont jamais indifférents entre deux choix distincts. Sous cette condition, il montre que pour les mariages \(\mu \) qui remplissent la condition de rationalité individuelle (3.1), la condition (3.2) est équivalente à :

\[\exists (m, w) \in M \times W \; tel \; que \; : \; [w \succ_m \mu(m) \; et \; m \succeq_w \mu(w)] \; ou \; bien \; [w \succeq_m \mu(m) \; et \; m \succ_w \mu(w)] \tag{3.3}\]
L'auteur introduit ensuite la notion de pré-mariage. Considérons deux applications : $v_M : M \to W \cup M$ et $v_W : W \to M \cup W$.

Si :

$$v_M(m) \neq m \Rightarrow v_M(m) \in W$$ \hspace{1cm} (3.4)

$$v_W(w) \neq w \Rightarrow v_W(w) \in M$$ \hspace{1cm} (3.5)

alors le couple (v_M, v_W) est appelé un pré-mariage.

L'ensemble de applications $v_M : M \to W \cup M$ est noté V_M, et celui des applications $v_W : W \to M \cup W$ est noté V_W. L'ensemble des pré-mariages est alors $V = V_M \times V_W$. Un ordre partiel est défini sur chacun des ensembles V_M, V_W et V.

\geq_M sur $V_M : v_M \geq_M v'_M$ si et seulement si : $v_M(m) \geq v'_M(m)$ $\forall m \in M$.

\geq_W sur $V_W : v_W \geq_W v'_W$ si et seulement si : $v_W(w) \geq v'_W(w)$ $\forall w \in W$.

\geq_M sur $V : (v_M, v_W) \geq_M (v'_M, v'_W)$ si et seulement si : $v_M \geq_M v'_M$ et $v_W \leq_W v'_W$.

On peut associer un pré-mariage (v_M, v_W) à tout mariage μ en posant $v_M(m) = \mu(m)$ et $v_W(w) = \mu(w)$. On dira que (v_M, v_W) est le pré-mariage défini par μ.

On dira qu’un pré-mariage (v_M, v_W) induit un mariage μ, si l’application $\mu : M \cup W \to M \cup W$ définie par : $\mu(m) = v_M(m)$ et $\mu(w) = v_W(w)$ est un mariage.

Un mariage définit toujours un pré-mariage, par contre, un pré-mariage n’induit pas toujours un mariage. Un mariage μ et un pré-mariage (v_M, v_W) sont dits équivalents si μ définit (v_M, v_W) et (v_M, v_W) induit μ.

En introduisant le pré-mariage défini par un mariage μ dans les conditions de stabilité (3.1) et (3.3), l’auteur montre que, sous l’hypothèse des préférences strictes, on a :

(i) Si un mariage μ est stable, alors le pré-mariage (v_M, v_W) défini par μ est solution du système :

$$\forall m \in M, \ v_M(m) = \max_{\geq_M} \{ w \in W, \ m \geq_w v_W(w) \} \cup \{m\}.$$ \hspace{1cm} (3.6)

$$\forall w \in W, \ v_W(w) = \max_{\geq_M} \{ m \in M, \ w \geq_m v_M(m) \} \cup \{w\}.$$ \hspace{1cm} (3.7)

(ii) Si un pré-mariage (v_M, v_W) est solution du système (3.6)-(3.7), alors il induit un mariage stable μ.

La recherche d’un mariage stable revient donc à résoudre le système (3.6)-(3.7).

Considérons les deux applications : $T_1 : V \to V_M$ et $T_2 : V \to V_W$ définies par :

$$T_1(v_M, v_W)(m) = \max_{\geq_M} \{ w \in W, \ m \geq_w v_W(w) \} \cup \{m\}, \ \forall m \in M,$$ \hspace{1cm} (3.8)

$$T_2(v_M, v_W)(w) = \max_{\geq_M} \{ m \in M, \ w \geq_m v_M(m) \} \cup \{w\}, \ \forall w \in W,$$ \hspace{1cm} (3.9)

puis l’application :

$$\left\{ \begin{array}{ll}
T : V \to V, \\
(v_M, v_W) \mapsto (T_1(v_M, v_W), T_2(v_M, v_W)).
\end{array} \right.$$

Clairement, les solutions du système (3.6)-(3.7), sont les points fixes de T.

On peut vérifier que (V, \geq_M) est un treillis complet, et que $T : V \to V$ est croissante. Le théorème du point fixe de Tarski permet de conclure alors que l’ensemble P des solutions du système (3.6)-(3.7) est non vide et que le système (P, \geq_M) est un treillis complet. Il s’en suit que l’ensemble S des mariages stables est non vide et est un treillis complet, isomorphe à (P, \geq_M).

Dans le cas des préférences non strictes, les solutions du système (3.6)-(3.7) ne caractérisent plus l’ensemble des mariages stables. L’auteur montre cependant que sa démarche peut toujours être exploitée pour montrer l’existence d’un mariage stable.
3.2 Jeux à complémentarités stratégiques

3.2.1 Statiques comparatives

L’objet des statiques comparatives est l’étude de l’évolution des solutions optimales d’un problème en fonction de paramètres faisant partie de son environnement. Un exemple en est l’évolution de la répartition optimale de la consommation en fonction des prix, ou bien l’évolution de la meilleure réponse d’un joueur, en fonction des stratégies des autres joueurs dans un jeu non coopératif. La théorie des treillis apporte un éclairage sur cette question.

Topkis (1978) considère la famille de problèmes d’optimisation :

\[
\min f(x,t), \quad x \in S_t.
\]

Dans (3.10), la variable de décision est \(x \), \(t \) est un paramètre appartenant à un ensemble \(T \). La fonction objectif \(f \) et l’ensemble des contraintes \(S_t \) dépendent du paramètre \(t \in T \). Pour \(t \) fixé, notons \(S^*_t \) l’ensemble des solutions optimales du problème (3.10). L’auteur donne des conditions suffisantes pour pouvoir sélectionner pour chaque \(t \in T \) une solution \(s_t \in S^*_t \), telle que \(s_t \) soit une fonction isotone de \(t \), c’est à dire ; \(t \leq b \Rightarrow s_t \leq s_b \). Pour cela, il commence par donner des conditions pour que la correspondance \(S^*_t \) soit ascendante en \(t \) sur \(T^* = \{ t \in T : \quad S^*_t \neq \emptyset \} \):

Théorème 14. (Topkis, 1978) Si \(S \) est un treillis, \(T \) un ensemble partiellement ordonné, \(S_t \subseteq S \) est ascendante en \(t \) sur \(T \), \(f(x,t) \) est sous-modulaire en \(x \) sur \(S \) pour tout \(t \in T \), et \(f(x,t) \) possède des différences antitones en \((x,t) \) sur \(S \times T \), alors \(S^*_t \) est ascendante en \(t \) sur \(T^* \).

L’introduction de conditions topologiques supplémentaires permet, en vertu du Théorème 7, d’assurer que \(S^*_t \) est non vide et possède un plus petit élément \(s_t \) et un plus grand élément \(\overline{s}_t \). L’isotonie des sélections \(s_t \) et \(\overline{s}_t \) va alors découler de l’ascendance de la correspondance \(S^*_t \) :

Théorème 15. (Topkis, 1978) Si, en plus des conditions du Théorème 14, chaque \(S_t \) est compact dans une topologie plus fine que sa topologie d’intervalle, et \(f(x,t) \) est semi-continue inférieurement en \(x \) sur \(S_t \) pour tout \(t \in T \), alors \(S^*_t \) possède un plus petit élément \(s_t \) et un plus grand élément \(\overline{s}_t \). De plus, \(s_t \) et \(\overline{s}_t \) sont isotones en \(t \) sur \(T \).

3.2.2 Jeux sur-modulaires :

Considérons le jeu sous forme normale :

\[
J = (N, \{X_i\}_{i \in N}, \{f_i\}_{i \in N}),
\]

où :

1. \(N = \{1, ..., n\} \) est l’ensemble des joueurs ;
2. \(X_i \) est l’ensemble des stratégies du joueur \(i \) ;
3. \(f_i : \quad X \rightarrow \mathbb{R} \), avec \(X = \prod_{i \in N} X_i \), est la fonction de gain du joueur \(i \).

L’ensemble \(\mathbb{R}^n \), \(n \in \mathbb{N}^* \), est muni de la structure de treillis, avec les opérations :

\[
x \land y = (\min(x_1, y_1), \min(x_2, y_2), ..., \min(x_n, y_n)).
\]

\[
x \lor y = (\max(x_1, y_1), \max(x_2, y_2), ..., \max(x_n, y_n)).
\]

Pour les notions de fonctions isotones et différences isotones, se référer à la section 1.3.2.

Définition 44. Le jeu sous forme normale (3.11) est un jeu sur-modulaire si pour tout \(i \in N \) :

1. \(X_i \) est un sous-treillis de \(\mathbb{R}^{m_i} \), avec \(m_i \in \mathbb{N}^* \);
2. \(f_i \) est sur-modulaire en \(x_i \) pour tout \(x_{-i} \in X_{-i} \);
3. f_i possède des différences isotones en (x_i, x_{-i}) sur $X_i \times X_{-i}$.

Dans la Définition 44, la fonction de gain f_i de chaque joueur i est sur-modulaire en x_i, c'est à dire : pour tous $s_i, t_i \in X_i$, et $x_{-i} \in X_{-i}$, :

$$f_i(s_i \vee t_i, x_{-i}) + f_i(s_i \wedge t_i, x_{-i}) \geq f_i(s_i, x_{-i}) + f_i(t_i, x_{-i}) \tag{3.12}$$

Chaque fonction de gain f_i est supposée à différences croissantes en (x_i, x_{-i}) sur $X_i \times X_{-i}$, i.e : pour tous $s_i, t_i \in X_i$, et $v_{-i}, w_{-i} \in X_{-i}$ tels que : $s_i \leq t_i$ et $v_{-i} \leq w_{-i}$, on a :

$$f_i(t_i, w_{-i}) - f_i(s_i, w_{-i}) \geq f_i(t_i, v_{-i}) - f_i(s_i, v_{-i}) \tag{3.13}$$

L'inégalité (3.13) signifie que si les joueurs dans $N \setminus \{i\}$ augmentent leur stratégie jointe de v_{-i} à w_{-i}, alors le joueur i a plus d’incitation à augmenter sa stratégie de s_i à t_i.

Posons $X = \prod_{i=1}^n X_i$. Associons à chaque joueur $i \in N$ la correspondance de meilleures réponses :

$$B_i : \quad X \to X_i \quad \quad x \mapsto \operatorname{Argmax}_{z \in X_i} f_i(z, x_{-i}).$$

La correspondance de meilleures réponses du jeu sera :

$$B : \quad X \to X \quad \quad x \mapsto \prod_{i=1}^n B_i(x).$$

Une situation $x \in X$ est un équilibre de Nash du jeu (3.11) si et seulement si x est un point fixe de B. Soit $i \in N$. Supposons que X est compact et f_i semi-continue supérieurement en x_i sur X_i. Par application du Théorème 15 avec $T = X_{-i}$, $S_i = X_i$, $B_i(x)$ admet un plus petit élément \underline{x}_i et un plus grand élément \overline{x}_i pour tout $x \in X$. De plus, les fonctions $x_{-i} \mapsto \underline{x}_i$ et $x_{-i} \mapsto \overline{x}_i$ sont isotones en x_{-i} sur X_{-i}.

Considérons la fonction :

$$\underline{g} : \quad X \to X \quad \quad x = (x_1, x_2, ..., x_n) \mapsto (\underline{x}_1, \underline{x}_2, ..., \underline{x}_n)$$

Comme les fonctions $x_{-i} \mapsto \underline{x}_i$ sont isotones en x_{-i} sur X_{-i} pour tout $i \in N$, la fonction \underline{g} est isotone en x sur X. Remarquons également que $\underline{g}(x) \in B(x) \quad \forall x \in X$. X étant compact, il est un treillis complet. Par application du théorème du point fixe de Tarski, \underline{g} admet un point fixe \underline{x}^*. Mais \underline{x}^* est également un point fixe de la correspondance B, car $\underline{x}^* = \underline{g}(\underline{x}^*) \in B(\underline{x}^*)$. \underline{x}^* est donc un équilibre de Nash du jeu (3.11), en fait c’est le petit équilibre du jeu (3.11) : si x est un équilibre de Nash du jeu (3.11), alors $x_i \in B_i(x) \quad \forall i \in N$, on a donc $\underline{x}_i \leq x_i \forall i \in N$ par définition \underline{x}_i est le plus petit élément de $B_i(x)$. On a donc $\underline{x}^* \leq x$.

De même, en raisonnant sur la fonction :

$$\overline{g} : \quad X \to X \quad \quad x = (x_1, x_2, ..., x_n) \mapsto (\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)$$

on montre que le jeu (3.11) admet un plus grand élément \overline{x}^*. Nous avons donc le théorème suivant dû à Topkis (1979) :

Théorème 16. (Topkis, 1979) Si X est compact et f_i est semi-continue supérieurement en x_i sur X_i pour tout $x_{-i} \in X_{-i}$ et tout $i \in N$, alors l’ensemble des équilibres de Nash du jeu sur-modulaire (3.11) est non vide. De plus, un plus petit et un plus grand équilibre existent.
L’auteur décrit deux algorithmes qui permettent de construire, sous certaines conditions, une suite d’issues du jeu qui converge, selon le choix du point de départ, vers le plus grand ou le plus petit équilibre du jeu.

Le premier algorithme correspond au processus suivant : démarrant d’un profil de stratégies dans X, les joueurs, à tour de rôle, maximisent leurs gain en tenant pour fixes les stratégies des autres joueurs :

Algorithm 1: Premier algorithme de Topkis (1979)

1. On commence avec \(x^{0,0} = x^0 \) le plus petit élément de \(X \).
2. Étant donné \(x^{k,i} \in X, k \) et \(i \) deux entiers naturels avec \(i < n \), on génère \(x^{k,i+1} \) en remplaçant dans \(x^{k,i} \) la stratégie du joueur \(i+1 \) par le plus petit élément de l’ensemble \(\text{Argmax}_{z \in X_{i+1}} f_{i+1}(z, x^{k,i}_{i+1}) \).
3. Une fois \(x^{k,n} \) généré, on pose \(x^{k+1,0} = x^{k,n} \) et on continue.

L’auteur montre que si \(X \) est compact et \(f_i \) est continue sur \(X \) pour tout \(i \in N \), alors la suite \(\{x^{k,i}\}_{k \in N} \) générée par l’algorithme 1 converge vers le plus petit équilibre de Nash du jeu (3.11). Il peut construire une suite \(\{x^{k,i}\}_{k \in N} \) convergeant vers le plus grand équilibre de Nash du jeu (3.11) en assignant, dans l’algorithme 1, à \(x^{0,0} \) la valeur du plus grand élément de \(X \) et en choisissant à chaque itération le plus grand élément de l’ensemble \(\text{Argmax}_{z \in X_{i+1}} f_{i+1}(z, x^{k,i}_{i+1}) \) au lieu du plus petit.

Dans le deuxième algorithme, l’ensemble des stratégies disponibles pour un joueur est supposé indépendant des décisions des autres joueurs. À chaque itération, tous les joueurs, conjointement et indépendamment les uns des autres, maximisent leur gain, chacun d’eux tenant pour fixes les stratégies des autres joueurs :

Algorithm 2: Deuxième algorithme de Topkis (1979)

1. On assigne à \(x^0 \) la valeur du plus petit élément de \(X \).
2. Étant donné \(x^k \in X \), on génère \(x^{k+1} \) en remplaçant la stratégie du joueur \(i \) par le plus petit élément de l’ensemble \(\text{Argmax}_{z \in X_i} f_i(z, x^k_{i-1}) \).

L’auteur montre que sous les conditions du Théorème 16, la suite \(\{x^k\}_{k \in N} \) converge vers le plus petit équilibre du jeu (3.11). L’algorithme 2 permet de construire une suite convergeant vers le plus grand équilibre du jeu (3.11) en assignant à \(x^0 \) la valeur du plus grand élément de \(X \) et en prenant à chaque itération et pour chaque joueur \(i \), le plus grand élément de l’ensemble \(\text{Argmax}_{z \in X_i} f_i(z, x^0_{i-1}) \) au lieu du plus petit.

Plus d’informations sur la structure de l’ensemble des équilibres de Nash d’un jeu sur-modulaire seront données par Zhou (1994). L’auteur montre une généralisation du théorème du point fixe de Tarski au cas des correspondances et l’applique pour montrer le théorème suivant :

Théorème 17. (Zhou, 1994) Si dans le jeu sur-modulaire (3.11) on a pour tout \(i \in N \) :

1. \(X_i \) est compact dans une topologie plus fine que sa topologie d’intervalle.
2. \(f_i \) est semi-continue supérieurement en \(x_i \) sur \(X_i \) pour tout \(x_{-i} \in X_{-i} \)

alors l’ensemble des équilibres de Nash de (3.11) est un treillis complet non vide.

3.2.3 Jeux à complémentarités stratégiques

Le terme « complémentarité stratégique », introduit par Bulow, Geanakoplos et Klemperer (1985), décrit des situations de jeu où chaque joueur a intérêt à répondre à une stratégie agressive des autres joueurs par une stratégie agressive. Ceci peut être formalisé en définissant un jeu à complémentarités stratégiques comme un jeu où la correspondance de meilleures réponses de chaque joueur est ascendante.

L’application du Théorème 14 au jeu (3.11), en tenant compte des conditions de la Définition 44 permet de conclure que la correspondance de meilleure réponse \(B_i : x_{-i} \mapsto \text{Argmax}_{z \in X_i} f_i(z, x_{-i}) \) de chaque joueur \(i \) est ascendant en \(x_{-i} \) sur \(X_{-i} \). Ainsi un jeu sur-modulaire est un jeu à complémentarités...
stratégiques. L’ascendance des correspondances de meilleure réponse peut cependant découler de conditions plus faibles que celles de la Définition 44 : La quasi-surr-modularité et la condition du croisement unique.

Définition 45. (Milgrom et Shannon, 1994) Soit X un treillis, T un ensemble partiellement ordonné, et f : X × T → ℝ. On dit que f satisfait la condition du croisement unique (SCP)1 en (x, t) si, pour tous x', x'' ∈ X et t', t'' ∈ T avec x' > x'' et t' > t'', on a :

\[f(x', t'') > f(x'', t'') \Rightarrow f(x', t') > f(x'', t') \quad \text{et} \quad f(x', t'') \geq f(x'', t'') \Rightarrow f(x', t') \geq f(x'', t'). \] (3.14)

On dit que f satisfait la condition stricte du croisement unique (SSCP)2 en (x, t) si, pour tous t', t'' ∈ T avec t' > t'', on a :

\[f(x', t'') \geq f(x'', t'') \Rightarrow f(x', t') > f(x'', t'). \] (3.15)

Si f : X × T → ℝ satisfait la condition (SCP) ou (SSCP), alors la fonction g : t ↦ f(x', t) − f(x'', t) s’annule en un seul point t* ∈ T. Ceci justifie l’expression « condition du croisement unique ».

Définition 46. Soit X un treillis. Une fonction f : X → ℝ est quasi-sur-modulaire sur X si, pour tous x, y ∈ X on a :

\[f(x) \geq f(x \lor y) \Rightarrow f(x \lor y) \geq f(y) \quad \text{et} \quad f(x) > f(x \lor y) \Rightarrow f(x \lor y) > f(y). \] (3.16)

Toute fonction sur-modulaire est quasi-sur-modulaire et toute fonction à différences isotones satisfait la condition du croisement unique (SCP). Les conditions de quasi-sur-modularité et (SCP) sont donc des conditions plus faibles que la sur-modularité et les différences isotones imposées dans la Définition 44. Ces deux conditions s’avèrent nécessaires et suffisantes pour l’ascendance des correspondances de meilleures réponses joueurs, par application du résultat suivant :

Théorème 18. (Milgrom et Shannon, 1994) Soit f : X × T → ℝ où X est un treillis, T un ensemble partiellement ordonné et S ⊆ X. Alors (t, S) ↦ Argmax \(\{ f(x, t) \mid x \in S \} \) est croissante en (t, S) si et seulement si f est quasi-sur-modulaire en x et satisfait la condition du croisement unique (SCP) en (x, t).

Remarque 6. Dans le Théorème 18, dire que La correspondance \((t, S) \mapsto \text{Argmax} \ f(x, t) \) croissante en (t, S) revient à dire que la correspondance t ↦ Argmax \(\{ f(x, t) \mid x \in S \} \) est ascendante en t sur T, la croissance en (t, S) étant considérée par rapport à l’ordre produit sur T × L(X), avec L(X) l’ensemble des sous-treillis de X. Cet ordre produit est défini par :

\((t, S) \leq (t', S') \iff (t \leq t') \quad \text{et} \quad S \leq S', \) avec :

\(S \leq S' \iff [(x \in S \quad \text{et} \quad y \in S') \Rightarrow x \lor y \in S \quad \text{et} \quad x \lor y \in S']. \)

Milgrom et Shannon (1994) ont introduit la définition suivante des jeux à complémentarités stratégiques :

Définition 47. (Milgrom et Shannon, 1994) Soit le jeu non-coopératif

\[\langle N, \{ X_i \}_{i \in N}, \{ f_i \}_{i \in N} \rangle. \] (3.17)

Le jeu (3.17) est un jeu à complémentarités stratégiques si pour tout i ∈ N :

1. \(X_i \) est un treillis compact ;
2. \(f_i \) est semi-continue supérieurement en \(x_i \) pour \(x_{-i} \) fixé, et continue en \(x_{-i} \) pour \(x_i \) fixé ;
3. \(f_i \) est quasi-sur-modulaire en \(x_i \) et satisfait la condition du croisement unique en \((x_i, x_{-i}) \).

Les conclusions sur les jeux sur-modulaires qui ne reposent que sur l’ascendance des correspondances de meilleures réponses demeurent valables pour la classe, plus large, des jeux à complémentarités stratégiques. Ainsi, l’ensemble des équilibres de Nash d’un jeu à complémentarités stratégiques est un treillis complet non vide.

1. Single Crossing Property
2. Strict Single Crossing Property
3.2.4 Calcul des équilibres dans un jeu à complémentarités stratégiques

Echenique (2007) considère le modèle suivant d’un jeu fini à complémentarités stratégique :

$$\Gamma = \{ (S_i, u_i), i = 1, \ldots, n \}.$$ (3.18)

Dans (3.18), n est le nombre de joueurs, S_i est l’ensemble des stratégies du joueur i et u_i est sa fonction de gain. avec :

1. $S_i \subseteq \mathbb{R}^{d_i}, d_i \in \mathbb{N}^{*}$, est un treillis fini pour $i = 1, \ldots, n$;
2. La fonction $s_i \mapsto u_i(s_i, s_{-i})$ est quasi-sur-modulaire pour tout $s_{-i} \in S_{-i}$;
3. La fonction $(s_i, s_{-i} \mapsto u_i(s_i, s_{-i})$ satisfait la condition du croisement unique en (s_i, s_{-i}).

On peut supposer, sans restriction de généralité, que $S_i = \{ 1, 2, \ldots, K_i \}$ pour $i = 1, \ldots, n$. Posons $S = \prod_{i \in N} S_i$. Pour chaque $s_i \in S_i$, on définit un ensemble réduit $S'_i(s_i)$ de stratégies pour le joueur i en le contraignant à choisir uniquement les stratégies supérieures ou égales à s_i :

$$S'_i(s_i) = \{ \tilde{s}_i \in S_i ; s_i \preceq \tilde{s}_i \}$$

Pour un profil de stratégies $s = (s_1, s_2, \ldots, s_n) \in S$, posons $S^r = \prod_{i \in N} S'_i(s_i)$. on notera $u_i|_{S^r}$ la restriction de u_i à S^r. On définit le jeu réduit associé à Γ en s par :

$$\Gamma^r(s) = \{ (S'_i(s_i), u_i|_{S^r}), i = 1, \ldots, n \}.$$ (3.19)

L’auteur montre les deux lemmes suivants :

Lemme 2. Si Γ est un jeu fini a complémentarités stratégiques, il en est de même de $\Gamma^r(s)$ pour tout profil de stratégies $s \in S$.

Lemme 3. Si s est un équilibre de Nash de Γ et $z \preceq s$, alors s est un équilibre de Nash de $\Gamma^r(z)$.

Les Lemmes 2 et 3 sont à la base d’un algorithme qui permet de calculer tous les équilibres de Nash du jeu Γ :

Le jeu Γ étant un jeu fini à complémentarités stratégiques, l’ensemble de ses équilibres de Nash est un treillis complet non vide. Il possède un plus petit équilibre ε^* qu’on peut déterminer en appliquant l’algorithme 1 ou 2 de Topkis (1979), avec pour point de départ le plus petit élément de S. En vertu du Lemme 3, tous les équilibres de Nash de Γ, différents de ε^*, sont aussi des équilibres de Nash du jeu réduit $\Gamma^r(\varepsilon^*)$. Mais $\Gamma^r(\varepsilon^*)$ est un jeu fini à complémentarités stratégiques d’après le Lemme 2. On peut donc lui appliquer la procédure à nouveau. On obtient à chaque étape un jeu réduit contenant moins d’issues possibles que son prédécesseur. Le jeu Γ étant fini, le processus s’arrête au bout d’un nombre fini d’étapes et on aura alors obtenu tous les équilibres de Nash de Γ.

3.3 Jeux coopératifs sur un treillis

Dans cette section, nous présentons une extension de la théorie des jeux coopératifs qui permet de modéliser des situations rencontrées dans les applications et qui ne sont pas prises en charge par le modèle classique des jeux coopératifs. Rappelons qu’un jeu coopératif classique à gains transférables sur un ensemble de joueurs N est donné par une fonction $v : 2^N \rightarrow \mathbb{R}$ avec $v(\emptyset) = 0$. On remarquera que l’ensemble de départ de la fonction v est le treillis booléen 2^N. On pourra alors considérer le cas où l’ensemble de départ de v est un treillis quelconque, et on obtient la définition suivante :

Définition 48. Soit (L, \preceq) un treillis fini de plus petit élément \bot. Un jeu coopératif sur (L, \preceq) est un couple (L, v) où $v : L \rightarrow \mathbb{R}$ est une fonction telle que $v(\bot) = 0$.

Nous passons en revue ci-après quelques situations pratiques qui sont bien modélisées avec les éléments introduits dans la Définition 48.
3.3.1 Jeux sous forme de fonction de partition

Une partie de N est une division de celui-ci en parties non vides et deux à deux disjointes, appelées classes, de sorte que chaque élément de N appartienne à une et une seule classe. On note l'ensemble des partitions de N par $\Pi(N)$. Une partition P de N est plus fine qu’une partition P' du même ensemble N si toute classe de P' est une union de classes de P. On note alors $P \leq P'$. On sait que $(\Pi(N), \leq)$ est un treillis (Barbut, 1968).

Thall et Lucas (1963) ont introduit les jeux en forme de fonction de partition pour tenir compte du fait que le gain d’une coalition S ne dépend pas uniquement de ses membres, mais aussi de l’organisation des joueurs qui ne sont pas dans S. Ils définissent pour chaque partition $P \in \Pi(N)$ une fonction $F_P : P \rightarrow \mathbb{R}$. Si S est une classe de la partition P alors $F_P(S)$ est la valeur de la coalition S lorsque les joueurs sont organisés suivant la partitions P. La fonction F définie sur $\Pi(N)$, $P \mapsto F_P$, est appelée la fonction de partition du jeu et le couple (N,F) est appelé un jeu coopératif sous forme de fonction de partition.

3.3.2 Jeux globaux

Les jeux globaux ont été introduits par Gilboa et Lehrer (1991). Dans la même ligne que les jeux sous forme de fonction de partition, le potentiel d’une coalition S de joueurs ne dépend pas uniquement des joueurs de S, mais de l’organisation de l’ensemble des joueurs. La différence avec les jeux sous forme de fonction de partition est que les jeux globaux associent une valeur non pas à des coalitions, mais à chaque partition de N. Un jeu global est donc un couple (N,v) avec $v : \Pi(N) \rightarrow \mathbb{R}$. Le plus petit élément de $\Pi(N)$ est $\bot = \{(i), P \in N\}$. On définit $v(\bot) = 0$. Un jeu global est donc un jeu coopératif défini sur le treillis des partitions de N.

3.3.3 Jeux multi-choix

Introduits par Hsiao et Raghavan (1993), les jeux multi-choix permettent de modéliser la présence de différents niveaux de participation d’un joueur à une coalition. On peut supposer, par exemple, que chaque joueur possède trois niveaux de participation possibles à une coalition : 0, 1 et 2. Le niveau 0 signifie l’absence du joueur de la coalition, le niveau 1 signifie sa participation mais sans grand enthousiasme, et le niveau 2 signifie un engagement total du joueur dans la coalition.

Notons par L la chaîne $0 \leq 1 \leq 2$, et soit $n = |N|$ le nombre de joueurs. Un jeu multichoix est donné par une fonction $v : L^n \rightarrow \mathbb{R}$. L^n est bien un treillis par rapport à l’ordre produit induit par l’ordre de L. Son plus petit élément est $\bot = (0, \ldots, 0)$ qui correspond à la coalition vide, on a donc $v(\bot) = 0$. La fonction v associe à chaque configuration des niveaux de participation des joueurs, un gain donné.

3.3.4 Jeux bi-coopératifs

$$3^N = \{(A,B) \in P(N) \times P(N), A \cap B = \emptyset\}.$$

L’ensemble 3^N est muni de la structure de treillis par la relation d’ordre \preceq définie par :

$$(A,B) \preceq (C,D) \iff (A \subseteq C \text{ et } B \supseteq D).$$

Un jeu bi-coopératif est un couple (N,v) avec $v : 3^N \rightarrow \mathbb{R}$, telle que $v(\emptyset,\emptyset)=0$, où

L’interprétation de $v(S,T)$ est la suivante : c’est le gain réalisé par la coalition S si les joueurs de T s’unissent pour faire face à l’action de S, tandis que les autres joueurs, i.e les éléments de $N \setminus (S \cup T)$, n’interviennent pas dans le conflit.

Un cas particulier du modèle des jeux bi-coopératifs est celui où v peut prendre uniquement les valeurs
3.3. JEU COOPÉRATIFS SUR UN TREILLIS

0 et 1. On obtient alors les jeux de vote ternaire étudiés par Felsenthal et Machover (1997). \(v(S, T) \) correspond alors à la décision prise concernant un projet de loi par exemple, si les membres de \(S \) votent pour le projet, les membres de \(T \) votent contre, et les autres joueurs choisissent l’abstention.

Dans le cadre de la décision multicritère, on retrouve la notion de jeux bi-coopératifs sous une autre forme : les bi-capacités (Grabisch et Labreuche, 2005).

Définition 49. Une bi-capacité est une application \(v : \mathcal{P}(N)^2 \to [0, 1] \) telle que :

1. \(v(\emptyset, \emptyset) = 0 \).
2. \(\forall (A, B), (C, D) \in \mathcal{P}(N)^2 : (A, B) \preceq (C, D) \Rightarrow v(A, B) \leq v(C, D) \).

Si de plus \(v(\emptyset, N) = -1 \) et \(v(N, \emptyset) = 1 \), la capacité \(v \) est dite normalisée.

Les bi-capacités permettent de modéliser la situation où les scores de chaque critère sont donnés sur une échelle bipolaire, c’est à dire une échelle contenant des valeurs négatives ou mauvaises, une valeur neutre 0, et des valeurs positives ou bonnes. \(v(A, B) \) sera le score global de l’alternative caractérisée par une satisfaction totale des critères dans \(A \), une insatisfaction totale des critères dans \(B \) et une valeur neutre pour les critères n’appartenant ni à \(A \), ni à \(B \).

Conclusion

Nous avons fait un tour d’horizon des applications de la théorie des treillis au problèmes de décision en général et en particulier à la théorie des jeux. Nous avons rencontré la structure de treillis dans les problèmes de mariages qui consistent à former des couples d’objets. La structure de treillis s’est manifestée également dans les jeux à complémentarités stratégiques où les joueurs ont intérêt à augmenter leurs stratégies lorsque les stratégies des autres joueurs augmentent. Nous avons aussi abordé l’utilisation des treillis dans l’aide multicritère à la décision en présentant le cas des capacités définies sur un treillis quelconque au lieu du treillis de tous les sous-ensembles de l’ensemble des critères. La théorie des treillis ouvre des voies intéressantes à explorer, et son potentiel peut être exploité pour développer l’aspect algorithmique du calcul des équilibres dans les jeux.
Chapitre 4

Jeux coopératifs à coopération restreinte

Sommaire

4.1 Systèmes d’ensembles .. 45
 4.1.1 Anneau d’ensembles, famille d’intersections, famille de croisements 46
 4.1.2 Géométries convexes ... 46
 4.1.3 Antimatrôïdes .. 46
 4.1.4 Systèmes augmentants ... 47
4.2 Jeux coopératifs sur des systèmes d’ensembles ... 47
4.3 Cœur d’un jeu coopératif à coopération restreinte .. 48
 4.3.1 Non vacuité du cœur d’un jeu à coopération restreinte 48
 4.3.2 Structure du cœur d’un jeu à coopération restreinte 49
4.4 Relation entre le cœur et l’ensemble de Weber ... 50
 4.4.1 Systèmes réguliers .. 51
 4.4.2 Systèmes \(k\)-réguliers .. 53
 4.4.3 Systèmes arbitraires ... 53
4.5 Jeux coopératifs sur un ordre coloré ... 55
4.6 Conclusion ... 57

Introduction

Souvent, dans les applications, les coalitions qui peuvent être effectivement formées dans le jeu ne constituent qu’une partie \(\mathcal{F}\) de l’ensemble \(2^\mathcal{N}\) de toutes les coalitions possibles. Les coalitions appartenant à \(\mathcal{F}\) seront appelées les coalitions réalisables. On supposera toujours que \(\emptyset \in \mathcal{F}\) et \(\mathcal{N} \in \mathcal{F}\). Sous ces deux hypothèses, la famille \(\mathcal{F}\) constitue ce qu’on appelle un système d’ensembles sur \(\mathcal{N}\). La section 4.1 a pour objet d’introduire les systèmes d’ensembles et leurs différents types et propriétés. Lorsque l’ensemble des coalitions réalisables \(\mathcal{F}\) est différent de \(2^\mathcal{N}\), le jeu coopératif est dit à coopération restreinte. Les notions définies pour les jeux coopératifs classiques devraient être revisitées et adaptées au cas de la coopération restreinte. Dans la section 4.2, nous exposons l’extension de la théorie classique des jeux à la situation de la coopération restreinte et faisons une revue des principaux résultats connus.

4.1 Systèmes d’ensembles

Soit \(\mathcal{N}\) un ensemble fini de joueurs et \(\mathcal{F}\) une famille de sous-ensembles de \(\mathcal{N}\). \((\mathcal{F}, \subseteq)\) est alors un ensemble partiellement ordonné fini. Si \(\mathcal{F}\) contient \(\emptyset\) et \(\mathcal{N}\), ce que nous supposerons tout au long de ce chapitre, alors on dit que \(\mathcal{F}\) est un système d’ensembles sur \(\mathcal{N}\). Nous présentons dans ce qui suit les types de systèmes d’ensembles rencontrés souvent en pratique.
4.1.1 Anneau d’ensembles, famille d’intersections, famille de croisements

Définition 50. (Lovász, 1983) Soit \mathcal{F} un système d’ensembles sur N. Alors :

i) \mathcal{F} est un anneau d’ensembles si :
\[
\forall S, T \in \mathcal{F}, S \cap T \in \mathcal{F} \text{ et } S \cup T \in \mathcal{F}.
\]

ii) \mathcal{F} est une famille d’intersections si :
\[
\forall S, T \in \mathcal{F} \text{ tels que } S \cap T \neq \emptyset, \text{ on a : } S \cap T \in \mathcal{F} \text{ et } S \cup T \in \mathcal{F}.
\]

iii) \mathcal{F} est une famille de croisements si :
\[
\forall S, T \in \mathcal{F} \text{ tels que } S \cap T \neq \emptyset \text{ et } S \cup T \neq N, \text{ on a : } S \cap T \in \mathcal{F} \text{ et } S \cup T \in \mathcal{F}.
\]

Il est alors facile de vérifier la proposition suivante :

Proposition 12. Si \mathcal{F} est un système d’ensembles sur N, alors :

\mathcal{F} est un anneau d’ensembles \Rightarrow \mathcal{F} est une famille d’intersections \Rightarrow \mathcal{F} est une famille de croisements.

4.1.2 Géométries convexes

Edelman et Jamison (1985) ont introduit la notion de géométrie convexe comme abstraction combinatoire de la notion classique de la convexité.

Soit \mathcal{F} une famille de sous ensembles de N. Nous considérons trois propriétés pour la famille \mathcal{F}. La première propriété est :
\[
\emptyset \in \mathcal{F} \text{ et } N \in \mathcal{F}. \quad (4.1)
\]

Remarquons que lorsque \mathcal{F} est un système d’ensembles sur N, la propriété (4.1) est vérifiée.

La deuxième propriété est la stabilité par rapport à l’intersection :
\[
\forall S, T \in \mathcal{F}, \ S \cap T \in \mathcal{F}. \quad (4.2)
\]

Pour introduire la troisième propriété, nous définissons l’opérateur $-$: $2^N \rightarrow 2^N$ par :
\[
\overline{S} = \bigcap \{C \in \mathcal{F}, S \subseteq C\}.
\]

On dit que \mathcal{F} satisfait la propriété d’anti-échange si :
\[
\forall S \in \mathcal{F}, \ \forall i, j \in N \text{ avec } i, j \notin \overline{S}, \ j \in S \cup \{i\} \Rightarrow i \notin S \cup \{j\}. \quad (4.3)
\]

Une géométrie convexe sur N est une famille \mathcal{F} de sous-ensembles de N qui satisfait les propriétés (4.1), (4.2) et (4.3). $\mathcal{L} = (\mathcal{F}, \subseteq)$, où \mathcal{F} est une géométrie convexe, est alors un treillis dont les opérations \wedge et \vee sont données par :
\[
S \wedge T = S \cap T
\]
\[
S \vee T = \overline{\overline{S} \cup \overline{T}}
\]

4.1.3 Antimatroides

Les antimatroides ont été introduits pour la première fois par Dilworth (1940). Une famille \mathcal{A} de sous-ensembles de N est un antimatroïde si la famille $\overline{\mathcal{A}} = \{N \setminus F \mid F \in \mathcal{A}\}$ est une géométrie convexe. Un antimatroïde est donc la famille des complémentaires d’une géométrie convexe et vice versa. On dit alors que les deux structures d’antimatroides et de géométrie convexe sont duales.

Alternativement, un antimatroïde \mathcal{A} sur N peut être caractérisé par :

1. $\emptyset \in \mathcal{A}$;
2. Si $S \in \mathcal{A}$ et $T \in \mathcal{A}$, alors $S \cup T \in \mathcal{A}$;
3. Pour tout $S \in \mathcal{A}$ non vide, il existe $i \in S$ tel que $S \setminus \{i\} \in \mathcal{A}$.

\[
\mathcal{A} = \{N \setminus F \mid F \in \mathcal{A}\}.
\]
4.2. JEUX COOPÉRATIFS SUR DES SYSTÈMES D’ENSEMBLES

4.1.4 Systèmes augmentants

Un système augmentant sur \(N \) est une paire \((N, A)\) où \(A \) est une famille de sous-ensembles de \(N \) vérifiant :

i) \(\emptyset \in A \);

ii) \(\forall S, T \in A, S \cap T \neq \emptyset \Rightarrow S \cup T \in A \);

iii) \(\forall S, T \in A \) avec \(S \subset T \), \(\exists i \in T \setminus S \) tel que \(S \cup \{i\} \in A \).

4.2 Jeux coopératifs sur des systèmes d’ensembles

La définition suivante généralise la définition d’un jeu coopératif pour inclure les situations de coopération restreinte.

Définition 51. Soit \(F \) un système d’ensembles sur \(N \). Un jeu \(v \) sur \(F \) est une application \(v : F \rightarrow \mathbb{R} \) telle que \(v(\emptyset) = 0 \).

Diverses propriétés définies pour les jeux coopératifs classiques ont été adaptées au cas de la coopération restreinte. Nous revoyons en ce qui suit les plus importantes. Soit \(v \) un jeu sur le système d’ensembles \(F \).

Monotonie : \(v \) est monotone si :

\[
S \subseteq T \Rightarrow v(S) \leq v(T), \ \forall S, T \in F
\] \hfill (4.4)

Sur-modularité : Suivant Lovász, 1983, si \(F \) est un anneau d’ensembles, alors \(v \) est sur-modulaire, si :

\[
\forall S, T \in F, \ v(S) + v(T) \leq v(S \cap T) + v(S \cup T).
\] \hfill (4.5)

Si \(F \) est une famille d'intersections, alors \(v \) est sur-modulaire, si (4.5) est vérifiée pour toute paire \((S, T) \in F^2\) telle que \(S \cap T \neq \emptyset \).

Si \(F \) est une famille de croisements, alors \(v \) est sur-modulaire, si (4.5) est vérifiée pour toute paire \((S, T) \in F^2\) telle que \(S \cap T \neq \emptyset \) et \(S \cup T \neq N \).

Convexité : Lorsque \((F, \subseteq)\) est un treillis avec les opérations \(\wedge \) et \(\vee \), alors \(v \) est convexe si :

\[
\forall S, T \in F, \ v(S) + v(T) \leq v(S \vee T) + v(S \wedge T).
\] \hfill (4.6)

Lorsque \(F = 2^N \), nous avons deux caractérisations de la convexité d’un jeu \(v \) sur \(F \) :

\[
v \text{ est convexe} \iff \forall S \subset T \subset N, \ \forall j \in N \setminus T, \ v(S \cup j) - v(S) \leq v(T \cup j) - v(T).
\] \hfill (4.7)

\[
v \text{ est convexe} \iff \forall S \subset N, \ \forall i,j \in N \setminus S, \ v(S \cup i) - v(S) \leq v(S \cup i \cup j) - v(S \cup i).
\] \hfill (4.8)

Le jeu \(v \) est dit sur-additif, si l’inégalité (4.6) est vérifiée pour toute paire \((S, T) \in F^2\) telle que \(S \cap T = \emptyset \).

\(v \) est dit quasi-convexe si :

\[
\forall S, T \in F, \text{ avec } S \cap T \in F \text{ et } S \cup T \in F; \ v(S) + v(T) \leq v(S \cup T) + v(S \cap T).
\] \hfill (4.9)

Pour un jeu quelconque \(v \) sur un treillis \((F, \subseteq)\), nous avons :

\(v \) convexe \(\Rightarrow \) \(v \) quasi-convexe \(\Rightarrow \) \(v \) sur-additif.
4.3 Cœur d’un jeu coopératif à coopération restreinte

Dans cette partie nous nous intéressons à la généralisation du concept important de cœur aux jeux coopératifs à coopération restreinte. Un autre concept important, la valeur de Shapley, sera étudié dans le chapitre 5.

Définition 52. (Gillies, 1959 ; Faigle, 1989) Le cœur du jeu coopératif \((\mathcal{F}, v)\) est l’ensemble :
\[
\text{cœur}(v) = \{ x \in \mathbb{R}^n ; x(N) = v(N), \ x(S) \geq v(S) \ \forall S \subseteq \mathcal{F} \}.
\]

Soit \(\mathcal{F}\) un système d’ensembles sur \(N\). Suivant Faigle, 1989, on définit \(\mathcal{F}\) la famille des sous-ensembles \(A\) de \(N\), telle que :
\[
A = A_1 \cup A_2 \ldots \cup A_k, \ k \in \mathbb{N}^* ; \ A_i \in \mathcal{F}, \ i = 1 \ldots k ; \ A_1, A_2, \ldots, A_k \text{ deux à deux disjoints}.
\]

Proposition 13. (Faigle, 1989) \(\mathcal{F}\) est un système d’ensembles sur \(N\). De plus :
\[
(S, T \in \mathcal{F}, S \cap T = \emptyset) \Rightarrow S \cup T \in \mathcal{F}
\]

Si \(A \in \mathcal{F}\), alors toute collection \(A_1, \ldots, A_k\) satisfaisant (4.10) est appelée une représentation de \(A\). \(A \in \mathcal{F}\) peut avoir plus d’une représentation. On note par \(R(A)\) l’ensemble de toutes les représentations de \(A\).

Soit \(v\) un jeu coopératif sur le système \(\mathcal{F}\). On définit le jeu \(\overline{v}\) sur \(\mathcal{F}\) par :
\[
\overline{v}(S) = \max_{\{S_1, \ldots, S_k\} \in R(S)} \sum_{i=1}^{k} v(S_i).
\]

Le jeu \(\overline{v}\) est appelé l’extension de \(v\) à \(\mathcal{F}\).

Proposition 14. (Faigle, 1989) Soit \(v\) un jeu coopératif sur le système \(\mathcal{F}\), et \(\overline{v}\) son extension à \(\mathcal{F}\). Alors :

i) \(\overline{v}\) est sur-additif.

ii) Si \(\overline{v}(N) = v(N)\) alors cœur(\(\overline{v}\)) = cœur(\(v\)).

4.3.1 Non vacuité du cœur d’un jeu à coopération restreinte

Comme nous allons le voir, les conditions de non vacuité du cœur d’un jeu coopératif à coopération restreinte sont les mêmes que dans le cas classique, i.e le cœur du jeu est non vide si et seulement le jeu est équilibré. Bien entendu, il faut adapter la définition de jeu équilibré au cas de la coopération restreinte.

Définition 53. Un jeu coopératif \(v\) sur un systèmes d’ensembles \(\mathcal{F}\) sur \(N\) est équilibré, si pour toute collection équilibrée \(P \subseteq \mathcal{F}\) de sous ensembles de \(N\), avec le système de poids \((\delta_S)_{S \subseteq P}\), on a :
\[
\sum_{S \in P} \delta_S v(S) \leq v(N).
\]

Théorème 19. (Faigle, 1989) Soit \(v\) un jeu coopératif sur un système d’ensembles \(\mathcal{F}\), alors cœur(\(v\)) \(\neq \emptyset \Leftrightarrow \) \(v\) est équilibré.
4.3.2 Structure du cœur d’un jeu à coopération restreinte

La principale différence avec le cas classique est que cœur\(v\) n’est pas nécessairement borné. L’exemple suivant illustre ce fait.

Exemple 13.\(N = \{1, 2, 3\}, \ F = \{\emptyset, 2, 3, 12, 13, 123\}. \ v(2) = 1, v(3) = 1, v(12) = 2, v(13) = 2, v(123) = 3.\)

Les éléments de cœur\(v\) sont les triplets \((x_1, x_2, x_3) \in \mathbb{R}^3 \) vérifiant le système :

\[
\begin{align*}
x_2 & \geq 1 \\
x_3 & \geq 1 \\
x_1 + x_2 & \geq 1 \\
x_1 + x_3 & \geq 2 \\
x_1 + x_2 + x_3 & = 3
\end{align*}
\]

Pour \(x_3 \geq 1 \) quelconque, le point \((2 - x_3, 1, x_3) \) est toujours dans cœur\(v\). Donc cœur\(v\) n’est pas borné, car il contient une demi-droite ayant pour origine le point \((1, 1, 1) \).

Pour remédier à ce problème, plusieurs approches ont été adoptées. Elles se résument à sélectionner une partie bornée de cœur\(v\) et la considérer comme solution du jeu. A titre d’exemple, le cœur positif d’un jeu a été défini de cette manière.

Définition 54. (FAIGLE, 1989) Soit \(F \) un système d’ensembles sur \(N \) et \(v \) un jeu sur \(F \). Le cœur positif de \(v \) est l’ensemble :

\[
\text{cœur}^+(v) = \{ x \in \text{cœur}(v), \ x \geq 0 \}.
\]

cœur\(v\) est un polyèdre, par suite, il peut être décomposé comme suit :

\[
\text{cœur}(v) = \text{cœur}^c(v) + \text{cœur}(F),
\]

où :

\(\text{cœur}^c(v) \) est la partie convexe de cœur\(v\). Elle peut être exprimée comme l’enveloppe convexe d’un nombre fini de sommets, lorsque ces derniers existent. cœur\(F\) est le cone de récession associé au polyèdre cœur\(v\). Il est donné par :

\[
\text{cœur}(F) = \{ x \in \mathbb{R}^n ; \ x(N) = 0, \ x(S) \geq 0 \ \forall S \subseteq F \}.
\]

cœur\(F\) peut être exprimé comme l’enveloppe conique d’un nombre fini de rayons appelés les rayons extrêmes.

Il s’en suit que, pour déterminer complètement le cœur du jeu \(v \), il suffit de connaitre ses sommets et ses rayons extrêmes.

cœur\(F\) joue un rôle important dans la structure de cœur\(v\) à travers la propriété de non dégénérescence qu’on définit ci-après.

Soit \(F \) un système d’ensembles sur \(N \), on définit :

\[
\text{span}(F) = \{ S \subseteq N, \ 1_S = \sum_{k=1}^{p} \alpha_k T_k \ \text{pour} \ \text{un} \ p \in \mathbb{N}^* \ \text{et} \ T_k \in F \ \text{pour} \ k = 1, ..., p. \}.
\]

Définition 55. (GILLES, 2010) Le système \(F \) est dit non dégénéré si \(\text{span}(F) = 2^N \).

On dira que cœur\(v\) est pointé s’il possède des sommets. Les résultats suivants sur la structure du cœur sont dus à DERKS et GILLES, 1995 :

Théorème 20. (DERKS et GILLES, 1995) Soit \(v \) un jeu coopératif sur un système d’ensembles \(F \). On a :

i) cœur\(v\) est pointé \(\Leftrightarrow \) cœur\(F\) = \{0\} \(\Leftrightarrow \) \(F \) est non dégénéré.
ii) cœur\((v)\) est un polytope ⇔ \(F\) est équilibré et non dégénéré.

L’impact du système des coalitions réalisables \(F\) sur la structure du cœur d’un jeu équilibré \(v\) sur \(F\) est résumé par la Figure 4.1.

\[\text{Dégénéré}
\]
\[\text{Équilibré}
\]
\[\text{Non dégénéré}
\]
\[\text{cœur\((v)\) n’a pas de sommets}
\]
\[\text{cœur\((v)\) est un polytope}
\]
\[\text{cœur\((v)\) a des rayons}
\]
\[\text{Non équilibré}
\]
\[\text{Figure 4.1 – La structure du cœur d’un jeu } v \text{ sur un système d’ensembles } F \text{ sur } N.
\]

Derks et Gilles (1995) ont caractérisé les rayons extrêmes du cœur d’un jeu \(v\) quelconque sur un système d’ensembles \(F\) fermé sous \(∪\) et \(∩\). \(F\) est alors un treillis distributif.

Les auteurs ont défini pour tout \(i \in N\) l’ensemble

\[D_i = \bigcap \{S \in F, i \in S\}.
\]

Ils ont alors montré que les rayons extrêmes du cœur sont générés par les vecteurs \(1_{\{j\}} - 1_{\{i\}}\) avec \(i,j \in N, j \in D_i\).

4.4 Relation entre le cœur et l’ensemble de Weber

Soit \(F = 2^N\) et \(σ\) une permutation de \(N\). Pour tout \(i \in N\), on définit la coalition \(S_i = \{σ(1), σ(2), ..., σ(i)\}\). Le vecteur de contribution marginale associé à la permutation \(σ\) est \(x^σ \in \mathbb{R}^n\) défini par :

\[x^σ_{σ(i)} = v(\{σ(1), σ(2), ..., σ(i)\}) - v(\{σ(1), σ(2), ..., σ(i-1)\}), \ i \in N.
\] (4.15)

Définition 56. (Weber, 1988) L’ensemble de Weber du jeu \(v\), noté \(W(v)\), est l’enveloppe convexe de tous les vecteurs de contribution marginale du jeu \(v\).

Nous avons le résultat classique suivant :

Théorème 21. (Shapley, 1971; Ichiishi, 1981) Soit \(v\) un jeu coopératif sur \(F = 2^N\). On a :

i) cœur\((v)\) ⊆ \(W(v)\)

ii) cœur\((v)\) = \(W(v)\) ⇔ \(v\) est convexe.

Lorsque \(F \neq 2^N\), les notions de convexité et de vecteur de contribution marginale doivent être redéfinies, et les résultats du Théorème 21 ne tiennent plus nécessairement.

Dans ce qui suit, nous allons passer en revue les approches adoptées pour la définition de la convexité et des vecteurs de contribution marginale dans les jeux coopératifs à coopération restreinte. Nous allons voir pour chaque approche les conséquences sur la relation entre l’ensemble de Weber et le cœur du jeu.
4.4.1 Systèmes réguliers

Définition 57. (Grabisch, 2013) Un système d'ensembles F sur N est dit régulier si toutes les chaînes maximales de F ont la même longueur $n = |N|$.

Soit F un système régulier sur N et

$$C : \emptyset = S_0 \subset S_1 \subset S_2 \subset \ldots \subset S_n = N$$

une chaîne maximale de F. On peut associer à C une unique permutation σ de N telle que $S_i = \{\sigma(1), \sigma(2), \ldots, \sigma(i)\}$ pour tout $i \in N$, et par suite le vecteur de contribution marginale $x^\sigma \in \mathbb{R}^n$ défini comme dans le cas classique. L'ensemble de Weber de v est l'enveloppe convexe de l'ensemble de tous les vecteurs de contribution marginale de v associés aux chaînes maximales de F.

Les systèmes réguliers sont non-dégénérés, par conséquent, le cœur d’un jeu sur un système régulier possède toujours des sommets. Dans ce qui suit nous examinons plusieurs systèmes réguliers.

Structures de permissions strictes

Une structure de permissions sur N (Derks et Gilles, 1995) est une application $S : N \rightarrow 2^N$ telle que pour tout $i \in N$, on a $i \not\in S(i)$. $S(i)$ est interprété comme l'ensemble des subordonnés du joueur i. Les joueurs dans $S(i)$ ont besoin de la permission du joueur i pour adhérer à une coalition. On dit aussi que i est un supérieur de tout joueur dans $S(i)$.

La structure de permissions S est dite stricte si, pour tout $i \in N$, on ne peut pas trouver une séquence i_1, \ldots, i_k de joueurs telle que $i_1 = i_k = i$ et $i_{l+1} \in S(i_l)$ pour tout l avec $1 \leq l \leq k - 1$.

Dans une structure de permissions stricte, les coalitions réalisables, appelée coalitions autonomes dans ce contexte, doivent satisfaire la contrainte suivante : si une coalition autonome contient un joueur j, alors elle contient tous les supérieurs de j.

Derks et Gilles, 1995, ont considéré les systèmes F résultant d’une structure de permissions stricte, c’est à dire une hiérarchie sur N. Ces systèmes sont réguliers et fermés sous \cup et \cap.

Considérons l’ensemble

$$\text{cœur}(F) = \{x \in \mathbb{R}^n; x(N) = 0, x(S) \geq 0, \forall S \subseteq F\}.$$

On a le théorème suivant.

Théorème 22. (Derks et Gilles, 1995) Soit F la collection des coalitions autonomes résultant d’une structure de permission stricte. Alors, pour tout jeu v sur F, on a :

$$\text{cœur}(v) \subseteq W(v) + \text{cœur}(F).$$

(4.16)

De plus, l’inclusion dans (4.16) est une égalité si et seulement si v est convexe sur F.

Géométries convexes

Soit L une géométrie convexe. En général, nous avons $\text{cœur}(v) \not\subseteq W(v)$ et $W(v) \not\subseteq \text{cœur}(v)$.

Le théorème suivant caractérise les jeux quasi-convexes sur une géométrie convexe par l'inclusion de l'ensemble de Weber dans le cœur du jeu.

Théorème 23. (Bilbao, Lebrón et Jiménez, 1999) Un jeu coopératif v sur une géométrie convexe est quasi-convexe si et seulement si $W(v) \subseteq \text{cœur}(v)$.

Si le jeu v est monotone, l'inclusion $W(v) \subseteq \text{cœur}(v)$ caractérise la convexité de v.

Théorème 24. (Bilbao, Lebrón et Jiménez, 1999) Un jeu monotone v sur une géométrie convexe L est convexe si et seulement si $W(v) \subseteq \text{cœur}(v)$.

Les systèmes augmentants

Un jeu coopératif sur un système augmentant \((N, A)\) est une application \(v : A \to \mathbb{R}_+\) telle que \(v(\emptyset) = 0\).

Pour \(S \subseteq N\), soit \(C_A(S)\) la famille des coalitions non vides et maximales contenues dans \(S\). Lorsqu’elle n’est pas vide, la famille \(C_A(S)\) est toujours une partition d’un sous-ensemble de \(S\). Nous associons au jeu \(v\) le jeu \(v^A : 2^N \to \mathbb{R}\), appelé l’extension de \(v\), défini par :

\[
v^A(S) = \sum_{E \in C_A(S)} v(E) \quad \forall S \subseteq N.
\]

(4.17)

Comme en général, \(N \not\in A\), la définition du cœur positif est modifiée comme suit :

\[
\text{cœur}^+(v) = \{x \in \mathbb{R}_+^n; x(N) = v^A(N), x(S) \geq v(S), \forall S \subseteq A\}.
\]

(4.18)

Les définitions de la convexité et de la sur-additivité ont été adaptées au cas des systèmes augmentants :

Définition 58. (Bilbao et Ordoñez, 2010) Soit \(v\) un jeu sur le système augmentant \((N, A)\)

1) \(v\) est convexe si :

\[
\forall S, T \in A \quad avec \quad S \cup T \in A, \quad v(S) + v(T) \leq \sum_{E \in C_A(S \cap T)} v(E) + v(S \cup T).
\]

(4.19)

2) \(v\) est sur-additif si :

\[
\forall S, T \in A \quad avec \quad S \cap T = \emptyset \quad et \quad S \cup T \in A, \quad v(S) + v(T) \leq v(S \cup T).
\]

(4.20)

La proposition suivante stipule que lorsque \(N \in A\), alors \(A\) est un système régulier et faiblement fermé par union, i.e \(\forall S, T \in A, \quad S \cap T \neq \emptyset \Rightarrow S \cup T \in A\)

Proposition 15. (Grabisch, 2013) \(A\) est un système augmentant contenant \(N\) si et seulement si \(A\) est régulier et faiblement fermé par union.

Par conséquent, lorsque \(N \in A\), les vecteurs de contribution marginale d’un jeu \(v\) sur \(A\) sont définis de la manière usuelle. En général, aucune des inclusions \(\text{cœur}^+(v) \subseteq W(v), W(v) \subseteq \text{cœur}^+(v)\) ne tient. Nous avons cependant les résultats suivants

Théorème 25. (Bilbao et Ordoñez, 2010) Soit \(v\) un jeu sur le système augmentant \((N, A)\), où \(N \in A\). Si \(v\) est monotone convexe, alors \(W(v) \subseteq \text{cœur}^+(v)\) et tout vecteur de contribution marginale de \(v\) est un sommet de \(\text{cœur}^+(v)\).

Théorème 26. (Bilbao et Ordoñez, 2010) Soit \(v\) un jeu sur le système augmentant \((N, A)\) où \(N \in A\). Si \(W(v) \subseteq \text{cœur}^+(v)\), alors \(v\) est sur-additif.

Théorème 27. (Bilbao et Ordoñez, 2010) Soit \(v\) un jeu monotone sur le système augmentant \((N, A)\) où \(N \in A\), alors :

\(v\) est convexe si et seulement si \(\text{cœur}^+(v) = W(v^A)\).

Treillis régulier

Pour les treillis réguliers, on a :

Théorème 28. (Xie et Grabisch, 2009) Soit \(F\) un treillis régulier et \(v\) un jeu sur \(F\), alors

\[
(v\ text{ monotone et convexe}) \Rightarrow W(v) \subseteq \text{cœur}(v).
\]

(4.21)
4.4.2 Systèmes k-réguliers

Définition 59. Un système d'ensembles \mathcal{F} sur N est dit k-régulier si toutes les chaînes maximales dans \mathcal{F} sont de la même longueur k.

Lorsque $k < n$ les vecteurs de contribution marginale ne peuvent pas être définis comme dans le cas classique.

Soit

$$C : \emptyset = S_0 \subset S_1 \subset S_2 \subset \ldots \subset S_k = N$$

une chaîne maximale de \emptyset à N. Lorsque $k < n$, nous aurons $|S_i \setminus S_{i-1}| > 1$ pour au moins un indice $i \in \{1, \ldots, k\}$. La contribution marginale $v(S_i) - v(S_{i-1})$ ne peut alors être imputée à un joueur spécifique de $S_i \setminus S_{i-1}$. Xie et Grabisch, 2009 ont adopté l'approche suivante : si $|S - i \setminus S_{i-1}| > 1$, on choisit arbitrairement un joueur de $S_i \setminus S_{i-1}$ et on impute la contribution $v(S_i) - v(S_{i-1})$ à lui seul, i.e les autres joueurs de $S_i \setminus S_{i-1}$ auront une contribution nulle. Ainsi, la chaîne maximale C va donner plusieurs vecteurs possibles de contribution marginale. Soit M l'ensemble de tous les vecteurs de contribution marginale induits par toutes les chaînes maximales de \mathcal{F}. L'ensemble de Weber de v est alors défini par $W(v) = \text{conv}(M)$. Les auteurs ont obtenu le résultat suivant.

Théorème 29. (Xie et Grabisch, 2009) Soit \mathcal{F} un treillis k-régulier fermé sous \cup et \cap, et v un jeu coopératif sur \mathcal{F}. Alors

$$v \text{ convexe } \Rightarrow \ W(v) \subseteq \text{ cœur}(v).$$

(4.22)

4.4.3 Systèmes arbitraires

Théorème 30. (Faigle, Grabisch et Heyne, 2010) Soit v un jeu monotone sur un système d'ensembles \mathcal{F}, alors :

i) $\text{ cœur}^+(v) \subseteq W(v)$.

ii) v est convexe si et seulement si $\text{ cœur}^+(v) = W(v)$.

La Figure 4.2 résume les résultats présentés dans cette partie. Les petits cercles verts correspondent à des systèmes réguliers et les rouges à des systèmes k-réguliers avec $1 \leq k < n$.

CHAPITRE 4. JEUX COOPÉRATIFS À COOPÉRATION RESTRIETE

Booléen

cœur(v) pointé ⇔ F non-défini

cœur(v) = polytope ⇔ F équilibré et non-défini.

Pour v monotone : cœur⁺(v) ⊆ W(v)

cœur(v) est polytope

v convexe ⇔ cœur⁺(v) = W(v).

Système d'ensembles quelconque

Système de fermeture

cœur(v) est pointé ⇔ F ne contient aucun macro-joueur.

Si v est monotone et convexe alors W(v) ⊆ cœur(v)

Géométrie convexe

cœur(v) est pointé.

v quasi-convexe si et seulement si tous les vecteurs marginaux sont dans cœur(v).

Pour v monotone :

cœur(v) est un polytope ⇔ F contient tous les singletons

v convexe ⇔ W(v) ⊆ cœur(v).

Système de fermeture régulier

Fermé sous ∪ et ∩ et ⊆ O(μ(une partition de N))

Correspond aux structures de permission strictes, approche conjonctive.

v convexe ⇒ W(v) ⊆ cœur(v).

Si F ≠ O(N), cœur(v) n’a pas de sommets.

Treillis distributif

Fermé sous ∪ et ∩ et ⊆ O(N)

Correspond aux structures de permission, approche conjonctive ou disjonctive.

Structure de communication

v convexe ⇔ v fortement monotone et sur-modulaire

Système augmentant

W(v) ⊆ cœur⁺(v) ⇔ v sur-modulaire

Pour v monotone : v convexe ⇔ v sur-modulaire

cœur⁻(v) = W(definition de v)

v convexe ⇔ W(v) ⊆ cœur⁺(v) et touts les vecteurs marginaux sont des sommets de cœur⁺(v).

Antimatroid normal

Correspond aux structures de permission strictes, approche conjonctive ou disjonctive.

Systèm e d'ensembles quelconque

Si v est monotone et convexe alors W(v) ⊆ cœur(v)

Figure 4.2 – Le cœur et l'ensemble de Weber d'un jeu v sur un système F sur N.
4.5 Jeux coopératifs sur un ordre coloré

Soit $P = (X, \preceq, \gamma, N)$ un ordre coloré (Voir la section 1.3.2). Nous n’imposons pas la condition usuelle

$$x \preceq y \Rightarrow \gamma(x) \cap \gamma(y) = \emptyset$$

sur le coloriage γ. Les couleurs sont interprétées comme des joueurs, et les coalitions réalisables sont définies comme suit :

Définition 60. Une coalition réalisable est un sous-ensemble S de N tel qu’il existe un idéal I de P avec $S = \bigcup_{x \in I} \gamma(x)$.

On notera par \mathcal{F} la famille de toutes les coalitions réalisables. Les exemples suivants montrent des situations réelles qui peuvent être décrites par notre modèle de jeu sur un ordre coloré.

Exemple 14. Supposons que X est un projet, c’est à dire un ensemble de tâches. L’ordre \preceq représente les contraintes de prédécesseur entre les tâches du projet X; une tâche $x \in X$ ne peut être exécutée sans que toutes les tâches qui la précédent ne soient accomplies. Une tâche x requiert les compétences de tous les joueurs dans $\gamma(x)$. Une coalition $S \subseteq N$ de joueurs est réalisable si elle peut réaliser une partie du projet, i.e un ensemble de tâches du projet, sans l’intervention d’aucun joueur n’appartenant pas à S. Compte tenu des contraintes de prédécesseur, pour qu’elle soit réalisable, la coalition S doit être en mesure de réaliser à elle seule toutes les tâches d’un idéal de P. Autrement dit, on doit avoir $S = \bigcup_{x \in I} \gamma(x)$ pour un certain idéal I de P.

Exemple 15. X est l’ensemble des nœuds d’un réseau. Chaque nœud est contrôlé par un ensemble de joueurs. Pour $x, y \in X$, si $x \preceq y$ alors de l’information peut être transmise du nœud y vers le nœud x. Les éléments minimaux de P sont les points de contact du réseau avec le monde extérieur. Une coalition de joueurs est réalisable si elle contrôle un certain chemin dans X conduisant à un point minimal.

La proposition suivante stipule que l’ensemble des coalitions réalisables possède une structure intéressante :

Proposition 16. Soit $P = (X, \preceq, \gamma, N)$ un ordre coloré et \mathcal{F} l’ensemble des coalitions réalisables associé à P. Alors (\mathcal{F}, \subseteq) est un treillis.

Démonstration. \mathcal{F} est fermé sous l’union d’ensembles et contient l’ensemble vide. □

Le coloriage γ de P donne des informations additionnelles sur la structure du treillis (\mathcal{F}, \subseteq) (HABIB et NOURINE, 2018) :

Proposition 17. Soit $P = (X, \preceq, \gamma, N)$ un ordre coloré et \mathcal{F} l’ensemble des coalitions réalisables associé à P. On a :

- La collection \mathcal{F} est un antimatroïde si et seulement si : $\forall x \in X, |\gamma(x)| = 1$.
- (\mathcal{F}, \subseteq) est un treillis distributif si et seulement si γ est une injection de X vers N.

Nous associons pour tout $x \in X$ un nombre réel non négatif $a(x)$ représentant le gain généré par l’élément x. Soit $S \subseteq N$. Définissons l’ensemble :

$$\text{gen}(S) = \{x \in X : \gamma(\downarrow x) \subseteq S\}. \quad (4.23)$$

L’ordre coloré P et l’application $a : X \to \mathbb{R}^+$ induisent un jeu coopératif $v_{P,a} : 2^N \to \mathbb{R}$ défini par :

$$v_{P,a}(S) = \sum_{x \in \text{gen}(S)} a(x) \quad (4.24)$$

Nous dirons que v est un jeu coopératif sur l’ordre coloré P.

Nous allons, dans ce qui suit, explorer les propriétés du jeu $v_{P,a}$.

Proposition 18. Le jeu $v_{P,a}$ est monotone. i.e :
\[\forall S, T \subseteq N, \ S \subseteq T \Rightarrow v_{P,a}(S) \leq v_{P,a}(T). \] (4.25)

Démonstration. Nous savons que $S \subseteq T \Leftrightarrow \text{gen}(S) \subseteq \text{gen}(T)$. Comme $a(x) \geq 0$, $\forall x \in X$, alors
\[\sum_{x \in \text{gen}(S)} g(x) \leq \sum_{x \in \text{gen}(T)} g(x) \ i.e : v_{P,a}(S) \leq v_{P,a}(T). \]

Rappelons la définition des jeux d’unanimité :

Définition 61. Soit $S \subseteq N$. Le S-jeu d’unanimité $u_S : 2^N \rightarrow \mathbb{R}$ est défini par :
\[\forall T \subseteq N, \ u_S(T) = \left\{ \begin{array}{ll} 1 & \text{si } S \subseteq T; \\ 0 & \text{sinon}. \end{array} \right. \]

Il est bien connu que les jeux d’unanimité sont convexes. i.e :
\[\forall \ T, W \in \mathcal{F}, \ u_S(T \cup W) + u_S(T \cap W) \geq u_S(T) + u_S(W). \] (4.26)

Le jeu $v_{P,a}$ peut être exprimé comme une combinaison linéaire des jeux d’unanimité $u_{\gamma(\downarrow x)}$ associés aux éléments $x \in X$:

Proposition 19.
\[v_{P,a} = \sum_{x \in X} a(x) \cdot u_{\gamma(\downarrow x)} \] (4.27)

Démonstration. Soit $S \in \mathcal{F}$. Alors :
\[v_{P,a}(S) = \sum_{x \in \text{gen}(S)} a(x) \]
\[= \sum_{x \in X : \gamma(\downarrow x) \subseteq S} a(x) \]
\[= \sum_{x \in X : \gamma(\downarrow x) \subseteq S} a(x) \cdot 1 + \sum_{x \in X : \gamma(\downarrow x) \not\subseteq S} a(x) \cdot 0 \]
\[= \sum_{x \in X : \gamma(\downarrow x) \subseteq S} a(x) \cdot u_{\gamma(\downarrow x)}(S) + \sum_{x \in X : \gamma(\downarrow x) \not\subseteq S} a(x) \cdot u_{\gamma(\downarrow x)}(S) \]
\[= \sum_{x \in X} a(x) \cdot u_{\gamma(\downarrow x)}(S) \]

En conséquence de la Proposition 19, on a :

Corollaire 2. Le jeu $v_{P,a}$ est convexe.

Démonstration. $v_{P,a}$ est une combinaison linéaire non négative de jeux d’unanimité qui sont convexes. Par suite, $v_{P,a}$ est un jeu convexe.
Une autre conséquence importante de l’équation (4.27) est que nous pouvons donner une expression simple de la valeur de Shapley du jeu $v_{P,a}$:

Corollaire 3.

$$
\forall i \in N, \quad Sh_{v_{P,a}}(i) = \sum_{x \in X | i \in \gamma(\downarrow x)} \frac{a(x)}{|\gamma(\downarrow x)|}.
$$

Démonstration. Pour le jeu d’unanimité $u_{\gamma(\downarrow x)}$, les joueurs dans $\gamma(\downarrow x)$ vont se partager à égalité la valeur 1 de la coalition $\gamma(\downarrow x)$. La valeur de Shapley de chaque joueur $i \in \gamma(\downarrow x)$ sera :

$$
Sh_{u_{\gamma(\downarrow x)}}(i) = \left\{ \begin{array}{ll}
n \frac{1}{|\gamma(\downarrow x)|} & \text{si } i \in \gamma(\downarrow x), \\
0 & \text{sinon.}
\end{array} \right.
$$

Par l’équation (4.27) et la linéarité de la valeur de Shapley, on obtient :

$$
Sh_{v_{P,a}}(i) = \sum_{x \in X | i \in \gamma(\downarrow x)} \frac{a(x)}{|\gamma(\downarrow x)|}.
$$

□

4.6 Conclusion

Nous avons examiné dans ce chapitre l’extension de la théorie classique des jeux coopératifs au cas de la coopération restreinte. Il y’a deux facteurs déterminants lors de l’étude d’un jeu coopératif à coopération restreinte, d’un côté les propriétés du jeu, comme la convexité et la monotonie, et d’un autre côté les propriétés de la collection des coalitions réalisables, comme la dégénérescence ou le fait d’être équilibrée ou non. Certains résultats connus dans le cas classique ne sont plus vérifiés dans le cas de la coopérations restreinte, notamment la relation d’inclusion entre le cœur et l’ensemble de Weber d’un jeu. La définition des vecteurs de contribution marginale a dû être adaptée à la structure des coalitions réalisables. Notre contribution dans ce chapitre était l’introduction du modèle de jeu coopératif sur un ordre coloré.
Chapitre 5

Calcul de la valeur de Shapley d’un jeu coopératif sur un treillis

Sommaire

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Préaliminaires et travaux connexes</td>
<td>60</td>
</tr>
<tr>
<td>5.3 Position du problème</td>
<td>62</td>
</tr>
<tr>
<td>5.4 Deux algorithmes pour le calcul de la valeur de Shapley</td>
<td>64</td>
</tr>
<tr>
<td>5.4.1 Énumération des chaînes maximales de L_{Σ}</td>
<td>64</td>
</tr>
<tr>
<td>5.4.2 Construction du treillis L_{Σ}</td>
<td>65</td>
</tr>
<tr>
<td>5.5 Jeux de graphes pondérés sur un produit de chaînes</td>
<td>66</td>
</tr>
<tr>
<td>5.6 Calcul de la valeur de Shapley par les dividendes de Harsanyi</td>
<td>75</td>
</tr>
<tr>
<td>5.7 Conclusion</td>
<td>77</td>
</tr>
</tbody>
</table>

5.1 Introduction

La valeur de Shapley (Shapley, 1953) est l’un des concepts de solution les plus populaires dans la théorie des jeux coopératifs. Il reflète la notion intuitive d’équité dans la division de la production générée par une coalition N de joueurs. La valeur Shapley a été utilisée dans un large éventail d’applications telles que le clustering (Garg, Narahari et Narasimha Murty, 2013), les jeux de congestion (Kollias et Roughgarden, 2011) et la mesure de centralité dans un réseau (Michalkak et al., 2013). Ainsi, la tâche difficile de calculer la valeur Shapley a été l’une des principales préoccupations des chercheurs et praticiens dans les jeux coopératifs. La plupart des efforts déployés pour résoudre ce problème portent sur les jeux coopératifs classiques, c’est-à-dire les jeux où l’ensemble des coalitions réalisables est le treillis booléen. Dans la pratique, cependant, toutes les coalitions ne sont pas réalisables. Par exemple, les coalitions réalisables peuvent être déterminées par des facteurs linguistiques ou géographiques. Les concepts de solution des jeux coopératifs classiques doivent être redéfinis pour tenir compte de la restriction des possibilités de coalition. Beaucoup d’efforts ont été faits dans ce sens. Voir par exemple le survey de Grabisch (2013) et ses références. Dans le cadre de la coopération restreinte, la valeur de Shapley a été définie pour les jeux coopératifs avec des contraintes de précédence par Faigle et Kern (1992), et pour des jeux coopératifs sur des géométries convexes par Bilbao et Edelman (2000). Récemment, Faigle, Grabisch, Jiménez-Losada et al. (2016) ont étendu la définition de la valeur Shapley aux jeux coopératifs définis sur les treillis de concepts.

Les aspects algorithmiques des concepts de solutions de jeux à coopération restreinte n’ont pas encore été suffisamment développés pour permettre leur utilisation dans des applications. Dans ce chapitre, nous nous intéressons à ces aspects algorithmiques. Nous abordons la question du calcul de la valeur de Shapley d’un jeu coopératif sur un treillis d’ensembles fermé par intersection, donné par un système impliquationnel Σ. Du point de vue de la théorie logique, Σ est une Horn CNF, et les modèles de Σ sont les vecteurs caractéristiques des coalitions réalisables (Bertet et Monjardet, 2010; Wild,
La situation classique, où tous les sous-ensembles de N sont réalisables, se produit exactement quand le système implicationnel est vide.

La complexité du calcul de la valeur Shapley d’un jeu dépend de la façon dont l’entrée est donnée. Faigle et Kern (1992) ont montré que si le jeu est donné par un oracle alors le calcul de la valeur de Shapley est déjà exponentiel dans le cas classique. Ils ont également montré que, pour les jeux avec coopération restreinte, le calcul de la valeur Shapley est $\#P$-hard même pour les jeux élémentaires donnés explicitement. Leur réduction est basée sur le comptage du nombre d’extensions linéaires d’un poset, ou des extensions intervallaires minimales d’un treillis.

Ce chapitre est structuré comme suit. Dans la section 5.2, nous situons notre travail par rapport à des contributions antérieures et introduisons le modèle de jeux coopératifs sur des systèmes implicationnels. Dans la section 5.3, nous définissons le problème du calcul de la valeur de Shapley, le décomposons en deux sous-problèmes et discutons sa difficulté. Dans la section 5.4, nous donnons deux algorithmes pour calculer la valeur Shapley des jeux coopératifs sur les systèmes implicationnels et nous discutons leur complexité. Dans la section 5.5, nous étudions le cas où le treillis de coalitions réalisables est isomorphe à un produit de chaînes. Nous montrons alors que lorsque les chaînes sont toutes de la même longueur fixe, on peut calculer en temps polynomial la valeur Shapley des jeux de graphes pondérés.

5.2 Préliminaires et travaux connexes

Un système implicationnel unitaire sur un ensemble N est une relation binaire $\Sigma \subseteq 2^N \times N$. Une implication $(A, i) \in \Sigma$ est notée $A \rightarrow i$.

Définition 62. Soit $\Sigma = \{A_1 \rightarrow a_1, ..., A_m \rightarrow a_m\}$ un système implicationnel sur N et $X \subseteq N$. La Σ-fermeture de X, notée X^Σ, est le plus petit ensemble contenant X et satisfaisant :

$$\forall 1 \leq j \leq m, A_j \subseteq X^\Sigma \Rightarrow a_j \in X^\Sigma.$$

L’ensemble $\mathcal{F}_\Sigma = \{X^\Sigma, X \subseteq N\}$ est un système de fermeture (fermé sous intersection et contenant N). Les éléments de \mathcal{F}_Σ sont désignés par les ensembles Σ-fermés. Lorsqu’il est ordonné par inclusion, \mathcal{F}_Σ est un treillis que nous désignons par $L_\Sigma = (\mathcal{F}_\Sigma, \subseteq)$. Nous allons supposer que $\emptyset \in \mathcal{F}_\Sigma$, soit $\forall i \in N, \emptyset \rightarrow i \notin \Sigma$. La Figure 5.1 montre le treillis L_Σ correspondant au système implicationnel $\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$ sur $N = \{1, ..., 6\}$.

![Figure 5.1 - Le treillis L_Σ associé à $\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$ sur $N = \{1, ..., 6\}$](image)

Nous définissons un jeu coopératif sur un système implicationnel comme un jeu à coopération restreinte où les coalitions réalisables sont les ensembles fermés du système implicationnel donné. Plus formellement :
Définition 63. Un jeu coopératif sur un système implicationnel est un triplet (N, Σ, v) où :

a) N est un ensemble fini de joueurs ;

b) Σ est un système implicationnel sur N ;

c) v est une application de F_{Σ} dans \mathbb{R} telle que : $v(\emptyset) = 0$.

La notion de structure de permission introduite par Gilles, Owen et Brink (1992) pour modéliser les situations où un joueur peut avoir besoin de la permission d’un autre joueur pour participer à l’effort coopératif, peut être traduite dans notre cadre en définissant Σ comme suit :

$$i \to j \in \Sigma \iff i \text{ a besoin de la permission de } j \text{ pour coopérer.}$$

Les coalitions autonomes de Gilles, Owen et Brink (1992) seront alors les ensembles Σ-fermés de notre modèle. L’idée d’une structure de permission peut même être généralisée dans notre modèle pour inclure le cas où un sous-ensemble A de joueurs a besoin de la présence du joueur i afin de mettre ses possibilités de coopération en action. Le joueur i agit alors comme un catalyseur de la coopération des joueurs de A. Ceci est simplement réalisé en posant $A \to i \in \Sigma$. Notez toutefois la différence entre les jeux avec une structure de permission telle que définie dans Gilles, Owen et Brink (1992) et nos jeux sur des systèmes implicationnels qui sont des jeux avec une coopération restreinte dans le sens que seules les coalitions réalisables peuvent se former. Dans Gilles, Owen et Brink, 1992, toutes les coalitions peuvent se former, mais seule leur partie réalisable est capable de générer de la valeur (Voir Faigle et Kern (1992) pour plus de détails sur ce point).

Plusieurs propriétés structurelles du treillis L_{Σ} se déduisent directement de la forme du système implicationnel Σ. Nous avons à titre d’exemple la proposition suivante :

Proposition 20. Si $|A| = 1$ pour tout $(A \to i) \in \Sigma$, alors L_{Σ} est un treillis distributif.

Démonstration. Définissons la relation binaire \preceq sur N^2 par :

$$i \preceq j \iff j \in \{i\}_\Sigma.$$

Il est facile de voir que \preceq est un ordre partiel sur N et que :

$$X^\Sigma = \{j \in N \mid \exists i \in X : j \prec i\}.$$

L_{Σ} est alors le treillis des idéaux de l’ordre (N, \preceq), qu’on sait être un treillis distributif, le supremum et l’infimum étant respectivement \cup and \cap.

Notez que l’énoncé inverse ne tient pas, comme le montre l’exemple suivant :

$$N = \{1, 2, 3, 4, 5\}, \quad \Sigma = \{1 \to 2, \ 3 \to 4, \ 5 \to 2, \ 5 \to 4, \ 24 \to 5\}.$$

Le treillis L_{Σ}, montré dans la Figure 5.2 est distributif malgré le fait que $24 \to 5 \in \Sigma$.

Figure 5.2 – Le treillis L_{Σ} associé à $\Sigma = \{1 \to 2, \ 3 \to 4, \ 5 \to 2, \ 5 \to 4, \ 24 \to 5\}$ sur $N = \{1, ..., 5\}$

Nous pouvons passer de notre représentation à la représentation de Faigle, Grabisch, Jiménez-Losada et al. (2016) de la manière suivante : Soit Σ un système implicationnel. Considérons le contexte $K = (G, M, I)$ défini par $G = N$, $M = \{F \in \mathcal{F}_{\Sigma} \mid \forall F_1, F_2 \in \mathcal{F}_{\Sigma}, F \neq F_1 \cap F_2\}$ et $I = \{(i, F) \in G \times M \mid i \in F\}$. Le treillis de K est isomorphe à \mathcal{L}_{Σ}. Il convient de remarquer que ces deux représentations sont incomparables. En effet, la taille d’un système implicationnel Σ peut être exponentielle en fonction de la taille du contexte associé et vice-versa. Par exemple, si nous définissons les coalitions possibles comme les cliques d’un graphe $G = (N, E)$, alors nous avons besoin de $|N|^2$ implications dans notre représentation, alors que la taille d’une représentation par un contexte est exponentielle. D’un autre côté, on peut avoir besoin d’un nombre exponentiel d’implications pour représenter un contexte de taille polynomiale (Mannila et Råihä, 1992).

5.3 Position du problème

Soit (N, Σ, v) un jeu coopératif sur un système implicationnel. Soit Ch l’ensemble des chaînes maximales du treillis $\mathcal{L}_{\Sigma} = (\mathcal{F}_{\Sigma}, \subseteq)$. Pour une chaîne maximale $c \in Ch$ et $i \in N$, notons par :

- $F(c, i)$: la dernière coalition qui ne contient pas le joueur i dans la chaîne maximale c ;
- $F^+(c, i)$: La première coalition qui contient le joueur i dans la chaîne maximale c.

La coalition $F^+(c, i)$ couvre toujours la coalition $F(c, i)$ dans le treillis \mathcal{L}_{Σ}, i.e il n’y a aucune coalition F dans \mathcal{L}_{Σ} telle que $F(c, i) \subseteq F \subseteq F^+(c, i)$.

La valeur de Shapley de (N, Σ, v), telle que définie dans Faigle, Grabisch, Jiménez-Losada et al., 2016, est le vecteur $\varphi(v) = (\varphi_i(v))_{i \in N}$ où :

\[
\varphi_i(v) = \frac{1}{|Ch|} \sum_{c \in Ch} \frac{v(F^+(c, i)) - v(F(c, i))}{|F^+(c, i) \setminus F(c, i)|}, \quad (5.1)
\]

Nous considérons le problème suivant :

Shapley value

Input : Un jeu coopératif (N, Σ, v)

Output : Le vecteur de Shapley $\varphi(v)$.

Définissons l’ensemble

\[A_i = \{(F, F') \in \mathcal{F}_{\Sigma}^2 \mid \exists c \in Ch : F = F(c, i) \text{ et } F' = F^+(c, i)\}. \]

La Figure 5.3 montre l’ensemble A_5 pour $\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$ sur $N = \{1, \ldots, 6\}$. Pour une chaîne maximale c, la coalition $F(c, 5)$ est reliée à la coalition $F^+(c, 5)$ par une ligne discontinue. Les éléments de A_5 peuvent être identifiés avec les lignes discontinues.
5.3. POSITION DU PROBLÈME

Pour tout $F \in \mathcal{F}_\Sigma$, notons par $Ch^\downarrow(F)$ (resp. $Ch^\uparrow(F^+)$) le nombre de chaînes maximales du sous-treillis $[\emptyset, F]$ (resp. $[F^+, N]$). Dans la Figure 5.3, nous avons $Ch^\downarrow(135) = 4$ and $Ch^\uparrow(135) = 6$.

Avec cette notation, l’équation (5.1) devient :

$$
\varphi_i(v) = \frac{1}{Ch^\downarrow(N)} \sum_{(F,F') \in A_i} \frac{Ch^\downarrow(F) \cdot Ch^\uparrow(F')}{|F'|} (v(F') - v(F)).
$$

(5.2)

Nous pouvons alors décomposer le problème Shapley value en deux sous-problèmes : MarginSets et NChains :

MarginSets

Input : Un système implicationnel Σ sur N et $i \in N$

Output : Énumérer les éléments de A_i.

NChains

Input : Un système implicationnel Σ sur N et $F \in \mathcal{F}_\Sigma$

Output : $Ch^\downarrow(F)$.

Il existe des algorithmes polynomiaux en la taille de la sortie pour énumérer l’ensemble A_i pour tout système implicationnel Σ (Nourine et Raynaud, 1999 ; Bordat, 1986 ; Kuznetsov et Obiedkov, 2001), mais la taille de A_i peut être exponentielle. Par exemple, pour $\Sigma = \emptyset$, nous avons $|A_i| = 2^{n-1}$.

Pour un jeu coopératif quelconque, c’est-à-dire lorsque la fonction v est donnée par un oracle, tout algorithme qui résout Shapley value énumérera toutes les coalitions dans A_i. Pour des jeux particuliers, on peut obtenir une partition de l’ensemble A_i de taille polynomiale, où les éléments de chaque classe d’équivalence ont le même comportement. Cette idée sera développée dans la section 5.5.

Le problème NChains consiste à compter le nombre de chaînes maximales dans le treillis associé au système implicationnel $\Sigma_F = \{X \rightarrow x \mid X \cup \{x\} \subseteq F\}$ sur l’ensemble des joueurs F. Notons que $Ch^\uparrow(F^+)$ est obtenu en résolvant le problème NChains avec les arguments $F = N$ et $\Sigma' = \Sigma \cup \{\emptyset \rightarrow F^+\}$. Brightwell et Winkler (1991), ont montré que le problème NChains est #P-difficile même pour les systèmes de fermeture fermés sous union, c’est-à-dire les treillis distributifs.

La proposition suivante est une réécriture des résultats de Faigle et Kern (1992), nous omettons donc sa preuve :

Proposition 21. Supposons que nous disposons d’un oracle qui résout NChains. Alors, un algorithme qui résout Shapley value va faire un appel à l’oracle pour chaque $F \in A_i$, $i \in N$.
Ainsi, résoudre Shapley value est au moins aussi difficile que résoudre NChains. En d’autres termes, la complexité de NChains est une borne inférieure pour la complexité de Shapley value même pour les jeux élémentaires.

Pour résoudre de manière efficace le problème Shapley value, nous devons être capables de résoudre efficacement le problème NChains. Ceci n’est cependant pas suffisant. Il peut arriver que nous puissions résoudre NChains efficacement mais que le problème Shapley value demeure difficile. Ceci est dû aux interactions entre les deux sous-problèmes NChains et MarginSets.

Dans la section suivante, nous donnons deux algorithmes pour la résolution du problème Shapley value. Le premier énumère les chaines maximales de \(L_{\Sigma} \). Le deuxième construit le treillis \(L_{\Sigma} \), puis calcule la valeur de Shapley. Dans la section 5.5, nous étudions le cas où le treillis \(L_{\Sigma} \) est isomorphe à un produit de chaines.

5.4 Deux algorithmes pour le calcul de la valeur de Shapley

Dans ce qui suit, nous décrivons deux algorithmes pour calculer la valeur Shapley pour tout jeu coopératif \((N, \Sigma, v)\).

5.4.1 Énumération des chaines maximales de \(L_{\Sigma} \)

Nous allons générer les chaines maximales du treillis \(L_{\Sigma} \) par un backtracking classique, i.e. étant donné une chaîne partielle \(C = (\emptyset = S_0, \ldots, S_j) \), pour tout ensemble réalisable \(F \) couvrant \(S_j \) nous allons énumérer toutes les chaînes maximales ayant pour préfixe \((\emptyset = S_0, \ldots, S_j, F)\), en commençant par \(C = (\emptyset) \). Une fois \(F = N \), une chaîne maximale est obtenue et on passe au calcul de la contribution marginale de chaque joueur par rapport à cette chaîne.

Pour une famille \(\mathcal{E} \) d’ensembles, on note par \(Min_\subset(\mathcal{E}) \) les éléments minimaux de \(\mathcal{E} \) par rapport à l’inclusion. Le lemme suivant permet de calculer une coalition réalisable couvrant une autre dans le treillis \(L_{\Sigma} \).

Lemme 4. \(F' \) couvre \(F \) dans \(L_{\Sigma} \) si et seulement si \(F' \in Min_\subset\{(F \cup \{i\})^\Sigma, i \in N \setminus F\} \).

Démonstration. Supposons que \(F' \) couvre \(F \) et soit \(j \in F' \setminus F \). Alors \(F \subset (F \cup \{j\})^\Sigma = F' \) autrement \(F' \) ne couvre pas \(F \). Supposons à présent qu’il existe \(i \in N \setminus F \) tel que \(F \subset (F \cup \{i\})^\Sigma \subset (F \cup \{j\})^\Sigma = F' \). Ceci contredit le fait que \(F' \) couvre \(F \), par conséquent \(F' \in Min_\subset\{(F \cup \{i\})^\Sigma, i \in N \setminus F\} \).

Inversement, supposons \(F'' \in Min_\subset\{(F \cup \{i\})^\Sigma, i \in N \setminus F\} \), avec \(F'' = (F \cup \{j\})^\Sigma, j \in N \setminus F \) et \(F' \) ne couvre pas \(F \). Soit \(F \subset F'' \subset F' \) et \(i \in F'' \setminus F \). Alors \(F \subset F'' = (F \cup \{i\})^\Sigma \subset F' = (F \cup \{j\})^\Sigma \) ce qui contredit le fait que \((F \cup \{j\})^\Sigma\) est minimale. \(\square\)
Algorithm 3: \textit{EnumChains}(A, C).

\begin{algorithmic}
\State \textbf{Data:} \textit{EnumChains }\((A, C)\)
\State \textbf{Result:} \((\varphi_i)_{i \in N}\)
\begin{algorithmic}[1]
\State \textbf{begin}
\If {\(A = N\)}
\State \{\textit{Let }\(C = (\emptyset = S_0, \ldots, S_k = N)\}\}
\For {\(j \leftarrow 1 \text{ to } k\)}
\For {\(i \in S_j \setminus S_{j-1}\)}
\State \(\varphi_i \leftarrow \varphi_i + \frac{v(S_j) - v(S_{j-1})}{|S_j \setminus S_{j-1}|}\)
\EndFor
\EndFor
\Else
\State \(S = \emptyset;\)
\For {\(i \in N \setminus A\)}
\State \(S = S \cup \{(A \cup \{i\})^{\Sigma}\};\)
\EndFor
\For {\(F \in \text{Min}_\subseteq(S)\)}
\State \(\text{EnumChains}(F, C + F);\)
\EndFor
\EndIf
\State \textbf{end}
\end{algorithmic}
\end{algorithmic}

Algorithm 4: \textit{Shapley1}(\(N, \Sigma, v\)).

\begin{algorithmic}
\State \textbf{Data:} Un jeu coopératif \((N, \Sigma, v)\)
\State \textbf{Result:} \((\varphi_i)_{i \in N}\)
\begin{algorithmic}[1]
\State \textbf{begin}
\For {\(i \leftarrow 1 \text{ to } n\)}
\State \(\varphi_i \leftarrow 0\)
\EndFor
\State \(\text{EnumChains}(\emptyset, C = (\emptyset));\)
\State \textbf{end}
\end{algorithmic}
\end{algorithmic}

\textbf{Proposition 22.} L’algorithme 4 calcule la valeur de Shapley dans un temps en \(O(|N|^3. |\Sigma|. |Ch|)\) en utilisant un espace polynomial.

\textit{Démonstration.} L’algorithme 4 énumère les chaînes maximales récursivement, et à chaque nœud \(A\) de l’arbre d’exécution, il calcule les coalitions possibles couvrant \(A\) dans le réseau en utilisant le Lemme 4. Pour chaque feuille, l’algorithme calcule les contributions marginales associées à la chaîne maximale correspondante (voir Ligne 1 de l’algorithme 3).

La complexité de l’algorithme 4 est fortement liée à la complexité de la ligne 2. \textsc{Wild} (1995) donne un algorithme pour calculer la fermeture d’un ensemble à l’aide d’un système implicationnel dans \(O(|N|^3. |\Sigma|)\). Ainsi, la complexité de la sortie d’une chaîne maximale est bornée par \(O(|N|^3. |\Sigma|)\) puisque la longueur d’une chaîne est au plus \(|N|\).

\subsection*{5.4.2 Construction du treillis \(L_\Sigma\)}

La stratégie ici est d’abord de construire le treillis des coalitions réalisables, puis de calculer la valeur de Shapley. Il existe plusieurs algorithmes pour construire le treillis (\textsc{Baixeries} et al., 2009 ; \textsc{Bordat}, 1986 ; \textsc{Nourine} et \textsc{Raynaud}, 1999) qui sont implémentés dans plusieurs plateformes (e.g.
Galicia ou concepts explorer).

Algorithm 5: Procédure Shapley2(\(N, \Sigma, v\)).

- **Data**: Un jeu coopératif \((N, \Sigma, v)\)
- **Result**: \((\varphi_i)_{i \in N}\)

begin
1. Calculer le graphe de couverture du treillis \(L_\Sigma = (\mathcal{F}_\Sigma, \subseteq)\);
2. Pour chaque \(F \in \mathcal{F}_\Sigma\), calculer \(Ch^i(F)\) et \(Ch^j(F)\);
3. for \((F, F') \in \mathcal{F}_\Sigma\) tel que \(F'\) couvre \(F\) do
 - for \(i \in F' \setminus F\) do
 - \(\varphi_i \leftarrow \varphi_i + \frac{v(F') - v(F)}{|F' \setminus F|}\)
 end
end

Proposition 23. L’algorithme 5 calcule la valeur de Shapley avec une complexité \(O(|N|^3, |\Sigma|, |\mathcal{F}_\Sigma|)\) en temps et en espace.

Démonstration. La complexité de la construction du treillis à partir d’un système implicationnel découle immédiatement de la complexité d’algorithmes donnés dans BAIXERIES et al., 2009 ; BORDAT, 1986 ; NOURINE et RAYNAUD, 1999 et peut être bornée par \(O(|N|^3, |\Sigma|, |\mathcal{F}_\Sigma|)\). Le calcul de \(Ch^i(F)\) pour chaque \(F \in \mathcal{F}_\Sigma\) peut être fait en \(O(|N|, |\mathcal{F}_\Sigma|)\) en utilisant une recherche en largeur (BFS) du graphe de couverture \(L_\Sigma\) commençant par le plus petit élément. La méthode s’applique au calcul de \(Ch^j(F)\) en commençant par le plus grand élément du treillis. La ligne 3 est une simple recherche du graphe de couverture du treillis \(L_\Sigma\), pour chaque arête, le temps de calcul est constant. Donc la complexité totale est bornée supérieurement par la complexité de la construction du treillis. (lignes 1).

Remarquez que si l’algorithme 4 donne une réponse après un temps polynomial alors l’algorithme 5 va aussi donner une réponse en temps polynomial car \(|Ch| \geq \frac{|F_\Sigma|}{N}\).

5.5 Jeux de graphes pondérés sur un produit de chaînes

Dans cette section, nous limitons notre attention aux systèmes implicationnels qui donnent une collection de coalitions réalisables isomorphe à un produit de chaînes. Cette situation se produit par exemple dans le modèle de jeux multi-choix introduit par HSIAO et RAGHAVAN (1993) et étudié plus en détail par NOUWELAND et al. (1995). Le problème NCChains peut alors être résolu efficacement. L’ensemble \(\mathcal{A}_i, i \in N\), sera divisé en classes d’équivalence de telle sorte qu’il suffit de considérer un élément de chaque classe dans le calcul de la valeur de Shapley. Si le nombre de classes est polynomial, la valeur de Shapley peut être calculée en temps polynomial pour des classes de jeux spécifiques.

Soit \(C_1, \ldots, C_m\) des ensembles finis disjoints. On suppose que pour chaque \(t\) dans \(\{1, \ldots, m\}\), \(C_t\) est totalement ordonné \(<_t\). Nous avons donc \(m\) ensembles disjoints totalement ordonnés, en d’autre termes \(m\) chaînes disjointes, \((C_1, <_1), \ldots, (C_m, <_m)\). Sans perte de généralité, nous pouvons supposer que toutes les chaînes sont de même longueur \(l\), où la langue d’une chaîne est définie comme le nombre de ses éléments. Voir la Remarque 7 à la fin du chapitre pour le cas où les chaînes ne sont pas toutes de la même longueur.

Soit \(N = \bigcup_{t=1}^{m} C_t\) et posons \(|N| = n\). Nous définissons l’ordre partiel \(P = (N, <)\) appelé la somme parallèle des chaînes \((C_1, <_1), \ldots, (C_m, <_m)\) par:

\[
\forall i, j \in N : \; i < j \iff \exists t \in \{1, \ldots, m\} : i <_t j.
\]

Nous associons avec l’ordre partiel \(P = (N, <)\) le système implicationnel \(\Sigma\) défini sur \(N\) par:

\[
\Sigma = \{ i \rightarrow j \mid i, j \in N, \; j < i \} \quad (5.3)
\]
D’après la Proposition 20, $\mathcal{L}_\Sigma = (\mathcal{F}_\Sigma, \subseteq)$ est un treillis distributif, et les opérations \lor et \land sont données par :

\[
\begin{align*}
F \lor F' &= F \cup F'; \\
F \land F' &= F \cap F'.
\end{align*}
\]

Nous définissons le produit de chaines $(C_1, \preceq_1), \ldots, (C_m, \preceq_m)$ comme l’ordre partiel

\[(C_1 \times C_2 \times \cdots \times C_m, \preceq_{\text{prod}}),\]

où :

\[(x_1, x_2, \cdots, x_m) \preceq_{\text{prod}} (y_1, y_2, \cdots, y_m) \iff x_t \preceq_y y_t \quad \forall t \in \{1, 2, \cdots, m\}. \tag{5.4}\]

Pour voir que le treillis $\mathcal{L}_\Sigma = (\mathcal{F}_\Sigma, \subseteq)$ est isomorphe à un produit de chaines, remarquez que tout $F \in \mathcal{L}_\Sigma$ est déterminé de façon unique par l’ensemble

\[\max(F) = \{i \in F \mid i \neq j \forall j \in F\}.\]

En effet, nous avons :

\[F = \{i \in N \mid \exists j \in \max(F) : i \preceq j\}.\]

$F \in \mathcal{L}_\Sigma$ peut donc être identifié avec le m-tuple (i_1, i_2, \cdots, i_m) où, pour $t = 1, 2, \cdots, m$, i_t est l’unique joueur dans $\max(F) \cap c_t$ si $\max(F) \cap c_t \neq \emptyset$, et $i_t = r_t$ où r_t est un joueur fictif rajouté au bas de la chaîne(c_t, \preceq_t), si $\max(F) \cap c_t = \emptyset$.

En notant par(C'_t, \preceq_t) la chaîne obtenue après le rajout du joueur r_t au bas de (c_t, \preceq_t), le treillis $\mathcal{L}_\Sigma = (\mathcal{F}_\Sigma, \subseteq)$ est isomorphe au produit de chaînes $(C'_1 \times C'_2 \times \cdots \times C'_m, \preceq_{\text{prod}})$. Ce fait est illustré dans l’exemple suivant.

Exemple 16. Considérons les trois chaînes $C_1 : 1 \preceq_1 2$, $C_2 : 3 \preceq_2 4$, $C_3 : 5 \preceq_3 6$. Le diagramme de HASSE de l’ordre partiel P est montré dans la Figure 5.4a. Dans la Figure 5.4b, nous avons rajouté un joueur fictif au bas de chaque chaîne de P. Le système implicational associé à P est $\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$. Nous avons $n = 6, m = 3, l = 2$. Le treillis \mathcal{L}_Σ est montré dans la Figure 5.5a. Il est isomorphe au produit de chaînes $(C'_1, \preceq_1) \times (C'_2, \preceq_2) \times (C'_3, \preceq_3)$ représenté dans la Figure 5.5b.
Pour $F \in \mathcal{F}_\Sigma$, notons par P_F la restriction de l’ordre partiel P aux éléments de F. Pour $i \in N$, posons $h(i) = |\{i\}^\Sigma| - 1$, i.e. le nombre de joueurs précédant i dans l’ordre P.

Le fait que le treillis \mathcal{L}_Σ est isomorphe à un produit de chaînes nous permet de caractériser le relation de couverture dans \mathcal{L}_Σ de manière simple et de donner une autre formulation pour les ensembles A_i, $i \in N$.

Lemme 5. Soit $F \in \mathcal{F}_\Sigma$. Alors $F' \subseteq N$ est couverte par F dans \mathcal{L}_Σ si et seulement si il existe $j \in \max(F)$ tel que $F'' = F \setminus \{j\}$.

Démonstration. Soit $F \in \mathcal{F}_\Sigma$. Si $j \in \max(F)$ alors $F \setminus \{j\}$ appartient à \mathcal{F}_Σ. Autrement, il doit y’ avoir un certain $j' \in F \setminus \{j\}$ avec $j' \rightarrow j \in \Sigma$, ce qui est en contradiction avec $j \in \max(F)$. Comme $|F \setminus \{j\}| = 1$ alors F couvre $F' = F \setminus \{j\}$ dans \mathcal{L}_Σ.

Supposons à présent que F' est couverte par F'' dans \mathcal{L}_Σ. Soient $(i'_1, i'_2, \cdots, i'_{m'})$, (i_1, i_2, \cdots, i_m) les deux m-tuples du produit $C'_1 \times C'_2 \times \cdots \times C'_m$ correspondant à F'' et F respectivement. Comme F' est couverte par F, nous avons un unique $t^* \in \{1, 2, \cdots, m\}$ pour lequel i'_{t^*} est couvert par i_t, dans la chaîne C'_{t^*} et $i'_t = i_t$ pour tout $t \neq t^*$, car, dans le cas contraire, nous aurions un m-tuple $(i''_1, i''_2, \cdots, i''_m)$ avec

$$(i'_1, i'_2, \cdots, i'_{m'}) \prec_{\prod} (i''_1, i''_2, \cdots, i''_m) \prec_{\prod} (i_1, i_2, \cdots, i_m)$$

par suite $F' \subsetneq F'' \subsetneq F$, avec F'' l’élément de \mathcal{L}_Σ correspondant à $(i''_1, i''_2, \cdots, i''_m)$, ce qui est une contradiction avec F' couverte par F. Nous avons donc $F'' = F \setminus \{i_{t^*}\}$ avec $i_{t^*} \in \max(F)$ car, comme i_{t^*} couvre i'_{t^*}, nous avons $i_{t^*} \neq i'_{t^*}$.

Rappelons la définition de A_i :

$$A_i = \{(F_1, F_2) \in \mathcal{F}_\Sigma^2 \mid \exists c \in Ch : F_1 = F(c,i) \text{ and } F_2 = F^+(c,i)\}.$$

Comme nous considérons le système implicationnel particulier Σ défini en (5.3), nous pouvons donner plus d’informations sur l’ensemble A_i. Notons par $c(i)$ la chaîne contenant le joueur i dans l’ordre P. Nous avons la proposition suivante.

Proposition 24. Soit $i \in N$ et Σ défini par (5.3). Alors les éléments de A_i sont exactement les paires $(F \cup \{i\}^\Sigma \setminus \{i\}, F \cup \{i\}^\Sigma)$ où $F \in \mathcal{F}_\Sigma$ avec $F \cap c(i) = \emptyset$.

\[\text{Figure 5.5} - \text{Le treillis } \mathcal{L}_\Sigma \text{ est isomorphe } (C'_1, \preceq_1) \times (C'_2, \preceq_2) \times (C'_3, \preceq_3).\]
Démonstration. Soit $F \in \mathcal{F}_\Sigma$ avec $F \cap c(i) = \emptyset$. Comme la famille \mathcal{F}_Σ est stable par union, nous avons $F \cup \{i\}^\Sigma$ appartient à \mathcal{F}_Σ. Pour la même raison, lorsque i possède un prédécesseur immédiat j dans l’ordre P, nous avons $F \cup \{i\}^\Sigma \setminus \{i\}$ appartient à \mathcal{F}_Σ, car $F \cup \{i\}^\Sigma \setminus \{i\} = F \cup \{j\}^\Sigma$. Si i est le plus petit élément de la chaîne $c(i)$ alors $F \cup \{i\}^\Sigma \setminus \{i\} = F$ est aussi dans \mathcal{F}_Σ. Par conséquent, en posant $F_1 = F \cup \{i\}^\Sigma \setminus \{i\}$ et $F \cup \{i\}^\Sigma$, nous avons $(F_1, F_2) \in \mathcal{F}_\Sigma^2$. De plus, comme $F_2 = F_1 \cup \{i\}$ alors F_2 couvre F_1 in \mathcal{L}_Σ. Nous pouvons alors construire une chaîne maximale c dans \mathcal{L}_Σ telle que $F_1 = F(c, i)$ et $F_2 = F^+(c, i)$. Par conséquent, $(F_1, F_2) \in \mathcal{A}_i$.

Considérons à présent une paire $(F_1, F_2) \in \mathcal{A}_i$. Nous allons d’abord montrer que $F_1 = F_2 \setminus \{i\}$. Nous savons que F_2 couvre F_1 dans le treillis \mathcal{L}_Σ et que $i \in F_2 \setminus F_1$. Alors, par le lemme, $F_1 = F_2 \setminus \{j\}$ avec $j = \max(F_2)$. Comme $i \in F_2 \setminus F_1$, nous concluons que $j = i$. Par conséquent, $F_1 = F_2 \setminus \{i\}$ et $i = \max(F_2)$. Soit $F = F_2 \setminus \{i\}^\Sigma$. Alors, $F \in \mathcal{F}_\Sigma$ et $(F_1, F_2) = (F \cup \{i\}^\Sigma \setminus \{i\}, F \cup \{i\}^\Sigma)$.

Grâce à la Proposition 24, les éléments $(F \cup \{i\}^\Sigma \setminus \{i\}, F \cup \{i\}^\Sigma) \in \mathcal{A}_i$ peuvent être identifiés avec ceux de l’ensemble :

$$\mathcal{A}_i = \{F \in \mathcal{F}_\Sigma \mid F \cap c(i) = \emptyset\}.$$

Nous définissons une relation d’équivalence \mathcal{R}_i sur \mathcal{A}_i comme suit :

$$F_1 \mathcal{R}_i F_2 \iff P|F_1| \text{ est isomorphe à } P|F_2|. $$

Soit \mathcal{Q}_i l’ensemble quotient de \mathcal{A}_i modulo \mathcal{R}_i. Nous allons noter la classe de $F \in \mathcal{A}_i$ par \overline{F}. Remarquons que tous les éléments d’une classe d’équivalence modulo \mathcal{R}_i ont le même cardinal, car $P|F_1|$ isomorphe à $P|F_2$ implique $|F_1| = |F_2|$, et que ce cardinal est un entier dans $[0, n-l]$. La proposition suivante donne un encodage de la classe \overline{F}, avec $|F| = k$ par des vecteurs d’entiers, appartenant à l’ensemble :

$$D_k = \{(x_0, \ldots, x_l) \in \mathbb{N}^{l+1}, \text{ tel que } \sum_{t=0}^{l} x_t = m-1, \sum_{t=0}^{l} t \cdot x_t = k\}.$$

Nous rappelons que m est le nombre de chaînes disjointes dans l’ordre P et que l la longueur commune de ces chaînes. Dans le reste du chapitre, nous notons l’ensemble $\bigcup_{k=0}^{n-l} D_k$ par \mathcal{E}.

Proposition 25. Soit $i \in \mathbb{N}$. Les ensembles \mathcal{Q}_i et $\mathcal{E} = \bigcup_{k=0}^{n-l} D_k$ sont en bijection par l’application $\psi : \mathcal{Q}_i \rightarrow \mathcal{E}$, $\overline{F} \mapsto \psi(\overline{F}) = (x_0, \ldots, x_l)$ où x_t est le nombre de chaînes de longueur t dans $P|\overline{F}$ pour $1 \leq t \leq l$, et $x_0 = m-1 - \sum_{t=1}^{l} x_t$.

De plus, nous avons $\psi(\overline{F}) \in D_k$ avec $k = |F|$.

Démonstration. Soit $\overline{F} \in \mathcal{Q}_i$ et $P|\overline{F}$ le sous-ordre associé de P. Nous allons montrer que $\psi(\overline{F}) \in \mathcal{E}$.

Par construction, nous avons $\sum_{t=1}^{l} x_t \leq m-1$, par suite $x_0 = m-1 - \sum_{t=1}^{l} x_t \in \mathbb{N}$.

Nous avons $\sum_{t=0}^{l} t . x_t = |F|$ et, comme $F \in \mathcal{A}_i$, $0 \leq |F| \leq n-l$. Par conséquent, $\psi(\overline{F}) \in D_k$ avec $k = \sum_{t=0}^{l} t . x_t$.

Nous allons à présent montrer que ψ est une bijection.

ψ est injective : Supposons que $\psi(\overline{F}_1) = \psi(\overline{F}_2)$ alors $P|\overline{F}_1$ isomorphe à $P|\overline{F}_2$, par suite $\overline{F}_1 = \overline{F}_2$.

ψ est surjective : Soit $x = (x_0, \ldots, x_l) \in D_k$, i.e. $\sum_{t=0}^{l} x_t = m-1$ et $k = \sum_{t=0}^{l} t . x_t$. Pour tout $j \in [1, l]$, prenons x_j chaînes de longueur j. Définissons l’ordre partiel P_X comme la somme parallèle de toutes
ces chaînes. Comme le nombre de chaînes dans \(P_X \) est au plus \(m - 1 \) et la longueur de chacune d’elles est majorée par \(l \), alors \(P_X \) est isomorphe à un sous-ordre \(P_F \) de \(P \) avec \(F \cap c(i) = \emptyset \). Alors, \(\psi(F) = x \).

Exemple 17. (Exemple 16 suite) Pour \(i = 5 \), comme \(5 \in C_3 \), les éléments de \(\tilde{A}_5 \) sont les coalitions réalisables \(F \in \mathcal{F}_2 \) telle que \(F \cap C_3 = \emptyset \), i.e \(5 \notin F \) et \(6 \notin F \) :

\[
\tilde{A}_5 = \{ \emptyset, \{1\}, \{3\}, \{1,3\}, \{1,2\}, \{1,2,3\}, \{3,4\}, \{1,3,4\}, \{1,2,3,4\} \};
\]

La taille d’un élément \(\tilde{A}_5 \) est comprise entre \(0 \) et \(n - l = 6 - 2 = 4 \). Les ensembles \(D_k \) pour \(k \in [0,4] \) sont :

\[
D_0 = \{(2,0,0)\}, \quad D_1 = \{(1,1,0)\}, \quad D_2 = \{(0,2,0),(1,0,1)\}, \quad D_3 = \{(0,1,1)\}, \quad D_4 = \{(0,0,2)\}.
\]

Et :

\[
\mathcal{E} = \bigcup_{k=0}^{4} D_k = \{(2,0,0),(1,1,0),(0,2,0),(1,0,1),(0,1,1),(0,0,2)\}.
\]

L’ensemble \(D_2 \) contient deux codes qui correspondent à deux classes d’équivalence modulo \(R_5 \). Ces deux classes contiennent des coalitions de taille \(k = 2 \). La classe associée au code \((0,2,0) \) contient des coalitions réalisables qui sont construites en prenant exactement 1 joueur de deux chaînes distinctes ne contenant pas le joueur 5. La seule coalition vérifiant cette condition est \(\{1,3\} \). La classe associée au code \((1,0,1) \) contient des coalitions réalisables construites en excluant une chaîne (le 1 dans la première position), en ne prenant jamais un seul joueur d’une chaîne donnée (le zero dans la deuxième), et en prenant deux joueurs dans une chaîne donnée, qui ne contient pas le joueur 5. Les coalitions réalisables qui satisfont ces conditions sont \(\{1,2\} \) et \(\{3,4\} \). En effet, nous avons \(\{1,2\} \in R_5 \{3,4\} \). Nous pouvons aussi voir que \(\{1,2,3\} \in R_5 \{1,4,3\} \) et que les deux coalitions correspondent au code \((0,1,1) \in D_3 \). □

Soit \(x \in \mathcal{E} \) et notons \(A^x_i \) la classe d’équivalence \(\psi^{-1}(x) \), où \(\psi \) est la bijection définie dans la Proposition 25. Par la Proposition 24, nous avons \(|F \setminus F'| = 1 \) pour toute paire \((F,F') \in \mathcal{A}_i \). Par conséquent, l’équation (5.2) devient :

\[
\varphi_i(v) = \frac{1}{\text{Ch}^{i}(\mathcal{N})} \sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{F \in \mathcal{A}_i} \text{Ch}^{i}(F \cup \{i\} \setminus \{i\}) \cdot \text{Ch}^{i}(F \cup \{i\}) \cdot (v(F \cup \{i\}) - v(F \cup \{i\} \setminus \{i\})).
\]

Le lemme suivant stipule que \(\text{Ch}^{i}(F \cup \{i\} \setminus \{i\}) \cdot \text{Ch}^{i}(F \cup \{i\}) \) dépend uniquement de la classe de \(F \).

Lemme 6. Supposons que toutes les chaînes dans \(P \) ont la même longueur et soit \(x \in \mathcal{E} \). Alors pour tout \(F_1, F_2 \in \mathcal{A}_i^x \), nous avons :

\[
\text{Ch}^{i}(F_1 \cup \{i\} \setminus \{i\}) \cdot \text{Ch}^{i}(F_1 \cup \{i\}) = \text{Ch}^{i}(F_2 \cup \{i\} \setminus \{i\}) \cdot \text{Ch}^{i}(F_2 \cup \{i\}).
\]

Démonstration. Soit \(x \in \mathcal{E} \) and \(F_1, F_2 \in \mathcal{A}_i^x \). Rappelons que pour tout \(F \in \mathcal{F}_2 \), \(\text{Ch}^{i}(F) \) est le nombre d’extensions linéaires de \(P_F \) et \(\text{Ch}^{i}(F) \) est le nombre d’extensions linéaires de \(P_{N \setminus F} \).

Comme \(P_{F_1} \) est isomorphe à \(P_{F_2} \), alors \(P_{(F_1 \cup \{i\}) \setminus \{i\}} \) est isomorphe à \(P_{(F_2 \cup \{i\}) \setminus \{i\}} \). Nous avons donc :

\[
\text{Ch}^{i}(F_1 \cup \{i\} \setminus \{i\}) = \text{Ch}^{i}(F_2 \cup \{i\} \setminus \{i\}).
\]

D’un autre côté, comme toutes les chaînes sont de même longueur, nous avons \(P_{N \setminus F_1 \cup \{i\} \setminus \{i\}} \) est isomorphe à \(P_{N \setminus F_2 \cup \{i\} \setminus \{i\}} \). Nous avons donc :
De la même manière on obtient :

\[Ch^\uparrow(F \cup \{i\}) = Ch^\uparrow(F \cup \{i\}) \cdot Ch^\uparrow(F \cup \{i\}) = Ch^\uparrow(F_2 \cup \{i\}) \cdot Ch^\uparrow(F_2 \cup \{i\}) \cdot Ch^\uparrow(F \cup \{i\}). \]

Par conséquent, nous avons :

\[Ch^\uparrow(F_1 \cup \{i\}) \cdot Ch^\uparrow(F \cup \{i\}) = Ch^\uparrow(F_2 \cup \{i\}) \cdot Ch^\uparrow(F \cup \{i\}). \]

Nous pouvons donc associer à toute classe \(A_x \) un entier \(\alpha_x = Ch^\uparrow(F) \cdot Ch^\uparrow(F^+) \), pour une coalition quelconque \(F \in A_x \). Le lemme suivant donne une formule pour calculer \(\alpha_x \).

Lemme 7. Soit \(x \in E \) et \(k = \sum_{t=0}^{l} t \cdot x_t \). Nous avons \(\alpha_x = \frac{(k+h(i))(n-k-h(i)-1)l!}{h(i)!l!} \cdot \prod_{t=0}^{l} (l-t)!^{x_t} \).

Définition. Soit \(x \in E \) avec \(k = \sum_{t=0}^{l} t \cdot x_t \) et \(F \in A^* \). Soit \(F' = F \cup \{i\} \) et \(p_j = |F' \cap C_j| \), \(j = 1, \ldots, m \), où \(C_j \) est une chaîne de \(F' \). Le nombre d'extensions linéaires de \(P_{F'} \) qui est la somme parallèle de chaînes disjointes de longueurs \(p_j \) \(j = 1, \ldots, m \). Nous avons alors (MÖHRING, 1989) : \(Ch^\uparrow(F') = \frac{|F'||p_j!}{\prod_{j=1}^{n} (l-p_j)!} \).

De la même manière on obtient : \(Ch^\uparrow(F \cup \{i\}) = Ch^\uparrow(F \cup \{i\}) = \frac{(n-|F'|-1)l!}{\prod_{j=1}^{n} (l-p_j)!} \).

Il s'en suit que \(Ch^\uparrow(F') \cdot Ch^\uparrow(F' \cup \{i\}) = \frac{|F'||(n-|F'|-1)l!}{\prod_{j=1}^{n} (l-p_j)!} \cdot \prod_{t=0}^{l} (l-t)!^{x_t} \cdot h(i)!l! \).

Pour \(t = 0, 1, \ldots, l, t \neq h(i) \), le nombre de chaînes \(C_j \) telles que \(p_j = t \) est \(x_t \). Le nombre de chaînes \(C_j \) telles que \(p_j = h(i) \) est \(x_{h(i)} + 1 \). donc,

\[Ch^\uparrow(F') \cdot Ch^\uparrow(F' \cup \{i\}) = \frac{|F'||(n-|F'|-1)l!}{\prod_{j=1}^{n} (l-p_j)!} \cdot \prod_{t=0}^{l} (l-t)!^{x_t} \cdot h(i)!l! \cdot (l-h(i))! \]

Finalement, en observant que \(|F'| = k + h(i) \), nous obtenons : \(\alpha_x = \frac{(k+h(i))(n-k-h(i)-1)l!}{\prod_{t=0}^{l} (l-t)!^{x_t} \cdot h(i)!l! \cdot (l-h(i))!} \).

Nous pouvons à présent réécrire l'équation 5.5 en utilisant \(\alpha_x \) comme suit :

\[\varphi_i(v) = \frac{1}{Ch^\uparrow(N)} \sum_{k=0}^{n-l} \sum_{x \in D_k} \alpha_x \cdot \sum_{F \in A^*_x} \left(v(F \cup \{i\}) - v(F \cup \{i\} \setminus \{i\}) \right). \] \hspace{1cm} (5.6)

Pour calculer \(\varphi_i(v) \) par (5.6), nous devons énumérer, pour \(k = 0, \ldots, n-l \), tous les éléments de \(D_k \). Pour ce faire, nous décrivons un algorithme de backtracking pour énumérer tous les encodages \(x = (x_0, \ldots, x_l) \in \mathbb{N}^{l+1} \) dans \(D_k \). A la profondeur \(j \), nous supposons que toutes les entrées \(x_t, \ldots, x_{j-1} \) ont été déjà remplies. Les valeurs restantes \(m' = m - 1 - \sum_{t=j-1}^{l} x_t \) et \(k' = k - \sum_{t=j-1}^{l} t \cdot x_t \) vont être décomposées sur \(x_0, \ldots, x_j \) si \(k' \leq j \cdot m' \). Dans le cas contraire, il n'y a pas de complétion possible du vecteur \(x \). lorsque \(k' = 0 \) l’unique solution est de mettre toutes les chaînes restantes dans \(x_0 \).
Le premier appel à l’algorithme 6 est $\text{Gen-Class}(l, k, m - 1)$ avec $0 \leq k \leq l(m - 1)$.

Algorithm 6: $\text{Gen-Class}(j, k, m)$.

```plaintext
begin
  if $k = 0$ then
    $x_0 = m$; Output $x$;
  else
    for $i = \lfloor \frac{k}{j} \rfloor$ to 0 do
      $x_j = i$;
      $k' = k - i \cdot j$;
      $m' = m - i$;
      if $k' \leq (j - 1) \cdot m'$ then
        $\text{Gen-Class}(j - 1, k', m')$;
      end
    end
  end
end
```

Proposition 26. Soit k un entier dans $[0, n - l]$. L’algorithme 6 génère tous les vecteurs de \mathcal{D}_k en $O(k.l.\vert \mathcal{D}_k \vert)$ en utilisant un espace polynomial.

Démonstration. Nous allons d’abord montrer par récurrence sur $j \in [1, l]$, que tous les vecteurs $x = (x_0, \ldots, x_l)$ générés par $\text{Gen-Class}(j, k, m - 1)$ satisfont $\sum_{t=0}^{j} tx_t = k$ et $\sum_{t=0}^{j} x_t = m - 1$, et par conséquent, appartiennent à \mathcal{D}_k.

Pour $j = 1$, l’algorithme génère un unique vecteur x avec $x_0 = m - 1 - k$ et $x_1 = k$ et toutes les autres composantes nulles, qui satisfait $\sum_{t=0}^{1} tx_t = k$ et $\sum_{t=0}^{1} x_t = m - 1$.

Supposons maintenant que tout vecteur x généré par $\text{Gen-Class}(j', k', m')$, où $1 \leq j' < j$, est correcte. L’appel $\text{Gen-Class}(j, k, m - 1)$ va faire les affectations suivantes :

$$x_j = i, \quad k' = k - ij, \quad m' = m - 1 - i$$

puis appeler $\text{Gen-Class}(j - 1, k', m')$. Par l’hypothèse de récurrence, tout output x de $\text{Gen-Class}(j - 1, k', m')$ satisfait : $\sum_{t=0}^{j-1} tx_t = k'$ et $\sum_{t=0}^{j-1} x_t = m'$.

Nous avons donc $\sum_{t=0}^{j} tx_t = k' + jx_j = k - ij + ji = k$ and $\sum_{t=0}^{j} x_t = m' + x_j = m - 1 - i + i = m - 1$.

Donc, pour tout $j \in [1, l]$, les vecteurs x générés par $\text{Gen-Class}(j, k, m - 1)$ satisfont $\sum_{t=0}^{j} tx_t = k$ et $\sum_{t=0}^{j} x_t = m - 1$, pour $j = l$, nous obtenons $\sum_{t=0}^{l} tx_t = k$ et $\sum_{t=0}^{l} x_t = m - 1$ ce qui signifie que $x \in \mathcal{D}_k$.

Nous allons à présent montrer que si $a = (a_0, \ldots, a_l) \in \mathcal{D}_k$, alors a est généré par l’algorithme 6 avec l’input $(l, k, m - 1)$. Notons d’abord que les valeurs de x_l générées par l’algorithme sont les entiers compris entre 0 et $\lfloor \frac{k}{l} \rfloor$. Comme $a \in \mathcal{D}_k$, nous avons $k = \sum_{t=0}^{l} t \cdot a_t$ et $\frac{k}{l} = a_l + \frac{\sum_{t=0}^{l-1} t \cdot a_t}{l}$.

$a_l \leq \lfloor \frac{k}{l} \rfloor$ et l’élément a_l sera généré par l’algorithme. Supposons à présent que la solution partielle (a_{j+1}, \ldots, a_l) a été générée. Alors l’algorithme 6 sera appelé avec les arguments $(j, \sum_{t=0}^{j} t \cdot a_t, m - 1 - \sum_{t=j+1}^{l} a_t)$. Les valeurs x_j générées par l’algorithme sont les entiers compris entre 0 et $\lfloor \frac{\sum_{t=0}^{j} t \cdot a_t}{j} \rfloor$.
Comme $a_j \leq \left\lceil \frac{\sum_{i=0}^{j} t_{aj}}{j} \right\rceil$, la solution partielle $(a_j, a_{j+1}, \ldots, a_l)$ sera générée. Une fois une séquence (a_1, \ldots, a_l) générée, l’algorithme va générer a_0 par $a_0 = m - 1 - \sum_{t=1}^{l} a_t$. Donc la solution a sera générée par l’algorithme.

Chaque appel de l’algorithme va couter $O(k)$ (voir la ligne 1), et la profondeur de l’arbre d’exécution est bornée l. la taille du vecteur. Le coût total de l’algorithme en temps sera borné par $O(k.l.|D_k|)$, puisque chaque appel va finir avec une feuille de l’arbre, qui est une solution. L’espace utilisé par l’algorithme correspond à une chaine de la racine à une feuille de l’arbre et est borné par $O(l)$.

Proposition 27. On a $|D_k| \in O(k^l)$.

Démonstration. Les éléments de D_k correspondent aux feuilles de l’arbre de recherche de l’algorithme 6. La profondeur de l’arbre est l et son facteur de branchement est borné par $O(k)$. Donc $|D_k| \in O(k^l)$.

Observons cependant, que même si nous pouvons énumérer efficacement tous les éléments de D_k pour $k = 0, \ldots, n - l$, et que nous disposons d’une formule pour chaque α_x, calculer la valeur de Shapley en utilisant l’équation (5.6) demeure difficile pour une fonction de coalition v quelconque. En effet, si v est donnée par un oracle, nous devons effectuer au moins $|A^{x^k}_x|$ appels à l’oracle pour calculer $v(F \cup \{i\}^\Sigma) - v(F \cup \{i\}^\Sigma \setminus \{i\})$ pour tout $F \in A^{x^k}_x$. Dans ce qui suit, nous allons considérer une classe particulière de jeux sur un produit de chaînes pour laquelle le calcul de la valeur de Shapley peut être effectué en temps polynomial.

Le modèle de jeu de graphe pondéré capture les interactions entre paires de joueurs. Ceci est fait en considérons un graphe non orienté $G = (N, E)$ avec un poids entier v_{ij} pour chaque arête $(i, j) \in E$. Un poids v_{ij} positif indique la présence de synergies entre les deux joueurs. Un poids négatif indique que la présence des deux joueurs dans une coalition va décroître sa valeur à cause, par exemple, d’un conflit entre i et j. Nous définissons le jeu coopératif (N, Σ, v) par :

$$v(S) = \sum_{(i,j) \in S} v_{ij} \quad \forall S \in \mathcal{F}_\Sigma.$$

Lorsque $\Sigma = \emptyset$, nous retrouvons les jeux de graphe pondéré étudiés par Deng et Papadimitriou (1994) qui ont donné une formule simple pour le calcul de la valeur de Shapley pour cette classe de jeux. Nous allons montrer que le calcul de la valeur de Shapley demeure facile lorsque le treillis des coalitions réalisables est isomorphe à un produit de chaînes de même longueur fixée.

Proposition 28. Soit (N, Σ, v) un jeu de graphe pondéré et $i \in N$. On a :

$$\varphi_i(v) = \frac{1}{C h^2(N)} \sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{j \neq i} \beta^x_{ij} \cdot \alpha_x \cdot v_{ij}, \text{ où } \beta^x_{ij} = |\{F \in A^x \mid j \in F \cup \{i\}^\Sigma\}|.$$

Démonstration. Soit $i \in N$ et $F \in A_i$, nous avons

$$v(F \cup \{i\}^\Sigma) - v(F \cup \{i\}^\Sigma \setminus \{i\}) = \sum_{j \in F \cup \{i\}^\Sigma \setminus \{i\}} v_{ij}.$$

Donc, (5.6) devient $\varphi_i(v) = \frac{1}{C h^2(N)} \sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{F \in A^x} \left(\alpha_x \cdot \sum_{j \in F \cup \{i\}^\Sigma \setminus \{i\}} v_{ij} \right)$, qu’on peut réécrire :

$$\varphi_i(v) = \frac{1}{C h^2(N)} \sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{F \in A^x, j \neq i} \sum_{j \in F \cup \{i\}^\Sigma} \alpha_x \cdot v_{ij}$$
Enfin, on obtient :

\[\varphi_i(v) = \frac{1}{\text{Ch}(N)} \sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{j \neq i} \beta_{ij}^x \cdot \alpha_k \cdot v_{ij} \]

\[\sum_{k=0}^{n-l} \sum_{x \in D_k} \sum_{j \neq i} \beta_{ij}^x \cdot \alpha_k \cdot v_{ij} \]

Exemple 18. (*Exemple 16 suite*)

Soit \(i = 5, j = 1 \) and \(x = (0, 1, 1) \). nous avons \(A_i^x = \{\{1, 2, 3\}, \{1, 4, 3\}\} \) et \(\beta_{ij}^x = 2 \) car les deux coalitions dans \(A_i^x \) contiennent le joueur 1.

Le lemme suivant donne une formule pour \(\beta_{ij}^x \) :

Lemme 8. Soit \(i \neq j \in N \) et \(x \in \mathcal{E} \), alors

\[\beta_{ij}^x = \begin{cases}
0, & \text{si } j \rightarrow i, \\
\frac{(m-1)!}{\prod_{t=0}^{l} x_t!}, & \text{si } i \rightarrow j, \\
\frac{(m-2)!}{\prod_{t=0}^{l} x_t!} \cdot \sum_{t=h(j)+1}^{l} x_t, & \text{sinon.}
\end{cases} \]

Démonstration. Rappelons que le nombre de partitions d’un ensemble \(X \), avec \(|X| = n \) en parties \(X_0, \ldots, X_l \), telles que \(|X_t| = x_t \), avec \(\sum_{t=0}^{l} x_t = n \) est donné par le coefficient multinomial (Comtet, 1974, p. 27) :

\[\binom{n}{x_0, \ldots, x_l} = \frac{n!}{\prod_{t=0}^{l} x_t!}. \quad (5.7) \]

Nous allons distinguer trois cas selon que \(i \) et \(j \) sont comparables dans \(P \) ou non.

1. \(j \rightarrow i \), i.e. \(i \) est en dessous de \(j \) dans une chaîne. Alors, \(j \notin F \cup \{i\}^\Sigma \) pour n’importe quel \(F \in A_i^x \), d’où \(\beta_{ij}^x = 0 \).

2. \(i \rightarrow j \), i.e. \(j \) est en dessous de \(i \) dans une chaîne. Alors, \(j \in F \cup \{i\}^\Sigma \) pour tout \(F \in A_i^x \). Par conséquent, on a :

\[\beta_{ij}^x = |A_i^x| = \binom{m-1}{x_0, \ldots, x_l} = \frac{(m-1)!}{\prod_{t=0}^{l} x_t!}. \]

3. \(i \rightarrow j \) and \(j \rightarrow i \), i.e. \(i \) et \(j \) ne sont pas dans la même chaîne. Soit \(\theta_j \) la hauteur de l’élément maximal \(F \in A_i^x \) qui est dans la même chaîne que \(j \). Pour un \(\theta_j \) donné, le choix de \(F \) revient à répartir les \(m-2 \) chaînes qui ne contiennent ni \(i \) ni \(j \), sur les ensembles \(X_0, \ldots, X_l \) avec \(|X_t| = x_t' \), où

\[x_t' = \begin{cases}
x_t - 1 & \text{si } t = \theta_j + 1 \\
x_t & \text{sinon.}
\end{cases} \quad (5.8) \]

Comme \(\theta_j \) peut prendre pour valeur tous les entiers de l’intervalle \([h(j), l-1] \), on a :

\[\beta_{ij}^x = \sum_{h(j) \leq \theta_j \leq l-1} \binom{m-2}{x_0', \ldots, x_l'}, \quad \text{où} \quad \binom{m-2}{x_0', \ldots, x_l'} = \frac{(m-2)!}{\prod_{t=0}^{l} x_t'!}. \]
5.6. CALCUL DE LA VALEUR DE SHAPLEY PAR LES DIVIDENDES DE HARSANYI

Par conséquent, $\beta_{ij}^x = \sum_{t=0}^{l-1} \frac{(m-2)!}{\prod_{t=0}^{l-1} x_t} \cdot x_{h(j)+1}$

Nous pouvons réécrire la dernière équation comme suit : $\beta_{ij}^x = \frac{(m-2)!}{\prod_{t=0}^{l-1} x_t} \cdot \sum_{t=h(j)+1}^l x_t$.

Théorème 31. La valeur de Shapley $\varphi_i(v)$ du joueur i dans un jeu de graphes pondéré sur un produit de m chaînes ayant la même longueur $l-1$ peut être calculée en un temps $O(n^{l+3})$, où n est le nombre de joueurs. Pour l fixé, la valeur de Shapley peut être calculée en temps polynomial.

Démonstration. Soit P la somme de m chaînes disjointes de longueur l et $i \in N$, où N est l’ensemble des tous les éléments des m chaînes. D’après la Proposition 28, la valeur de Shapley peut être calculée par la formule :

$$
\varphi_i(v) = \frac{1}{Ch^k(N)} \sum_{k=0}^{n-l} \sum_{x \in \mathcal{D}_k \setminus \{i\}} \sum_{j \neq i} \beta_{ij}^k \cdot \alpha_x \cdot v_{ij}, \text{ où } \beta_{ij}^k = |\{F \in \mathcal{A}^k_i \mid j \in F \cup \{i\} \}|.
$$

$Ch^k(N)$ est le nombre d’extensions linéaires de P. D’après Möhring (1989), $Ch^k(N) = \frac{n!}{(m!)^m}$, donc $Ch^k(N)$ peut être calculé en $O(n + m) = O(n)$ car $m \leq n$.

D’après la Proposition 26, les classes d’équivalence dans D_k peuvent être générées en $O(k.l.|D_k|)$ pour $k \in [0, n-1]$. La Proposition 27 montre que le nombre de classes dans D_k est borné par $O(k^4)$.

Par le Lemme 7 et le Lemme 8, pour chaque classe d’équivalence dans D_k correspondant à \mathcal{A}^k_i, nous calculons α_x et β_{ij}^k en $O(n)$. Par conséquent la complexité totale est bornée par $O(n^{l+3})$.

Lorsque l est fixé, $O(n^{l+3})$ est un polynôme, pour suite la complexité totale est bornée par un polynôme.

Remarque 7. Si les chaînes ne sont pas toutes de la même longueur, nous allons définir la relation d’équivalence \mathcal{R}_i comme suit :

$$
F_1 \mathcal{R}_i F_2 \iff (P_{|F_1} \cong P_{|F_2} \text{ and } P_{|N \setminus F_1} \cong P_{|N \setminus F_2}). \quad (5.9)
$$

Chaque classe modulo \mathcal{R}_i sera codée par deux l-tuples d’entiers naturels, où l est la longueur maximale des chaînes. $Ch^k(F \cup \{i\} \setminus \{i\}) \cdot Ch^k(F \cup \{i\})$ sera constant à l’intérieur de chaque classe et le nombre de classes correspondant à une taille donnée k des éléments de la classe sera bornée par un polynôme en k pour l fixé.

5.6 Calcul de la valeur de Shapley par les dividendes de Harsanyi

Dans cette section, nous explorons l’utilisation des dividendes de Harsanyi pour le calcul de la valeur de Shapley.

Suivant Faigle et Kern (1992), nous définissons pour tout $T \in \mathcal{F}_\Sigma, T \neq \emptyset$, le T-joueu simple $u_T : \mathcal{F}_\Sigma \rightarrow \mathbb{R}$: par

$$
u_T(S) = \begin{cases} 1 & \text{si } T \subseteq S, \\ 0 & \text{sinon.} \end{cases}
$$

Lorsque $\mathcal{F}_\Sigma = 2^N$, u_T est connu sous le nom de T-joueu d’unanimité.

La famille $\{u_T, T \in \mathcal{F}_\Sigma \setminus \emptyset\}$ est une base de l’espace vectoriel de tous les jeux coopératifs définis sur \mathcal{F}_Σ. Par suite, tout jeu $v : \mathcal{F}_\Sigma \rightarrow \mathbb{R}$ peut être exprimé de manière unique comme une combinaison linéaire des jeux $u_T, T \in \mathcal{F}_\Sigma, T \neq \emptyset$:

$$
v = \sum_{T \in \mathcal{F}_\Sigma \setminus \emptyset} \Delta_T^v \cdot u_T. \quad (5.10)
$$
En d’autres termes,
\[\forall S \in F_\Sigma, \quad v(S) = \sum_{T \in F_\Sigma \setminus \emptyset} \Delta^v_T \cdot u_T(S). \] (5.11)

Compte-tenu de la définition des jeux simples \(u_T \), la dernière équation devient :
\[\forall S \in F_\Sigma, \quad v(S) = \sum_{T \in F_\Sigma \setminus \emptyset, T \subseteq S} \Delta^v_T. \] (5.12)

Le coefficient réel \(\Delta^v_T \) est appelé le dividende de Harsanyi de la coalition \(T \) dans le jeu \(v \).

En définissant \(\Delta^v_\emptyset = 0 \), l’équation (5.12) permet d’obtenir la formule de récurrence suivante pour les dividendes \(\Delta^v_T \), \(T \in F_\Sigma \).
\[
\Delta^v_T = \begin{cases}
0 & \text{si } T = \emptyset, \\
v(T) - \sum_{S \in F_\Sigma, S \subset T} \Delta^v_S & \text{sinon}.
\end{cases}
\]

L’utilisation de cette formule de récurrence pour le calcul des dividendes \(\Delta^v_T \) n’est pas efficace du point de vue algorithmique, car, pour obtenir \(\Delta^v_T \), nous devons calculer tous les \(\Delta^v_S \), avec \(S \subset T \) une coalition réalisable.

Nous nous intéresserons à présent à l’évaluation de la valeur de Shapley \(\varphi_i(u_T) \) du joueur \(i \in N \) dans le jeu simple \(u_T \).

Pour cela, rappelons la définition de la puissance hiérarchique \(h_T(i) \) du joueur \(i \) dans la coalition réalisable \(T \) introduite par Faigle et Kern (1992). Un classement réalisable des joueurs dans \(N \) est une extension linéaire de l’ordre \(P \). \(i \in T \) est dit \(T \)-maximal dans le classement \(\pi \), si \(i \) est maximal dans l’ordre total induit par \(\pi \) sur \(T \). Soit \(R(N) \) l’ensemble de tous les classements réalisables de \(N \). La puissance hiérarchique \(h_T(i) \) du joueur \(i \) dans la coalition réalisable \(T \) est alors définie par :
\[
h_T(i) = \frac{1}{|R(N)|} \cdot |\{ \pi \in R(N) | i \text{ est } T\text{-maximal dans } \pi \}|. \] (5.13)

Posons \(h_T = \sum_{j \in T} h_T(j) \). Alors, la valeur de Shapley de \(i \in N \) dans le jeu \(u_T \) est donnée par (Faigle et Kern, 1992) :
\[
\varphi_i(u_T) = \begin{cases}
\frac{h_T(i)}{h_T}, & \text{si } i \in T, \\
0, & \text{sinon}.
\end{cases}
\]

En utilisant le lemme 4 de Faigle et Kern (1992), qui stipule que \(h_T(i) \neq 0 \) si et seulement si \(i \in max(T) \), on obtient :
\[
\varphi_i(u_T) = \begin{cases}
\frac{h_T(i)}{h_T}, & \text{si } i \in max(T), \\
0, & \text{sinon}.
\end{cases}
\]

On obtient alors, par la linéarité de la valeur de Shapley et l’équation (5.10) :
\[
\varphi_i(v) = \sum_{T \in F_\Sigma, i \in max(T)} \frac{h_T(i)}{h_T} \cdot \Delta^v_T. \] (5.14)

Dans le cas étudié dans la section 5.5, \((F_\Sigma, \subseteq) \) est le treillis des idéaux de l’ordre partiel \(P \). On peut alors obtenir une expression explicite des dividendes \(\Delta^v_T \) à partir de l’équation (5.12), en utilisant la formule d’inversion de Möbius (R. P. Stanley, 2011) :
\[
\Delta^v_T = \sum_{S \in F_\Sigma} \mu(S, T) \cdot v(S). \] (5.15)
où μ est la fonction de Môbîns du treillis (F_{Σ}, \subseteq). Comme (F_{Σ}, \subseteq) est le treillis des idéaux de l’ordre P, nous savons, (R. P. Stanley, 2011), que :

$$\mu(S, T) = \begin{cases} (-1)^{|T| - |S|}, & \text{if } S \subseteq T \text{ and } T \setminus S \text{ is an antichain of } P, \\ 0, & \text{sinon.} \end{cases}$$

La condition $S \subseteq T$ et $T \setminus S$ est une antichaine de P est équivalente à $S = T \setminus E$, avec E un sous-ensemble de $max(T)$. Ous obtenons donc l’expression suivante du dividende Δ^*_T :

$$\Delta^*_T = \sum_{E \subseteq max(T)} (-1)^{|E|} \cdot v(T \setminus E). \quad (5.16)$$

La valeur de Shapley du joueur i, $\varphi_i(v)$, donnée par l’équation (5.14), devient alors

$$\varphi_i(v) = \sum_{T \in F_{\Sigma}, i \in max(T)} \frac{h_T(i)}{h_T} \cdot \sum_{E \subseteq max(T)} (-1)^{|E|} \cdot v(T \setminus E). \quad (5.17)$$

Encore une fois, l’utilisation directe de l’équation (5.17) pour le calcul de la valeur de Shapley n’est pas efficace du point de vue algorithmique. En effet, nous devons énumérer toutes les coalitions $T \in F_{\Sigma}$ avec $i \in max(T)$ ainsi que tous les sous-ensembles E de $max T$.

5.7 Conclusion

Nous avons abordé dans ce chapitre la question du calcul de la valeur Shapley d’un jeu coopératif sur un treillis donné par un système implicationnel. Les propriétés structurelles du treillis L_{Σ} des coalitions réalisables jouent un rôle important dans la conception d’algorithmes efficaces. En effet, des algorithmes efficaces pour le calcul de la valeur de Shapley sont susceptibles d’exister uniquement sur des treillis pour lesquels le calcul du nombre de chaînes maximales traversant n’importe quel élément du treillis peut être effectué efficacement, puisque ce calcul est une condition préalable pour le calcul de la Valeur Shapley. Un treillis isomorphe à un produit de chaînes est une telle structure traitée dans ce chapitre. Il existe des treillis distributifs pour lesquels Nchains peut être résolu efficacement. Par exemple, les treillis d’idéaux d’ordres série-parallelles (Möhring, 1989), où les ordres N-libres avec une activité bornée par une constante (Felsner et Manneville, 2014). Une question intéressante à aborder serait de savoir si la valeur Shapley peut être calculée efficacement pour les jeux de graphes pondérés sur ces treillis.

Tel que présenté dans ce chapitre, le modèle des jeux coopératifs sur un système implicationnel généralise la notion de structure de permission conjonctive. Nous pensons que ce modèle peut être étendu pour inclure les structures de permission disjonctives et beaucoup d’autres contraintes sur la formation des coalitions, en permettant des implications avec des littéraux négatifs. Par exemple, l’implication $\square 2 \rightarrow 3$ signifiera que l’absence des joueurs 1, 2 et 3 d’une coalition entraînera l’absence du joueur 4, et l’implication $\square 2 \rightarrow 4$ signifiera que la présence du joueur 2 dans une coalition où les joueurs 1 et 3 sont absents, entraînera la présence du joueur 4 dans ladite coalition.

Une autre question est l’étude des aspects algorithmiques des autres concepts de solution pour les jeux coopératifs sur des treillis tels que le core.
Conclusion

Cette thèse est une contribution à l’étude des riches problématiques qui émergent à l’interface entre la théorie des jeux et la théorie des treillis. Le principal apport de la théorie des treillis à l’étude des jeux se situe dans les aspects algorithmiques. Or, la théorie des jeux à ce stade de son développement, a justement besoin d’algorithmes efficaces pour faire face à la complexité croissante des problèmes étudiés. Ceci laisse présager un développement soutenu des recherches combinant les deux théories, celle des jeux et celle des treillis.

Notre contribution dans cette thèse peut être retracée comme suit :
— Introduction de la nouvelle notion de jeu multicritère avec interactions entre critères. Cette notion est tout à fait nouvelle. Cette thèse est le premier travail qui aborde la question de l’existence des interactions entre les critères d’un joueur dans un jeu multicritère.
— Réalisation d’une synthèse bibliographique sur la présence de la structure de treillis dans la théorie de la décision et sur les jeux coopératifs à coopération restreinte. Cette synthèse constitue une contribution pédagogique importante qui permettra aux chercheurs débutants venant des deux horizons, de la théorie des jeux, et de la théorie des treillis, de mieux cerner les interactions entre les deux théories.
— L’étude approfondie du calcul de la valeur de Shapley d’un jeu coopératif sur un treillis. Des algorithmes ont été proposés. Un cas polynomial a été mis en exergue : celui des jeux de graphe pondéré sur un produit de chaînes.

Les résultats obtenus lors de ce travail de thèse ont été valorisés à travers
— La publication d’un article dans les actes du colloque sur l’optimisation et les systèmes d’information. Organisé à l’université de Béjaia en 2014. (MAFA et RADJEF, 2014)
— La publication d’un article intitulé « Algorithms for computing the Shapley value of cooperative games on lattices » dans le journal Discrete Applied Mathematics d’Elsevier. (MAFA, NOURINE et RADJEF, 2018)

Quelques perspectives de recherche se dégagent des travaux que nous avons effectués dans cette thèse. La première est d’étendre l’étude de la complexité du calcul de la valeur de Shapley des jeux de graphes pondérés à des treillis plus généraux que le produit de chaînes. La deuxième est d’étudier divers problèmes algorithmiques soulevés par un autre concept de solution pour un jeu coopératif à coopération restreinte, à savoir le core.

BIBLIOGRAPHIE

GARG, Vikas K., Y. NARAHARI et M. NARASIMHA MURTY (2013). « Novel Biobjective Clustering (BiGC) Based on Cooperative Game Theory ». In : Knowledge and Data Engineering, IEEE Transactions on 25.5, p. 1070-1082. isbn : 1041-4437. doi : 10.1109/TKDE.2012.73.

Résumé

Mots clés : Jeu, Treillis, Coalition, Valeur de Shapley.

Abstract

In this thesis, we have studied some problems that emerge from the interactions between game theory and lattice theory. We introduced the new notion of multi-criteria game with interactions between criteria and proposed as a solution for these games the concept of Choquet-Nash equilibrium. We studied the computation of the Shapley value of a cooperative game on a lattice. Several algorithms have been proposed for this purpose. A polynomial case was highlighted : that of weighted graph games on a product of chains. We have also introduced the notion of a cooperative game on a set-coloured poset. Key words : Game, Lattice, Coalition, Shapley value