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The costs of reproduction in evolutionary demography:
An application of Multitrait Population Projection Matrix models

C osts of reproduction are pervasive in life history theory. Through this constraint, the reproduc-
tive effort of an organism at a given time negatively affects its later survival and fertility. For

life historians, they correspond mostly to a physiological trade-off that stems from an allocative process,
occurring at each time-step, at the level of the individual. For evolutionary demographers, they are essen-
tially about genetic trade-offs, arising from a genetic variance in a pleiotropic gene acting antagonistically
on early-age and late-age fitness components. The study, from an evolutionary demographic standpoint,
of these mechanisms and of the relative, cross and joint effects of physiological and genetic costs, is the
aim of this thesis.

The close examination of Williams (1966)’s original definition of the physiological costs of reproduction
led us to produce a theoretical design of their apparatus that accounts for both their mechanistic and
evolutionary mechanisms. This design allowed us to make predictions with regards to the strength of costs
of reproduction for various positions of organisms on three life-history spectra: slow-fast, income-capital
breeders and quality-quantity.

From Stearns (1989b)’s tryptic architecture of life history trade-offs –that divides their structure into
the genotypic level, the intermediate structure and the phenotypic level – we devised a general framework,
which models the possible cohabitation of both physiological and genetic costs. From this, we inferred
differing detectability patterns of both types of costs according to the environmental conditions, their vari-
ance and individual stochasticity. We could also establish that both costs buffer environmental variations,
but with varying time windows of effect. Their dissimilarity emerges also from the differences between
mathematical projection models specific to each cost. A new family of evolutionary models is therefore
required to implement both physiological and genetic trade-offs.

We then describe the vector-based construction method for such a model which we call Multitrait
Population Projection Matrix (MPPM) and which allows incorporating both types of costs by embedding
them as traits into the matrix. We extend the classical sensitivity analysis techniques of evolutionary
demography to MPPMs. Most importantly, we present a new analysis tool for both life history and
evolutionary demography: the Trait Level Analysis. It consists in comparing pairs of models that share the
same asymptotic properties. Such ergodic equivalent matrices are produced by folding, an operation that
consists in reducing the number of traits of a multi-trait model, by averaging transitions for the traits folded
upon, whilst still preserving the asymptotic flows. The Trait Level Analysis therefore allows, for example,
to measure the evolutionary importance of costs of reproduction by comparing models incorporating them
with folded versions of these models from which the costs are absent.

Using classical and new methods to compute fitness moments – selection gradient, variance in repro-
ductive success, environmental variance - in models with and without the costs, we can show their effects
on various demographic and evolutionary measures. We reveal, in this way, the combined effects of ge-
netic and physiological costs on the vital rates of an age-structured population. We also demonstrate
how physiological costs affect both components of effective selection, as they flatten the slope of selection
gradients and increase the effective size of a population. Finally, we show how their buffering of environ-
mental and demographic variance confer greater resilience to populations experiencing physiological costs
of reproduction.

Lastly, we hint at the extension of such a multitrait model towards a new evolutionary demographic
field, studying the coevolution of kinship distributions and biodemography, we call Kinship Demography.
Kinship demography considers both the effects of kinship distribution on the demography of the population,
which occur via the intra- and intergenerational transfers between kin, and the reciprocal influence of vital
rates on the distribution of kin.

Keywords: Evolutionary demography, Life-history theory, Multitrait Population Projection Matrix, MPPM,
Trait-level analysis, Kinship models, Physiological trade-off, Genetic trade-off, Costs of reproduction.
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Les coûts de la reproduction en démographie évolutive:
Une application des modèles de Matrices de Projection de Population Multitrait

L es coûts de la reproduction sont un compromis biologique (trade-off ) fondamental en théorie des
histoires de vie. Par ce compromis, le succès, pour un organisme, d’un évènement de reproduction

réduit sa survie et sa fertilité futures. Pour les écologues, ce trade-off correspond principalement à un
compromis physiologique résultant d’un processus d’allocation ayant lieu à chaque instant et au niveau de
chaque individu. Au contraire, en démographie évolutive, il est envisagé comme un trade-off génétique
découlant du polymorphisme génotypique d’un gène pléiotropique agissant de manière antagoniste sur
la reproduction aux jeunes âges et la fitness aux âges élevés. L’étude des mécanismes des coûts de la
reproduction, physiologiques et génétiques, de leur possible cohabitation et de leur effets relatifs, croisés
et conjoints est le sujet de cette thèse.

Un examen attentif de la définition originelle des coûts de la reproduction par Williams (1966), nous
permet de construire un modèle théorique des coûts physiologiques intégrant leurs aspects mécaniques et
évolutifs. Cette construction nous permet d’induire l’intensité des coûts de la reproduction selon la position
d’un organisme sur trois continuums d’histoire de vie: "slow-fast", "income-capital breeders" et "quantity-
quality". A partir de la décomposition, par Stearns (1989b), de l’architecture des contraintes d’histoire de
vie en trois parties – le niveau génotypique, la structure intermédiaire et le niveau phénotypique - nous
étendons notre modèle conceptuel pour y intégrer à la fois des trade-offs physiologiques et génétiques. Cela
nous permet d’inférer les effets de l’environnement, de sa variance et de la stochasticité individuelle sur la
détectabilité de chaque famille de coûts. La différence entre coûts physiologiques et génétiques se retrouve
également dans leur modélisation mathématique. Il est donc nécessaire de développer de nouveaux modèles
permettant d’incorporer coûts physiologiques et génétiques.

Nous proposons ensuite une méthode vectorielle de construction d’un tel type de modèle, que nous
appelons Matrice de Projection de Population Multitrait (MPPM). Ce dernier peut implémenter chaque
type de coût en l’intégrant dans la matrice en tant que trait. Nous étendons ensuite aux MPPMs les tech-
niques d’analyse de sensibilité, standards en démographie évolutive, des modèles à un trait aux MPPMs.
Surtout, nous décrivons un nouvel outil d’analyse, pertinent en théorie des histoires de vie et en démo-
graphie évolutive: la Trait Level Analysis. Elle consiste à comparer des modèles qui partagent les mêmes
propriétés asymptotiques. Ceci est rendu possible par le repliement d’une MPPM selon certains traits,
une opération qui réduit le nombre de traits du modèle en moyennant ses transitions selon les abondances
ergodiques relatives. Ainsi, la Trait Level Analysis permet de mesurer l’importance évolutive des coûts
de la reproduction en comparant des modèles implémentant ces coûts, avec des versions ergodiquement
équivalentes de ces modèles mais repliées selon les traits supportant les compromis.

Nous utilisons des méthodes, classiques et nouvelles, de calculs des moments de la fitness – gradient de
sélection, variance du succès reproducteur, variance environnementale – que nous appliquons aux modèles
avec coûts et sans coûts afin de mesurer leurs effets démographiques et évolutifs. Nous présentons les
effets conjoints des coûts physiologiques et génétiques sur la distribution par âge des taux vitaux d’une
population. Nous montrons également comment les coûts physiologiques influencent les deux composants
de la sélection efficace, en aplatissant le gradient de sélection d’un côté et en accroissant la taille efficace de
la population de l’autre. Enfin, nous démontrons comment l’effet tampon des coûts sur les variances envi-
ronnementales et démographiques améliore la résilience d’une population soumise aux coûts physiologiques
de la reproduction.

Finalement, nous montrons en quoi ce modèle évolutif, implémentant des compromis, est pertinent
pour étudier les relations entre structures d’apparentement et démographie. Ce champ disciplinaire, appelé
Kinship Demography, s’intéresse à la fois aux conséquences démographiques des structures d’apparentement
d’une population (par exemple du fait des transferts de ressources intra- et inter-générationnels entre
apparentés) et à l’influence réciproque des taux vitaux d’une population sur ces structures de parenté.

Mots-clefs : Démographie évolutive, Théorie des histoires de vie, Modèles matriciels de populations, Mod-
èles multitrait, Trait-level Analysis, Kinship models, Compromis physiologique, Compromis génétique,
Coûts de la reproduction, Ecologie théorique.
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Preambule

Published in 1651, the first edition of William Harvey’s De generatione animalium (On animal generation)
shows, on its front page (fig 1), Jupiter on its throne, opening an egg-shaped box from which escape living
beings of all shapes and forms : a crocodile, a bird, a cricket, a deer, a man and even what looks like a
plant (Harvey, 1651). On the box itself, three words, ex ovo omnia (all life comes from the egg). This was
echoed, two hundred years later by Pasteur’s Omne vivum ex vivo (Pasteur, 1862). Denying spontaneous
generation for all species - as all life is from life - these two authors provided a link between offspring
and adults. By doing so, they added a transition between generations to the within-generation study of
organisms’ ontogenesis and therefore established the universality of the life cycle.

(a) (b)

Figure 1: Front cover (fig 1a) and detail (fig 1b) of the 1651 version of
Harvey’s De generatione animalium (On animal generation).
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Introduction

Half a century after their initial formulations, the theories of evolution (Darwin, 1859) and of the laws of
genetics (Mendel, 1865) were reconciled in the modern synthesis (as later denoted by Huxley (1942)). This
synthesis prompted the emergence of evolutionary biology and within it, population genetics – studying ge-
netic differences within and between populations (Fisher, 1930; Haldane, 1941) - and evolutionary ecology
– studying population biology from an evolutionary perspective. Within the latter, a new theory was born
- Life History Theory (LHT) - that examines the life cycle of organisms in the light of evolution. It would
develop steadily in the 1950s (Cole, 1954; Haldane, 1957; Lack, 1954; Maynard Smith, 1958; Medawar,
1952; Williams, 1957). Life cycles (or life histories as they are also called) are categorized by traits (in
general one trait; stage for instance), where each value of the trait correspond to a specific life history state
(stage rosette for example). The specificity of a life history lies therefore in the transition probabilities
between the various states of the life cycle, which we call vital rates.

As population genetics considers genetic variation from an evolutionary perspective, so does Life His-
tory Theory with variations between life histories. The difference between the life cycles of two populations
correspond to differing life history strategies, i.e. to different combinations of vital rates. As a matter of
fact, the differences in strategies are often characterized by a few key components of the life history that
some call life history "traits". Because these “traits” are generally of different demographic natures (some
are traits, some transitions, see Stearns (1992)’s list below), we shall follow in the steps of Lamont Cole
and refer to them as (pertinent) life history features (Cole, 1954). We illustrate this nomenclature in fig.
2.
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Figure 2: Life cycle. In this life cycle, structured by traits age and size, we represent the states
as circles representing the combinations of trait values and the vital rates (the transitions between
states) as arrows, plain for survival and growth transitions and dotted for fertility rates. Some
of these states and transitions correspond to the key life history features of Stearns (1992) (he
calls life history "traits"). When the case, they have been colored in red. They are: size at birth,
growth pattern (the plain arrows), age and size at maturity (the state in red corresponds to one of
these), age (and size-)-specific reproductive investments (the dotted arrows), length of life (states
of maximum age).
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In order to be ecologically meaningful, the choice of the trait categorizing a life history should fall
on that which best segregates the organism’s lifetime into states of great demographic and evolutionary
importance. For that reason, in most cases, the traits used are age, stage and size. In humans for instance,
age is a clear determinant of a woman’s position in the key reproductive segments of her life history:
immature, reproductive and post-reproductive periods. To the contrary, in trees, age is not such a great
determinant of life history, but trait stage allows to divide the life history of the organism into low survival
states (e.g., seed) and high survival ones (e.g., mature trees). Stage is also the trait of choice for organisms
undergoing metamorphosis. Other traits can be considered as key determinants of life history, like size (for
which the vital rates are growth rates), location (vital rates are dispersal rates), sex etc. As a matter of
fact, according to Stearns (1992), among these traits, two are of paramount importance across all forms of
life: age and size. This can be seen from his identification of seven crucial life history features that most
significantly affect an organism’s level of fitness: size at birth, growth pattern, age and size at maturity,
number of offspring, age (and size-)-specific reproductive investments, age (and size-)-specific mortality
schedules and length of life. We have illustrated this by highlighting some of these key features in the
simple age and size life cycle of figure 2.

This slight difference in concept, between traits characterizing life histories and pertinent life history
features - which correspond to certain states and vital rates as defined on these traits - would lead to a
branching in LHT between two main axes of research: life history optimality theory, focusing on trade-offs
between life history features, and evolutionary demography, based on traits.

Life history optimality theory
Focusing on life history features, life historians want to analyze their variations between individuals within
a population or within a species, as well as between species. First, at the interface with population and
quantitative genetics, by trying to understand in what measure these life history variations are pheno-
typic expressions of genetic variations. Second, by questioning how the change in a specific feature may
be affected by the variation in another and therefore by identifying the relationships between the various
life history features. Since for any given organism, all life history characteristics cannot be maximized
simultaneously – this would lead to the so-called ’Darwinian demon’ (Law, 1979) – they are constrained.
These constrains, potentially caused by a limited resource common to different functions of the organism,
result in what are called ’trade-offs’. Trade-offs are not the prerogative of LHT. They are at the core of
quantitative genetics, where they are a major component of the G matrix of additive variance covariance
(Lande, 1982). Life History Theory, for its part, focuses specifically on the relationships between pertinent
life history features and in particular between the vital rates (the transitions in the life cycle) associated
with them and that are called fitness components (fertility rates, survival rates, growth rates, etc.). These
’life history trade-offs’ at the core of life history theory - relating pairs of features both with demographic
significance and intraspecific variance - occur within all organisms. For example, in a population, some
individuals will allocate more energy than others to reproduction at a certain time but at the cost of future
fertility or survival; this trade-off is denoted as ’costs of reproduction’ (Williams, 1966) Some will produce
more offspring than others, but theirs will be frailer (smaller or less cared for, for instance); this is the
quantity-quality trade-off (Lack, 1947). Other major life history trade-offs include age vs size at maturity
(Stearns and Koella, 1986). Whilst these are arguably ubiquitous in nature, some are specific to certain
species, taxa or taxonomic kingdoms like the trade-off between water-use-efficiency and relative-growth-
rate in plants (Angert et al., 2014).

However, because variations in life history features are deemed larger between species that within
populations, these trade-offs are often solely considered at the between-species level, for which trade-offs
are more about evolved strategies than allocation of current resources. As a matter of fact, the evolved
positions of species on key trade-offs are often used as central statistics of their life history strategies. For
example, some mammal species are slow (they promote longevity at the cost of fertility), some are fast
(opposing characteristics) (Gaillard et al., 1989; Stearns, 1983). Some primate species have more offspring
than others, but these offspring are usually smaller (Walker et al., 2008). These slow-fast and quantity-
quality spectra, form, with others (e.g., the iteroparous-semelparous spectrum), a family of life-history
continua. This multidimensional family has gradually taken over the role of life history classifier formerly
held by the unidimensional “r/K” characterization. This family of life history continua is in constant evo-
lution. First, as addition to the family of trade-offs stem from the theory (see the dimensionless quantities
of Charnov (2002)). Second, as theoretical and empirical results provide new ways to quantify the position
of an organism on a known trade-off (Gaillard et al., 2005) sometimes with contrasted results (Oli and
Dobson, 2003).

At the species level, the focus of life historians on trade-offs - deemed to stem from genetic correlations
caused by antagonistic pleiotropy or genetic linkage - gave rise to the life history optimality theory. If a
population is allowed time to adapt to a given environment, it will settle at a specific point on a life-history
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strategy continuum - considered evolutionary stable - that maximizes its fitness (Parker and Maynard
Smith, 1990). In reality, of course, an organism is located on an infinity of life history continua and only
considering one pair of life history features as being optimized by natural selection causes interpretation
issues. The position of an organism on a continuum may be evolutionary stable without being optimal,
if for instance it is constrained by the positions on other continua, as was illustrated thanks to a famous
architectural analogy by Gould and Lewontin (1979).

Evolutionary demography
Focusing on the trait(s) pacing the life cycle, life historians have turned to the tools of mathematical
demography. Amid the proliferation of demographical studies on the growth rates of populations of the
second half of the 19th century and the first half of the 20th century (Verhulst, 1845; Pearl and Reed,
1920), Alfred Lotka, building on earlier work by Euler (Euler, 1760), produced the famous Euler-Lotka
equation (Alfred J. Lotka, 1925). This equation relates the life history transitions (the vital rates) of an
age-structured population – the fertility and mortality rates – to the asymptotic growth rate of the popu-
lation, the Malthusian parameter (Malthus, 1798). This discovery was concomitant with Fisher’s equation
of the latter with Darwinian fitness (Fisher, 1930) which meant that the fitness of a population could be
directly extracted from its life-cycle. However skepticism grew amongst biologists about the perceived
inadequacy or oversimplification of such theoretical population models (Allee, 1934; Salt, 1936). This situ-
ation led LaMont Cole, twenty years later, to express his concern: "the [. . . ] analysis of the ways in which
differences between the life histories of species may result in different characteristics of their populations
has remained relatively unexplored" (Cole, 1954). New major advances in this new field of Life History
Theory – in which Hutchinson placed his hopes in and christened biodemography (Hutchinson, 1948) -
would finally occur at the turn of the 1960s. Initial efforts by Hamilton (1966) and Lewontin (1965) were
generalized in a strikingly simultaneous effort by Demetrius (1969), Emlen (1970) and Goodman (1971) to
provide "the sensitivity of the intrinsic growth rate to changes in the age-specific birth and death rates":
evolutionary demography was born.

This breakthrough could certainly not have occurred without the advent of the population projection
matrix by Lewis (1942) and Leslie (1945) and the demonstration by Keyfitz and Murphy (1967) that life
histories were equivalently described by the “old” continuous-time equations and the “new” discrete time
matrices. Written in matrix form, the life histories of age-structured populations were not only easier to
visualize (the vital rates appearing clearly as different entries of the matrix) and to project over time (a
"simple" multiplication of a population vector by the Leslie matrix providing the population vector at the
next time-step) but also to analyze.

In 1978, using the powerful tools of linear algebra, Caswell (1978) related the sensitivities of λ (the
asymptotic growth rate or dominant eigenvalue of the projection matrix) to changes in vital rates, to its
associated right-eigenvector (the vector of asymptotic abundances, denoted w) and left-eigenvector (the
vector of reproductive values, denoted v).At the same time, a fuller formalization of λ as Darwinian fitness,
under simplifying assumptions, was provided (Charlesworth, 1980; Demetrius, 1981). This led to heated
disputes among ecologists, in particular with respect to the alternative use of the net reproductive rate
R0 (see, for instance, Nur, 1984; Stenseth, 1984), but these were finally settled (see Murray, 1992).
Therefore, sensitivity analysis tools allowed to start providing answers to Cole’s question by enabling to
measure the relative contribution of certain vital rates, states and other life history features and sub-cycles
of the life-history, to the fitness of the population (de Kroon et al., 1986; van Groenendael et al., 1994).

In parallel, the shift, for life history modeling, from continuous-time equations to matrix form allowed
to expand the scope of implementable traits. Lefkovitch (1965) devised the first stage-based population
projection matrix that now bears his name, and Usher (1966) a matrix for population characterized by
size. Linear algebra, the mathematics underlying projection matrices, allowed to extend the results of
age-structured models to population characterized by any trait. The Euler-Lotka equation was generalized
into the characteristic equation of the projection matrix, from which ergodic growth rate, abundances and
reproductive values could be obtained similarly. Other key demographic measures were then extended. For
instance, Charlesworth (1980) showed that generation time was the first derivative of the characteristic
polynomial whatever the trait used. Other efforts were more laborious but still proved useful as the
extraction of age parameters for stage-structured populations by Cochran and Ellner (1992).
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First attempt at reconciling trade-off optimality theory and
evolutionary demography
A first bridge between these two slightly differing focuses of LHT - on one side, the optimality (of fitness
under trade-offs constrains) theory and, on the other side, the evolutionary demographic approach – was
initiated by the first sensitivity analyses of optimal life histories (Caswell, 1982a,b; Caswell and Real, 1987;
Law, 1979; Schaffer, 1974). This mixed approach applies the perturbation analysis tools of evolutionary
demography to the Evolutionary Stable Strategy position of optimality theory. The reasoning is that, if
the organism is in ESS, its fitness λ is optimal, and its total derivative is therefore zero. This application
of optimality theory to evolutionary demography provides, therefore, a multivariate relationship between
all the ∂λ

∂vri
(the sensitivities of fitness to vital rates) in the life cycle, a relationship assumed to represent

the projection of trade-offs on vital rates and states. However this reconciliation attempt can be considered
to be only partial, for two reasons.

First, because the relationship it provides is between all transitions (between all states) in the life
history, and not merely between those related to the pertinent life history features that connect the trade-
offs. Considered globally, it shows every vital rate as trading-off with all others and is therefore hard to
make sense of. Focusing, to the contrary, on pairs of transitions - assuming all other transitions constant
- it yields pairwise relationships between vital rates sensitivities that should not, ecologically speaking, be
considered independently from the others (Caswell, 1982a).

Second, because at the time of this incorporation of population-level constrains in evolutionary de-
mography, only a subset of trade-offs were actually, but largely unknowingly, considered. Indeed, the
negative correlations between life history features observed at the population and species level - now called
genetic (sometimes evolutionary) trade-offs - were then considered to be manifestations, at the level of the
population, of the trade-offs occurring within each of its individuals - the physiological trade-offs.

Genetic and physiological trade-offs
This misinterpretation is epitomized by the use of the name of the cause (trade-off) for the consequence
(a negative correlation). As Roff and Fairbairn (2007) point out: "the term ’trade-off’ may be used to
describe the functional relationship between two traits or the statistical correlation between the traits".
Therefore the same consequences, the negative correlations between life history features, were deemed to
stem from the same mechanism, although at different levels of study. This confusion prompted ecology
theoreticians to step forward and start to disentangle the variety of underlying mechanisms producing
trade-offs (Partridge, 1992; Roff, 1992; Stearns, 1992, 1989a,b). Since their work, we can differentiate the
mechanisms of physiological and genetic trade-offs. The former act at the individual level through a phys-
iological allocation mechanism which generates competition between different functions of the organisms,
themselves affecting different fitness components. The latter stem from genetic variance in genes having
antagonistically pleiotropic effects on different life history features, and therefore acts at the level of the
population .

Despite all their efforts and clarifications, many questions remain open with regards to the roles of these
two families of trade-offs. It is now suspected that they can act simultaneously (Flatt and Heyland, 2011;
Kirkwood and Rose, 1991; Partridge et al., 1991), but some authors wonder, still, whether physiological
trade-offs are not automatic by-products of genetic trade-offs (Gavrilov and Gavrilova, 2002; Rodríguez
et al., 2017). Whilst progress has been made on the effects of each of these two families, the upcoming
challenge for life historians is to understand the relative roles of physiological and genetic trade-offs and
whether/how they influence one other. As Braendle et al. (2011) put it "while most traditional life history
research is based on mathematical, statistical, and phylogenetic approaches without explicit reference to
underlying mechanisms, today’s principal research challenge is to fill this gap".

These questions on the respective roles of genetic and physiological trade-offs, have now been transposed
to the field of senescence theories, where they have aroused a very large interest; the antagonistic pleiotropy
theory of Williams (1957) playing the role of genetic trade-off (between early-life and late-life fitness) and
the disposable soma theory of Thomas Kirkwood (Kirkwood and Holliday, 1979; Kirkwood and Rose, 1991)
that of physiological trade-off (between maintenance and reproduction) (Hammers et al., 2013; Lemaître
et al., 2015; Robins and Conneely, 2014; Shefferson et al., 2017).
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New attempt at reconciling trade-off optimality theory and
evolutionary demography
In order to take up the gauntlet thrown by Braendle et al. (2011), it is therefore now needed, on the theo-
retical side, to conceive of evolutionary demographic models incorporating both physiological and genetic
trade-offs. In other words, a new life history optimization theory is currently required, where the trade-offs
implemented are physiological. This necessitates, however, to be able to implement several traits in an
evolutionary demography model. As pointed out above, incorporating (respectively inferring) a genetic
trade-off into (resp. from) a life history projecting matrix as was done via the classical life history opti-
mization theory only requires one trait. Both the trade-off and the matrix are about the genotypic level.
For a given genotype, the optimized position on the genetic trade-off is illustrated by specific vital rates -
that would differ from those of a different genotypes with a different strategy – that only need one trait to
characterize them. To the contrary, a physiological trade-off, working at the level of the individual, occurs
within the genotypic level, not between genotype-related life history strategies (each represented by its own
projection matrix). Put simply, a physiological trade-off at that level is not a position on a continuum,
but a real bivariate constraint, that therefore requires two traits to be implemented. This necessity poses
the double - technical and conceptual – challenge of incorporating and interpreting multiple traits in the
evolutionary demography model of choice, the projection matrix.

The study of the incorporation of a second trait in a projection matrix model began in earnest at the
turn of the 1960s (Goodman, 1969; Le Bras, 1970; Rogers, 1969). New techniques were later introduced
to facilitate this multitrait implementation (Caswell, 2009; Hunter and Caswell, 2005). In these models,
however, the addition of traits was merely a way to improve the scrutiny of the model in order to get a
finer understanding of the population dynamics. The ergodic abundances extracted from these were now
categorized by combinations of traits, by age and size, or by stage and location for instance. Similarly,
the sensitivities of fitness could now be computed multidimensionally (Caswell, 2012). However both a
theory of multitrait matrices and a concept of "sensitivity of fitness to traits" – akin to the sensitivity of
fitness to vital rates provided by Demetrius (1969); Emlen (1970); Goodman (1971) – are still lacking. In
that context, the ability of adding traits to a matrix is, from an evolutionary demography point of view,
pointless, as is the quest of an evolutionary demographic grasp of physiological trade-offs.

Aim of this thesis
In order to advance towards the disentanglement of physiological and genetic trade-offs and thus to better
understand the evolutionary consequences of physiological trade-offs, I have had to try and tackle the
aforementioned (life history) conceptual, (evolutionary demography modeling) theoretical and computa-
tional challenges. I did this in the context of “the most prominent of all life history trade-offs” (Stearns,
1989a), the costs of reproduction, whereby reproduction of an organism negatively affects its later survival
and fertility.

Costs of reproduction
This trade-off is pervasive: it relates life history features - survival and fertility – that are vital rates and
that are part of any life history model, whatever the trait used. This trade-off is also general: most life
history trade-offs that connect two specific life history features of an organism can be considered as special
cases of the costs of reproduction. Indeed, it is hard to conceive a way to impact fitness of an organism
without, eventually, affecting either its mortality or its reproduction. As a matter of fact, it has been
argued, that the costs of reproduction, together with the quality-quantity trade-off, constitute the key life
history trade-offs, and that "all other trade-offs can be considered examples of these two major trade-offs"
(Koivula et al., 2003; Lessells, 1991).

The choice of the costs of reproduction was also promoted by their direct relation with the aforemen-
tioned theories of senescence (Bell, 2011; Hendry and Berg, 1999; Jasienska, 2009; Orell and Belda, 2002)
and by the fact that the general problematic around the nature and roles of genetic and physiological
trade-offs has been made explicit for these costs. As Edward and Chapman (2011) formulate it " . . . there
is relatively little [. . . ] work in this area so far. This is an important oversight because it is not yet clear
whether physiological and evolutionary trade-offs occur via the same underlying mechanisms. It would be
interesting to know, for example, whether individuals selected for early- or late-age reproduction retain
equal capacity to express physiological trade-offs; that is, whether the effects underlying these different
kinds of trade-offs are additive."
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Plan of the manuscript
My thesis in eco-evolutionary mathematics aims to progress towards answers to Edward and Chapman
(2011)’s questions. It is therefore broken down into three parts, corresponding to the three different ques-
tions identified earlier – clarifying the trade-offs concepts within life history theory, extending evolutionary
demography model theory and finally computing evolutionary consequences of physiological trade-offs. I
also extend, as a concise overture, these reflections towards the study of the coevolution of demographic
and kinship parameters, in the context of anthropology.

Chapter 1: Costs of reproduction, concepts and methods

In the first introductive chapter, we start from Williams (1966)’s initial definition of the costs of repro-
duction to generate a theoretical model for physiological costs of reproduction. These are, by definition,
physiological, but also, inevitably, evolutionary and both aspects need to be reflected in a theoretical
approach of the costs of reproduction. We then extend this framework to incorporate genetic costs of
reproduction as well. Both costs can cohabit in a population, and we draw, from the conceptual model,
patterns for their detectability at different levels: the individual, the population and between popula-
tions. We then relate the different mechanisms underlying genetic and physiological costs to the different
classes of models which they are generally implemented in. We finally show that, in order to incorporate
both physiological and genetic costs in a single evolutionary demographic template, a new class of model
is required, the multitrait population projection matrix (MPPM) and we draw the first outlines of the
implementation of physiological and genetic costs in this new model.

Chapter 2: Trait level analysis of multitrait population projection matrices

In this chapter, presented in its article version as published in Theoretical Population Biology, we develop
a construction method for MPPMs. This vector-based method allows to computationally efficiently model
populations characterized by numerous traits with large distributions. We extend sensitivity analyses
towards these models. Then, we present a new analysis tool for evolutionary demography: the Trait Level
Analysis. It enables to compare demographic properties of a model characterizing a population by certain
traits with its, ergodic-equivalent, folded model only implementing a subset of the traits. By doing so,
Trait Level Analysis allows to measure the relative evolutionary importance of the different traits in an
MPPM. The scope of this new tool is very large, but amidst its uses, it allows to measure the demographic
and evolutionary consequences of a trade-off by folding upon the traits implementing it.

Chapter 3: The demographic and evolutionary consequences of physiological costs of
reproduction

The life history concepts of chapter I and the mathematical tools of chapter II, enable us to construct an
evolutionary model implementing both physiological costs and genetic costs of reproduction. After setting
up the model, we provide the necessary calculation tools – some of them new – to extract, from multitrait
models, several fitness measures such as the selection gradients (the sensitivity of fitness to vital rates),
the net reproductive rate (R0 ), its variance (the variance in lifetime reproductive output σ2

LRO), and the
demographic (σ2

d) and environmental (σ2
e) variances. We can then use these tools to compare these various

fitness measures between the full model implementing the costs of reproduction and the folded models,
implementing only type of costs, physiological or genetic, or implementing none. The combination of the
trait level analysis and the fitness measures computations allow to gauge the evolutionary and demographic
effects of the costs of reproduction.

Chapter 4: Kinship demography

In chapter 4, we discuss a new field, to which the concepts, methods and tools of the preceding chapters
will benefit, that of kinship demography. In social species, kinship demography deals with the effects of
the kinship distribution in a population on its demography (transfers of resources between kin affect the
vital rates of both the giver and the receiver) and with the reciprocal influence of demography on kinship
distribution. As such, kinship demography is in contact with a wide range of fields. Focusing on humans,
we discuss these connected research domains and review the specific benefits on a child of kin aliveness
and the specific costs on parents of caring for their offspring. Finally we hint at two extensions. First,
of the theoretical model implementing costs of reproduction of chapter 1, to implement transfers between
related individuals. Second, of the fitness measures in multitrait models (chapter 3) to provide inferred
distributions of kin.
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Chapter 1 – General theory of costs of reproduction

1.1 Introduction
Without constraints on life histories, nature would be invaded by non-competing Darwinian demons (Law,
1979); an organism which can simultaneously maximize all fitness components. Life history as a field would
then have no reason to exist. In life history theory such constraints are called trade-offs. They "represent
the costs paid in the currency of fitness when a beneficial change in one trait is linked to detrimental change
in another" (Stearns, 1989a). Among these life-history trade-offs, the cost(s) of reproduction (singular and
plural are equivalently used) is the most prominent (Stearns, 1989a) as the traits it connects are directly
the two highest level components of fitness : survival and fertility. Another trade-off relates quality and
quantity of offspring and it has been argued that all other trade-offs are particular cases of either one of
the two (Lessells, 1991).

Costs of reproduction as an allocation mechanism
When coining the term, Williams (1966) based his definition of the costs of reproduction on Fisher (1930)’s
reproductive value of an individual. In an age-structured population, if, for a given genotype of fitness λ
(the asymptotic growth rate of sub-population with this genotype) and maximum longevity ω, the ex-
pected fertility and survival rates at age j are fj and sj , then the reproductive value of an individual
aged i (i.e., the present value of all its expected future offspring) is vi =

∑ω

j=i fjλ
i−j(

∏j−1
k=i sk). Williams

(1966) formalized the costs of reproduction as the trade-off, at the level of the individual and at each age i,
between the reproductive effort - the portion of its reproductive value "immediately at stake", simply taken
as the current fertility rate fi - and the residual reproductive value which is then

∑ω

j=i+1 fjλ
i−j(

∏j−1
k=i sk).

Such a cost is an application of the principle of allocation (Cody, 1966; Lack, 1954; Orton, 1929) to
reproductive value and was fully formalized by Gadgil and Bossert (1970) under the term "cost of re-
productive effort". Therefore Williams’ characterization of the costs of reproduction is clearly based on a
repartition mechanism whereby the allocation of available resources infers costs on the individual’s survival
and fertility. Following Partridge et al. (1991), we further categorize such allocative trade-offs - they call
functional constraints - in either physiological or ecological costs of reproduction.

The former represent "functional constraints internal to the organism", the latter originate from the
organism’s environment when trying to increase its current reproductive effort. When deciding to "forage
one more time instead of retiring for the night" Williams (1966)’s robin invests more resource towards its
current brood at the physiological cost of having less metabolic resource for its own survival and at the
ecological cost of being killed by a predator. Naturally the difference in such costs is progressive : physio-
logical costs are affected by the environment and ecological costs have physiological causes and effects. But
at the far ends of the spectrum, we can differentiate these costs by whether the actual allocation process
of reproductive value consists in a split (physiological costs) or in a bet (ecological costs).

As a matter of fact it can be argued that ecological costs of reproduction are not really about an allo-
cation towards higher or lower vital rates at the next(s) time-step(s), but about an all-or-nothing gamble
taken by the individual to freely increase residual reproductive value at the cost of losing it all. As a
consequence, ecological costs to pay are larger (disproportionate to the potential increase in reproductive
value), shorter-term (mostly immediate) and far more dependent on the environment at the time the risk
is taken. Ecological costs are, therefore, key components of the study of ecosystems. Physiological costs
for their part, as they gradually connect the different fitness components of a life cycle, are the clay from
which life history is mold. They are, therefore, the subject of this chapter.

The two sides of costs of reproduction
An individual life trajectory is the stochastic realization, in a specific environment, of the individual’s geno-
type. Each genotype will contain guidelines leading its bearers along a specific life-history strategy evolved
by its ancestors. The different life-history-strategy-genotypes in the population will only marginally differ
from the broader strategy evolved at the species level (along with variants of other life history traits).
Therefore the allocation towards reproductive effort, for an individual at a given time-step, will both de-
pend on the state of the individual, encompassing its past reproductive and environmental histories, and
on the life history its lineage has evolved.

That physiological costs are two-sided was certainly already obvious to Williams as he asserted his
fundamental definition of costs of reproduction. The power of his phrase comes from the admixture of
two semantic fields that are generally formalized separately. Indeed only resources can be allocated, and
only towards functional mechanisms. However reproductive value is not a resource, and the residual re-
productive value not a biological function of the organism. Rather, these are evolutionary concepts that
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embed the theoretical expectation of all future vital rates as evolved by the organism’s genotype. In such
a phrase Williams manages therefore to evoke at the same time and thus in a seemingly circular manner,
a forward process whereby allocation, at a given time-step, depends on the past realized life trajectory of
the individual and a backward process whereby this allocation also depends on the individual’s expected
future life trajectory.

A closer look at the phrase highlights the contradictions such a mixture is doomed to generate. If
the individual constantly "decides" to allocate towards its residual reproductive value, it is deemed to
live forever. However its reproductive value, transferred untouched from one period to the next, is fi-
nite, implying the organism has a maximum age. From a physiological point of view, this implies the
organism allocates resources that it has yet to (ever) acquire. As a matter of fact, using concepts loosely,
Williams manages to highlight, in a single sentence, the two main drivers of an allocation process at the
individual level. At each time-step, the reproductive effort will be determined by both its past realized
environmental and reproductive histories and by its expected future life trajectory as embedded in its geno-
type. This highlights the fact that life-history strategies are certainly major drivers of the mechanisms
of physiological costs of reproduction, while physiological costs are major drivers of individual life-histories.

Further this hints at several important features of the costs of reproduction, rarely found in the litera-
ture. First, the existence of different types of resource capitals, either built forward, or managed backward;
themselves certainly related to different type of resources. A novel theory of the costs of reproduction
could stem from such a difference, to better link empirical knowledge at the species’ level to theoretical
predictions of the physiological and genetic structure of the costs of reproduction. Second, the double
sides of physiological costs should also be accounted for when assessing the emergence of these costs at the
phenotypic level and their detectability along different life-trajectory segments.

From physiological costs of reproduction to negative correlations and ...
not back
The variance in genotypic life-history strategies inside a population may have confounding effects on the
identification of costs of reproduction. Indeed, whilst Williams’ definition clearly depicts an allocative
mechanism at the level of the individual, the term "costs of reproductions" is often used as soon as a
negative correlation appears between vital rates, at different ages, aggregated at the level of the individual,
population, species or across taxa. This is because the accumulation of time-step physiological costs over
the life of an individual may translate into negative correlations between various fitness components both
at that level and when aggregated at higher levels.

By contrast, such negative correlations need no allocative physiological trade-off to occur. Observing
that mortality rates correlate with fertility rates, at the level of the population, does not necessarily imply
the action of underlying physiological costs of reproduction. First, because, in a changing environment,
such correlations may also be due to pleiotropic genes (each acting on vital rates at certain ages) that have
crossing reaction norms (dynamic linkages). Second, since, even in constant environment, such negative
relationships can also be generated by variance in genotypic life-history strategies. Whenever two alleles
of a gene driving life history allocation strategy (or more generally of a gene with pleiotropic effects on
different fitness components) cohabit in the population, negative correlations between vital rates at dif-
ferent ages will emerge. Because they have similar phenotypic consequences than the physiological costs,
the genetic variance in such a gene is also considered to be a cost of reproduction called genetic costs.
This a general concept that applies to all trade-offs : genetic (or evolutionary) trade-offs occur when, in a
population in a constant environment, there is genetic variance in a gene that has antagonistic pleiotropic
effects on the traits connected by the trade-off.

Both physiological and genetic costs have been shown to occur in nature. However, as Edward and
Chapman (2011) are asking, "it is not yet clear whether physiological and evolutionary trade-offs occur
via the same underlying mechanisms. It would be interesting to know, for example, whether individuals
selected for early- or late-age reproduction retain equal capacity to express physiological trade-offs; that is,
whether the effects underlying these different kinds of trade-offs are additive". We would go even further
and claim that it is as yet unknown whether they are different manifestations of the same underlying
evolutionary process, or altogether different, sometimes potentially opposing, mechanisms.

In real life, we only encounter costs of reproduction through their phenotypic expressions.van Noord-
wijk and de Jong (1986) have shown how, with regards to the physiological process of acquiring/allocating
energy, detectability was marred when the variance in allocation between individuals is swamped by the
variance in acquisition.Houle (1991) studied this phenomenon at the genetic level. Such analyses are im-
portant since detectability of trade-offs tell us about the underlying processes at play, and because they
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provide a general level of expectation as to whether particular costs can be expected to be observable
(Metcalf, 2016). However physiological costs are not all about energy, and since physiological and genetic
costs stem from different mechanisms, we do not expect the same factors to allow each underlying cost to
become phenotypical and further to become detectable. It has thus become necessary to disentangle the
cross-effects of factors on the detectability of the various costs of reproduction, for - as Jessica Metcalf puts
it - understanding how such processes "push distributions of traits around" and "thinking clearly about
the drivers of this variation can be rather counterintuitive" (Metcalf, 2016). It is however necessary to
understand the actual mechanisms driving phenotypic costs and detection at the level of the individual
and the population, and their evolutionary consequences.

Models for trade-offs
Difference in core mechanisms also imply these different costs -physiological and genetic - will be accom-
modated by different models. Most life history models for trade-offs solely focus on genetic trade-offs.
This is the case of early theoretical models by Schaffer (1974) and Taylor et al. (1974), analyzed and put
in context by Pianka and Parker (1975), extended by Charlesworth and Leon (1976) and many others.
For instance, when Bell (1980) invokes costs of reproduction to analyze the emergence of semelparity in
iteroparous organisms, he really studies the invasibility of alternative alleles of a gene antagonistically
acting on early reproduction and late fitness. Equivalent approaches have used evolutionary demography’s
projection matrix to implement or study genetic costs. In particular, optimality theory allows to infer the
strength of these costs from the matrix of vital rates of the organism supposedly at ESS (Caswell, 1982b,
1984; Van Tienderen, 1995). This method is akin to the multivariate quantitative genetics approach which
enables to anticipate the change, over the near evolutionary future, in the mean value of a pair of traits
from the (genetic) trade-off between these traits as embedded in the G genetic covariance matrix (Charnov,
1989). And indeed Charlesworth (1990) has shown that these two approaches are equivalent under certain
conditions.

Physiological costs, for their part, were incorporated early in the theory, but modeled much later. This is
because of both the complexity of implementing such complex mechanisms and because, for most ecologists,
as Dhobzhansky puts it "nothing [...] makes sense except in the light of evolution". Because physiological
costs of reproduction occur at the level of the individual, they have been modeled via Individual-Based
Models (IBM, also known as agent-based models or, in demography, microsimulations), which offer valu-
able information (see the incorporation of key components of survival physiological costs of reproduction
in order to estimate their demographic consequences in Proaktor et al., 2008). Because they involve com-
plex (for instance metabolic) pathways, they require complex modeling to be accurate (illustrated by the
complexity of fish bioenergetics modeling in (Jørgensen et al., 2016)). In an IBM, every particle is tracked
at all times. If the processes determining its fate and the fates of its offspring are complex, it will be
difficult to infer an accurate distribution of the stochastic growth rate for such a population; let alone its
sensitivity to vital rates. Without such selection gradients, any understanding of the evolutionary (recent)
past and (near) future of the organism is made harder, limiting the interest of such models (but see Lee,
2008).

An evolutionary framework for physiological costs is therefore increasingly needed. Some have tried
to bridge the gap between these different classes of models. This is, for instance, the case of McNamara,
Houston, Mangel and Clark (see for instance McNamara and Houston, 1986; Mangel and Clark, 1986;
Houston et al., 1988; McNamara and Houston, 1996; Clark and Mangel, 2000), who have developed a
state-dependent model framework, embedded in dynamic programming theory. Such models incorporate
a level of scrutiny closer to the individual (they are "state-based") that allow implementing physiological
trade-offs, and backward induction, to infer optimal strategies maximizing fitness. Such a tool is impor-
tant as it allows to implement trade-offs and stochasticity, whilst still being able to compute all types of
evolutionary measures. However they are not evolutionary models in the sense that they do not allow, for
each genotype and environment, to agglomerate all state-specific rates and constraints in a single equation
that relates all vital rates and trade-offs with fitness (growth rate). Matrix models do provide such a pow-
erful tool - it is the characteristic equation, named Euler-Lotka for age-structured models - that allows to
provide an evolutionary-neutral framework in which one can ponder the relative evolutionary importance
of vital rates, and most importantly a trade-offs themselves. The much needed evolutionary framework for
physiological costs should therefore be based on population projection matrix theory. It should addition-
ally allow the implementation of any type of physiological and genetic costs. It would then go a long way
towards answering such questions regarding the nature, cohabitation, detectability and evolution of both
sides of trade-offs.
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Plan
In this chapter, drawing on the seminal theoretical works of Bell (1980); Gadgil and Bossert (1970); Par-
tridge et al. (1991); Roff (1992) and most importantly Stearns (1989b) we first establish a consistent and
unifying theory of physiological costs of reproduction, that - whilst kept as simple and parsimonious as
possible - can incorporate all the major inputs of these costs, such as the environment, the life-history
strategy of the organism and individual stochasticity. To do so, we base the allocation formula - of re-
sources towards reproduction - at the core of physiological costs, on (i) two capitals (related to the two
sides of costs aforementioned) and on (ii) the position of organisms on major life-history strategy spectra
(Slow-Fast,Income-Capital-Breeding and Quantity-Quality). From this formula, we then derive expected
secondary determinants of the costs, and make predictions with regards to the different manifestations of
such costs depending on life-history strategy.

We then extend this physiological mechanism that lies in Stearns (1989b)’s intermediate structure by
adding genetic variance at the genotypic level. We principally focus on the variance of two genes. First
the allocation gene, which variance generates a gradient of heritable iso-fitness life-history strategies in the
population, mainly characterized by their respective positions on an intraspecific Slow-Fast Continuum.
Second the acquisition gene, which variance generates a gradient in overall fitness between genotypes.
We show that the genetic costs of reproduction arising from the variance in allocation strategy and the
physiological allocative process itself, can combine to form a general mechanism we call physiological costs
of reproduction with genetic basis. We then indicate that genetic costs can, however, emerge without any
need for an underlying physiological mechanism.

This mapping of costs of reproduction, physiological and genetic, is then used to make predictions with
respect to their detectability at different levels (individual, intrapopulation and interpopulation) and to
the influence of two major drivers of their emergence : the environment (its absolute level and its variance)
and individual stochasticity.

Finally, we discuss the different types of mathematical models that are adapted to these costs and
show that the dichotomy in core mechanism (physiological vs genetic) is reflected by a dichotomy in model
families (individual-based vs projection matrix models). We then go on and provide initial steps towards
the construction of a model that can bridge the gap between these two families of model in order to model
physiological costs of reproduction with genetic basis.

In the discussion, we show that this fundamental dichotomy has further repercussions in the field of
evolutionary senescence theories and this helps us to discuss the relatedness of these two types of costs,
and to interpret their fundamental hermeneutical differences.

1.2 A general theory of costs of reproduction
In order to determinate and model the architecture of the physiological costs of reproduction, we shall refer
to Stearns (1989a)’s classification of trade-offs. According to him, trade-offs can be studied at three levels,
"the phenotypic level, the genotypic level and the intermediate structure": the phenotypic level is where se-
lection acts, the genotypic level drives heredity, and the intermediate structure, filling up the entire space in
between, "modulates the expression of genetic trade-offs [. . . depending on . . . ] environmental conditions".

When focusing on allocative costs of reproduction it is quite clear than no specific genetic polymorphism
is required to account for the generic mechanism, the principle of allocation operating at its core. In
other words, genetic variance is not required for the cost to operate. The cost is a physiological feature
encountered by all individuals, at all times in all environments, whatever their genotype. Indeed for
Partridge et al. (1991) cheetahs’ life histories, although "lacking significant genetic variance", would be
absurdly deemed not to involve trade-offs. Thus, the core, allocative mechanism of physiological costs lay
in the intermediate structure.

1.2.1 Intermediate structure
The intermediate structure of physiological costs of reproductionwould consist, for a given individual life
trajectory, in the compounding of successive allocations that combine with the encountered environmental
series to produce the phenotypic level. At each time-step, for a given individual, in a given environment,
the physiological mechanism consists in a machinery involving resources - requiring or not to be acquired -
and their allocation towards reproductive effort. The various patterns of these three important components
will shape the diversity of physiological costs. This variety is the reason, we believe, for the use of plural
"costs" by Williams (1966). They will also allow us to categorize these costs with regards to the timing
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and strength of their phenotypic expression.

Capitals, resources and mechanisms

As mentioned in the introduction page 8, the allocation process of the costs of reproduction is two-sided.
At each time, the allocation towards reproductive effort is a function of both a forward process projecting
the effects of realized past life-trajectory towards the present, and a backward process materializing at the
current time, all the future reproductive efforts as expected by the evolved life-history of its lineage.

We argue that these two aspects are not merely two alternative ways to conceive the costs of re-
production. Rather they are related to two different costs acting on two different capitals, blended in
Williams’ definition under the name of reproductive value, both continuously and simultaneously affect-
ing life-trajectories. We further argue that this categorization is fundamental to better understand the
schedule of the costs of reproduction throughout life-history, as well as to structure life-history within
empirically grounded continua : the slow-fast continuum, the income-capital breeding spectrum and the
quantity-quality continuum.

Two different capitals drive physiological costs of reproduction We introduce two concepts
of capitals, each corresponding to one side of the physiological costs. The fluctuating capital (FC) is built
forward. It starts empty and thus resources need to be acquired before any allocation can occur. The
ratchet-capital (RC) is managed backwards. It consists of a lifelong budget that reduces each time as the
organism divests the resource towards reproductive effort. We shall consider the physiological costs to be
about the constant uses of both capitals, each of which required to remain positive under penalty of death.
Since the FC fluctuates over time, it is associated with resources (we shall call them FC resources) than
can (and need to) be acquired like energy. By contrast the RC is associated to any resource (RC resource)
that cannot, like time (see Lorenzini et al., 2011). Resources combining properties of both capitals, like
metabolism, would have effects on both.

Defining evolved lifetime reproductive effort Let us first us define quantities describing
the central trajectory of reproductive efforts, evolved at the level of the population. Let f(a) and s(a) be
the expected fertility and survival rate at age (or any state parameter) a as evolved by the individual’s
ancestors. Because in many species effort to produce independent offspring is spread over time, before
and after birth for instance (see section 1.2.1), let us define res the reproductive effort schedule which
represents the time distribution of reproductive effort required to produce one independent offspring. For
example, res could be a distribution centered on birth which also encompasses efforts before birth (mating,
gestation, incubation, etc.) and after birth (lactation, parental care, etc.). From s (survival rate) let us
first construct e(a) =

∑
a
s(t), the life expectancy at age a. Then we can write that the reproductive

effort schedule convolves with fertility rates by age/state f(a) to produce the lifetime distribution of all
reproductive efforts re :

re(a) = (f ∗ res)(a) =
∫ e(0)

t=0
f(t).res(t− a).dt , (1.1)

where ∗ represents the mathematical convolution of two distributions. In this equation f(t).res(t−a) rep-
resents the effort produced a− t time-steps from the fertility event at time t represented by f(t). Because
we focus here on central evolved life-history strategy, we integrate the convoluted reproductive efforts over
the central evolved lifetime, i.e. from birth to life expectancy e(0). Summed over life, it extends the
fertility lifetime schedule f into the lifetime reproductive schedule re. Therefore re represents the way
reproduction is structured over the expected lifetime, expressed by e, of an average individual. It tells us,
for a given life expectancy e(0), whether reproductive efforts are concentrated early or later in life, cease
before or continue until old ages, are clustered over a short time span, or fanned out throughout life, are
stacked over a short e(0) or thinly spread over a longer life expectancy. Thus, the (e, re) joint distribution
completely determines the life history strategy of an individual’s lineage. Specific life history characteris-
tics, like the positions on the slow-fast continuum (SFC) and the semelparity/iteroparity spectrum and to
a lesser extent the income/capital breeding (ICB) continuum, are all moments of (e, re).

We denote rc the backwards cumulative distribution of re. It is summed from the population life
expectancy e(0) to the specific age of the organism a, such that rc(a) =

∑e(0)
j=a re(j) + α; with α the non-

reproductive baseline periodic costs simplified as a constant over time. The addition of α in the definition
of rc to account for other non-reproductive functions that may also have to receive efforts from the organ-
ism renders the model easier to fathom, but, in theory, is not necessary if one considers that every effort
an organism has evolved to deliver has to promote reproduction one way or another. Natural selection
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would indeed prevent, at the genotypic level, any effort that does not eventually lead to the multiplication
of an individual’s gene. At the level of the individuals’ life trajectories this is not the same obviously, as
sterile individuals are still able to produce the efforts necessary for their survival without resulting in any
reproduction. Actually, such individuals, as they don’t incur costs of reproduction, will actually live longer
than the fecund elements of the population, as exemplified by the increased lifespan of Korean eunuchs
(Min et al., 2012). The same reasoning prompts us to sum the expected reproductive efforts over the life
expectancy evolved by the organism in order to generate, backwards, the expected total effort produced
rc(0) and not longevity. On the contrary, the actual RC of an individual - continuously reduced as the
realized reproductive efforts unfold over life - will need to be tracked until the maximum longevity of the
organism.

Defining individual realized reproductive effort We have so far defined three quantities,
res, re and rc, common for all individuals in a lineage, characterizing the central life history strategy
towards reproduction. Let us now see how these relate to the individual life trajectories in relation with
the two capitals defined previously RC and FC.

At birth (this very simple model does not take into account any cost of onthogenesis) the ratchet capital
is maximum and worth RC0 = rc(0). All individuals of the same (e, re) will thus share the same initial
level of RC. However their life trajectories will soon diverge as at each time t, RC would be diminished by
the portion of RC resource (say time) allocated to the reproductive effort the organism is able to produce
at that period : REt. Such a capital is analogous to the maintenance capital of Kirkwood and Rose (1991),
with a stronger focus on reproductive effort. Then, simply,

RCt+1 = RCt −REt − α (1.2)

Therefore, the difference between RCt and rc(a) for an individual aged a at time t is
∑t

a=1 REa − re(a)
which corresponds to the accumulated divergence between expected and realized reproductive efforts.

Conversely, the FC is zero at birth FC0 = 0 (as, again, onthogenesis is not modeled here). Then, at
each time-step, FC resources (say energy) - necessary for reproduction - would be acquired and added to
the FC capital, a portion of which then spent on reproductive effort. We denote the FC resources acquired
from the environment at time t, Envt. They can possibly be stored, with efficiency stor, if the organism
has evolved the capacity to build FC resources reserves.

Making the assumption that reproductive effort has proportional effects on both capitals, we scale
them so that the REs in each system need not be (but bearing in mind that RC and FC are made or
different resources and thus counted in different units of measurement). Then

FCt+1 = stor.(FCt + Envt −REt) (1.3)

In order to predict the relative order of magnitude of FC and RC, let us consider an organism with
a storage capability that is low or even non-existent (i.e. stor ≈ 0). Then FC will be almost reset after
each reproductive effort, FCt ≈ 0. During each time-step the level of FC will fluctuate between 0, before
acquiring the resource, and Env (the level of such resource to be acquired in an average environment)
before producing the reproductive effort. Since there is no point for such an organism in not spend-
ing its acquired resources before its capital is reset at 0, we would expect its mean reproductive effort
to be approximately RE ≈ Env. Simplifying also the RC process by setting α at 0, this implies that
RC0 =

∑
t
RCt − RCt+1 =

∑
t
REt = e0.RE. And thus, whilst FC is fluctuating around the level of

RE (the mean periodic acquisition of resource), RC, at birth, is of the order of magnitude of the total
reproductive effort an organism is expected to produce in its lifetime in the mean environment.

The intermediate structure component of figure 1.1 illustrates the differences in magnitude between
FC and RC capitals and how they are impacted by reproductive efforts (green arrows).

Ratchet Capital is affected by position in the slow-fast continuum The way the total
potential effort, RC0 is spread over lifetime is measurable by the ratio:

sfc =
∑

i.re(i)∑
re(i)

=
∑

i.re(i)
RC0

=
∑

i.re(i)
e(0).RE

(1.4)

It depends on the life history (e, re) this organism has evolved and in particular on its position on the
continuum called slow-fast (SFC) (Gaillard et al., 1989; Stearns, 1983; Promislow and Harvey, 1990). In-
deed sfc is (inversely) related, as a ratio of life timing to reproductive effort, to the F/a ratio where a is
the age at first reproduction and F the fertility rate, used to categorize mammals (Oli and Dobson, 2003).
It is even more related to generation time, another (and arguably stronger) indicator of the position on
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Figure 1.1: Representation of the genotypic level and intermediate structure of physiological costs
of reproduction with genetic basis. In the intermediate structure, the organism is represented
by two capitals the Ratchet Capital (RC) and the Fluctuating Capital (FC). The latter being
replenished, every time-step, by acquired FC resource and both are diminished by the reproductive
effort produced at time t, RE(t) (green arrows symbolize the reduction of capitals by reproductive
efforts). The reproductive effort itself is derived, via the allocation process, from the levels of
both capitals (blue arrows depict the effects of both capitals as main drivers of the allocation
process). The two main processes generating RE(t), the allocation process and the acquisition of
FC resources are affected by the environment and by chance (red arrows) and, at the genotypic
level, by the variance in (allocation × acquisition)(black arrows).

the SFC (see Gaillard et al., 2005) (sfc is actually equal to generation time in the simplified case where
the entire reproductive effort schedule is concentrated at time of birth, i.e. res = δ0 (Dirac distribution),
implying both reproductive effort and fertility lifetime distribution are equal, re = f).

We extend this denomination here for any organism (mammal or not) to describe the pace at which
it distributes its reproductive effort re over its expected lifetime trajectory e. This characterization is
affiliated to genetic costs of reproduction (see in the introduction page 8) : for a given environment, two
genotypes inferring the same fitness, can cohabit in an organism, ; the "fast" allele would promote fertility
(at the cost of survival), the "slow" one longevity at the cost of fecundity.

The connection between RC and SFC has important consequences for the way this capital is managed
over time and the costs of reproduction it incurs. RC costs, because of the compounding of the inherent
ratchet effect of reproductive effort on capital, will result in long-term and mostly late-life effects. After a
lifetime of erosion, the accumulation of reproductive effort brings the RC close to levels at which neither
fertility nor survival can be sustained. The delay of such effects being proportional to sfc. Conversely, at
young ages, the high ratio of RC(t)

R̄E
≈ e(0) implies that RC costs will be little, buffered by the high level

of the capital, all the more so for slow (high sfc) individuals. In a nutshell, we expect slow organisms to
experiment important long-term and very little short term physiological costs related to RC, compared to
fast organisms.

Fluctuating Capital is affected by position in the income-capital breeding continuum
Since it starts life at 0, the FC will have no such long-term buffer effect. This is especially true for or-
ganisms that cannot store the FC resource (say energy). Indeed, if stor = 0, then at the beginning of
each period, i.e. at the beginning of a new cycle of acquisition followed by allocation of the resource,
FC(t) = 0. Such FC costs will have no effects beyond the end of the period, and will thus mainly consist
in the reproductive effort negatively affecting survival until the following acquisition period. If stor > 0
though, then the portion of the unused FC that can be stored and therefore carried over to the next
period, will buffer and delay the FC costs. Since, as discussed above in section 1.2.1, the size of the FC
is of the order of magnitude of RE, such effects will then, contrary to RC costs, be short- to mid-term.
Because of the acquisition component of FC, they will depend heavily on the environment. With sufficient
storage capacity, the FC will be able to buffer part of the effect of environmental variance on reproductive
effort. Conversely this means that the effect of the costs, though delayed by storage, will still be strongly
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dependent on the environment. Thus the timing, phenotype and detection of FC costs will strongly de-
pend on storage facility stor, i.e. on the organism’s position on the income-capital breeder (ICB) spectrum.

This was studied by Stearns (1989b) in an article where, focusing on acquirable resource (he calls en-
ergy, we call FC resource), he distinguishes FC costs between "behavioral costs" and "physiological costs".
Behavioral costs are associated with the economics and accounting-related concepts of income breeders (IB)
and direct costing first used in an ecological framework by (Drent and Daan, 1980; Sibly and Calow, 1983,
1984) : for income breeders, which "high metabolic rate leave little room for storage", the cost of reproduc-
tion is direct, "drawn out of current revenue" and relate to behavioral mechanisms (e.g. foraging)(Stearns,
1989b). The Tokophrya studied Kent (1981) which "produces one offspring for each Paramecium eaten" is
an example of "income breeder". "Physiological costs" are associated with the concepts of capital breeders
(CB) and absorption costing. Capital breeders, like the red deer studied by Clutton-Brock et al. (1983),
physiologically allocate a portion of the FC resource pool to be absorbed by the current reproductive effort
and the unused portion can be stored for future reproduction, in the FC capital. As they can capitalize
energy over time, successive breeding attempts will likely share the same resource pool (the FC capital),
thus both delaying and buffering the costs and the environmental effects.

In this way, the physiological costs associated with both RC and the FC of Income Breeders (IB-FC),
are costs of cumulative reproductive efforts, with short, middle and long-term effects. They are very dif-
ferent in nature but operate similar mechanisms. One main difference being that we expect FC costs to
be phenotypically more important in the short and middle-term (the higher the storage capacity stor, the
longer the effects), as they are about reserves that are readily available should the environment become
detrimental. Rather RC costs - as RC capital is much larger than FC in early/mid-life - will only have
strong effects in late-life, with a delay related to sfc. The other difference is the strong dependence of the
FC capital on the environment, through its acquisition process. However, because any allocation towards
reproductive effort will deplete both capitals, current and past environments - via respectively the alloca-
tion and storage processes of FC- will be strong determinant of reproductive effort and therefore the RC
costs are also, albeit much less, environmentally-dependent.

As a conclusion, we expect the strength and delay of the physiological costs of reproduction to be
vastly determined by the organism’s position on the Income-Capital Breeding and Slow-Fast continua.

Ratchet and Fluctuating Capitals in nature In the wild, a vast array of timing and strength of
costs of reproduction have been observed. Pre-industrial humans, have been shown to exhibit both short
term and long-term costs. The former are mostly to be found in the literature on "maternal depletion
syndrome", showing the negative correlations displayed between pregnancies and maternal health (Butte
and King, 2005) but with limited effect on overall reproductive success (Gurven et al., 2016). But mostly,
pre-industrial humans have been investigated for longer term effects. Hayward et al. (2015) have showed,
for instance, that early-life fecundity - measured as the number of children produced before age 25 - is
positively correlated with mortality rate throughout the remaining life of the mother. Westendorp and
Kirkwood (1998) and Thomas et al. (2000) have furthermore established the negative relationship between
overall number of children and longevity. As have Gagnon et al. (2009) in a studying of the population of
ancient Québec.

The Soay sheep - a capital breeder - where shown by Tavecchia et al. (2005) to display effects of breed-
ing success at maturity on survival with effects throughout life, and stronger at young and old ages. This
is in accordance with our model where the FC costs of early reproduction would hinder survival at that
time and shortly thereafter with decreasing effect over time, whilst RC costs would take effect much later.

To the contrary, the small passerine Parus Montanus - an income breeder, thus lacking long-term en-
ergy capital - was demonstrated by (Orell and Belda, 2002) to suffer only long-term costs (early breeding
impacts females’ survival rates aged 5 years or older but not in the years following breeding). This agrees
with our model where IC do not suffer from mid-term FC costs (only immediate), but from late-life RC
costs.

Indeed, another trademark of FC costs for organisms able to store its acquirable resource, is their some-
times sporadic effects throughout the life of individuals. This is remarkable, for instance in such a capital
breeder as the caribou, Rangifer Tarandus, which every 4 years on average, enters "reproductive pause", in
order to "compensate for the [...] costs of gestation and lactation" (Cameron, 1994). A somewhat similar
behavior in perennial plants, the masting strategy - whereby seed production is periodically massively
reduced, has been related to such an energy cost by Venner et al. (2016). Masting differ however with re-
productive pause by the total synchronicity of its occurrence at the population level. This may be explained
by the larger still environmental-dependency of such plants (especially comparatively with other factors,
like age) and/or by the synchronizing effect on reproductive effort of cross-pollination (Venner et al., 2016).
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The special case of income-breeders FC capital IB-FC costs, through the preponderant im-
portance of the environment and of the very narrow time window of its effects (only until the next feeding
season) are extremely similar in patterns, if not in nature, to the ecological costs described in the intro-
duction page 8. This is, we think, the reason why Stearns (1989b) calls them "behavioral costs", whilst
calling CB-FC simply "physiological costs". Following in his steps, we shall in this article mainly focus on
costs with a potential lasting effect, namely the RC and CB-FC costs, calling them simply physiological
costs.

It should be noted however, that via their effect on immediate survival ecological/IB-FC costs, have
also long-term effects from a live-history trajectory perspective. At the individual level, once the bet of
the current reproductive effort is won, there is obviously no physiological cost impacting future fitness.
However, at the organism level, the expected number of offspring in late life, via its dependency on sur-
vival, is affected by this potential ecological cost. For such costs, we could therefore consider the "survival
gauge" - the accumulated mortality risks an individual takes in order to reproduce - as a capital, akin to
FC and RC (with the main difference that, instead of being gradually emptied, it is entirely put at stake
for each reproductive effort). Thus theoretically, the model for physiological costs of this review are readily
extendable to ecological/IB-FC costs.

Allocation process

In most analysis and models of costs of reproduction, the allocation process towards reproduction is pre-
dicted and implemented as a function of many factors such as age, stage, size and environmental conditions.
In our two-capital model, such drivers can be regarded as second level dependencies of the main parameters
that determine, we think, the allocation process : the capitals and the life history strategy.

Capitals and life history strategy drive the allocation process towards allowed repro-
ductive effort The way the two capitals combine is certainly a complex process that will prove very
difficult to put in simple equations. However, with parsimony in mind, we can write the maximum repro-
ductive effort, allowed by the capitals, at time t, aRE(t), as the following combinations of both capitals,
cumulative lifetime reproductive schedule (rc) and position on the ICB (stor). Both capitals are required
for a reproductive effort, therefore the maximum allowed reproductive effort will be limited by the capital
with the minimum level:

aRE(t) ≈ min(FC(t)− stor.RE,RC(t)−K.rc(t)) , (1.5)

where 0 ≤ K ≤ 1 is a parameter accounting for the (inverse of the) latitude allowed to an organism with
regards to possible deviations of its Ratchet Capital RC away from the evolved expected capital level
rc. In this equation, the allocation is, first, dependent on both capitals FC(t) and RC(t) being provided
for. Second, the dependency on RC(t) will be altered by K.rc(t) which represent the lowest limit the
RC is allowed to reach at that time as defined by both the mean reproductive schedule evolved by its
ancestors rc and the latitude parameter K. If the organism’s flexibility is large for an individual to drift
from the central trajectory (K small), then RC will only play a preponderant role in late-life (senescence)
as discussed in section 1.2.1. By contrast, if no leeway is given to the individual trajectories (K ≈ 1), the
effects of RC may be felt much sooner than that. Third, the dependency on FC(t) is modulated by stor,
the storage capacity of the organism. As with RC and sfc, stor corresponds to an evolved adaptation of
the FC. For this role to be implemented mechanistically, a high limit on the reproductive effort needs to
be added in order for the buffer effects of the storage capacity to be activated. We chose stor.RE for this
high limit, as it has to be positively related to both stor itself and to the mean effort allowed by the mean
environment RE = Env (see section 1.2.1).

Equation 1.5 can be simplified when considering the particular case where the allowed reproductive
efforts do not vary with age (i.e., re(t) ≈ r̄e) then, from eq. 1.4 page 13, rc(t) =

∑e(0)
i=t re(t) ≈ (e(0)− t).r̄e

and sfc ≈ e(0)
2 . And then we can write the maximum allowed reproductive effort at time t as :

aRE(t) ≈ min(FC(t)− stor.RE,RC(t)− r̄e.K(2.sfc− t)) (1.6)

Equation 1.6 shows the allocation towards reproductive effort to be, as intended, only dependent on
the capitals (FC,RC) with evolved life history strategy indicators (sfc, stor and K) delimiting the degree
of latitude the capitals have on the process. As can be read from the equation, for organisms that are
fast (low sfc) and limited in storage (low stor), the allocation becomes a direct function of the levels of
the capitals : aRE(t) ≈ min(FC(t), RC(t)). For a long-lived and/or capital-breeding organism, the high
values of sfc and stor control the reproductive effort expenditure and thus safeguard the future buffering
capabilities these parameters allow.
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In other words, RC will have effects whenever the environment encountered by an individual (on aver-
age RE) can be vastly different from the one its species evolved in (on average r̄e). And, in particular, if
r̄e � RE, implying RC(t) � rc(t), and if K is large. In a such a case RC would be the limiting capital
(i.e., the capital generating the costs), even early in life, in order to preserve flexibility in the organism
evolved slow schedule. This mechanism would be beneficial for the organism were the patterns of environ-
mental variations, it has evolved in, to recur.

Equation 1.6 thus shows that high stor and sfc move the allocation away from a direct function of
the minimum of both capitals. However it also reveals, via the product of K by (2.sfc − t) that for slow
organisms (high sfc) a larger latitude with regards to the evolved strategy (ie., a low K) may be allowed.
And all the more so when t is low, that is in early life. The sheer generation time of slow organisms enables
them a larger drift from the central evolved trajectory than fast individuals.

In equation 1.6, there is a clear symmetry between FC/stor/RE on one side and RC/K.sfc/r̄e on the
other. There is also, however, a major difference with respect to dependency on time t that brings to light
the two sides of physiological costs discussed in the introduction section 1.1 . A capital that moves forward
FC(t) and another capital that is, surely, spent as time passes forward RC(t) but managed, backwards,
i.e., controlled by the evolved life history strategy of the organism r̄e.K(2.sfc− t).

Overall, the higher stor and sfc, the more subtle and complex we expect the allocation process to
be and the less directly dependent on current environmental conditions Env(t). To the contrary, for fast
organisms, unable to store resources (i.e. with small sfc and stor ≈ 0), the allocation would be much
simpler - aRE(t) = min(FC(t), RC(t)) = min(Env(t), RC0−

∑t

a=1 Env(a)) - and almost directly depend
on the current environment.

Secondary divers of the allocation process towards allowed reproductive effort Such
an allocation function, as the ones put in equations 1.5 or 1.6, hopefully encompasses the diversity of
reproductive efforts, between species, populations, individuals, and at the level of the individual throughout
its life that have been observed and studied. It can also allow us to determine some of the secondary drivers
of allocation to reproductive efforts, and how we may expect the reproductive effort to change over an
individual’s life.

Other components of life history strategy. This allocation model is life-history-strategy-
dependent by construction and in particular incorporation of rc in equation 1.5. Simplifying this allocation
process (from eq.1.5 to eq.1.6) evidences the effect of the position of an organism on the SFC and the ICB
(via sfc and stor) on allocation : slower organisms and capital breeders can spare capital (respectively in
the RC and as storage in the FC). However for an organism, the evolved sequence of rc(t) actually encom-
passes all aspects of the life history reproductive schedule of an organism. Therefore all other (than the SFC
and the ICB) conceivable strategy spectra, like obviously the degree of iteroparity/semelparity - seemingly
difficult to reconcile with the the SFC (Dobson and Oli, 2007) - also drive the allowed reproductive effort
aRE(t) (see for instance (Calow, 1979) for a detailed analysis of the effects of semelparity/iteroparity on
the schedule of reproductive efforts).

The environment. The environment, via the effect on acquisition, is evidently also a strong driver
of reproductive effort. That the allocation of energy towards reproduction is a function, in relative terms
also, of the acquisition levels and thus of the environment has been established in nature (see for instance
Erikstad et al., 1998; Christians, 2000; King et al., 2011) and studied theoretically (Fischer et al., 2009;
Descamps et al., 2016). This is accounted for in our model, as FC(t) here corresponds to the fluctuating
capital after feeding; it is made of the resources just acquired from the current environment added to the
stored resources from previous seasons.

Age, state and terminal investment. On the income side of stor (i.e. low stor) provided that
RC allows it, there is no reason for the organism to save more than what is required for its immediate
survival, and thus the allocation is expected to be dependent on the absolute level of FC. This is also
expected to be the case for the CB-FC and the RC as the latter reaches zero (and thus expectedly at
old ages, or in general, in "poor" states). Since the organism is expected to die soon, it seems optimal to
allocate as much to reproductive effort as possible, as a last push on fitness; a phenomenon denoted as
the terminal investment strategy. The relationship between allocation towards reproduction (reproductive
effort) and age or state, has been studied theoretically (e.g. by Fisher, 1930; Pianka and Parker, 1975)).
In particular Charlesworth and Leon (1976) uses the reproductive effort model devised by Schaffer (1974)
to provide conditions on life histories that favor the generally expected increase in reproductive effort with
age. (Clutton-Brock, 1984) provide an empirical review of the weak demonstrations of such "terminal
investments", which is however well established in fish (Constantz, 1974). Specific life histories, albeit
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long-lived, may however maximize reproductive effort, even in relative terms, before reaching late age or
poor health, as seems to be the case for male red deer which peaks at prime age (Yoccoz et al., 2002).

From allowed to realized reproductive effort: position on the quality-quantity spec-
trum So far, in this section, we have explored the drivers of the allocation of capitals/resources towards
allowed (i.e., maximum possible) reproductive effort aRE(t), the effort the organism can sustain given
its current state. The actual effort, the realized reproductive effort, RE(t) will maximized by aRE(t),
but may also, by chance, be much lower. This individual stochasticity in the realization of reproductive
effort is likely to be driven by basic reproductive effort bre, the indivisible reproductive effort it takes to
produce one independent offspring. More specifically, at each time-step t, even if both capitals allow for
a reproductive effort aRE(t) to be produced, such an effort would be pointless, if aRE(t) < bre. Instead,
the resource will be reinvested in the capital and, if possible, used for later reproductive efforts.

The actual realized reproductive effort RE(t) is thus a random variable, distributed between 0 and
aRE(t) in steps of size bre. Individuals may, by chance, only produce a portion of the reproductive effort
their resources allow; and all the more so if bre is large. We can therefore introduce a new quantity -
gr = bre

r̄e
the ratio of basic reproductive effort to mean reproductive effort - that we call the granularity

of reproductive effort of an organism. This indicator gr, that drives the strength of the effect of individ-
ual stochasticity on reproductive effort, clearly positions the organism on the quantity-quality spectrum
(Lack, 1947; Smith and Fretwell, 1974). Organisms with very low gr will produce many seeds per period
and individual stochasticity will have little effect on reproductive effort : RE(t) ≈ aRE(t). Conversely,
an organism with very high gr (gr ≈ 1) will only be able to produce 1 offspring per period. Even with
available resources, if it misses that opportunity, RE(t) for that period will be 0 and the unused resources
will be reinvested in the capitals.

Indirectly, this model thus predicts that capital-breeding, which we know to be a response to con-
stantly varying environments as storage buffers the environmental variations, may also have co-evolved
with a shift of organisms towards the quality side of the quantity-quality spectrum. Indeed a high stor
provides cushion from the overall variance of FC(t), that is (as can be seen from its periodic balance-sheet
summarized in equation 1.3) from the variance in its proceeds - Env(t) - and its expenditure Re(t), an
increasing function of both the allowed effort aRE(t) and the granularity gr.

In summary, we thus expect the allocation towards reproductive efforts to be determined by both
capitals themselves and the organism’s position in the SFC, the ICB and the quantity/quality spectra.
Because RC capital decreases with age, and that both capitals can be said to constitute (a part of) the
"state" of the organism, we thus expect reproductive efforts to be functions of (among many others) the
age and the state of the individual in the framework of its species evolved life history. This relates perfectly
to Williams definition where the costs are about both the life history of its species, driving the general
allocative strategy, and the environment-dependent state of the individual tailoring a specific life-trajectory
around this baseline strategy.

Furthermore, The combined consideration of allocation equation 1.6, capitals mechanisms equations
(eq. 1.3 and 1.2)and the stochastic process turning allowed effort aRE into realized reproductive effort RE,
hints at two buffering characteristics of the costs of reproduction that we will underline more specifically
later when considering detectability (section 1.2.3). From eq. 1.3, we know that FC(t) would benefit from
an above average environment Env(t)� RE, from eq 1.6 we know that this large FC(t) will not be entirely
spent (if stor > 0), and a subsequent poor environment will therefore be compensated : physiological costs
buffer environmental variance. Similarly, if, by chance, RE(t) � aRE(t), then from eq. 1.3 and eq. 1.2,
we know the capitals are unchanged, but new acquisition from Env(t + 1) (for FC) and lower rc(t + 1)
as time passes (for RC) imply that both sides of eq 1.6 will be large than before : aRE(t+ 1) > aRE(t):
physiological costs buffer individual variance.

Components affected : survival and fertility costs of reproduction

The separation of the costs of reproduction in "survival cost of reproduction" and "fecundity costs of re-
production" was made early by Bell (1980) in a study of the emergence of semelparity, as evolved from
iteroparity in organisms encountering various costs of reproduction. Most empirical studies however focus
mainly on one these costs like (Tavecchia et al., 2005) on survival cost and (Bell et al., 1977) on reproduc-
tive cost.

As previously discussed, IB will incur large and immediate FC costs. Therefore the next breeding
season will be preceded by a feeding season resetting the FC. Such costs will be immediate survival costs.
The reserves of CB will allow them to reduce such an immediate survival risk, but will generate delayed
reproductive costs. Indeed, the fat stored by a CB will help him buffer its mortality risk due to the current
reproductive effort, before it is able to feed again, by allowing to draw on reserves. By doing so, however,
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the CB will reduce the resources available to it for reproduction in the following periods, with the effect
decreasing with time (as the accumulation of newly acquired resources buffers the costs) and which dura-
tion is related to stor itself. Conversely, we expect the RC costs to be felt, mainly at old ages, especially
for organisms on the slow side of the SFC, on both fertilities and survivals .

Our reasoning with regards to the determining effect of life history strategies on costs of reproduc-
tion, seems consistent with a review from (Hamel et al., 2010) whereby fast-living small rodents (like the
bank vole) demonstrate higher immediate survival costs and lower reproductive costs of reproduction than
long-lived ungulates. The model their propose to analyze such data predicts that the level of the costs to
pay on survival or fertility depends on the variance of the fitness component for the specific life history of
the organism : fast organisms have larger variance on survival, and thus that is where it the costs should
lay. In their study however, since most fast-lived rodents are actually income-breeders, and most slow-
paced ungulates are capital-breeders, their data confirms the expectation of stronger short-term survival
costs for the former and stronger mid-term reproductive costs for the latter. On closer inspection, both
approaches can also be found to be connected: the variance inferred on the allocation towards current
survival for an income-breeder by reproductive effort is much higher than that of a capital breeder since
the latter can buffer this variance and pass it on towards reserves to be used for future reproductive efforts.

Importance of the reproductive effort schedule

Reproductive efforts consists of all expenditures required to turn food into independent mature offspring.
In most species they obviously consist in efforts made around production of offspring. In this case, costs
of reproduction are often equated with costs of reproductive success. And indeed most studies focus on
breeding success, since it is both a central component of reproductive effort and relatively easy to observe.
However studying survival costs of reproduction in the black-legged kittiwake, Aubry et al. (2011) have
shown that breeding attempts was a better predictor of future survival than clutch size, brood size or
breeding success.

In many species, reproductive efforts have to be made long before birth, via the onthogenesis of the
reproductive system, and also other secondary sexual characters are such cases, such that physiological
costs of reproduction are sometimes paid long before reproduction ever occurs. In red deer, for instance,
a major component of reproductive success is the size of the young adult which directly influences its
chances of breeding. Because of the delay between this reproductive effort and breeding, these costs of
reproduction have the peculiarity of applying to survival at early ages (even before maturity): large males
have a higher mortality rates before reaching adulthood (Clutton-Brock et al., 1985).

In most species also, reproductive efforts do not stop at birth when offspring cannot feed nor protect
themselves yet. In mammals, lactation is a substantial component of the reproductive effort and (Clutton-
Brock et al., 1989) has even shown that in wild red dear (cervus elaphus) costs of gestation are slight
compared to those of lactation. All such behaviors delaying the bulk of reproductive effort after birth are
regrouped under the term of parental care. Parental care is an integral part of reproductive efforts, and
can be very costly ((van den Berghe, 1992; Santos and Nakagawa, 2012)), especially in altricial species
at the slow end of the slow-fast continuum, like humans; see (Gross, 2005) that studies the evolution of
parental care in the general framework of Williams’ principle. The importance of postnatal reproductive
efforts can be inferred from behaviors such as juvenile wastage, common to both animals (Tait, 1980) and
plants (Stephenson, 1980; Gosling, 1986)

More generally, the length of the entire reproductive process, spanning from birth of parent until long
after birth of offspring, dilates the time window of the costs, whether immediate or delayed. Introduced
in section 1.2.1, the reproductive effort schedule res(t) represents, for an organism, the time distribution
of reproductive effort required to produce one independent offspring. Such a distribution can be centered
at time of birth of offspring, in which case res(t), t < 0 represent efforts produced before birth and
res(t), t > 0 post-natal efforts (characterizing res by time difference from birth of offspring is a simpli-
fication as many other parameters certainly play a role, as for instance age of parent).

As we saw, the reproductive effort schedule convolves with fertility rates by age/state f(a) to produce
the lifetime distribution of all reproductive efforts (equation 1.1). Apart from the theoretical case where
res is only non-zero at time of birth - that is when res = δ0, where δ is the Dirac delta function - the
time distribution of reproductive efforts re will stretch wider than that of the so-called reproductive period
embedded in f . Indeed, if the reproductive effort schedule is spread far and wide before and after birth -
i.e., if res > 0 for t� 0 and t� 0 - the lifetime distribution of all reproductive efforts will span far wider
than the fertility schedule.

This means that if, for the production of an offspring, the reproductive effort components exerting the
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largest costs are not easily identified, it will difficult to distinguish immediate, short-, mid- and long-term
costs. As a matter of fact, if res(t) is mainly related to one specific effort - like gestation - or two major
consecutive efforts - like gestation immediately followed by lactation - it will be easier to relate reproductive
efforts and their costs and to assess the level and delay of the latter, than if res is evenly spread over time,
made of multiple small efforts over a long period of time. For a female ungulate, the reproductive effort
schedule is mainly concentrated at the level of the season, in the time window of which it, in turns, acquires
resources, then breeds, gestates, gives birth and finally feeds and cares for its offspring(s) of the year. For
such an individual, it will be possible to equate death during that season or reduced fertility in the next
season(s) with costs of that particular reproductive period. For a 35-year old human female, it is nearly
impossible to the designate, as the origin of a drop in fitness (reproductive pause, health deterioration, ...
), the complicated gestation she currently has, or the feeding of her newborn child, or even the care she
takes for her first three children that still depend on her.

1.2.2 Genotypic level of the costs of reproduction
In the previous section, we have investigated the mechanism of physiological costs of reproduction, which
occur in Stearns’ intermediate structure. If such a mechanism does not need genetic variance to occur,
genotypic polymorphism located at the genotypic level - and constituting, inter alia, the genetic costs of
reproduction(genetic variance in allocation or in an antagonistically pleiotropic gene acting on vital rates)
- may obviously still be involved. Such a genetic variance would affect, together with the physiological
costs of reproductionof the intermediate structure, the phenotypic level where costs of reproduction are
observed. A realistic population model for costs of reproduction therefore needs to be able to implement
genetic variance.

A genetic basis for physiological costs of reproduction
In the context of physiological costs of reproductionexplored in section 1.2.1 where life trajectories are
determined by the combinations of the effects of reproductive efforts on the capitals (equations 1.2 and
1.3) and the effects of the capitals on reproductive effort (the allocation process, described in equation
1.6), only two functions are dependent on the individual. First the acquisition process turning current
environmental conditions into Env(t) in equation 1.3. Second, the allocation function itself (eq. 1.5 and
1.6) which also depends on the life history strategy rc evolved by the population (with manifestations sfc
and stor among others). As a matter of fact, in section 1.2.1 discussing the intermediate structure of the
costs and in particular in section 1.2.1 describing the allocation process, we have already hinted at that
influence by calling rc the reproductive schedule evolved by the lineage of the individual, which may differ
between different lineages in the population. Therefore genetic variance in either allocation and acquisition
would have effects on the costs of reproduction (black arrows in figure 1.1).

We call allocation gene, a gene acting on the process of allocation itself, where two different alle-
les would, everything else being equal, allocate towards different level reproductive efforts. The genetic
variance in such an allocation gene would generate a gradient of heritable life history strategies in the
population.

To simplify our analysis of the topology of the genotypic level of costs of reproduction, we project the
distribution of all possible reproductive schedules rc onto one of its moment, sfc , which positions the
lineage on the SFC. In other terms, we summarize the diversity of lifetime reproductive schedule into its
sfc expression. Then, the genetic variance in the allocation gene corresponds to the variance, within the
population, in the slow-fast continuum (horizontal axis of figure 1.2)

We can restrain the gradients of life-pace strategies induced by the variance in allocation to be iso-
fitness by adding another, "orthogonal" gene, the acquisition gene, acting on the acquisition of the resource
itself (vertical axis of figure 1.2). Polymorphism in this gene would generate a variance in overall fitness
in the population we call robustness (more robust individuals can acquire more resource and thus survive
and reproduce better). For the different alleles of the acquisition gene to cohabit, the effect of such a gene
need to be strongly environment-dependent with crossing reaction norms : the robust genotype in a given
environment needs to be the frail one in another, since otherwise it would quickly invade the population
(as do the "super-flies" of Reznick et al., 2000).

The addition in our model of variance in acquisition - whereby two individuals with different acquisi-
tion but the same allocation would differ in overall fitness, i.e. in investment towards both fertility and
survival - allows thus to refine our definition of the effects of the variance in allocation : two individuals
with different allocation but the same acquisition would differ in the way they allocate the same amount
of resources towards either current fertility or survival (i.e. prospective future reproduction). This hints
at the possibility to use a different set of axis to position the different allocation × acquisition genotypes
of a population : fertility and survival (diagonal axes on figure 1.2). Robust genotypes (like G1 on figure
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Figure 1.2: Genotypic map : 4 genotypes of a population, G1, G2, G3 and G4, are represented
on a genotypic map according to two sets of coordinates (equivalent and related by a 45° change
of basis), the allocation × acquisition corresponding to variances on the slow-fast continuum and
in robustness and the fertility × survival corresponding to relative investment towards survival
or fertility. The two sets are Genotype G1 is the fittest (highest acquisition capacity) with a
central position on the slow-fast continuum. Genotype G2 has the same position on the slow-fast
continuum (the relative investments towards fertility and survival are the same), but is less fit
(both survival and fertility are lower in absolute terms). Genotypes G3 and G4 have have the
same, intermediary, position on the robustness axis (fitter than G2, less fit than G1) and are
therefore iso-fitness. They however differ by their position on the slow-fast continuum. G3 is
a slow organism favoring survival at the cost of fertility. G4 is fast with opposite investments.
Variance on the acquisition axis will be allowed by environmental variance but kept in check, in
the long evolutionary run, by selection. On the contrary, variance along the allocation axis will
only be limited by the extent of life history variations a population is able to sustain before it looses
the capability of interbreeding (speciation). And thus it is ultimately the latter variance which is
measured between species. Even, within species however we then expect, in general,t he variance
along the allocation axis to be larger than the variance in acquisition (ellipse shape). If it is not the
case (because of a large environmental variance for instance) the genetic costs of reproductionat
play in the population will not be detectable (van Noordwijk and de Jong, 1986; Houle, 1991)

.
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1.2) would invest more towards survival and towards fertility than frail ones (G2 on the figure). Faster
genotypes (G4) would promote fertility, but at the cost of survival, whilst slow ones (G3) would favor
longevity at the cost of current reproduction.

Such a mechanism with both an allocative intermediate structure and variance at the genotypic level,
we call physiological costs of reproduction with genetic basis and their overall architecture is depicted in
figure 1.1. As such trade-offs have a genetic basis, they now can evolve. Particular environments will
favor particular allocation strategies and the genotypes that have higher fitness in that environment. In
that regard, the purely physiological mechanism with no genetic basis described in section 1.2.1 can be
considered to be the result of an environment stable in a particular state for long evolutionary times.

Adding variance at the genotypic level, does not change the capital allocation mechanism at the core of
the intermediate structure. Indeed such a mechanism operates at the level of the individual not at the level
of the population. However the allocation strategies and the acquisition capabilities now vary according to
the individual’s situation on the allocation × acquisition genotypic landscape (see 1.2). Individuals of the
same lineage will have same acquisition and allocation processes, acquiring the same amount of resources
in the same environment and allocating these same capitals towards equal reproductive efforts. The only
differences in life history trajectory for such clones sharing the same environment would be due to chance.

As a matter of fact, the presence of an (acquisition/) allocation physiological process in the intermediate
structure is not necessary to generate the variance in robustness × slow-fast (as they could equivalently
be called when not referring to any physiological process) of figure 1.2.

Genetic non-allocative costs of reproduction

In the introduction, section 1.1, we called genetic costs of reproduction, the variance in genes that are an-
tagonistically pleiotropic with regards to investments towards fertility and survival. As such genes express
their variance in the various genotypes of the population, a negative correlation arises between early and
late fitness, similar to that produced by physiological costs of reproduction. This similarity in phenomena
prompts ecologists to use a common term for the mechanisms, costs of reproduction, physiological for the
latter, genetic for the former (see figure 1.3).

The genetic basis of the physiological costs of reproduction with genetic basis just encountered in section
1.2.2 is thus also, in itself, a genetic cost. However we can also, at least theoretically, construct genetic costs
that do not require any physiological allocative mechanism to occur. We call them genetic non-allocative
costs of reproduction. In such costs the pleiotropic gene would have a direct antagonistic effect on both
fertility and survival instead of directly promote one fitness component at the indirect cost of another. In
particular, genetic non-allocative costs of reproduction would not be associated with a resource or a capital
that needs to be shared amongst various functions. As such genetic non-allocative costs of reproduction
may be related to ecological costs (see introduction section 1.1). A simplistic gene which would express
itself via the coloration of the skin in a specific color attracting both mates and predators would belong to
that category.
In figure 1.3, we represent the topology of costs of reproduction we happened upon in this chapter. As we
can see from that figure, physiological costs of reproduction with genetic basisare included in the genetic
costs of reproduction. However, this is not a double inclusion inducing equality, because of the genetic
non-allocative costs of reproduction we have just discussed.

1.2.3 Phenotypic level and detectability
In this section, we discuss and analyze the effect of several parameters - chiefly the environment, its
variance, demographic variance and genetic variances - on the emergence of the costs of reproduction at
the phenotypic level, and on their detectability. A summary is presented in box 1.1.

From physiological to fitness costs : the effects of absolute level of environmental
abundance on physiological costs

Physiological costs of reproduction are deemed to occur at all times in all organisms. By definition of the
Fluctuating and Ratchet Capitals devices described in section 1.2.1, the fate of an individual will depend
on such gauges. However, parameters might dampen the propagation of the effects of capital spending
at time t to the capital itself at time t + 1. This is chiefly the case for the environment with regards to
FC (see equation 1.3). If the environment is good, the FC will be easily replenished thus canceling any
effect of past reproductive effort, rendering the physiological costs not only undetectable to us, but mostly
undetectable to natural selection: such physiological costs are not turned into fitness costs of reproduction
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Figure 1.3: Topology of costs of reproduction. In order for negative correlations between early
fertility and late fitness to emerge from a population, one of two mechanisms is required, either a
physiological allocative mechanism or variance in an antagonistically pleiotropic gene (acting on
such vital rates). The first mechanism, we call physiological costs of reproduction, are represented
by the blue ellipse. The second, we call genetic costs of reproduction, by the yellow one. When
the physiological costs, laying in Stearns’ intermediate structure, also have a genetic basis, the
phenotypic level will be the output of both physiological and genetic costs. Such costs are called
physiological costs of reproduction with genetic basisand are therefore to be found at the (green)
intersection of both ellipses. Away from that intersection, we find the physiological costs for which
there is no genetic variance discussed in section 1.2.2 and the genetic costs with no allocation
process of section 1.2.2.

in the sense of Hamel et al. (2010).

For IB, lacking the storage allowing transmission of balance of FC from one period to the next, the
environment is the main driver of reproductive life history, with the role of FC costs confined to the short
period between breeding and feeding. For CB, FC propagates the costs over to the next time-steps. If
the environment remains "good" for the length of time reserves can be stored by such an organism, these
physiological trade-offs will also not generate fitness costs. As we saw, the environment, via the effect of
FC on reproductive effort 1.5, also impacts the RC trajectories (from 1.2). However, contrary to FC, the
RC will always diminish as the organism makes reproductive efforts. Actually since good environments
are those permitting the allocation towards reproductive efforts, and since they also allow the organism
to survive until the late ages at which the RC costs are mostly felt, we would expect the latter to be as
strong if not stronger fitness costs is such conditions.

In a simple simulation, in appendix 1.5.2, we show how the absolute level of environmental abundances
drives the correlation between successive fertility realization. We also see that it is also strongly affected
by the changes in environmental conditions.

From fitness costs to detectable ones : the effects of environmental and demographic
variance at the level of the individual

Fitness costs, occurring at the level of the individual, should be observable there. However detectabil-
ity, evidently proportional to the strength of the fitness costs themselves, is expected to result from the
confrontation of two opposing forces : environmental and individual variance.

environmental variance Because of the strong dependency of the strength of the FC costs on the
environment (see equation 1.3), environmental variance will likely blur, at the level of the individual and
over time, the detectability of phenotypic costs. This is obvious for an Income Breeder, which FC costs
occurs within the time-step of the season, making IB-FC costs akin to ecological costs. But even for a
Capital Breeder, which fat reserves propagate costs from one breeding season to the next, it will be dif-
ficult to extract from reproductive trajectories, in a volatile environment, a strong signal for costs. This
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is because the capitalization of resources in RC and CB-FC buffers the costs but also the environmental
variance; thus making costs impossible to detect if the exact environmental variance, and the effect of the
environment on the allocation process are unknown. The individual would draw in such reserves when
needed, and the phenotype would reflect both the environmental conditions and the physiological costs.
Such costs are fitness costs but the changes in successive environmental conditions have to be known in
order for these fitness costs to be detectable. Otherwise the costs detected will likely be much smaller than
the underlying physiological costs really are, or even go undetected. This may seem counter-intuitive as,
without changes in the environment, all individuals would, time-step after time-step, allocate very similar
amounts of resources to successive reproductive efforts thus hindering the physiological costs; whereas
changes in environmental conditions will generate different patterns of allocation, making them seemingly
more detectable. The ambiguity is removed by saying that if the exact environmental time series is known
along with its relation to the life trajectory of the individual, then environmental variance may be consid-
ered to help reveal the fitness costs, but otherwise, and thus in general, conceal them. Moreover, as we
shall see in the next section, the assumption of constant and equal allocations in constant environment
omits the diversifying effect of demographic variance on life history trajectories.

In appendix section 1.5.2, we illustrate the effects of environmental variance and absolute level on
detectability of CB-FC costs of reproduction in a simple model that shows how the correlations between
successive reproductive efforts are raised by both parameters.

Overall therefore fitness costs will only reflect the physiological trade-offs in poor environments where
scarcity of acquired resources means some functions may have to be drastically reduced or even shut down.
And they will only be detected if this "poor" environment remains relatively constant over time. Indeed,
if not controlled for, environmental variance conceals the costs. To the contrary, in the particular cases
where both the environmental time series and the environment’s exact effects of the costs are both known,
fluctuations can increase detectability of the costs. However, we expect individual stochasticity to perform
much better as a revealer of costs of reproduction.

Individual stochasticity To the contrary, at the level of the individual (or rather the genotype)
detectability of the costs will be enhanced by demographic variance (also called chance or individual
stochasticity). Indeed, the process of giving birth to one offspring (and the process of surviving to the
next time-step) is subject to individual stochasticity : even if the capitals are large enough to be able to
produce a reproductive effort aRE, random events (external, internal to the organism) may reduce the
allocation (RE(t) < aRE(t) or even prevent it (RE(t) = 0), transferring back the unused budget to the
capitals.

As we just saw, for individuals of the same acquisition × allocation genotype (clones), sharing the same
environment, and therefore the same capital levels, the costs of reproduction could only be detected, in a
cohort analysis (tracking over time individuals experimenting equal environment) if both the exact envi-
ronmental series and its effects on the individuals are known. Without individual stochasticity, a period
analysis - comparing different individuals at the level of the time-steps - would not detect any cost: all
individuals of the same genotype would have the exact same trajectories. In the general case, where the ef-
fects of the environment on the acquisition/allocation are not precisely known, it is individual stochasticity
that will generate the initial differences between clones, that will then be further propagated over lifetime,
with a snowball effect, by the costs themselves. At the level of the single time-step however, the individual
stochasticity, may have a local blurring effect akin to that of environmental variance : if two individuals
of the same genotype have by chance reached the same state with the same capitals, one may reproduce
and not the other, by chance again, thus seemingly clouding any inference of physiological costs. However,
as soon as the horizon is extended over several time-steps, individual variance is the fuel of detectability
of physiological costs at the level of the genotype, as soon as the required environmental conditions (not
too good, not too variable) are met. In summary, we predict that individual stochasticity will reveal the
physiological costs at the genotype/individual level when trajectories are observed longitudinally. At the
time-step level however the variance it generates will hinder the costs.

The difference in effects of both variances, environmental and demographic, can be better understood
by observing their level of actions. Both impact all aspects of physiological costs., However, we think,
the influence of the environment is stronger on the acquisition than on the allocation process, whilst, in
general, allocation process will be more prone to individual stochasticity than acquisition. This is because,
in general, granularity of reproductive effort (related to the mean number of offspring per season) is likely
to be higher than the granularity of FC resources (related to the number of basic FC resources acquired
per season). Moreover, the acquisition process, related to a parameter that is difficult to track precisely
(the environment), occurs before the allocation process. It therefore acts on a lever that does not directly
determine the costs (eq. 1.3 vs eq. 1.5 ), and thus environmental variance modulates and conceals the
effects of the costs. Conversely, the allocation process is related to a parameter that is easier to observe
and measure (the realization of reproductive effort, akin to reproductive success). Moreover it acts exactly
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where the costs are produced (eq. 1.5). Consequently demographic variance does not modulate the costs,
it only delays them. This prediction of opposing effects of environmental and demographic variance on
detectability with regards to FC costs is akin to the result of (van Noordwijk and de Jong, 1986) : variance
in acquisition - mainly caused in our model by environmental variance - conceals trade-offs; whilst variance
in allocation - mainly driven by demographic variance - reveals them.

As mentioned above, we expect demographic variance to play a lesser role on acquisition than alloca-
tion. This will be especially the case for organisms which granularity of reproductive effort is large, with
storage capacities and diverse and "small" sources of energy. The strength of the effect of such individual
stochasticity on the costs of reproduction is commensurate with the granularity of reproductive efforts of
the given organism, measured as gr = bre

r̄e
introduced in section 1.2.1 page 18. For organisms at the quan-

tity end of the quantity-quality continuum, i.e. with small granularity gr << 1, the effects of demographic
variance will be little. On the contrary, for organisms, producing offspring of very high quality, in very low
quantity - i.e., where gr ≈ 1 - we expect the effect of demographic variance on detectability to be much
stronger. This is similar to the effect on variance in expected financial capital of two friends who decide
to split 1 euro by either flipping one 1 euro coin head or tails, or by flipping a hundred 1-cent coins. As a
consequence, we predict the costs of reproduction to be easier found in quality organism. The physiological
costs are not weaker for quantity organisms but there mainly driven by environmental conditions; most
individuals in the same environment will incur the same costs, therefore making them harder to emerge.
Compare, for instance, the reproductive pause (called masting) of oak trees occurring at the same time for
all trees in a patch and the reproductive pause of ungulates. In a the latter case (a quality organism) the
pause is clearly related to costs of reproduction, whilst the simultaneity of the former (a quality organism)
invites other interpretations than the costs for the reproductive behavior (see discussion and references in
section 1.2.1 p.15).

As we know, the position of an organism on the quantity/quality line is not related to the other
life-history strategy indicators - SFC, ICB and semelparity/iteroparity spectrum for instance - discussed
before. Using the wording of this article, contrary to sfc and other indicators of life history pace, the
quality-quantity indicator is not a moment of rc. Slow organisms can occupy both ends the quantity-
quality spectrum, like humans and trees, adding another dimension to the diversity of expression and
detection of costs of reproduction.

Detectability at higher levels

At the level of the population At the level of the population, individual stochasticity will here
again act as a revealer and genetic variance as a concealer of the physiological costs of reproduction. How-
ever at that level, genetic costs of reproduction will also come into play as the differences in trajectories
in the population will also result from genetic variance. Negative correlations between fitness components
would be further enhanced by the genotypic variance in allocation strategies. Therefore, it would not be
possible when focusing on inter-trajectories data points alone (comparing data between individuals, and
forsaking intra-trajectories analysis) to distinguish between the expression of the physiological mechanism
(the physiological cost) or the allocation genotypic polymorphism (the genetic cost).

Contrary to physiological costs, detectability of genetic costs will suffer from demographic variance,
as it would induce noise around the gradient of life history strategies that genetic costs establish in the
population. But most importantly, detectability of genetic costs will also depend on the environment in
a manner that is dictated by the reaction norms -as defined by Woltereck (1909) - of the allocation gene
with regards to traits survival and fertility (see firegure 1.2). If these reaction norms cross, that is, if a
relatively slow genotype in one environment is relatively fast in another, then environmental variance will
reduce the measurable negative correlations between early fertility rates and late vital rates. If they do
not cross, i.e. if the different genotypes have a consistent relative strategy (towards fertility or towards
survival) across environments, the negative correlations will not be blurred by environmental variance.

In both cases, contrary to physiological costs, there is no reason to believe that their detectability
depends on the environment being poor. Some organisms may have evolved reaction norms for the allo-
cation gene whereby, even in very favorable conditions, some alleles invest less in reproductive effort than
others. We therefore predict that short or mid-term costs that are easily detectable in relatively good
environments are more likely to be genetic costs. To the contrary, we expect such costs detected only in
bad environments to stem from the physiological intermediate structure.

Reaction norms for the acquisition gene, on the other side, are expected to cross : selection would not
allow genotypes with strong differences in fitness, consistently in all environments, to cohabit (figure 1.2).
This was discussed by Reznick et al. (2000) hinting at the fact that the "super-fleas" emerging from Spitze
(1991)’s study, dominating others in all components of fitness, were only "super" in a specific environment,
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but inferior in others. Such a genetic variance in acquisition capabilities, i.e. in robustness, will limit
and even sometimes conceal the negative correlations stemming from physiological and genetic costs of
reproduction. This is in conformation with the results from van Noordwijk and de Jong (1986) adapted
to the genotypic level by Houle (1991). More recent studies have fine-tuned such predictions. Descamps
et al. (2016) have, for instance, shown that the dependency of the relative allocation of resource on the
acquisition level - which is the case in our model where allocation depends on capitals levels themselves
depending on the acquisition - has further implications on detectability of the underlying physiological
costs.

Antagonistic pleiotropic trade-offs as "dynamic linkages". As we have just discussed, as
genotypes interact with the environment to produce phenotypes, the negative correlations (the costs) in a
given environment might become positive in another. Turning things around, instead of considering these
as functions of 2 variables (the response in the trait of one genotype in one environment) as varying trait
response to genotype in varying environments, we have also regarded these same functions as varying trait
response to the environment for varying genotypes, that is as the continuous reaction norms - expressing
phenotypic plasticity - for varying genotypes as described in (Stearns, 1989b). And we have shown that
the effects of the environmental variance on detectability of genetic costs of reproduction would mainly
depend on whether the reaction norms of the various alleles of the pleiotropic gene do cross or not. In that
approach, however, the trait tacitly referred to, is actually two traits (investment towards survival and
fertility). We have considered them to be one trait only, as the pleiotropic mechanism cause the change in
one to be compensated by an opposite change in the other.
However, we can also consider non-pleiotropic genes acting on vital rates. In that framework, the (trait,
environment, genotype) relationships discussed above become more complex as both traits have to be
considered; it becomes a function of three variables. For ease of understanding, let us consider two genes
only, one acting solely on survival, the other solely on fertility. They thus correspond to the alternatives
axis of figure 1.2 (diagonal axes). Importantly, variance in either or both genotypes will not infer negative
correlations in the population. All combinations of high and low survival and/or high and low fertility can
be found. The variance in such genes does not, therefore, constitute a genetic costs of reproduction. How-
ever, if reaction norms of both genes cross, negative correlations may appear in changing environments.
Indeed, individuals with low fertility and high survival in an environment would then have opposite fea-
tures in another. If environmental conditions shift over time, the cohort study of these individuals will
exhibit apparent costs of reproduction. In a theoretical study of phenotypic plasticity, Stearns (1989a) has
investigated how the shapes of such reaction norms, in particular when they cross, can seemingly lead to
trade-offs. Because they lack any repartition mechanism (either allocative in the physiological intermediate
structure, or pleiotropic at the genotypic level), Stearns refuse them the status of trade-offs, and suggests
to call them "dynamic linkages". We predict this to have strong implications on the detectability of costs
at the population level. If detectability is increased when environmental variance seemingly increases, the
costs detected are likely to be "dynamic linkages". In the opposite case, they are likely to physiological
costs which detectability is impaired by high environmental variance. Finally, if the strength of the costs
detected varies very little between different environments, the negative correlations are likely to be due
genetic costs with relatively constant reaction norms.

As a conclusion, forsaking "dynamic linkages", the level of the population is a battleground, whereby
both physiological costs and genetic costs are deemed to coexist. The population level is therefore the
ideal level at which to study the interactions between physiological and genetic costs. Because of the
effects of environmental variance on the former at the level of each individual/genotype, and of acquisition
heterogeneity on the latter between individuals/genotypes, the combination of both costs in the population
may not result in negative relations between early fertility and late fitness. Even if it does, it will be hard
to disentangle the effects due to each cost unless individuals are tracked through life and costs appear in
particular environmental conditions; for instance in conditions known to be good for the studied species
(genetic costs), or only in conditions known to be poor (physiologial costs).

Between populations Whereas variance in acquisition is kept in check by selection, the iso-fitness
variance in allocation can extend (figure 1.2). Over evolutionary time, as the differences in evolved life his-
tory strategies in the population have grown large, and since, for instance, the population is large enough
for different locations to sustain different environments favoring different life history strategies, specia-
tion will occur. The differences, larger still, in environments encountered by the split populations will
further increase the variance in allocation strategy at this inter-population level (see figure 1.4). Within
each population, there will be variance in acquisition, as allowed by the local environmental variance, and
variance in allocation around the central strategy evolved by the species. Between populations however,
the differences between the mean strategies evolved by each species given its mean local environment, will
predominate, making the costs of reproduction easier to detect at the inter-population level than at the
intra-population one.
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We can simply formalize this by applying to the environmental variance the law of total variance to such
a system : V ar(Env) = E(V ar(Env|Pop)) + V ar(E(Env|Pop)), where Pop designates the population an
individual belongs to, Env is a multidimensional vector characterizing the environmental conditions. The
first component of the sum therefore computes the mean (over all populations) of their internal environmen-
tal variance. It is the intra-population variance σ2

intra = E(V ar(Env|Pop)). The second component is the
variance of the populations’ mean environments, the inter-population variance : σ2

inter = V ar(E(Env|Pop).
And thus V ar(Env) = σ2

intra + σ2
inter . σ2

intra corresponds to short term variations of the environment,
at the level of the population, that will generate variance in acquisition at the level of the physiological
costs. σ2

inter corresponds to settled differences in environments between population to which life histories
have adapted. Such a variance will translate into a gradient in allocation strategies at the genetic costs
level. And thus we can display both variances along the allocation and acquisition axes of the genotypic
map (figure 1.2). The detectability of inter-population costs of reproduction, will depend on the ratio of
intra-population variance to total environmental variance as 1 = σ2

intra
V ar(Env) + σ2

inter
V ar(Env) , i.e. on the ratio of

dimensions, on the genotypic map, of the grouping of all individuals (fig 1.2).

We would expect the various species of a "comparative method" study to have adapted to environments
that are more diversified (between the species) than they are fluctuating (within each species), all the more
so if the species are phylogenetically very distant. Statistically, this means we expect the variance in mean
environments σ2

inter to be larger that the intra-population variances σ2
intra, thus generally avoiding the

type II statistical error of rejecting the existence of the genetic trade-offs (σ2
inter) because of a large σ2

intra.
As a matter of fact, in the literature, most demonstrated trade-offs stem from interspecific "comparative
data" analyses, whilst negative correlations often fail to emerge from intraspecific studies. This was, in the
case of the quantity-quality trade-off, demonstrated by Bernardo (1996) and Christians (2000).
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Figure 1.4: Inter-population genotypic map : we depict the position of several populations, P1,
P2 and P3, on the acquisition × allocation genotypic map. Each population will have an acqui-
sition variance related to its environmental variance. Its mean position on the allocation axis (or
slow-fast continuum), on the other hand, is an adaptation related to the mean environment this
population has evolved in (P1 is a slower organism than P2, itself slightly slower than P3). At
the level of the inter-population study, the variance in allocation is therefore akin to the variance
in mean environments between population, whereas the the variance in acquisition is associated
with the mean of the intra-population environmental variances. Thus we expect such a study,
if the populations studied are distant enough in the tree of life or adapted to different enough
environments, to display a larger variance in allocation than in acquisition and consequently to
make the genetic costs detectable, whereas it may not be the case for the populations of the study
themselves (here for instance P2 has a larger variance in acquisition than allocation)
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Table 1.1: Summary of detectability patterns for physiological genetic costs of reproduction

Physiological Costs are - revealed in bad and concealed in good environments
- revealed by demographic variance in longitudinal analysis
- concealed by environmental variance if fluctuations are not con-
trolled for

⇒ important at the individual/genotype level (only cost there), together with
Genetic costs at the population level, but loses importance in interspecific studies

Genetic Costs are - revealed by variance in allocation gene (related to mean envi-
ronment encountered by population over evolutionary time).
- concealed by variance in acquisition or robustness gene (allowed
by environmental variance)

⇒ irrelevant at the level of the individual/genotype, important at the population
level together with Physiological costs, primordial in interspecific studies

Detectability and phenotypic plasticity. The difference in detectability in populations and
between species may be related to the seemingly irreconcilable positions taken by Waddington (1953) and
Wright (1931) and Waddington on genetic/evolutionary effects of phenotypic plasticity, as disentangled
by (Stearns, 1989b). Wright saw phenotypic plasticity as "reducing the amount of genetic change in evo-
lution", Waddington saw it as "creating more opportunity for genetic change". As elegantly proved by
Stearns, those views "only vary because they apply to different time scales and evolutionary situations".
Stearn’s synthesis is consistent with our approach where at the population level, the allocation gene has
limited variance around the strategy evolved by the species, but the flexibility of the physiological allocative
process buffering environmental variance at the horizon of the organism’s longevity generates phenotypic
plasticity. At the taxa level, wide changes in environments will have fixed very different allocation geno-
types across populations thus effectively transferring the mechanism generating the phenotypic plasticity
from the intermediate structure to the genetic level.

Detectability in nature

When working at the level of the individual trajectories, the physiological costs of reproductioncosts are
indeed, as expected, detectable. This is demonstrated by many studies on birds using brood manipulation
(see, for instance, Boonekamp et al., 2014; Dijkstra et al., 1990). When manipulation of the reproductive
effort - artificially generating individual stochasticity - is not feasible, it is still possible to inflect the allo-
cation by worsening the environment, modifying environmental abundance, as Maynard-Smith did when
studying costs of reproduction in Drosophilia (Maynard Smith, 1958).

Most studies however focus on the level of the population, where theory expects the physiological costs
of reproductionand genetic costs of reproductionto be hindered, in their producing of negative correlations
between early fertility and late fitness components, by environmental variance and genotypic acquisition
variance (i.e. robustness heterogeneity). On aggregate at the level of the population, this may even induce
a positive correlation whereby individuals - as robust ones gradually take over frail individuals in successive
age classes - seem to actually benefit from reproduction , as in (Hamel et al., 2009), a phenomenon known
as selective disappearance or frailty effect.

As expected as well, the physiological costs of reproductionare less easy to detect in "good" environ-
ments; for instance in captivity (Tarín et al., 2014; Ricklefs and Cadena, 2007; Kengeri et al., 2013) or in
environments that are clear of evepidemics (Garnier et al., 2015) or not cold or dense enough (Tavecchia
et al., 2005; Hamel et al., 2009). On the contrary, studies comparing different populations or species do
display negative correlations, as the different populations have evolved different mean allocation strategies,
adapted to different environments and life histories; as for lizards in (Tinkle, 1969). Charnov (2002)’s clas-
sification of life history using dimensionless indicators illustrated by "life-history cube" can be interpreted
as a theoretical proof of the interest of between-clades comparative studies in order to detect physiological
or genetic trade-offs.
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1.3 Models : Towards an evolutionary model for physiolog-
ical trade-offs with genetic basis

In this section, we first relate the two main trade-off mechanisms, physiological trade-offs (occurring
continuously at the level of individuals) and genetic trade-offs (which are negative correlations between
pair of traits at the level of the population) to two families of models, Agent-based and Matrix projection
models. We then show that these model properties can be combined, thanks to the development of what
we call Multitrait Population Projection Matrices (MPPMs), in order to model physiological trade-offs in
an evolutionary context. Thereafter we hint at a way to incorporate, in an MPPM, the various components
of physiological and genetic costs of reproduction as defined and described in 1.2.

1.3.1 Existing models implementing different aspects of costs of repro-
duction

Two main type of models are adapted to model the two main types of cost of reproduction we have brought
to light: physiological costs of reproductionand genetic costs of reproduction.

Individual Based Models for physiological costs

As already mentioned in the introduction, the cumulative acquisition/allocation process of physiological
costs of reproduction, working at the level of the individual, of physiological costs of reproduction, can
be modeled via Individual-Based Models (IBM also called agent-based models) that track each specific
individual during every step of its life-history. See for instance an agent-based model for the costs of
reproduction in ungulates by Proaktor et al. (2008) and another one investigating the implications of
acquisition-dependency of resource allocation by (Descamps et al., 2016).

Individual-based models or microsimulations as they are known in demography, can indeed account for
such allocative costs by implementing, at the level of each individual, specific allocation and acquisition
processes that are functions of the environment and the acquired and stored resources. They also make
it possible to incorporate heterogeneity classes in the population. The levels - for an individual - of its
Ratchet and Fluctuating Capitals (defined in section 1.2.1) would, along with its age and other life-history
traits, define its individual state. The output of such a model consists in the stochastic response, that is
the new state of the individual and its offspring, to the different random processes affecting the organism’s
life history. Among such processes, in the case of an IBM modeling costs of reproduction, would one find,
at least, an acquisition process (the process turning a genotype in a given environment into Env(t)) and
most importantly an allocation process, as for instance the one defined in equation 1.5.

Generating many runs, over long running times for given or stochastic environments, an individual-
based model will provide expectancy and variance of many demographic parameters. Thanks to their
level of details, such models are more precise and more flexible population projectors than matrices (Van
Imhoff and Post, 1998). But, contrary to matrices, projecting the population as a whole, they find it very
difficult to demonstrate the generalization of simulation results and to qualitatively ponder the weights
of the various parameters that influence the population fitness (Caswell and John, 1992). Sensitivities
and elasticities, measuring the effects of any vital rate on any individual demographic measures (net
reproductive rate, reproductive value) and any population asymptotic measure (growth rate, abundances)
that are at the core of evolutionary demography are population projection matrices’ bread and butter
(de Kroon et al., 1986; Caswell, 2001; van Tienderen, 2000).

Population projection matrices for genetic costs

Matrices are the ideal tool to model genetic costs of reproduction, as their elementary elements are the
vital rates for a given genotype and environment. These matrices, whether modeling age-structured (Leslie,
1945), stage-structured (Lefkovitch, 1965) or size-structured (Usher, 1966) populations allow to project the
population over any amount of time-steps. Most importantly, in evolutionary demography, they allow to
calculate the asymptotic growth rate, abundances and reproductive values of each state (i.e. class or
category) of the population and the sensitivity of these ergodic measures (Caswell, 2001, 1978; Demetrius,
1969). Such models are used to investigate how the life-history parameters (chiefly fertility and survival
rates) can optimize fitness (measured via the net reproductive rate or the population growth rate) when
constrained by genetic trade-offs like the genetic costs of reproduction. This has been used, for instance,
in order to understand in what conditions semelparity can evolutionary emerge and fix (Bell, 1980; Cole,
1954).
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Optimality theory Conversely, turning the argument around and considering that the category-
specific vital rates observed for a population are the manifestations of an Evolutionary Stable Strategy
(Parker and Maynard Smith, 1990), some authors then use matrix models to deduce the constrains be-
tween various traits influencing fitness. Population projection matrices are useful model for structured
populations as they enable easy sensitivity and elasticity analysis of ergodic growth rate λ (the maximal
eigenvalue of the matrix) to vital rates (the entries of the matrix) as shown by Caswell (1978). Considering
this ergodic growth rate - taken as fitness - to be (locally) optimal implies that vital rates changes are
constrained by their sensitivity values, and that a positive change in, say, fertility at age α, f(α) would
infer a negative change in survival at age β, s(β), with the ratio of changes (i.e. the constrain) equal to the
ratio of sensitivities : ∂λ

∂f(α)/ ∂λ
∂s(β) ; (see Caswell, 1984, 1982c; Van Tienderen, 1995, for detailed analysis).

Quantitative genetics approach Such optimization models, revealing genetic trade-offs inherent
to particular life histories, appear very similar to the quantitative genetics approach. Indeed, the variance-
covariance genetic matrix G on vector of traits tr =

[
f(α)
s(β)

]
is such that the generation change in the mean

value of these traits is given by dtr
dt

= G.∇λ where ∇λ =
[
∂λ/∂f(α)
∂λ/∂s(β)

]
is the vector of selection gradients for

the traits or, in evolutionary demographic terms, the vector of sensitivities (Lande, 1982). At ESS, dtr
dt

= 0
and thus G is a function of the ratio of sensitivities: ∂λ

∂f(α)/ ∂λ
∂s(β) used in optimality theory. A complete

comparison of the evolutionary optimality theory and quantitative genetics approaches was performed by
Charlesworth (1990). He demonstrated that "under suitable conditions (including weak selection), useful
approximate formulas for the relations between the functional constraints and the additive genetic variance-
covariance matrix can be derived [which]... can be used to show that the conditions for equilibrium under
selection according to the two different approaches are approximately equivalent".

Extension of matrix models to stochastic matrix models Even though population-based
and using mean population vital rates as inputs, matrices are still a model of choice when asking the
consequences, at the level of the population, of environmental stochasticity (Tuljapurkar, 1990a, 1986b;
Tuljapurkar et al., 2003; Tuljapurkar, 1989) and individual stochasticity (Caswell and Sánchez Gassen,
2015; Engen et al., 2005a; Lande et al., 2003; Shpak, 2007; Shpak et al., 2013; Vindenes et al., 2008).
Indeed, the field of evolutionary demography does not concern itself with the fate of particular individuals
in a population, or with the effect of a specific segment of an environmental series. As its name indicates,
it focuses on evolution, and therefore on evolutionary time windows and on the level on which evolution
is at work : the population. However, it still needs to account for the long-term and population-wise
effects of individual and environmental stochasticity. Specifically, their contracting effect on the population
stochastic growth rate (taken as fitness), as demonstrated by Tuljapurkar (1990a) and Engen et al. (2005a),
is of primordial importance to evolutionary demography. We shall exhibit, in chapter 3, how matrix models
can yield such quantities.

Two irreconcilable models for two irreconcilable costs ?

It is clear from the inspection of these models, that the differences between physiological and genetic costs
of reproduction in core mechanisms, evolvability, detectability, action time horizon are reflections of a
deeper, ontological, difference in concepts and principle that seem hard to reduce and which is further
echoed by the very different modeling approaches (Peck, 2004).

Whether two sides of the same coin, or orthogonal processes, physiological and genetic costs of reproduc-
tionare nonetheless, albeit theoretically, able to co-exist as demonstrated by the conjectural construction
of physiological costs of reproduction with genetic basis. In that case, they certainly also interact with one
another. Is one cost the cause, the consequence of the other one ? Do they have concurrent or opposite
effects on phenotypical correlations, on they own mechanisms ? In order to advance towards the answers
to such fundamental questions for costs of reproduction and senescence in particular and life history theory
and trade-offs in general, we need to be able to build a model fit for evolutionary demography and thus
genetic trade-offs, but with a narrower scrutiny level than a basic projection matrix, that would allow to
get closer to the individual level and be able to implement physiological trade-offs between traits.

Simply put, we need to develop matrix models that are almost individual-based. This can be done
via the addition of (potentially numerous) additional traits to basic age or stage-structured matrices in a
framework we call multitrait matrices.

1.3.2 Towards an implementation of physiological costs of reproduction
with genetic basis in a multitrait framework

Most matrix models indeed project populations where organisms are characterized by one (Lefkovitch,
1965; Leslie, 1945; Usher, 1969) sometimes two (Goodman, 1969; Rogers, 1966) but very rarely more
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traits. The very recent development of methodologies to develop models with arbitrarily high number
of states – called ’hyperstate matrices’ by Roth and Caswell (2016) allows to create models with a great
level of scrutiny, whilst still retaining all the evolutionary demography features of simpler matrices. In
chapter 2, where we call such matrices Multitrait Population Projection Matrices (MPPMs), we develop
an alternative construction method with computational complexity in mind. Most importantly we develop
tools that enable to make sense of dynamic and evolutionary role of the traits (hence the name Trait Level
Analysis) and therefore of the trade-offs connecting them (chapter 2).

In this section, we investigate how the general physiological costs depicted in section 1.2.1, possibly
with a genetic basis described in section 1.2.2, are to be incorporated in an MPPM M ; or more precisely
in a suite of MPPMs Me, where e ∈ E the set of all possible environments for the studied population. In
some cases, where environmental variance is not deemed central to a particular study, one may focus on
the sole Mē, the model for the mean environment, simply noted M . In order to do this, three families of
traits will be incorporated into the model. First B the basic trait(s) that best determine the life history
of the organism. Second G the genotypic traits that will allow to implement hidden heterogeneity and
in particular the genetic costs of reproduction. And third, D the family of traits enabling to incorporate
dynamic heterogeneity, and in particular the physiological costs of reproduction.

Hidden vs dynamic heterogeneity

By segregating components of categorization of an organism as being corresponding to either hidden het-
erogeneity or dynamic heterogeneity family of traits, we follow an important dividing line in life history
theory. Individual heterogeneity, pervasive in most organisms and corresponding to the "variation observed
in a trait among individuals within a given population" (Plard et al., 2012) is major determinant of popu-
lation dynamics (Bjørnstad and Hansen, 1994). It is decomposed in two components.

First, Hidden heterogeneity, which accounts for "fixed at birth" heterogeneity - also called, when focusing
on survival, "frailty" or "robustness" - is the expression of differences in individuals that are unobservable
directly, and only inferred via the alleged effects on vital rates. Hidden heterogeneity thus corresponds,
among other things, to differences in genotype(s) (epigenetics and early environmental effects are other
determinants of hidden heterogeneity). In the context of costs of reproduction, hidden heterogeneity relates
to genetic costs of reproduction (the variance in allocation genotype) and to the variance in acquisition
genotype we call, for that reason, variance in "robustness".

Second, dynamic heterogeneity characterizes the differences arising between individuals (of the same
genotype) as their life-trajectory unfolds. It is a product of individual stochasticity, another name for
chance, the ’invisible hand’ behind the differences in life history trajectory that can occur between two
clones in the exact same given environments. In the context of costs of reproduction, it corresponds to the
stochastic component of physiological costs of reproductionrelated to the granularity of reproductive effort.

Historically, this split has rarely been taken into account in empiricists’ matrix models since, in the wild,
it is particularly difficult to effects of acquired-at-birth differences between individuals and randomness of
vital rates realization. Conversely, theoretical investigations of the role of each component of heterogeneity
in evolutionary demographic models is a recent but thriving research field (see (Steiner et al., 2010; Tul-
japurkar et al., 2009; Tuljapurkar and Steiner, 2010; Caswell, 2011, 2014) for instance). chapter 3 of this
manuscript contains an example of such analysis of how these two components of heterogeneity combine
to generate the observed diversity of life-trajectories. MPPM technology, and in particular Trait Level
Analysis that we develop in chapter 2, allows to theoretically implement both sets of traits, and at the
same time to generate the equivalent model where heterogeneity is undifferentiated and individuals are
only characterized by age or another "basic" life-history-determining trait.

In the model for physiological costs of reproduction with genetic basis, the genotypic traits G correspond-
ing to hidden heterogeneity and the dynamic heterogeneity traits D corresponding to physiological costs of
reproduction thus make explicit the all-important heterogeneity in trajectories within the population. In
order to do this, however, G and D families of traits rely first on common denominators of all organisms
in the population. We call basic traits, B such characteristics that allow to define the general, central,
life-history of the studied population.

Basic trait(s)

Because age is an inherent parameter to any projection model, the basic element of our model is thus
an age-structured model, a Leslie matrix, corresponding to a specific genotype in a specific environment
(Leslie, 1945). Other "basic" traits may be added to age to constitute the basic traits suite B. In particular,
for populations in which demographic characteristics are related to biological stages (such a seed, rosette,
flowering plant, etc.) it seems largely preferable to use stage as a basic trait (Werner and Caswell, 1977,
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see for instance); or rather to add stage to age in B as any Lefkovitch (i.e., stage-structured (Lefkovitch,
1965)) matrix can be demonstrated to actually be a age-and-stage MPPM (Lebreton, 2005). Other basic
traits, that can be strong drivers of life-history are, among others, size (Usher, 1966), sex (Pollak, 1990)
and location (Rogers, 1966).

Genetic costs and Hidden heterogeneity

Genetic costs - and more generally any hidden heterogeneity - will be implemented by adding one or several
genotypic traits in the population characterization. The genotypic trait family G may, for instance, consist
in combinations of the acquisition × allocation on the genotypic map; that is, each individual will be
characterized by coordinates (i, j) on the relevant genotypic map (see figure 1.2) corresponding to alleles
acquisitioni and allocationj . More generally, G may contain positions on the robustness gradient and on
the slow-fast or any other life-history genotypic continuum. For a particular combination of genotypes g
of G, we denote Me

g the relevant component of model Me.

The implementation of the effects of the various genotypes in the model - and thus of the genetic costs
among others - will then consist in defining, for each g ∈ G and each environment e ∈ E , all transitions
of Me

g, that is all fertility and survival rates defined on {B,D} for that particular g × e combination. For
instance, let us consider a simple model where B = {age}, D = ∅ and G = {g}, with age = 1, 2 and
g a genotypic trait that can be worth either g1 = slow or g2 = fast. The genetic costs of reproduc-
tion, relative to the slow-fast gradient can be implemented by providing lower fertility rates (for instance
Mslow

1,1 = Mslow
1,2 < Mfast

1,1 = Mfast
1,2 ) and higher survival rate (Mslow

2,1 > Mfast
2,1 ) whilst still remaining iso-

fitness (eigsmax(Mslow) = eigsmax(Mfast)).

In a matrix model with genotypic traits, offspring cannot be expected to have exactly, and in all cases,
the same genotype that its parent. Otherwise that would imply that the various Me

g are square matrices
within Me, therefore modeling totally hermetic populations. In order for the general model to make any
sense, offspring class must be able to differ from parental class. In that case, survival components of Me

g
would be contained in g (g is "fixed-at-birth"), however the fertility components will be connected to other
genotypes of G, whilst still retaining the property that

∑
g∈GMe

g = Me.

Therefore, in a population projection matrix framework, characterizing a population with genotypic
traits, or in general with hidden heterogeneity traits that are (only partially) heritable raises questions .
First, with regards to the interpretation of the ergodic state of a matrix in which different genotypes can
cohabit. Second, with respect to the relevance of extracting selection gradients from models incorporating
heredity.

Population-genetics/population-dynamics equilibria consistency One of the main feature
of all matrix models, whether one-trait or multitrait, is the asymptotic stable state towards which it leads
almost all initial population distributions (see the asymptotic analysis of multitrait models in sec.2.6.1,
p.55) for a discussion on the dynamics consequences of the general reducibility of multitrait matrices).
Once that state is reached, the proportions of individuals in each category remain forever constant. This
may seem antagonistic with the fact that, as mentioned above, amongst the various genotype sub-models
Me

g, some may be fitter then others, and thus expected to invade the population. This apparent dilemma
is resolved by relating the population dynamics stable-state to population-genetics equilibria and show
their equivalence.

In the trivial case where B = {sex} and sex = {m, f} and vital rates are the same for all g ∈ G
(no selection), then diploidy itself leads to the Hardy-Weinberg equilibrium. Adding age ∈ B in such a
model leads to an age-structured hyomozygous/heterozygous genotypes equilibrium by linearization of the
two-sex model (Caswell, 2008).

In the general linear case where sex /∈ B, the offspring genotype can only differ from its mother’s geno-
type if mutations between the various genotypes in G are enabled by the model. Selection will promote
fitter genotypes, but mutation may assign frailer genotypes to the offspring of the most robust individuals,
leading to mutation/selection balance.

Following in the footsteps of Charlesworth (1970, 1980, 2000) we shall try and understand the rela-
tionship between the stable state theory of population dynamics and the mutation/selection equilibrium of
population genetics. To do this, let us consider a simple example, where B = {age} and forsaking D for the
time being. Therefore, each genotype, in a given environment, can be represented by its own Leslie matrix
of expected vital rates, differing in realization between clones only by chance. The presence of several
genotypes g ∈ G in the population implies - modelwise - the "cohabitation" of their related Leslie matrices
on the Frobenius form of a multitrait matrix (see chapter 2, section 2.6.1, p.55). In this simple model,
modeling an asexual haploid population in an heterogeneous context, such genotype matrices would be
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interconnected by the mutation genetic process making it possible for an offspring of a particular genotype
to belong to another genotype than its mother. Let µ be the generation mutation rate that determines the
part µ of the offspring (of any individual of any genotype) that will have mutated and the part 1−µ that will
be of the same genotype than its parent. For simplicity, and because the categories of a matrix model are
fixed, we make the oversimplification that mutated genomes fall evenly into the different existing genotypes.

From there, we can now establish, in the particular framework of multitrait models with hidden het-
erogeneity traits, the relationship between the population genetics concepts of "Wrightian fitness weights”
and gene frequencies and the evolutionary demography concepts of ergodic growth rates and abundances.
In the particular case where µ = 0, the Leslie matrices are not interconnected,and the genotype with
the highest fitness (ergodic growth rate) will invade (if the environment remains constant). For all other
possible values (0 ≤ µ < 1), all implemented genotypes will coexist at the stable state (with equilibrium
frequencies deducible from ergodic abundances). Let us consider 2 age classes and 2 genotypes, A and B.
Let f∗A and f∗B be the ergodic abundances of the genotypes relative to the offspring (age = 1) state. Let
also w̄, wA and wB be the sums of the characteristic equations of respectively the population modeled by
M and the sub-models MA and MB within M. These quantities correspond to relative growth rates with
respect to the population overall growth rate (see appendix 1.5.1). Asymptotic analysis of the dynamics
of such a population leads to the following system :{

wA.f
∗
A + wB .f

∗
B = w̄ (1.7)

wA
w̄
.(1− µ).f∗A + wB

w̄
.µ.f∗B = f∗A (1.8)

Interpreting wA and wB as the ’Wrightean’ relative fitness weights - see discussion by Charlesworth (2000)
- with f∗A and f∗B the genotypes frequencies, then the equations in this system (eq. 1.7 and 1.8), derived
from stable state population dynamics asymptotic analysis, are the population genetics equations for the
rate of change of gene frequencies when mutation is taken into account (Kimura, 1958; Crow and Kimura,
1970) at frequency equilibrium (i.e. selection/mutation balance). Equation 1.7 equates unsurprisingly w̄
with the mean relative fitness of the population. Equation 1.8 incorporates generation mutation rate µ.
It equates the next generation frequency of genotype A due to selection (embedded in wA and wB) and
mutation (some B individuals, µ.f∗B , generate A offspring, whilst some A individuals, (1 − µ).f∗A, do not
mutate and also generate A offspring) with f∗A the current frequency of genotype A (as expected since we
are at stable-state/frequency equilibrium). This reasoning and these equations can readily be extended to
any number of time-steps and any number of genotypes.

Thus, we have just demonstrated that it is possible to incorporate several genotypes or, more gener-
ally, partially hereditary hidden heterogeneity traits in a multitrait matrix model (the notions of muta-
tion/heritability are related, as the mutation rate of a genotype can be interpreted as the probability that
an offspring does not inherit the genotype from its parent). This may be unexpected as all non-negative
matrices project populations toward a stable state (Caswell, 1989), whereas one would expect the genotype
with highest growth rate to invade the population. And indeed if the trait is fully transmitted to offspring
(µ = 0), matrix M is just a block-diagonal matrix and only the highest-yielding of those blocks will have
non-zero asymptotic abundances. On the contrary, if the trait is not heritable at all, with status of offspring
drawn at random for the k genotypes (i.e. in the mutation framework of this section, µ = k−1

k
) then the

study of the multigenotype model will also be pretty simple, with the various Me
g only affecting within-

generation genotype frequencies. However, for any other value of the heritability/mutation parameter, it
will have strong effects on the dynamics and stable-state of the population; effects that can be measured
with the tools developed in Chapter 2.

Growth rate sensitivities and selection gradients in models embedding hidden hetero-
geneity Matrix models are models of choice for evolutionary demography as they allow, among other
tools, to generate selection gradients quantifying the force of selection on a particular life-history trait
embedded in the model, as discussed in section 1.3.1. As we have just seen, implementing hidden hetero-
geneity as a family of traits, implies to input the fertility transitions between adults of a certain genotype
and offspring of another and therefore to make assumptions about heredity/mutation.

In quantitative genetics models from which selection gradients stem, however, heredity and force of
selection are components of the two different components which product yields the response to selection.
In heritability and selection differentials in the Breeder’s equation (Lush, 1937). In G (the additive genetic
variance/covariance matrix) and the selection gradients in Lande’s equation (Lande, 1982). In consequence,
in a multigenotypic matrix model, the equation between sensitivity of population growth rate to vital rates
of any genotype and selection gradient has to be treated with care. The inadequacy of such a model with
quantitative genetics is not surprising since the latter is about quantitative traits described with by their
variances, whilst the former incorporates, from the outset, all possible (discretized) genetic variant. The
selection gradients, in such a model, then have to be calculated genotype by genotype, i.e. if B = {age},
Leslie matrix by Leslie matrix, and not as the sensitivity of the MPPM growth rate to matrix entries.
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These sensitivities then can be interpreted as selection gradients of the specific genotype’s vital rates. The
Lande’s equation would then provide the expected change in these vital rates in a range allowed by G and
paced by the selection gradient. If need be, new genotypes may then have to be added to G. In multitrait
models incorporating G as a family of traits, because of the possible confusion between the implemented
genetic variance, and the G matrix, we think it preferable to not refer to sensitivities as selection gradient
but simply as growth rate sensitivities of matrix entries, as we shall do in chapter 3.

Physiological costs and Dynamic heterogeneity

Capitals In order to implement the physiological costs of reproduction, our model M needs to account
for the levels of the capital(s) of resources. In the framework defined in section 1.2.1, these are the Ratchet
Capital and the Fluctuating Capital. This is done by adding these levels as traits in D the family of all
dynamic heterogeneity traits of the model. The RC would represented by trait rc ∈ D which value at birth
RC(0) is itself determined by the g × e specific combination of (G, E), and thus a component of Me

g. In
the particular case where stor = 0, the FC needs not be added as a trait. Indeed it starts at 0 and would
then be reset at 0 at the beginning of each time-step. The effect of the environment Env(t), occurring
mid-period as individuals acquire FC resources before producing any reproductive effort, would already be
implemented in Me

g as it is determined by g× e, in particular through the effect of allele acqi in particular
environment e. In general though and if one wishes to incorporate both capitals in the model, FC will be
added as a trait fc ∈ D.

Allocation process From environment e ∈ E and individual state i = (b, g, fc × rc) ∈ (B,G,D) we
can compute the reproductive effort at that time t, aRE(t), that the organism is permitted to produce
in that particular i × e combination. And from aRE(t), we can generate the distribution of RE(t), the
realized reproductive effort (a random variable, distributed between 0 and aRE(t) in steps of size bre, see
section 1.2.1).

survival transitions As discussed in section 1.2.1 both capitals needs to be provided for in order
for the individual to survive, and thus survival transitions will be direct functions of state i. Indirectly
survival will thus be a function of both very recent and older reproductive efforts. The actual reproductive
effort produced RE(t) will, in turn, determine the following state i′ towards which the individual will
survive as both fc and rc will change according to RE(t) (g remaining by definition invariant). In simple
projection matrix, implemented transition rates only provide the expectation of the random variable that
is the vital rate. By extension this is also the case for most transitions in a multitrait matrix. The large
distribution of traits allowed by multitrait matrices (see chapter 2), however, make it possible to detail the
entire distribution of such a random variable by multiplying the output states of a transition. Nevertheless,
even in that case, the model will not "know" that these several transitions from the same state are mutually
exclusive and not independent. This implies that in all cases, whenever a random variable - as simple as
a fertility rate, or as complex as RE(t) - is used to build a multitrait matrix , its characteristics need
to be precisely defined in order to be able to generate demographic moments which can not be directly
produced by ergodic analysis of the MPPM. Chiefly among such quantities we find the demographic and
environmental variances which account for the variance of fitness itself. Methods to do so are provided in
chapter 3.

fertility transitions The fertility transitions, for their part, depend directly on the realized re-
productive effort and thus of course, indirectly, on the levels of the capitals. In a simple model where
reproductive efforts consist solely in giving birth, the distribution of fertility realizations by age f(a) is
equated to that of the realized reproductive effort re(a) (see section 1.1).However, when res, the repro-
ductive effort schedule, is not such a simple spike at time of birth (i.e. when res 6= δ0 where δ is the
Dirac delta function), one needs to to implement the way res convolves with f to produce re (see sections
1.2.1 and 1.2.1) in order to implement fertility transitions in the MPPM from re. This can be done by
splitting res into reproductive efforts buckets and adding corresponding traits re1, re2, . . . , rem (where m
is the number of periods of efforts necessary to produce an independent offspring) to D. Then, provided
the allocation function of re(t) towards the various buckets re = re1 + re2 + · · · + rem for a given state
i, in a given environment e, one can track over time the accumulated efforts in each component. At each
time-step, before a new reproductive effort is made, the level of re1 is transferred into re2 and resets at 0,
the level of re2 is transferred into re3, etc. , and the level of rem becomes, taking bre into account, the
"fertility" rate f(i). Or rather, it becomes the expected number of independent offspring produced by a
parent in state i.

Such a mechanism allows to refine the evolutionary outputs of the model by relating the population’s
demography with reproductive efforts instead of fertility rates directly. When basing an evolutionary model
solely on fertility rates (in a Leslie matrix for instance), one underestimates the efforts sustained before the
time-step in which the birth occurs and forsakes entirely the importance of all efforts produced post-birth.
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Such a common oversimplification turns perfectly understandable and modelable phenomena, like post-
menopause longevity in humans and killer whales, into apparent life-history enigmas. This mechanism
plays the same role as the tracking of age and aliveness of mother allowing Pavard and Branger (2012)
to implement the effect of maternal care on juvenile survival. Tracking the status of the mother allows
them to incorporate the effect of post-birth reproductive efforts, an inter-generational transfer called ma-
ternal care, on the beneficiaries of the cost of reproduction. The reproductive effort components method,
described above, models the equivalent and symmetrical effect on the payer of the costs of reproduction.
In both models, the cohorts of menopaused women with dependent children will have a positive survival
selection gradient.

And thus, we have demonstrated the implementability of all aspects of the physiological (the two
capitals, the stochastic allocative process, the complexity of the reproductive effort schedule per offspring)
and genetic (their effects on rates, their heritability) costs of reproduction of section 1.2. However, a fuller
comprehension of the mutitrait matrix framework is now necessary (chapter 2), in order to generate an
actual matrix model for physiological costs of reproduction with genetic basis (chapter 3).

1.4 Discussion
Costs of reproduction have been investigated within three main research fields, physiology, ecology and
genetics, with divergent concepts, vocabulary, methods and approaches. In this Chapter we have attempted
to clarify and harmonize these different visions. This mainly lead us to reconcile terms and concepts (e.g.,
reproductive value and evolved reproductive effort schedule) and bring others nearer together, like the
quantity-quality continuum and the stochasticity of reproductive effort, or the genetic variance along
the slow-fast continuum and the costs themselves. Such reconciliations sometimes required extensions and
porosity of some concepts, that may be frowned upon, but epitomize, we think, the pertinence of convoking
various theories stemming from different fields to understand the costs of reproduction in particular, and
trade-offs in general. Among others, we have freely extended the slow-fast concepts to any organism
(but others have done so before (see for instance Nilsen et al., 2009)), and have, in general, applied the
vocabulary of interspecific life-history continua to describe within-population genetic variance. They are,
however, two categories that we have been enable to merge, despite their common name stemming from
the common (mis)understanding that they are, indeed, the same thing : physiological and genetic costs
of reproduction. They are, we show, different mechanisms that can act, jointly and simultaneously, at the
level of any population. From this irreconcilable difference, we draw our entire theoretical model for costs
of reproduction, decomposing and analyzing for each cost, in turn, the mechanism, its detectability and
its relevant modeling.

1.4.1 Summary of mechanisms
Starting from Williams (1966)’s allocative definition of the costs of reproduction, we first try and develop
a parsimonious theoretical model for physiological costs of reproduction, an allocation process at work at
the individual level and at each time-step. The combination, in Williams (1966)’s definition, of different
temporalities (the organism allocates resources that correspond to a capital, the reproductive value, which
it has yet to acquire) prompts us to use, similarly, a combination of two resource capitals to account for
an individual status : the Ratchet Capital and the Fluctuating Capital.

The former is related to Fisher (1930)’s reproductive value, and its initial level, for an organism, is the
accumulation, from life expectancy of the organism until birth, of its evolved lifetime reproductive effort
schedule. As it is built backwards, the corresponding resources cannot be acquired (time for instance), and
the RC is maximum at birth. The FC develops forward as the organism acquires FC resources (say food)
from the environment, over chronological time. By construction, both capitals determine the “state” of the
organism. As such they are also the main determinants of the allocation process occurring at each time-step.

We show that the life-history strategy of an organism, and in particular its position on three life
history continua are also important parameters of the allocation process. First, the storage capacity
(of FC resources) – corresponding to the Income/Capital-Breeders spectrum – impacts the budgeting of
the Fluctuating Capital. Second, the lifetime reproductive schedule – corresponding, among others (e.g.,
iteroparous/semelparous spectrum), to the position on the Slow-Fast Continuum – influencing the way the
Ratchet Capital is managed. Third, the location on the Quantity-Quality spectrum drives the effect of
demographic variance on reproductive effort, affecting, in turn, both capitals. From an individual’s evolved
life-history strategy, the time distribution per offspring of its reproductive effort (the reproductive effort
schedule) and its personal state (levels of capitals, age, etc . . . ), this model allows us to predict the various
characteristics of costs of reproduction with regards to the delay of occurrence, the component paying the
cost (survival or fertility) and its detectability.
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To physiological costs of reproduction, lying in the intermediate structure of Stearns (1989b)’s trade-off
architecture, can one append a genetic basis (we call the combination physiological costs of reproduction
with genetic basis). This genetic basis, located at Stearns (1989b)’s genotypic level, is a particular case
of genetic costs of reproduction, a mechanism working at the level of the population that brings about
negative correlations between fertility rates and later vital rates. These negative correlations can also be
produced by physiological costs of reproduction, hence the common designation, but from a totally dif-
ferent mechanism. Moreover, we show that other genetic costs of reproduction, that do not require any
allocative physiological mechanism to generate such correlations, are conceivable. In general, we show that
genetic costs of reproduction are about variance in a gene that affects the position of the organism along
the (intra-specific) Slow-Fast Continuum. For instance, variance in a gene affecting the allocation towards
reproduction, in the case of genetic costs associated with a physiological allocative process.

We extend to the population and the inter-population levels, the analysis of detectability of costs both
genetics and physiological. We analyze the effects of the main drivers of detectability : the absolute level
of environmental conditions and the demographic and environmental variances. Demographic variance has
contrasting effects at the level of the individual - where it fuels longitudinal detectability of physiological
costs of reproduction– and the population – where it blurs the variance in allocation genotypes, i.e., the
genetic costs of reproduction. Whilst poor absolute environmental levels improve detectability of physio-
logical costs of reproduction, we show that environmental variance conceals both the costs at the individual
level – as acquisition is an important component of the physiological process – and at the population level
– where crossing reaction norms of the allocation gene would possibly hinder the emergence of negative
correlations. Introducing genetic costs of reproduction into our model requires to incorporate genotypic
variance. It thus makes sense to accompany this polymorphism in allocation, with polymorphism in ac-
quisition genotype. This two-axis genetic variance is the main determinant of detectability of genetic costs
of reproduction, each axis being itself dependent on environmental conditions. We show why negative cor-
relations between early-life fertility rates and later vital rates are likelier to emerge from inter-population
than intra-population studies.

1.4.2 Costs of reproduction and senescence theories
There is a striking parallel between the differences in mechanism and detectability between genetic and
physiological costs of reproduction, and the differences between the two major senescence theories : the
antagonistic pleiotropy and the disposable soma theories.

As already suggested by Orton (1929) for marine invertebrates and fishes, physiological costs of re-
production seem to lead to death via "accumulated senescence". Indeed, many recent studies (Lemaître
et al., 2015; Boonekamp et al., 2014) bring to light the joint manifestation of both phenomena : cost
of reproduction on fitness and actuarial senescence (taken as the increase in the force of mortality with
age). That costs of reproduction constitute the keystone of senescence is also evidenced in the theory.
First anecdotally as prominent theorists of the cost of reproduction happen to also be the main theorists
of senescence; Bell (1980, 1984) and Williams (1957, 1966). Second and most importantly, because the
mechanisms of both genetic and physiological mechanisms involved in the costs of reproduction, drawn
from the general theories of trade-offs of Partridge et al. (1991), Roff (1992), Stearns (1989a) and Williams
(1966) that we have tried to reconcile in our theoretical approach of section 1.2 (physiological costs in 1.2.1
and genetic costs in section 1.2.2), are also the building blocks of the two major evolutionary theories of
senescence, the Antagonistic Pleiotropy Theory (APT) and the Disposable Soma Theory (DST).

Medawar (1952) drawing on earlier work by Fisher (1930) and Haldane (1941), devised the first major
evolutionary theory of senescence based on individual selection : the mutation accumulation theory. As
the force of selection, in age-structured populations, decreases with age, natural selection is much weaker
and much slower to sweep deleterious mutations that only affect late-age fitness and are therefore likely
to accumulate. From the same tenet, Williams (1957) constructed the APT, that describes how such late-
age-acting deleterious alleles may invade via positive selection if the genes are pleiotropic with antagonistic
effect, i.e. a positive effect on early-age fitness, a negative effect at late-age, and a net, overall, positive
effect on fitness. Like the genetic costs of reproduction the APT mechanism lies at the gene (and thus
population) level with effect blurred by individual and environmental stochasticity, and requires antago-
nistic gene pleiotropy. The main difference between APT and the genetic costs is that the latter describes
a general variance life-history-driving genes in the population whilst the former predicts that this variance
will be continuously increased at the "fast" end by new mutations and reduced at the "slow" end by selection.

The most recent evolutionary theory of senescence is the disposable soma theory developed by Kirk-
wood (Kirkwood and Holliday, 1979; Kirkwood, 1977). It explains senescence by the accumulation of
damages at different physiological levels (for instance in proteins (Lindner and Demarez, 2009)) due to the
divergence of some of the available energy from repair and maintenance towards other functions. DST has
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the same mechanism as the physiological costs of reproduction, with a stronger focus on survival for the
former and on reproduction for the latter. And like the physiological costs, DST is at work inside each
individual trajectory and prone to chance (Finch and Kirkwood, 2000). Despite a large literature relating
reproduction investments with senescence (see for instance Gustafsson and Pärt, 1990) and even with DST
directly (Hammers et al., 2013), DST is not only about depletion of resources due to reproductive costs.
It is an evolutionary theory of ageing. Indeed, it considers the way various organisms ’decide’ to allocate
to various functions at various ages as the product of evolution, mainly driven by extrinsic mortality : if
an organism is consistently likely to die before a certain age, because of predators for instance, then it is
expected that its allocation strategy will evolve to make sure enough energy is apportioned to reproduc-
tion before that age (Kirkwood and Rose, 1991). With the same evolutionary consideration in mind, we
have constructed the Ratchet Capital, which implements the life-history strategy evolved by the species,
and the genetic costs (i.e., the variance in allocation in the population) which incorporates the specific
variant around this central strategy evolved by the specific lineage of the individual. In a nutshell, DST
corresponds to physiological costs of reproduction with genetic basis.

In the same way, we have discussed, in this Chapter, the overlap and/or inclusion in one another, of
genetic and physiological costs (see figure 1.3), many authors have tried to connect APT and DST. Some
seem to think they may have found an overlap via the theoretical existence of genes acting on allocation
(see Kirkwood and Rose, 1991; Partridge et al., 1991) but find the reconciliation to be forced, leading to
"indirect reasoning" for the former and "a little perverse" for the latter. This intersection, in our models
for costs, we call physiological costs of reproduction with genetic basis. To the contrary of such senescence
theorists, we think it has fundamental importance. The only way to disentangle the roles of genetic and
physiological trade-offs is actually, we think, to focus on the situations in which both trade-offs can jointly
occur and to use the detectability patterns that emerge from the analysis of their mechanisms to paint the
landscape of their effects and cross-effects.

More recently and generally however, authors have started to consider DST as a particular case of APT
(Gavrilov and Gavrilova, 2002; Robins and Conneely, 2014; Rodríguez et al., 2017). This corresponds to
our finding that physiological costs of reproduction with genetic basis are both physiological and genetic
costs (the allocation gene playing the role of pleiotropic gene). Current research even seems to suggest
that DST makes up a big part of APT. Is is notable, for instance, that several genes that have been
identified in model organisms as affecting ageing rate are linked with the control of energy metabolism,
e.g. via the insulin signaling pathway (Gems and Partridge, 2001). And therefore, the question whether
this inclusion is a double inclusion is raised both in senescence studies and in this Chapter. We conclude,
from the theoretical construction of genetic non-allocative costs of reproduction that DST is certainly only
strictly included in APT (see figure 1.3). As long as one accepts the broad definition of genetic costs as
the emergence of negative relationships between early-life and late-life vital rates, any feature that, for
instance, attracts both mates and predators would generate genetic costs of reproduction providing that
there is variance in genes promoting that feature.

There are many reasons why this equation of physiological (DST) and genetic costs (APT) is difficult
to make. Whilst we identified situations where both costs cohabit, they differ so much in level of action
(individual time-step vs individual trajectory), location in the architecture (intermediate structure vs ge-
netic level), in individual stochasticity dependence (fueled by chance vs blurred by chance) and in levels
of detectability that the comparison is hard to make.

Most fundamentally however, we think the difference between, physiological and genetic costs lie in
the time window of their plasticity. Physiological costs compound over time (via their effects on the re-
source capitals) and, doing so, are plastic enough to buffer the environmental conditions over an horizon
that can extend as far as the individual’s lifetime. Genetic costs do not act at the individual level but
at the level of the population. They will promote the life-history strategies best adapted to the recent
evolutionary past. The variance in allocation strategies constitutes in itself the genetic plasticity available
to the population as it faces uncertain environmental conditions over the near-evolutionary future. In
a nutshell, these considerations characterize these two types of trade-offs as tools against environmental
variance with different time windows of effects. Short-term (fraction of life expectancy) spikes are cov-
ered by physiological costs. Long term (evolutionary time) shifts by the genetic costs. In quantitative
genetics terms, genetic costs (AP) draw the contours of the additive genetic variance-covariance matrix,
G, which combines with the selection gradient measuring the force of selection on multiple traits, in order
to predict the evolutionary changes in both early-age fertility and late-age survival/fertility (Lande, 1982).
For their part physiological costs of reproduction(DS) being mainly physiological processes have little effect
on G, but can have evolutionary implications via an effect on selection gradients that has to be investigated.

37



Chapter 1 – General theory of costs of reproduction

1.4.3 Modeling the costs of reproduction
Equipped with our design for both physiological and genetic costs, we set out to find the adequate model
to implement physiological costs of reproduction with genetic basis. We show that each component of the
costs corresponds to a typical and widely used projection model. Physiological costs of reproduction would
be best projected over time by Individual Based Models, which, as their name indicates, work at the indi-
vidual level. Genetic costs of reproduction, for their part, do not need such a level of scrutiny. However,
as they are evolutionary models, they require specific tools to perform evolutionary analyses. Such tools
are easily provided by population projection matrices, the model of choice for evolutionary demography.
Combining both approaches, multitrait population projection matrices (developed and analyzed in chap-
ter 2) allow to incorporate both individual/physiological and genetic/evolutionary aspects of physiological
costs of reproduction with genetic basis.

Finally, we indicate directions for the implementation of the various components of our conception of
the costs of reproduction. In particular, we show how to discriminate the various determinants of the costs
into three different families of traits. One such family should contain the basic trait(s) best determining the
organism life-history : age, potentially escorted by stage (or size, location, . . . ). The traits in the second
and third compartments should be segregated according to the part of individual heterogeneity – either
dynamic or hidden - they contribute to. Capital levels and reproductive efforts buckets track individual
trajectories and correspond to the Dynamic Heterogeneity family of traits. The affiliations of an individual
to particular genotypes are traits that, as they are fixed-at-birth, constitute the Hidden Heterogeneity
family. Such genotypes may be the acquisition and allocation genotypes related to physiological costs in
the physiological costs of reproduction with genetic basisframework. However they can also be unconnected
to any allocative process, whilst still generating variance in robustness and in a gene with pleiotropic
effects on different vital rates. We further show the implications of incorporating heritable traits (such
as genotypes) in a matrix model in terms of stable-state vs. mutation/selection equilibria (we emulate
Charlesworth’s approach to show their correspondence via trait level analysis in appendix 1.5.1) and the
interpretation of sensitivities as selection gradients.

In order to go any further, that is to actually generate a matrix incorporating all the components of the
costs of reproduction (chapter 3), we first need to establish a building methodology and, most importantly,
analysis tools for multitrait models (chapter 2).

1.4.4 Further developments
Looking back at the theoretical considerations on the topic of the costs of reproduction formulated in this
chapter, it is clear that it is one amongst many ways to theorize the phenomenon. We draw our model
from Williams (1966)’ definition, but a different approach, say stemming from a physiologist per se, would
lead to a different theory. Life historians, physiologists and ecologists may disagree with some aspects
of the model, some components can be found to be overemphasized whilst others certainly would require
more in-depth analysis.

This is in particular the case for the way organisms spread the reproductive efforts required to pro-
duce on (independent) offspring; a time distribution we call reproductive effort schedule or res. This
repartition is certainly at least as important as the lifetime fertility schedule (akin to the slow-fast and
iteroparous/semelparous continua) as a driver of reproductive efforts (the two distributions actually con-
volve to produce the lifetime reproductive effort schedule). In the next we mention a method that allows
to account for the reproductive schedule in a matrix model. With that tool, it is possible to go beyond
the simple fertility rates and to actually implement all aspects of reproductive efforts, including those,
called parental care, produced long after the birth of offspring; this is of the upmost importance in order
to correctly measure any selection gradient by age. Our model for costs of reproduction, even though
wide enough to incorporate such parental care, does not include all inter-generational transfers. In social
species, transfers of resources between individuals extend far beyond the care of a parent for its offspring.
Grand-parents, aunts and other kin will also possibly provide help, as could brothers and sisters carrying
out intra-generational transfers, as helpers-at-the-nest. We will in chapter 4 consider the literature and
the current models for such kin selection, and provide the general idea on how to extend the concept of
multitrait matrices implementing physiological trade-offs of this chapter towards kinship MPPMs incorpo-
rating several kin.

With regards to the prediction of detectability of the costs made in this chapter, these would need to
be tested; ideally with a model organism for which genetic variance and environment are easy to control
and measure. The same goes for our predictions of the effects of the life history continua (SFC, ICB, QQ)
on the characteristics of the costs (delay, strength, component paying the costs, . . . ) that would benefit
from a greater review of the relevant literature in order to be validated or overturned.
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1.5 Appendices

1.5.1 Population genetics / population dynamics consistency
Let us consider a simplistic age & heterogeneity structured organism with 2 age classes and 2 genotypes, A

and B, with respective Leslie matrices MA =
[
F1A F2A
SA 0

]
and MB =

[
F1B F2B
SB 0

]
. Then the genotypes

“internal” growth rates λA and λB are such that , from (Euler-Lotka),

F1A

λA
+ F2,A.SA

λA
2 = 1 and F1B

λB
+ F2,B .SB

λB
2 = 1

If the mutation rate per generation is µ then the entire population can be modeled by

M =

F1A.(1− µ) F2A.(1− µ) F1B .µ F2B .µ
SA 0 0 0
F1A.µ F2A.µ F1B .(1− µ) F2B .(1− µ)

0 0 SB 0


Let λ be the population ergodic growth rate. Its associated right eigenvector f =

(
f1A f2A f1B f2B

)′,
scaled to sum to 1, is the vector of ergodic relative abundances. Let F̄1 = f1A.F1A + f1B .F1B , F̄2 =
f2A.F2A + f2B .F2B and S̄ = f1A.SA + f1B .SB be the mean ergodic-abundances-weighted vital rates (in
chapter 2, we discuss such an operation, we call there Ergodic-Flow Preserving averaging or folding), and
its properties). Then, by construction (see chapter 2 for generalization):

F̄1

λ
+ F̄2.S̄

λ2 = 1 (1.9)

Vector f is, by definition of an eigenvector, such that M.f = λ.f i.e.
F1A.(1−µ).f1A+F2A.(1−µ).f2A+F1B .µ.f1B+F2B .µ.f2B=λ.f1A (1.10)
SA.f1A=λ.f2A (1.11)
F1A.µ.f1A+F2A.µ.f2A+F1B .(1−µ).f1B+F2B .(1−µ).f2B=λ.f1B (1.12)
SB .f1B=λ.f2B (1.13)

Incorporating equations 1.11 and 1.13 into equations 1.10 and 1.12 yields:{
F1A.(1−µ).f1A+F2A.(1−µ).SA.f1A

λ
+F1B .µ.f1B+F2B .µ.

SB.f1B
λ

=λ.f1A (1.14)
F1A.µ.f1A+F2A.µ.

SA.f1A
λ

+F1B .(1−µ).f1B+F2B .(1−µ).SB.f1B
λ

=λ.f1B (1.15)

Let w̄ = F̄1
λ

+ F̄2.S̄
λ2 , wA = F1A

λ
+ F2A.SA

λ2 and wB = F1B
λ

+ F2B .SB
λ2 , then the sum of equations 1.14 and

1.15 scaled by 1/λ gives :
wA.f1A + wBf1B = f1A + f1B

Letting f∗A = f1A
f1A+f1B

and f∗B = f1B
f1A+f1B

be the relative ergodic abundances of the two offspring states
(1, A) and (1, B), the previous system of equations (1.14 and 1.15) can be rewritten, taking into account
equation 1.9, as :

wA.f
∗
A + wB .f

∗
B = w̄

wA
w̄
.(1− µ).f∗A + wB

w̄
.µ.f∗B = f∗A

1.5.2 Effect of environmental variance on detectability of costs of repro-
duction

To illustrate the combination of effects of both the absolute level and the variance of the environment on
the detectability of CB-FC costs, we construct the following simple model.

Let us consider, FCi, the Fluctuating Capital for an organism at the beginning of period i, before
feeding and then breeding and scaled by the reproductive effort it takes to produce 1 offspring. Putting
aside individual stochasticity, let us make the assumption that, if after the acquisition period (feeding), the
capital is higher than 1 (the level required to produce one offspring) then an offspring is produced. And
therefore, ∀i, 0 < FCi < 1.At each time-step, the resources acquired by the organism Envi is drawn from
an acquisition/environment random variable E , uniformly distributed in [ ¯Env − vEnv, ¯Env + vEnv] where
1/2 < ¯Env < 1 so that the expected amount of capital after acquisition FCi +Envi is, in expectation, at
least 1, the minimum amount to produce a child.
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From these assumptions, the reproductive sucess" at time i, REi, simplified as the number of offspring
produced (0 or 1) can therefore be written: REi = δFCi+Envi−1 where δ is the Dirac function worth 1, in
the positive domain, 0 in the negative. We set FC1 = 0. From there, the sequence of capital values as a
function of the environment is :

∀i > 0 FCi+1 = FCi + Envi −REi = FCi + Envi − δFCi+Envi−1

In a simplistic model like this one, it is clear that realized reproductive effort has an effect on capital,
and thus on fitness in general. However, as discussed in the chapter, such fitness/phenotypic costs may
be reduced, or even canceled if the environment is very good for successive periods, and harder to detect
if it has a large variance. To illustrate this, we compute, for this simple model, the correlation between
successive reproductive efforts, according to different environmental distributions. These vary in expecta-
tion (absolute, or mean, environmental level) ¯Env and in variance vEnv (the actual variance of uniformly
distributed E is v2

Env
3 ). As ¯Env varies in its [1/2, 1] range and vEnv between 0 and ¯Env, we plot - figure

1.5 - the succesive reproductive effort correlations corri(REi, REi+1). From this graph, we clearly see both
detrimental effects of bad and varying environments:

When environmental variance is null, and all Envi are at 1/2, then depending on whether the capital
is above or below 1/2 itself, it will reproduce or not. Then, from equation above, we get REi = δFCi−1/2
(and therefore REi+1 = δFCi+1−1/2), where FCi+1 − 1/2 = FCi − δFCi − 1/2. As 0 < FCi < 1, this
implies FCi − 1/2 will always be opposite sign than FCi+1 − 1/2 and thus RCi+1 = 1 − RCi, therefore
yielding a correlation of corri(REi, REi+1) = −1. As the environment worsen and varies, the correlation
increases.

From this simple example, we see that "fitness costs", the emergence of the costs as correlation between
fitness components, can be deceptive. Indeed, if the environment is too good, there is no fitness cost, as
the environment immediately compensates for any reproductive effort. If it is too bad, then there is no
fitness cost either, as the poor environment does not allow reproduction to occur. Fitness costs, in this
example, are maximal when Envi = 1/2, whereas the costs themselves at maximal at the other end of the
range when Envi = 1.

Figure 1.5: effects of absolute level and variance of environment on detectability of physiological
costs
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2.1 Presentation of the article
In this chapter, presented in its article form as published in Theoretical Population Biology, we develop
a new method to generate a Multitrait Population Projection Matrix (MPPM) - a matrix projecting a
population characterized by several traits - that is computationally efficient and we provide an analysis
tool to measure the demographic effects of the multiple traits: the Trait Level Analysis.

First, in the introduction (section 2.2, p.43) we put the model in the general context of population
projection matrices and review the early efforts to add a second trait to one-trait model. We discuss the
topicality of MPPMs, with the advent of memory models (where extra traits are tracked over the life of
individuals) and the general willingness to implement fixed-heterogeneity in evolutionary models.

In the method section (section 2.3, p.45), we first show how to build such an MPPM in three steps
(section 2.3.1, p.45). First the vectorization of vital rates (fertility and survival) for all states. Second,
the construction of the output vectors for each input state. Finally the combination of these vectors to
generate the sparse definition of the MPPM. We then go on and show how to compute sensitivity analyses
for such a model. This leads to a discussion regarding the primitivity of MPPMs and in particular with
regards to the unicity of the maximum eigenvalue (in section 2.6.1, referred in the article as supplementary
material 1).

Then, in section 2.3.2 (p.47), we describe the Trait Level AnalysisẆe start by showing that when states
of a graph are merged, the properties of the projection are altered (we demonstrate this in appendix 2.6.2,
referred in the article as supplementary material 2). We choose to preserve ergodic flows. We show that it
also preserves the asymptotic growth rate and ergodic abundances but at the cost of reproductive values
(we demonstrate this in appendix 2.6.3, referred in the article as supplementary material 3). We extend
this EFP-merging to entire traits, where we call it folding. We provide the equations allowing to implement
folding in the article, as well as the code in annex 5.1.3 p.127 (this is referred to as supplementary material
5 in the article)

Finally, we illustrate this with a simple model (section 2.4 48) which parametrization is provided in
annex 5.1.1 p.125 (this is referred to as supplementary material 4 in the article). We also illustrate a
particular step of the methodology - the required nullification of near-zeroes in MPPM eigenvectors caused
by the approximation inherent to convergence methods - in annex section 5.1.2 p.126 (this is referred
to as supplementary material 4 in the article). The other supplementary materials of the article can be
found via the link provided by the publisher (bottom of page 43). We conclude with a discussion (sec:2.5,
p.51) about the further prospects for such a model, in terms of applications and in terms of theoretical
improvements.
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a b s t r a c t

In most matrix population projection models, individuals are characterized according to, usually, one or
two traits such as age, stage, size or location. A broad theory of multitrait population projection matrices
(MPPMs) incorporating larger number of traits was long held back by time and space computational
complexity issues. As a consequence, no study has yet focused on the influence of the structure of traits
describing a life-cycle on population dynamics and life-history evolution.

We present here a novel vector-based MPPM building methodology that allows to computationally-
efficiently model populations characterized by numerous traits with large distributions, and extend
sensitivity analyses for these models. We then present a new method, the trait level analysis consisting
in folding an MPPM on any of its traits to create a matrix with alternative trait structure (the number
of traits and their characteristics) but similar asymptotic properties. Adding or removing one or several
traits to/from the MPPM and analyzing the resulting changes in spectral properties, allows investigating
the influence of the trait structure on the evolution of traits.

We illustrate this by modeling a 3-trait (age, parity and fecundity) population designed to investigate
the implications of parity–fertility trade-offs in a context of fecundity heterogeneity in humans. The trait
level analysis, comparing models of the same population differing in trait structures, demonstrates that
fertility selection gradients differ between cases with or without parity–fertility trade-offs. Moreover
it shows that age-specific fertility has seemingly very different evolutionary significance depending on
whether heterogeneity is accounted for. This is because trade-offs can vary strongly in strength and even
direction depending on the trait structure used to model the population.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In early population projection models – those mathematical
models used for the study of the dynamics and structure of pop-
ulations projected over time – individuals were grouped according
to one single trait (or i-state). This single trait was generally the
age of the individuals (Euler, 1760; Lambert, 1772; Sharpe and
Lotka, 1911). This was also the case for the original matrix models

* Correspondence to: UMR 7206, Laboratoire d’Eco-anthropologie et Ethnobiolo-
gie, Equipe ‘‘Anthropologie Evolutive’’, MusémNational d’Histoire Naturelle, Site du
Musée de l’Homme, 17 place du Trocadéro, F-75116, Paris, France.

E-mail address: christophe.coste@mnhn.fr (C.F.D. Coste).

developed by Lewis (1942) and Leslie (1945). As ecologists started
borrowing this powerful tool from classical demographers for
species conservation and life-history evolution, one-trait models
incorporating other traits than age, such as size or developmental
stagewere considered (Lefkovitch, 1965; Usher, 1969). Just as ecol-
ogists’ interest in matrix populationmodels prompted their devel-
opment, evolutionary demographers’ growing focus provided tools
to understand the evolutionary processes at play. Demographic
sensitivity analysis instruments (e.g., first and second level param-
eter sensitivities, life history graph and loop analysis) were early
made available for one-trait models (see Caswell, 1978; de Kroon
et al., 1986; Goodman, 1971).

http://dx.doi.org/10.1016/j.tpb.2017.07.002
0040-5809/© 2017 Elsevier Inc. All rights reserved.
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However, additional traits are often required in order to
accurately study the dynamics of a population. In the liter-
ature so far, most multitrait population projection matrices
(MPPM1), sometimes called metapopulation (Hanski, 1999), mul-
tidimensional (Van Imhoff, 1992), multistate (Rogers, 1980), mul-
tiregional (Rogers, 1966) or multisite (Lebreton, 1996) models,
actually incorporate two traits. Rogers (1966) was the first to add
a second dimension (location) to a one-trait (stage) matrix model
and many important articles on stage-and-location modeling fol-
lowed (e.g., Le Bras, 1970; Rogers, 1980, 1974). In a seminal paper,
Goodman (1969) then introducedmatrixmodels for both age-and-
sex and age-and-parity structured populations. Such templates
were later extended to model populations characterized by age
and stage (e.g., Law, 1983). In parallel, perturbation and sensitivity
analysis tools were extended from one-trait to multitrait models
(Caswell, 2012; Willekens, 1977). Those instruments provide in-
formation on the impact on population dynamics of vital rates and
other parameters. Other tools are however needed to investigate
the behavior and properties of MPPMs. A one-trait model and a
two-trait model of the same population indeed do not merely
differ in level of scrutiny; theywill also exhibit different population
dynamics. The addition of a trait into a model therefore raises
new questions, as for example, the extent to which this addition
modifies the sensitivities of fitness to other traits. An analysis at
the trait level is therefore required, and has yet to be developed.

Generalization to any number of trait was for a long time reined
in by a lack of generalized building methodology – such models
weremostly built, transition by transition, as concatenations of ad-
hoc block matrices (e.g., Goodman, 1969; Le Bras, 1970; Lebreton,
2005; Rogers, 1966) – and by their space/time computational com-
plexity (MPPMs increase in size and complexity with the number
of traits). In 1969, Goodman hints at a three-trait model but does
not build it (1969). And it would actually take another forty years
before n-trait models (with n > 2) make their appearance. This
emergence was due to efforts, first, from ecologists targeting a
particular question (e.g., the mother hypothesis for Pavard and
Branger, 2012; their made-to-measure model preventing over-
size by only using biologically realistic combinations of traits as
matrix entries). Second, from theorists: very recently, Roth and
Caswell (2016) extended to any number of traits, the construc-
tion of MPPMs, which they denote as ‘‘hyperstate’’ matrices, via
the vec-permutation approach previously developed for 2-trait
models (Caswell and Salguero-Gómez, 2013; Caswell and Shyu,
2012; Hunter and Caswell, 2005). This approach formalizes the
construction of anMPPM via the product of intermediarymatrices,
each representing the transitions between values taken by one of
the traits when all others are fixed (thus decomposing an MPPM
into a succession of independent processes).

Progress in the field of multitrait matrices is therefore at two
levels. First, the growing focus on methodologies for building
multitrait matrices has to be pursued. Computationally efficient
methods are especially required to relax the compromise between
number of traits and ability to build, analyze and perform pertur-
bation analyses. Second, a theory of multitrait projection models
is required to understand the impact of the traits themselves
on population dynamics and life-history traits evolution. These
developments are crucial for addressing emerging questions in
evolutionary demography.

A recent developing field, for example, is that of memory mod-
els. Classical projection matrices – behaving like Markov chains –
infer the entire future behavior of organisms from their current
state. The fate of most natural organisms depends, however, on
their whole life history trajectory (e.g., later life survival may
be influenced by reproduction trajectories (Bell, 1980), or early

1 MPPM = multitrait population projection matrix.

life factors (Lemaître et al., 2015)). Adding traits is a solution to
keep track of individual past events. This is the case, for instance,
for models incorporating family structures where an individual’s
survival and reproduction depend on cooperation and/or com-
petition relationships with its surviving kin. In such models, kin
survival status and reproduction has to be recorded over time.
For example, in order to understand the impact of maternal care
on population dynamics, Pavard and Branger (2012) developed a
one-sex projection model in which maternal and grand maternal
survival status (along with age) impact juveniles survival rates. A
woman’s survival depends on her age and on the aliveness of her
own mother, itself a function of the mother’s age. This implies the
use of three traits: age of individual, orphanhood, age of mother.
Another example is the parity–fertility trade-off (also called cost
of reproduction in ecology) whereby an individual fecundity or
survival at a given age is compromised by its past reproductive
effort (e.g., Boonekamp et al., 2014). As they develop, memory
modelswill be increasingly demandingwith regards to the number
of traits.

In this context, individual heterogeneity, ‘‘the variation observed
in a trait among individuals’’ (Plard et al., 2012) is more and more
considered in population models (Vindenes, 2010). This hetero-
geneity can be split into dynamic observable heterogeneity and
constant heterogeneity that is fixed-at-birth and cannot be ob-
served directly, but can potentially be deduced from its impact
on vital rates. The latter component was first called frailty in the
context of survival models developed by Vaupel (1979) and collab-
orators. Models have been developed that implement both parts
of heterogeneity (see the continuous time vitality-frailty model
by Li and Anderson (2009)) and the dynamics of each component
can be studied and its relative contribution to total heterogeneity
analyzed (Caswell and Kluge, 2015; Tuljapurkar and Steiner, 2010).
Multitrait models would allow for the incorporation of individual
heterogeneity: accounting for observable dynamic heterogeneity
component via the addition of (stage, spatial, social, etc.) traits
and accounting for constant unobservable heterogeneity via the
addition of fixed heterogeneity classes.

In this article, we first present an MPPM building method-
ology which is computational-efficiency-driven and alternative
to the transition by transition building method and to the vec-
permutation method of Roth and Caswell (2016). As in any MPPM,
in our model, individuals are classified by multiple traits. There is
no real limitationwith respect to thenature of these traits: they can
be categorical, discrete or discretized, observable (a measurable
parameter) or unobservable (e.g., hidden heterogeneity). Those
traits can be constant for an individual (inherited or acquired at
birth) or varying throughout its life. In order to manage MPPMs
increasing sizes and complexities with the number of traits, the
matrix buildingmethodology we develop here is vector-based and
relies on sparse matrices (matrices in which most of the elements
are zero). Because no loop is involved in the matrix building pro-
cess – by contrastwith the twoalternativemethods: the transition-
by-transition and the vec-permutation approaches – the time com-
putational cost associated with such an object is contained. The
use of sparse matrices, for its part, drastically reduces space and
thus time complexities. Through a sequential process, the method
generates, in turns, (1) vital rates for each combination of traits,
(2) output combinations of traits and corresponding distributions
for each vital rate, and finally (3) all transitions between every
pair of states. After a brief discussion of the existence and unicity
of ergodic growth rates for MPPMs, we extend the computation
methods of classical demographic measures, and most impor-
tantly, sensitivity analyses to our vector-basedMPPM construction
methodology.

We then develop a new type of evolutionary demography anal-
ysis, the trait level analysis, allowing the evaluation of the impact
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of each trait on the whole population structure. We believe that
this tool presents twomain interests. First, for ecologists, to model
one same population characterized by varying degrees of scrutiny
(i.e., number of traits), and to assess the relative importance of
traits on population dynamics. Second, for evolutionary demog-
raphers, to compare the strategies of two populations differing in
their life-history but sharing the same dynamics (thus the same
fitness as measured by growth rate). The trait level analysis is
performed via a matrix operation we call folding. It applies to any
MPPM and is independent from the way it was constructed. It
consists in comparing anMPPMwith an asymptotically equivalent
folded version of it but where individuals are only characterized by
a subset of the original traits. Folding process requires therefore
the merging of states sharing the same values for some trait(s).
We thus first analyze the various possible merging processes and
describe the one we call Ergodic Flow Preserving merging (or EFP
merging) that specifically preserves asymptotic properties (via the
ergodic-abundances-weighted averaging of transitions). We then
define the aforementioned folding process, as the extension of EFP
merging to entire traits.

Finally, as an illustration, we extend Goodman’s (1969) one-
sex, age and parity model for humans, by adding a third trait
categorizing women by fecundity. More precisely, this model in-
corporates parity–fertility trade-off (i.e., a memory model where
past cumulative reproductive efforts compromise females’ fertility
rates) in a context of heterogeneity in fecundity. We then use this
model in order to investigate the combined effects of heterogeneity
and parity–fertility trade-off on trait-specific sensitivity of fitness.
This example will illustrate the potential of the novel trait level
analysis for investigating such interactions.

2. Model

2.1. Vector-based building of MPPM

2.1.1. Input: traits, states and transitions
The first step in building a multitrait population projection

matrix M is to define traits for which dynamics over time will be
projected. The second step is to relate all combinations of those
traits to all entries of the matrix. Please relate to Table 1 for
notations used throughout the Model and Illustration sections.

A population vector, evenwhen representingmultidimensional
individuals, can only be projected via a 2-dimensional square ma-
trix where entries are the transition rates between input states
(columns) and output states (rows). Therefore, the multidimen-
sional space of traits has to be vectorized: each of the q combina-
tions of traits t = (t1, t2, . . . , tn), drawn from the ‘‘trait structure’’
vector s = (|t1|, |t2|, . . . , |tn|), where |ti| designates the number of
different values trait ti can take, will be given an index, or state:
states (t1, t2, . . . , tn) (see Appendix A).

Let us now implement the transition rates between every pair
of states. Time is an inherent parameter to every populationmodel
as its elemental deed is to project population abundance over a
defined time-interval. All transitions can then be categorized ac-
cording to whether they stand for the persistence of individuals to
the next time-step (i.e., through their survival) or to the production
of new individuals (i.e., through fertility). This is true even when a
transition incorporates changes in other traits that may be as cru-
cial for life-history as survival and reproduction. For example, even
in a size-structured population where age is not an explicit trait of
the model, a transition rate does not infer whether an individual
will grow from one stage to another stage, but rather whether
it will both survive and grow, see Caswell (2012). It follows that
survival and fertility rates for each state will form the building
blocks of the construction methodology. Let us denote vrv of size q
the vector of vital rates (v stands for either survival or fertility) for

each state i: an individual in state iwill survive at a rate of vrsurvivali
and reproduce at a rate of vrfertilityi .

Once vrfertility and vrsurvival have been computed, let us examine
the way these vital rates are distributed over the various possible
output states.We define oiv,i the vector of indices of all biologically
realistic potential output states from state i through vital process v.
In other words, the combination of vectors oifertility,i and oisurvival,i
is the set of all possible states j for which Mj,i might not be
zero. Let us also denote opv,i the associated vector of probability
distribution: through vital process v, an individual in state i may
be projected in any of the states of oiv,i and will be projected
in specific state oiv,i

j with probability opv,i
j . Being a probability

distribution, ∀v, i
∑

jop
v,i
j = 1.

For example, let us imagine a 2-traits life-history structured by
three age-classes and two size-classes. In this case, n = 2, t =

(age, size), t1 ∈ [1, 3], t2 ∈ [1, 2] , s = (3, 2) and q = 6 (Table 2).
The state (i.e. the matrix entry number) corresponding to the pair
of traits (2, 2) is states (2, 2) = 1 + (2 − 1) + (2 − 1) × 3 = 5.
Conversely, the fifth entry of thematrix corresponds to trait couple
(2, 2) (given by the function tuples (5), see Appendix A). Let us con-
sider fertility and survival respectively (fert and surv) as functions
of respectively age and (age, size). Over one time-step, through
survival, individual age will increase by one. Assuming that this
organism can only either grow or remain in the same size class
with equal probabilities, an individual at states (i) = (age, size)
may survive as any of two possible combinations: oisurvival,i =

(states(age + 1, size), states(age + 1, size + 1)) and opsurvival,i
=( 1

2 ,
1
2

)
.

2.1.2. Projection matrix
2.1.2.1. Projection matrix as a sparse matrix. Vectors vrv , oiv,i and
opv,i contain all the information needed to build M. For each state
i, and each vital process v, let j be themth element of oiv,i, (i.e., j =

oiv,i
m ), then the transition rate from state i to state j, for vital process

v, is tvi→j = vrvi .op
v,i
m (for a formal approach see Appendix B).

For each state i, and each vital process v, we can then create
a matrix of transitions Tv,i, gathering all triplets of transitions(
i, j, tvi→j

)
between state i and every state j reachable from i via v.

Concatenating the Tv,i matrices for all states and for both vital rates
gives usT, the table of all transition triplets, representing the sparse
formulation ofmatrixM. They are equivalent, in the sense that both
contain the same information, either as a q × q matrix containing
every transition from any of the q states to any other, or as a table
of all (bio)logically possible triplets of transitions

(
i, j, tvi→j

)
(see

Appendix B for a formal definition of T and the Tv,i). It must be
stressed that several triplets in Tmay point to the same entryMi,j:
this is the case, for instance, in size-based models where small
individuals can produce individuals in the same category via both
fertility and survival. This possibility is taken into account when
computing T as a sparse definition of M. The transition rates (3rd
element of the triplet) of all triplets in T, sharing the same 1st and
2nd elements, will be summed.

2.1.2.2. Implementability and comparison with alternative building
methods. This vector-based methodology allows the construction
of any MPPM, with implementability, and in particular computa-
tional time and space complexity, in mind. We now compare this
methodology with two alternative construction methods: (1) the
transition by transition building ofM looping through all q2 matrix
entries, and (2) the vec-permutation method and its sequenced
vital processes.

The transition by transition building of M incurs a time and
space complexity O

(
q2

)
. (simply put this means the running time

of the construction of M and its storage size are of the order of q2)
Computation efficiency of the basic method therefore dramatically
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Table 1
Notations. In this article, we denote vectors in bold (e.g. a), matrices in bold capital (e.g. A), multidimensional matrices in gothic (e.g. A) and functions in bold italic (e.g. a).
The transpose of a matrix is denoted with a prime (e.g. A′) and the number of elements of a vector or matrix, or the number of values a determinist variable can take, by
|| (e.g. |a|). Recurring names and denotations in the article are as follows:

Object or operation Notation Object or operation Notation

Generic MPPM M Vital process : fertility or survival v

Number of traits n Vital rate vector vrv
Combination/n-tuple of traits
and equivalent state number

t = (t1, t2, . . . , tn)
states (t1, t2, . . . , tn)

Set of output states from state i through vital
process v

oiv,i

Trait structure = vector of traits sizes s = (|t1|, |t2|, . . . , |tn|) Probability distributions for output states
from state i through vital process v

opv,i

Total number of states q =
∏n

i=1|ti| Vector of parameters (size k ) p = (p1, . . . , pk)
Largest eigenvalue ofM λ Multidimensional matrix of sensitivities ofM

to p
S

Associated right eigenvector (scaled to sum
to 1)

w (x, y, z) is a triplet of transitions of M tx→y = z = My,x

Associated left eigenvector (scaled so that
v′w = 1)

v Transition triplets matrix for state i, and vital
process v

Tv,i

Matrix products: Matrix of all transition triplets T
Hadamard (entrywise) product ⊙

Hadamard (entrywise) division ⊘

Kronecker product ⊗

GM (Graph of M) vs M equivalences: GM M Row concatenation of A and B A ∩ B
Node vs State node i state i Identity Matrix of size b Ib
Transition vs Edge ti→j Mj,i Vector of ones of size b 1b
Vec operator stacking elements of a
multidimensional in one column vector

vec () Operator permuting dimensions of a
multidimensional matrix according to
permutation of traits sigma

permsigma

Operator reshaping a vector into a
multidimensional matrix according to s

vec−1
s () n-dimensional expression ofw according to s W = vec−1

s (w)

Table 2
Traits and states for a 2-ages 3-sizes organism.

t1 = age t2 = size Space of traits combinations Space of states

Bounds [1,3] [1,2] no ordering [1,6]
Number of elements 3 2 q = 3 × 2 = 6 q = 6

slows with the number and size of traits. Creating, in a vector-
based manner, T – as opposed to M – involves a finite number
of operations on each state and has thus a much lower com-
plexity O(ntrans) where ntrans is the total number of transitions
implemented (a majorant of the number of non-zero transitions):
ntrans =

∑
v

∑q
i=1|oi

v,i
| (where |oiv,i

| is the number of elements
of the vector of output states for input states i, and vital rate
v). Indeed, most input states have only a few potential output
states, and we have ntrans < q.maxv,i|oiv,i

| ≪ q2. For the
same reason, induced matrix M is sparse with density ntrans/q2.
Matrix T is mathematically equivalent to M but computationally
more efficient, with a storage size of 3. ntrans (≪q2). As a conse-
quence it accelerates further analyses performed on theMPPM (see
Appendix C). Moreover, time and space complexities in creating
T are not increasing functions of the number of traits. On the
contrary, the proportion of non-zero transitions will decrease with
every addition of a trait.

The vec-permutation approach (Roth and Caswell, 2016) is an
elegant MPPM building technique. It was created with sensitivity
analysis in mind, and for that reason prerequires a decom-
position of the population dynamics into sequential and inde-
pendent processes. Matrices modeling interdependent traits (for
instance complex memory models where transition value is the
product of functional relationships between several traits) may be
difficult (and sometimes impossible) to build that way. This can be
demonstrated by considering that vec-permutation technique can
implement only q (s1 + s2 + · · · + sn) transitions out of the q2
possible transitions of the MPPM. Computerwise, the associated
algorithm is much faster than the transition by transition tech-
nique, but the use of multiple loops on full (i.e., not sparse)
matrices makes its algorithmic complexity O

(
q2

)
. Moreover, its

implementability requires the provision of a potentially large num-
ber, q. (1/s1 + 1/s2 + · · · + 1/sn), of input matrices.

To summarize, most 2-trait MPPMs are simple enough to be
actually faster built transition-by-transition. The vec-permutation
approach produces flexible results where all basic parameters are
easily identifiable making it an ideal method for a small number
of independent traits. We feel that our vector-based approach is
better suited for models encompassing larger number of traits (see
Supplementary Material 5 where both methods are implemented
for the MPPM of the illustration).

2.1.3. Sensitivity analysis of vector-based MPPMs
To perform sensitivity analysis is ‘‘asking what would happen

to some dependent variable if one or more independent variables
were to change’’ (Caswell, 2001, page 206). In population dynam-
ics, the main dependent variable of interest is the population
ergodic growth rate λ, mostly used by conservation ecologists
and evolutionary demographers when studying organisms with
overlapping generations (see Giske et al., 1993;Murray, 1992; Nur,
1984 for discussions). In the case of MPPMs, the unicity of λ is
not guaranteed by the Perron–Frobenius theorem as MPPMs are
reducible unlike most one-trait matrices (Caswell, 2001, page 81).
We however show in Supplementary Material 1 how to reduce
the problem to sub-models with unique λ in case of multiple
maximum eigenvalues.

It is possible to assert the sensitivity of the ergodic growth rate
to several layers of variables. First to matrix entries, the direct
drivers of λ; this is the first level analysis. Second to parameters
impacting, directly or indirectly, these matrix entries; this is the
higher level sensitivity analysis.

First level sensitivity analysis of λ with respect to any entry of
M is not more complicated for an MPPM than for a more simple
matrix. The sensitivity matrix S is given by (Caswell, 1978):

S =
∂λ

∂M
= vw

′

. (1)
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However, in MPPMs, matrix entries aggregate several biolog-
ical functions (e.g., growth and survival, fertility and migration).
Therefore higher level sensitivity analysis is increasingly required
as the number of traits increases. The relevant biological function
parameters, along with factors driving potential functional rela-
tionships between trait values and transitions, will be stored in
vector p = (p1, p2, . . . , pk)

Vital rates vrv , the states toward which they are distributed
oiv,i, with probabilities opv,i, are then implemented as functions of
p. Consecutively, all transitions and matrices can also be written
as functions of p : tvi→j (p), T(p) ,M (p). Expressing M as a
function of p requires to apply the same construction steps as
for the numerical version of M above to formal/symbolic versions
of vectors vrv (p), oiv,i (p) and opv,i (p). Once M (p) is computed,
we can generate the parameter sensitivity matrix S, a q ×q ×k
multidimensionalmatrix, displaying the sensitivities of every non-
zero element ofM to every element of p, i.e., S (i, j, l) =

∂Mi,j
∂pl

. From
Eq. (1) we can then express the sensitivity of λ to any parameter pl:
∂λ

∂pl
=

∑
i,j

∂λ

∂Mi,j
.
∂Mi,j

∂pl
=

∑
i,j

Si,j.Si,j,l. (2)

(in matrix notation, for implementability purposes, this can be
written as ∂λ

∂pl
= 1

′

· (S ⊙ S (·, ·, l)) · 1 where 1 is a vector of 1s,
⊙ is the elementwise Hadamard product)

2.2. Trait level analysis

To perform trait level analysis is asking what would happen to
some dependent variable if the traits describing the population
were to change. In particular, to what extent the set of traits
t = (t1, t2, . . . , tn) chosen to generate MPPM M, impacts the
population dynamics (spectral properties, net reproductive rate,
generation time, etc.) and sensitivity of λ. It does so by comparing
properties of M to those of folded matrix Mfold

t\st , a MPPM modeling
a population with the same ergodic flows thanM but where only a
subset st of those traits is used (st ⊂ t); the ergodic flow from state
i to state j inmatrixM beingwi.Mj,i (i.e., the transition rateweighed
by the ergodic abundance). In order to perform trait level analysis,
we first need to study the existence, unicity and properties of such
folded matrices; a problem which reduces itself to understanding
the associated merging process for states of a graph.

2.2.1. Merging of states
Reducing the set of traits from t to st requires tomerge into one

new node all the nodes sharing the same set of values for traits
subset t\st (the complement of st in t). In a state transition directed
graph, each node is defined by the set of transitions from and to
all other nodes and toward itself. What should those be for each
new node derived from a merger, in order to preserve population
dynamics? The answer is that there is no absolute way of perfectly
merging states in a state transition directed multigraph such as
GM (the graph which transition matrix is M) as demonstrated
in Supplementary Material 2. There is a choice to be made with
regards to the properties wewant invariant under the operation of
merging.

This dilemma has been discussed at length by mathematicians
and economists under the expression of ‘‘Aggregation Problem in
Input–Output analysis’’ (Ara, 1959; Fisher, 1958; Leontief, 1986;
Morimoto, 1970; Simon and Ando, 1961) and first extended to the
field of multitrait population dynamics by Rogers (1969). In all
those studies, the issuewas solved in favor of short term dynamics,
by preserving flows at the following time-steps, with little to no
consideration for stable state. One way to solve this dilemma
from an asymptotical analysis of population dynamics viewpoint
is to preserve relative asymptotic (ergodic) flows and abundances

(relative to the sum of all flows/abundances) while merging states.
Simply put, when concerned with preserving flows in the (life-)
cycle, the aggregation of states of a population dynamics matrix
model will always lead to abundance-weighted averaging of tran-
sitions. Concerned with short term consistency, economists used
current abundances to weight transitions. Evolutionary ecologists
are however more concerned with the population long term be-
havior andwouldweight transitionswith ergodic abundances. This
merging process, we call Ergodic Flow Preserving (or EFP), was
first described by Enright et al. (1995), then formalized for age-
structured populations by Hooley (2000) and for stage-structured
organisms by Salguero-Gómez and Plotkin (2010). The resulting
principles of this EFPmerging are summarized in Fig. 1.

2.2.2. Folding traits of MPPM
The EFP merger process described above is the building block

of the trait folding process of M. We will now describe how to
formally generateMfold

t\st , which is MPPMM folded upon a subset of
its traits st by EFPmerging of all the states sharing the same values
for the traits in st. In what follows, we formalize this using matrix
notation.

We need to define two operators that will facilitate this opera-
tion. First an inverse morphism of the vec() operator vectorizing
a matrix into one column vector (Henderson and Searle, 1981),
vec−1

s (), defined by ∀A ∈ Ms(R), vec−1
s (vec (A)) = A. We

can then rewrite w as its s-dimensional matrix expression W =

vec−1
s (w). Second the operator permσ permuting the dimensions

of a multidimensional matrix as a function of the corresponding
permutation of traits: ∀A ∈ Ms(R), permσ(A)i1,i2..in = Aσ(i1,i2..in).
We can now project w onto one or more traits by regrouping the
traits to be collapsed via trait permutation σ and then summing
permσ (W) on the relevant subset of its dimensions. Every permu-
tation of traits σ can be extended to its corresponding permutation
of states σ∗:

σ∗ (1, . . . , q) = vec
(
permσ

(
vec−1

s (1, . . . , q)
))

.

With these tools, it is relatively easy to navigate through traits,
project onto one or several of them and change the way they
are ranked, in both population vectors (ergodic abundance, re-
productive value, etc.) and multitrait projection matrices. They
will enable us to fold M over the first m of its n-sized vector of
traits (m < n), that is, to obtain a new matrix, Mfold

t\st , projecting
the population now ‘‘only’’ categorized by the (n − m) remaining
traits of t \ st. In Mfold

t\st , all states sharing identical values for the
m traits to be folded upon have been EFP merged. If the traits to
be folded upon are not in the proper positions, we first need to
generate a permutation-similar version of M where those m traits
occupy the first m positions in t. Then we contract and sum over,
in w, all dimensions to be folded upon in order to generate Wfold

t\st ,
a (n−m)-dimensional matrix representing the ergodic abundance
vector over the (n − m) remaining traits:

Wfold
t\sti2,i3,...,in−m+1

=

∑
i1

[
vec−1

(
∏m

i=1|ti|,|tm+1|, ...,|tn|)
(w)

]
i1,i2,...,in−m+1

. (3)

With Wfold
t\st we can generate the relative ergodic abundances

weights that have to be allocated to Mi,j, before summing all
elements sharing the same trait values for (tk+1, . . . , tn) in or-
der to obtain Mfold

t\st according to the EFP merging process de-
scribed in Fig. 1. Those weights take the form of matrix Wght =[
∩

qw ⊘

[
∩

∏m
i=1|ti|vec

(
Wfold

t\st
)′
]′

]
where ⊘ is the Hadamard,

i.e., entrywise division and ∩ the symbol for row concatenation.
Wght has the same size than M. Let us now denote PBF the
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Fig. 1. EFP (Ergodic Flow Preserving) merging process illustrated by a generic six states system (A) where states 1 and 2 are merged into state g (B). Computing the new
transitions inferred by the EFPmerger of a group of states requires: (1) To perform a spectral analysis of the initial projectionmatrix of the entire graph of all transitions thus
obtaining w (here w = [w1, w2, . . . , w6]) associated with ergodic growth rate λ. (2) To sum incoming flows: edges formerly pointing towards a member of the group, now
point to the group with identical transition value. Transitions from same state are summed. (3) To sum the ergodic-abundance-weighted outgoing flows: each edge leaving
a member of the group will be replaced by a similar edge coming from the group but where the transition is scaled down by the relative ergodic-abundance of the former
node to the abundance of the group, so that the asymptotic flow of individuals is preserved. Then, transitions towards the same state are summed. (4) To sum transitions
internal to the group both ways and (5) To leave all transitions between states outside of the group unchanged.

Block-Folding ‘‘permutation’’ matrix, summing all elements shar-
ing the same trait values for t \ st = (tm+1, . . . , tn), i.e., PBF

=(
I∏n

i=m+1|ti| ⊗ 1
′∏m

i=1|ti|

)
where ⊗ is the Kronecker product, In the

size n identity matrix product and 1n the size n column vector of
1s. Then the folded matrix can be written as follows:

Mfold
t\st = PBF .(M ⊙ Wght).P′BF . (4)

2.2.3. Implications of folding
This folding process preserves by construction the rela-

tive ergodic-abundances-weighted transitions. Preserving ergodic
flows, it also preserves ergodic growth rate λ and relative abun-
dance vectorw. This is however not the case for other demographic
measures that may differ between MPPM M and folded matrices
Mfold

t\st as for instance transient flows, net reproductive rate, gen-
eration time, life expectancy and most importantly reproductive
values. Comparing thesematrices outputs forM andMfold

t\st provides
crucial information on the role traits structure s plays on popula-
tion dynamics.

We show in Supplementary Material 3 that the left eigenvector
v is generally not preserved: the EFP grouping of several states
preserves the relative reproductive values of all states only if
contributions from all states (or future states) are equally broken
down with regards to the soon-to-be-grouped states (all incoming
flows to the future group coming from a single (future) state being
a particular case). The non-conservation of reproductive value v,
‘‘the present value of the future offspring ’’ (Fisher, 1930), through
EFPmerging may at first appear rather surprising, as ergodic flows
downstream of a state are preserved. However merging states

implies simplifications i.e., loss of information, and by forcing
ergodic flows and abundances to be constant, one allows relative
reproductive value to vary.

In particular cases stated above and in Supplementary Material
3, some EFP foldings will preserve both w and v; we shall call
them perfect foldings. In the general case though, v will vary and
this has fundamental implications: many important demographic
measures depending on v will vary too, and most importantly the
sensitivity matrix S =

∂λ
∂M = wv′

. This constitutes the core of
the trait level analysis. A foldedmatrixMfold

t\st models the exact same
population thanM, but, without the presence of some traits, it may
show different sensitivities. The interpretation of these differences
may provide crucial information on the importance of the trait(s)
folded upon for population dynamics and life-history evolution;
and therefore on the potential cost of simplifying the trait structure
of the life-cycle.

Some of the folded matrices resulting from such EFP folding
along all-but-one traits will be of a more common use, especially
at the beginning of a trait level analysis: the matrix folded over all
traits but age Mfold

age (or stage Mfold
stage) is one of them, and may be

called the Reference Leslie (or Lefkovitch) Matrix.

3. Illustration

We illustrate this methodology with the analysis of a one-sex
3-trait population projection matrix incorporating age, parity
(taken as the number of successful pregnancies) and fecundity
classes (invariant during life, from sterile to very fertile). This
is a memory model (where past-reproduction influences current
reproduction) in a context of heterogeneity in female fecundity.
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Table 3
Traits and states for the MPPM (multitrait population projection matrix) of the Illustration section incorporating age, parity and fecundity classes.

t1 = age t2 = parity t3 = fecundity class Space of traits combinations Space of states

Bounds [1,99] [0,11] [1,10] no ordering [1, 11880]
Number of elements 99 12 10 q = 99 × 12 × 10 = 11880 q = 11880

More precisely, the model is designed to understand the evolu-
tionary demographic implications of a negative effect of parity
on fertility. The model is parameterized in the case of a human
hunter-gatherer population (see Supplementary Material 4) and
Matlab code to fully implement the following steps can be found
in Supplementary Material 5.

3.1. Vector-based building of the age–parity–heterogeneity MPPM

3.1.1. Inputs
The model uses a time-step of one year. It incorporates 99 age

classes, 12 parity categories and 10 fecundity classes; i.e., n = 3,
t = (t1, t2, t3) = (age, par, fec), s = (99, 12, 10) and q =

99 × 12 × 10 = 11,880. The state-trait equivalence is given in
(Table 3). Parametrization (Supplementary Material 4) provides us
with the following vectors: surv the age-specific survival; fert
the maximum age-specific fertility (thus for parity 0 and fecundity
class 10); parityeffect the multiplying effect of parity on fertility
per parity class; classdistrib the distribution of fecundity classes
at birth; classeffect the multiplying effect of fecundity class on
fertility per fecundity class. These parameter vectors are concate-
nated in p = [surv fert parityeffect classeffect classdistrib] of
size k = 229 (see Table in Supplementary Material 6).

Let us now implement both vrv vectors; i.e., for each state
i = states (age, par, fec) its fertility rate vrfertilityi and its survival
rate vrsurvivali . In this illustration, survival only depends on age and
vector surv can then be replicated across parities and fecundity
classes to generate vrsurvival. The fertility of an individual depends
on the three traits such that: vrfertilityi = fertage × parityeffectpar ×

classeffectfec .
We can now generate for each state i the vectors oiv,i and opv,i

of all potential output states and associated probability distribu-
tion, from i through vital process v over one time-step. Through
survival, age increases by 1, parity increases by 1 or remains the
same depending on reproductive success, and fecundity class is
invariant. Thus the indices of states produced by input state i are
oisurvival,i = (states(age + 1, par, fec), states(age + 1, par, fec)),

with distribution probability opsurvival,i
=

(
1 − vrfertilityi , vrfertilityi

)
.

Through fertility age becomes 1, parity becomes 0 and fecun-
dity class is distributed according to classdistrib; i.e., oifertility,i =

((1, 0, 1) , (1, 0, 2) , . . . , (1, 0, 10)) and opfertility,i
= classdistrib.

3.1.2. Projection matrix
Vectors vrvoiv,i and opv,i allow us to generate T, the matrix

of all transition triplets
(
i, j, tvi→j

)
and sparse definition of M (see

Appendix B). In practice, we first generate T1, the matrix of all
transition triplets through survival when parity remains constant,
T2, thematrix of all transition triplets through survivalwhen parity
increases by 1 (together T1 and T2 form TV the matrix of survival
transitions) and TF is the matrix of all transition triplets through
fertility. We can then deduceM from T (see Appendix B).

3.1.3. Matrix properties
The number of implemented transitions (i.e., the number of

rows of matrix T) is ntrans = 141,340, to be compared with the
total number of entries inM, q2 = 11, 8802

≈ 141.106. The density
of M is then ntrans/q2 ≈ 0.001 and M is definitely sparse. The
gain in calculation time and storage space compared with the vec-
permutation approach (Roth and Caswell, 2016) can be ascertained

using the code allowing the construction ofMwithboth techniques
(Supplementary Material 5).

Matrix M contains numerous rows of zeroes, causing M to
be reducible. The largest two eigenvalues of M are different
(1.01, 0.93 − 0.18i). Matrix M has therefore a unique and pos-
itive maximum real eigenvalue λ = 1.01 with non-negative
right and left eigenvectors w and v which zeroes are only ap-
proximated by eigenvalue convergence algorithms and thus have
to be nullified (see Supplementary Material 7). It must also be
stressed that zeroes of v correspond to states having no impact
on ergodic growth: menopaused and sterile women, and women
having reachedmaximumparity. The eigentriad (λ,w, v) describes
therefore the unique stable state towards which the population
will tend asymptotically.

Having segregated fertility transitions (TF) and survival tran-
sitions (TV ), we can construct the matrix of expected lifetime
production R (see Supplementary Material 8). A fast extraction of
R’s largest eigenvalue gives us R0 = 1.35 daughters and generation
time 26,6 years.

3.1.4. Stable-state analysis
The three-dimensional expression W of vector w provides the

ergodic abundances by age, parity and fecundity class. The distri-
bution of births by maternal classes of age, parity and fecundity
is given by the product of state-wise abundances and fertility
rates (written in matrix notation: W ⊙ vec−1

s
(
vrfertility

)
). These

distributions are depicted in absolute values in Supplementary
Material 9 (A and B) and in relative contribution to each age class
in Fig. 2A and 2B.

Comparing Fig. 2A andB allows visualizing the combined effects
of the fertility–parity trade-off and fecundity heterogeneity. First,
due to heterogeneity in fecundity, high fecundity classes play a
disproportionate role in annual births by contrast with their low
abundances (blue areas in B relative to A). Second, due to fertility–
parity trade-off, the number of births decreaseswith parity: in each
fecundity class, for high parities, the proportion of births by age-
class in Fig. 2B is lower than the proportion of women by age-class
in Fig. 2A (i.e., dark-shaded areas take upmore space, light-shaded
take up less space, in Fig. 2A than in Fig. 2B). Finally, due to the
combination of both phenomena, the proportion of births from
high-fecunditywomen decreaseswith age as they reachmaximum
parity earlier in life (decrease of blue area with age in Fig. 2B).

3.1.5. Sensitivity to parameters
Instead of using the usual matrix of sensitivities of λ to all

entries of M from Eq. (1), we use the matrix S of sensitivities
to transitions listed in T as it contains only biologically relevant
transitions. Its sparse triplet definition can be built from T directly,
where the 1st and 2nd columns of transitions input and output are
the same and where the 3rd column (of transition rates in T) is
replaced by the sensitivity of the transition rates calculated from
w and v (i.e., in matrix notation, the sparse triplet definition of S is
then

[
T.,1 T.,2 wT.,1 ⊙ vT.,2

]
).

To study the influence of a particular set of parameters p̂ on
our model, we build a symbolic version of p̂, denoted sp, where
values are replaced by unknown variables using the relevant sym-
bolic package of the computation programme used. Performing
the three-step building method described in the methodology, we
generate the formal matrix of all non-zero triplets of transitions
sT as function of sp (the square matrix counterpart of sT, sM, is
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Fig. 2. Stable state distributions for each age class, grouped by parity and fecundity classes, of (A) women abundances and (B) annual births. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

too costly to build). We can now generate the multidimensional
matrix of sensitivities of theMPPM to parameters, S =

(
∂sM
∂sp

)
|sp=p̂

.

Then, we draw from Eq. (2) the sensitivity and elasticity to the lth
parameter; the elasticity ex of λ to parameter x being defined as
ex =

x
λ
. ∂λ
∂x .

3.1.6. Sensitivity to fertility rates
The sensitivity of λ to other intermediary parameters like

vrfertility can be computed in two ways: either by adding the el-
ements of vrfertility to p or, more rapidly, by performing the 2nd
level analysis directly. Indeed, in this illustration, vrfertilityi ap-
pears only a few times in M, either in fertility transitions mul-
tiplied by classeffect, or in survival transitions multiplied either
by surv or its complement to 1. Identifying and isolating these
transitions yields all elements of ∂M

∂vrfertility and thereby eM =(
vrfertilityk

λ

∑
i,j

(
∂λ

∂Mi,j
×

∂Mi,j

∂vrfertilityk

))
k=1,2..q

, the elasticity of λ to the

fertility rate of each state in M. Fig. 3 displays these elasticities
summed over various parity and fecundity classes. Indeed, elastic-
ities are relevant sensitivity measures here since all fertilities are
proportional to fertage (with other factors structurally fixed) and
thus they can be summed (the sum representing the relative effect
on λ of the relative parallel change in fertilities).

Second level sensitivity analyses, alone, do not provide informa-
tion on the cross-mechanisms between parity–fertility trade-off
and fecundity heterogeneity. In order to understand these mecha-
nisms, we need to perform a trait level analysis, i.e., to fold M over
its traits and compare population dynamics inferred by resulting
models.

3.2. Trait level analysis

We can sum W over its dimensions (Eq. (3)) to get expressions
of w on only a subset of the traits: Wfold

age (the ergodic abundance
vector of the population characterized only by age), Wfold

age,fec (the
ergodic abundance vector of the population characterized by age
and fecundity class),Wfold

par,fec,W
fold
par , ...

We replicate Eqs. (3) and (4), in order to build a fold function
(see code in Supplementary Material 5) that folds M over any
subset of its traits, providing Mfold

age ,Mfold
age,fec,M

fold
fec ,Mfold

age,par,. . . . For
instance, the Reference Leslie Matrix Mfold

age is M folded on all traits
but age. Being a Leslie matrix, fertilities arise only on the first row
( i.e., in matrix notation: fertMfold

age
= Mfold

age (1, ∗)). An eigenanalysis

Fig. 3. Elasticity of the asymptotic growth rate λ to the fertility rate at each age ac-
cording to parity and heterogeneity classes, for matrixM.M is the matrix modeling
the population characterized by traits age, parity and fecundity heterogeneity.

ofMfold
age , provides vMfold

age
, the right eigenvector associated with λ (M

andMfold
age have, by construction, the same growth rate). Thematrix

of sensitivity of λ to Mfold
age is then given by: SMfold

age
= wMfold

age
.vMfold′

age

(which can be implemented as vec
(
Wfold

age

)
.vMfold′

age
). Finally, from

SMfold
age

we can generate the elasticity of λ to fertMfold
age

: eMfold
age

(imple-

mented by: eMfold
age

=

(
fertMfold

age
/λ

)
⊙ SMfold

age
(1, ∗)).

As we did above for M, we can extract implicit fertilities from
Mfold

age, par andMfold
age, fec as well as their associated elasticities eMfold

age, fec
and eMfold

age,par
. As for M, elasticities can be summed over one or

several traits, and compared, as we do for eMfold
age, fec

, eMfold
age, par

and eM,
summed on age so they can be compared with one another and
with eMfold

age
(Fig. 4).

Two matrices where one is derived from the other by perfect
EFPmerger will have equal sum of elasticities to fertilities. Indeed,
as perfect EFP mergers preserve right and left eigenvectors, they
equally preserve elasticities. In other cases, sums will differ.

Here, it can be shown that the folding over fecundity from
Mfold

age,fec to Mfold
age is a perfect EFP folding. Indeed, the only ‘‘new’’

state with several direct ancestors is age = 1 and all its former
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Fig. 4. Elasticity, summed by age, of the asymptotic growth rate λ to the fertility
rates for matrices M, Mfold

age,par , M
fold
age,fec and Mfold

age . M is the matrix modeling the
population characterized by traits age, parity and fecundity heterogeneity.Mfold

age,par

is M folded over fecundity. Mfold
age,par is M folded over parity. Mfold

age is M folded over
parity and fecundity. See Eq. (4) for folding formalization.

stateswere contributedproportionally along classdistrib (see Sup-
plementary Material 3). Similar analyses show that the other dis-
cussed EFP foldings are not perfect. Consequently, forM andMfold

age,par
the sum of elasticities to fertilities and survivals will differ from 1,
its value for the Reference Leslie MatrixMfold

age where fertilities and
survivals are precisely the entries of the matrix, and thus also for
Mfold

age,fec.
This simple trait level analysis yields two important results.

First the sum on age of elements of eM is below that of eMfold
age

(Fig. 4). This is due to the fact thatM, contrary toMfold
age has a trade-

off implemented between parity and fertility: in M, a successful
fertility event for an individual decreases its expected fertility rates
for all future fertility events whereas these events are independent
in Mfold

age . Consequently, this trade-off minimizes the influence of
each specific annual fertility rate to the benefit of the lifetime
offspring production and thus reduces the variance of the repro-
ductive success. In a population with a parity–fertility trade-off,
not implementing the relevant trait (parity) and trade-off leads
to an overvaluation of the impact of annual fertility rates on the
population growth rate and of the variance of the reproductive
success.

Second, for each age class
∑

pareMfold
age,par

is larger than both∑
par,feceM and eMfold

age
(on Fig. 4). In symmetry with the preceding

result, this may signal positive correlation between parity and
fertility inferred byMfold

age,par. This correlation can indeedbedetected
in the fertility rates for all states, fertMfold

age,par
, inferred by Mfold

age,par

(Fig. 5): In Mfold
age,par, where the unobserved heterogeneity class trait

is folded upon, fertility does increase with parity for low parities,
then plateaus, and finally, for high parities, decreases with parity.
Since lowparities aremore abundant in the population, on average,
Mfold

age,par exhibits a positive correlation between fertility and parity.
Thus, in a heterogeneous populationwith parity–fertility trade-off,
not modeling individual heterogeneity leads to misunderstanding
the direction of the parity–fertility correlation. Implementing het-
erogeneity – even in the simplest manner – would prevent this
misinterpretation.

4. Discussion

In this article, we propose a novel methodology to build multi-
trait population projectionmatrices (MPPMs) in a computationally

Fig. 5. Fertility rates inferred from the matrix folded upon fecundity, Mfold
age,par , for

some age and parity classes.

efficient manner. We then discuss the implications of the general
reducibility of MPPMs. Thenwe broaden stable-state demographic
measures calculations and perturbation analysis tools (Caswell,
2012; Willekens, 1977) for such matrices. Finally, and most im-
portantly, we propose a new tool, the trait level analysis, which
investigates the impact of the trait structure (the number of traits
and their characteristics) on population dynamics via the folding
of MPPMs over any subset of their traits. As an illustration, we
apply this methodology to the construction and analysis of a one-
sex 3-traits (age, parity and fecundity class) model designed to
study the evolutionary implications of both cost of reproduction
and heterogeneity in fecundity.

4.1. Construction of MPPM and stable state theory tools

The methodology provides a step-by-step technique to gener-
ate any multitrait projection population matrix in a computation-
ally inexpensive manner. This technique applies to any possible
multitrait model, extending its reach far beyond the original mul-
tiregional models (Le Bras, 1970; Rogers, 1980, 1969, 1966). As
such it will be useful to a wide range of researchers interested
in population dynamics and evolution of Life History. The three
step building method involves the computation of vital rates for
all states, output states and output distributions for all states.
Obviously this building technique is only a recommendation and
the analysis tools provided in the second part of the methodology
apply to any MPPM, whether built according to this method or
not. However we think this method has the significant advantages,
compared to the basic transition-by-transition approach and the
vec-permutation method developed by Caswell and colleagues
(Caswell, 2014; Caswell and Salguero-Gómez, 2013; Caswell and
Shyu, 2012; Hunter and Caswell, 2005; Roth and Caswell, 2016)
of (1) providing a framework applicable to all kind of traits,
(2) avoiding loops and hence optimizing calculation time, and
(3) only generating themeaningful transitions and thusmaking full
use of the inherent sparsity of multitrait matrices.

We have implemented the computations needed for the illus-
tration using Matlab (Matlab 2012a, The MathWorks Inc., Natick,
MA, United States), a commercial software package. The mathe-
matical functions presented could however be coded by other soft-
wares, as long as they handle sparse matrices, multidimensional
matrices and formal/symbolic matrices.

4.2. Eigen- and graph-properties of MPPMs

MPPMs, as structurally complex as they may be, preserve
the one-trait matrices’ ability to quickly generate growth rate,
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stable-state abundances and reproductive values, as well as
all other demographic functions that classical transient and
stable-state theory provides. However, contrary to most one-trait
projection matrices, they are not reducible. This has many impli-
cations with regards to the asymptotic dynamics of the population
modeled by an MPPM. In Supplementary Material 1, we use the
Frobenius normal form a matrix to show that the graph associated
with an MPPM may contain several components each generating
its own growth rate. Studies of the spectrum and normal form of
MPPMs are required to improve our understanding of the relative
importance of those components on transient and ergodic dynam-
ics (e.g., the study from Li and Schreiber, 2006 of the graph prop-
erties of age-and-location MPPMs). Such interdisciplinary works
would involve theoretical ecologists, graph theorists and linear
algebraists.Wedenote split-population, theseMPPMswhich graph
contains at least two strongly connected components, each with
real positive maximal eigenvalues, and that are not bilaterally
connected with one another. These special cases of MPPMs, in
which, for some initial conditions, the asymptotical growth rate
will be lower than the maximal eigenvalue, would also deserve in-
depth studies.

4.3. Evolutionary demography and trait level analysis

In this article, we extend the classical calculation tools for
perturbation analysis tomultitrait matrices. For instance, wemake
it possible to generate at once, all lower-level sensitivities of the
population’s growth rate, through the construction of the mul-
tidimensional sensitivity matrix S. Evolutionary ecologists and
demographers will also benefit from the trait level analysis we
devised, i.e., the ability to compare matrices (and the sensitivities
of their growth rates) derived from various foldings of an initial
MPPM over any number of its traits.

This folding process is the application of the Ergodic Flow
Preserving (EFP) merging process to all states of an MPPM that
share the same value for the trait to be folded upon. Increasing
the number of traits in a model allows zooming in the dynamics
of a population and increasing the granularity of the analyses and
the forecasts. This will help refining the understanding of the trait-
related processes driving the evolution of the studied population.
Decreasing the number of traits by folding an MPPM allows zoom-
ing out and synthesizing the data: it will allow the ecologist to
understand how each specific trait and the relationships amongst
traits impact the dynamics and fitness of the population and its
multitrait cohorts.

The EFP merging process, one in many ways of merging two
states of a state transition graph, has the characteristic of pre-
serving ergodic abundances, but at the expense of reproductive
values, except in the particular cases of perfect EFP folding, where
both relative ergodic abundances and reproductive values are
preserved. This loss of information has far-reaching significance
on what adding or subtracting (i.e., folding on) a trait means. In
particular, this means that the sensitivities of fitness to parameters
will vary as a function of the trait structure for matrices however
modeling the sameergodic population. Consequently, the trait level
analysis has the potential to investigate the effect of trait structure
on the force of selection.

In the case of the age–parity–heterogeneity model developed
in the Illustration section, the trait level analysis provides twomain
results. (i) In the case of the unfoldedMPPM incorporating fertility–
parity trade-off, the effect of natural selection on age-specific fertil-
ity is decreased compared to its Reference Leslie Matrix (an MPPM
folded over all traits but age). Indeed the trade-off favors overall
realized fertility over annual fertility and thus reduces the variance
of reproductive success and the sensitivity to each single yearly
fertility rate. (ii) Folding the 3-trait MPPM over heterogeneity in-
creases the impact of natural selection on fertility even beyond

the level of the Reference Leslie Matrix. We have shown that it
is related to the fact that the age–parity model resulting from
the full-trait MPPM folded over heterogeneity, exhibits a positive
correlation between fertility and parity at low parities. In other
words, a heterogeneous population inwhich reproduction is costly
for fertility may however exhibit a positive correlation between
fertility and parity when heterogeneity is not modeled as a trait
in the MPPM. This is the evolutionary demography counterpart of
the seminal results of Van Noordwijk and de Jong (1986), proving
how large variance in heterogeneity (acquisition) can make the
manifestations of the costs of reproduction ‘‘invisible’’.

4.4. Further prospects for trait level analysis

Adding a trait to a model by extending or unfolding an MPPM
may generate a different second real maximal eigenvalue. In pop-
ulation dynamics terms, this means that the addition of traits
alters the damping ratio. There is potential in analyzing the impact
of trait structures on the transient dynamics of populations by
performing spectral analysis of the folded and unfolded MPPMs.
For instance, the possible (de)stabilizing properties of specific
traits, group of traits and trait patterns in periodic (extending Tul-
japurkar, 1985), stochastic (extending, among others, Tuljapurkar,
1986a, 1986b, Tuljapurkar andOrzack, 1980) or density-dependent
environments (extending Caswell, 2008; Caswell et al., 2004) could
be investigated via trait level analysis.

Transient analysis of populations modeled by MPPMs could
make use of tools developed by Caswell (2007) to under-
stand whether the main traits shaping the population structure
make similarly important contribution to short term dynamics.
Economists havedeveloped a transient-dynamicsmerging analysis
theory (Fisher, 1969, 1958; Simon and Ando, 1961). It was later
partly used in a study by Rogers (1969) of perfect aggregation,
when merging implies no loss of information, i.e., special cases
of quasi identical states (see Supplementary Material 2). It would
be interesting to extend the measuring of transient merging effi-
ciency, as done for example with the linear aggregation coefficient
introduced by Ijiri (1968), towards EFP merging. In particular, trait
level analysis may be useful to study the effect on the distance
between initial and stable-state population distributions and on
‘population inertia’ of adding or hiding one of several traits; thus
allowing to better understand the varying roles of certain traits on
‘real word’ dynamics (see a review of transient analyses tools by
Stott et al., 2011).

Generation time and net reproductive rate can be produced on
any subset of the space of traits, and will be particularly meaning-
ful with the Reference Leslie (or Lefkovitch) Matrix. The impact
of multiple traits on the calculation of generation time and net
reproductive rates for the MPPM and its various folded versions
could be studied, extending the work by Steiner et al. (2014).

We have proved that the general merging of states implies
a loss of information and demonstrated why a merging process
preserving ergodic flows and abundances made sense from an
evolutionary demography perspective. However alternative fold-
ing techniques should be considered. In a recent article published
in this journal, Bienvenu et al. (2017) draw on earlier work on
genealogical Markov chains associated with matrix population
models (Bienvenu and Legendre, 2015; Demetrius, 1975, 1974;
Tuljapurkar, 1993, 1982) in order to describe an alternative state-
merging process. This process, they call ‘‘genealogical collapsing’’,
has the property to preserve ergodic growth rate, abundances and
reproductive values, but at the expense of ergodic flows. It would
thus preserve sensitivities, and could constitute, as such, a ‘neutral’
comparative tool when extended to entire traits. It would also be
worth investigating a folding process, preserving ergodic flows,
growth and reproductive values at the cost of abundances. The
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Table A.1
Traits and states for generic MPPM (multitrait population projection matrix).

trait t1 . . . trait tn Space of traits combinations Space of states

Bounds [min1,max1] . . . [minn,maxn] no ordering [1, q]
Number of elements |t1| = max1 − min1 + 1 . . . |tn| = maxn − minn + 1 q =

∏n
i=1|ti| q

potential value for multitrait analysis of such alternative merging
methods deserves investigation. If, in general, reproductive values
are not preserved by Ergodic Flow Preserving merging, it means
that the weight of transitions, from an evolutionary demography
viewpoint, is also not preserved both within and without a future
grouping. In other words, the contribution of a group of states
to fitness is not the sum of the contributions of its components.
This is for example demonstrated in our age–parity–heterogeneity
illustration where fertility rates by age class have dramatically
different influences on fitness when parity is implemented or
not. The implication is important: grouping states, adding traits,
removing traits whilst preserving ergodic flows and abundances,
will generally lead to changes in the influence of all states on the
ergodic growth rate. Future theoretical and empirical works are
needed to investigate these issues.
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Appendix A. Vectorization of the multidimensional space of
traits

Suppose a life-history described by a combination of n dis-
cretized traits t = (t1, t2, . . . , tn), where the value of trait i, ti can
be any positive integer between mini and maxi. Then the vector of
trait sizes (also called trait structure) is s = (max1 − min1 + 1,
max2 − min2 + 1, . . .,maxn − minn + 1). Each n-tuple of trait
values(t1, t2, . . . , tn), hereafter called an individual tuple, has to
be converted into a single state corresponding to a specific row
or column of M where Mi,j corresponds to the transition rate tj→i
from state j to state i. This requires the vectorization of the space of
tuples into the space of states. As those two spaces are isomorphic,
they have the same cardinality q (Table A.1). The isomorphism
converting any tuple (t1, t2, . . . , tn) into its state can be written as
a closed-form expression:

states (t1, t2, . . . , tn) = 1 +

n∑
i=1

(ti − mini)

i−1∏
j=0

(
maxj − minj + 1

)
,

wheremin0 = max0 = 1.
By contrast, the reverse isomorphism, tuples, identifying the n-

tuple of trait values corresponding to a given state i requires a loop
(of complexity O(n)).

As they are equivalent, in the article, we often refer to both
tuples and states, as states.

Appendix B. Relationships between transitions and vectors of
vital rates, output states indices and distribution

Each entry of an MPPM, Mk,l, can be decomposed into its sur-
vival and fertility parts: Mk,l = Msurvival

k,l + M fertility
k,l , or if written

in terms of graph transitions: Mk,l = tsurvivall→k + t fertilityl→k . Each of

these tvl→k can then be decomposed as a vital rate and a probability
distribution, or using the notations of the article:

∀i ∈ [1, q] , ∀v ∈ {fertility, survival} , ∀m ∈
[
1, |oiv,i

|
]
,

tv
i→oiv,i

m
= vrvi × opv,i

m .

For each state i, and each vital process v, we can then create
a matrix of transitions Tv,i, gathering all triplets of transitions(
i, j, tvi→j

)
between state i and every state j reachable from i. For

instance:

Tv,i
=

[
i1

| oiv,i| oiv,i vrvi op
v,i] ,

where 1
|oiv,i| is a vector of 1s of size, the size of vector oiv,i.

Concatenating the Tv,i matrices for all states and for both vital
rates gives us:

T =
[
∩iTfertility,i]

∩
[
∩iTsurvival,i] ,

where ∩ denotes the row concatenation of matrices.
M and T are equivalent, in the sense that they both contain the

same information: from Twe can generateM:

∀i, j ∈ [1, q]2 ∀l ∈ [1, ntrans] |
(
Tl,2, Tl,1

)
= (i, j)

Mi,j =

∑
l

tTl,1→Tl,2 =

∑
l

Tl,3.

Appendix C. Computational complexity of common operations
on sparse matrices

Two of the most important computations for large projection
matrices are accelerated when operated on a q × q sparse matrix.
Fast sparse matrix multiplication (see Yuster and Zwick, 2005) al-
lows to reduce complexity from O

(
q3

)
to O

(
q2

)
. Fast eigenanalysis

convergence processes, like the Arnoldi Iterationwhere finding the
k largest eigenvalues only costs O

(
k2q

)
(Arnoldi, 1951) massively

improve naïve eigenvalues algorithms on a non-sparse matrix
which have time complexity of O

(
q3

)
.

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2017.07.002.
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2.6 Appendices

2.6.1 Asymptotic properties of MPPMs
The asymptotic properties of the dynamics of a structured population are determined by the eigenanalysis
of the associated projection matrix. Is the maximum eigenvalue real and positive? Unique? Can the
associated right- and left-eigenvectors be made (strictly) positive? The Perron-Frobenius theorem (Frobe-
nius, 1912; Perron, 1907) asserts that a real square matrix with positive entries has a unique largest real
eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components.
Every non-negative matrix – and MPPMs belong to that category – is the limit of a series of positive
matrices. As such, it has an eigenvector with non-negative components which corresponding eigenvalue is
non-negative and greater than or equal, in absolute value, to all other eigenvalues (see Gantmacher, 1959).
However this property cannot establish its unicity.

To tackle the issue, Frobenius (1912) studied the special case of non-negative matrices that are irre-
ducible: B is irreducible iff B‘s associated graph GB is strongly connected, i.e. every vertex is reachable
from every other vertex. He proved that all maximum eigenvalues of B lie, in the complex plane, on the
circle of radius λ; with λ itself a simple (and thus unique) real maximum eigenvalue with both right and
left eigenvectors strictly positive (Frobenius, 1912).

Most MPPMs will however be reducible because the presence of several traits leads to the existence of
(dynamically) unreachable, (biologically) irrelevant combinations of those traits. Non-negative (reducible)
square matrix, M may be written in upper-triangular block form, known as the Frobenius normal form
of a reducible matrix (Varga, 1962):

P.M.P−1 =

[B1 ∗ ∗
0 . . . ∗
0 0 Bm

]
where P is a permutation matrix and each Bi is a square matrix that is either irreducible or null. The

spectrum of M is the union of the spectra of the Bi, which represent strongly connected components
of GM. Each non-zero Bi, being non-negative irreducible, will have a simple and unique real maximum
eigenvalue λi with (strictly) positive corresponding right- and left-eigenvectors wi and vi.

These (real) subcomponents maximum eigenvalues can be ordered, and in most cases, only one of
them, say λi , maximises all the others. This means λj = λ = maxi(λi) is unique, representing the fact
that GBj is the ergodic-growth-generating component of GM. The associated eigenvectors w and v will
then be non-negative: positive on subindices belonging to GBj and non-negative elsewhere. Zeroes of v –
to be found only outside of the subgraph GBj generating λ – are of particular importance. Indeed λ, w
and v (the ergodic eigentriad of M ) will be the asymptotic growth rate and associated eigenvectors of a
population projected by M iff the initial population vector x0 is such that v′.x0 6= 0 (i.e. at least one
non-zero state of x0 is part of the non-zero elements of v, or in other terms, x0 has a strictly positive
total reproductive value for eigentriad λ, w and v). If a realistic initial population x0 (i.e. where trait
values of individuals are not mutually exclusive from a (bio)logical perspective) does not pass this test, it
means that the population asymptotic growth rate λk < λ will be suboptimal, governed by a subgraph
GBk (with (k 6= j). In this case M and x0 model a population that cannot deterministically reach the
maximal potential growth rate that transitions allow. The MPPM analysis, described in the body of the
article, would then have to be performed on the submatrix of M containing Bk and all states reachable
from Bk.

If the largest two (or more) real eigenvalues of M are equal, it means that several components of GM
share the same ergodic growth rate, and have asymptotic importance for M . The MPPM analysis will then
have to be carried out on each of these components and their descendant states. In the article we consider
the general case where M ‘s largest and real eigenvalue λ is unique, and where the support of v contains our
initial population. In that case, a simple eigenanalysis provides all needed ergodic demographic measures
(ergodic growth rate and abundances, reproductive value, damping ratio...).

2.6.2 Demonstration of the general impossibility of perfectly merging 2
states in a directed state transition graph

In a directed state transition graph, e.g. the life-cycle of a population which dynamics is governed by a
projection matrix, there is no absolute way of perfectly merging 2 states. We call perfect, the merging of
several states into 1 that has no impact on the population dynamics. Let us consider a given population
characterized by a life cycle graph of n + 1(n ∈ N+∗) nodes (states), corresponding to the n + 1 rows
and columns of its associated state transition matrix A (representing the Rn+1 to Rn+1 linear mapping
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projecting the population over one time-step). In this case, there is, in general, no perfect way of merging
two states; i.e. there exist no linear mapping B , from Rn to Rn, that would allow to identically project
this population now distributed on n states.

Indeed, we demonstrate here that, in order for the perfect merging of specific states to be possible,
all contributions (transition rates) from the states to be merged have to be equal as well as net inner
transitions (i.e. the net contributions towards the future group from each element of the group). Apart
from this particular case, states cannot be perfectly merged:

Theorem:

A ∈Mn+1,n+1(R+), ∃ B ∈Mn,n(R+), ∀x ∈ R+n+1
B.x∼ = (A.x)∼

⇒
{

∀i ∈ [1, n− 1], Ai,n = Ai,n+1

An,n +An+1,n = An,n+1 +An+1,n+1

where x∼ = (x1, x2, . . . , xn−1, (xn + xn+1))

Proof :

B.x∼ =

(
∑n−1

j=1 B1,jxj) +B1,n(xn + xn+1)
(
∑n−1

j=1 Bi,jxj) +Bi,n(xn + xn+1)
(
∑n−1

j=1 Bn,jxj) +Bn,n(xn + xn+1)

 (A.x)∼ =


∑n+1

j=1 A1,jxj∑n+1
j=1 Ai,jxj∑n+1

j=1 (An,j +An+1,j)xj


B.x∼ = (A.x)∼ ⇒

{
∀i ∈ [1, n− 1], (

∑n−1
j=1 Bi,jxj) +Bi,n(xn + xn+1) =

∑n+1
j=1 Ai,jxj

(
∑n−1

j=1 Bn,jxj) +Bn,n(xn + xn+1) =
∑n+1

j=1 (An,j +An+1,j)xj

⇒


∀i ∈ [1, n− 1]∀j ∈ [1, n− 1]Bi,j = Ai,j
∀i ∈ [1, n− 1], Bi,n = Ai,n = Ai,n+1
∀j ∈ [1, n− 1], Bn,j = An,j +An+1,j
Bn,n = An,n +An+1,n = An,n+1 +An+1,n+1

⇒
{
∀i ∈ [1, n− 1], Ai,n = Ai,n+1
An,n +An+1,n = An,n+1 +An+1,n+1

2.6.3 Preservation of reproductive value in ergodic flows preserving
(EFP)-merging

Let A ∈ Mn,n(R+) be a population projection matrix, and n(t) an associated population vector. We
regroup the first s states of A (out of n) into 1 state called g. The post-merging projection matrix A∗ will
then have n− s+ 1 states labeled g, s+ 1, s+ 2, . . . , n.

The elements of A represent transition rates: Ai,j = tj→i is the transition rate between state j and
state i. The population flow at time t between state iand state j is ni(t).ti→j . We assume A has a unique
maximal real eigenvalue λ with associated right eigenvector w, scaled so

∑
i
wi = 1 and left eigenvectorv,

scaled so
∑

i
viwi = 1 Then, when time tends to infinity, the relative ergodic flow from state i to state j

(relative to all other flows occurring at that time step) is wi.ti→j
These relative ergodic flows are unchanged through EFP-merging. This means that every state j

outside the group retain the same wj and that, within the group, wg =
∑s

i=1 wi. Transitionwise, this
can be written as: tj→g =

∑s

i=1 tj→i and wg.tg→j =
∑s

i=1 wi.ti→j i.e. tg→j =
∑s

i=1
wi
wg
ti→j . Hence,

the EFP-merging of several states in a directed state transition graph consists in summing all transitions
towards the future group and to weight transitions out of the group by the group’s states relative ergodic
abundances. By definition EFP-merging preserves ergodic flows and by construction, as ergodic flows are
transitions-weighted ergodic abundances, and relative ergodic abundances.

Theorem : The EFP-merging of several states preserves the relative reproductive values of states iff
contributions from all states (or future states) are equally broken down with regards to the soon-to-be-
grouped states (all incoming flows towards the future group coming from a single (future) state being a
particular case). The group’s class reproductive value cg = wg.vg as (see Taylor et al., 2007; Taylor, 1990)
is then the sum of the class reproductive value of its constituents.

Proof :

Downstream from the future group, we have, by definition of a reproductive value, ∀i ≤ s, λ.vi =∑n

j=1 ti→j .vj . If reproductive values are preserved by grouping we have also λ.vg =
∑n

j=1 tg→j .vj . Then
λ.vg =

∑n

j=1 (
∑s

i=1 wi/wg.ti→j).vj i.e.λ.vg.wg =
∑s

i=1 wi.(
∑n

j=1 ti→j .vj) = λ.
∑s

i=1 wi.vi. Downstream
from the grouping, reproductive values preservation through an EFP -grouping implies that cg = vg.wg =∑s

i=1 wi.vi =
∑s

i=1 ci.
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Upstream from the grouping, we have∀i > s, λ.vi =
∑n

j=1 ti→j .vj =
∑s

j=1 ti→j .vj+
∑n

j=s+1 ti→j .vjand
after grouping, if reproductive values are preserved λ.vi =

∑
ti→j .vj = ti→g.vg +

∑n

j=s+1 ti→j .vj implying
: ti→g.vg =

∑s

j=1 ti→g.wj/wg.vj =
∑s

j=1 ti→j .vj and thus ∀i > s,
∑s

j=1 .wj/wg.vj =
∑s

j=1 ti→j/ti→g.vj .
Upstream from the grouping, reproductive values preservation through an EFP-merging implies then that
the submatrix of all transitions towards the future group has rank one and therefore that all states have
the same relative distribution of transitions towards the states of the future group.

In conclusion, when regrouping states so that ergodic flows and abundances are preserved through the
grouping process, relative reproductive values of states will be not be preserved , unless all states having
a transition to any member of the future group, allocate those contributions the same way (and then
vg =

∑s

j=1
wj
wg
.vj ).
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Chapter 3 – Evolutionary consequences of physiological costs

3.1 Introduction
In the first chapter of this thesis, we have developed a theoretical design of the costs of reproduction (see
section 1.2 page 11) in which we have analyzed the different components of these costs and devised a
method to model these in a unified framework (see 1.3.2 page 30). Among the most differentiating char-
acteristics within the costs of reproduction lies the utmost segregation between physiological and genetic
costs of reproduction. This dividing line is not specific to the costs of reproduction but can be found in
each and every trade-off and is pervasive in Life History Theory (Braendle et al., 2011).

Physiological trade-offs (sometimes called mechanistic) and genetic trade-offs (also known as evolu-
tionary) differ in many aspects. In the Stearnsian triptych – decomposing the architecture of all trade-offs
in a genotypic level, an intermediate structure and a phenotypic level (Stearns, 1989b)– genetic trade-offs
are part of the first component, whilst physiological ones lie in the second. Physiological trade-offs consist
in a mechanism at work within every individual at every time-step, whilst Genetic trade-offs, being “evo-
lutionary” work at the level of the population over the individuals’ entire life trajectories.

Chiefs among life history trade-offs are the costs of reproduction as their trade-off function directly
connects the primordial fitness components that are fertility and survival rates (Lessells, 1991). In the
framework of these costs, we have shown in Chapter 1 that the differences in mechanisms between phys-
iological and genetic costs of reproduction cause differences in behaviour and detectability. Individual
stochasticity, for instance, fuels detectability of physiological costs whilst concealing genetic costs. More
importantly, we have shown that these costs correspond to different time windows of effects : physiologi-
cal costs buffer environmental changes and individual variance at the level of the season up to the entire
lifetime of the organism. Genetic costs on their side – that is, the genetic variance in allocation strategy
or in general, in life-history fertility schedule as evolved by the organism – are a picture of the recent
evolutionary past and a buffer against environmental shifts over the near evolutionary future.

However, with all they differences in structure and effects, physiological and genetic trade-offs can,
theoretically, co-habit. We have exhibited this for costs of reproduction by the construction of physiologi-
cal costs of reproduction with genetic basis which contain both the intermediate structure of physiological
costs and the genotypic level of genetic costs. In senescence theory, the physiological/genetic costs divide
is mirrored exactly by the disposable soma/antagonistic pleiotropy theories split (see section 1.4.2 page
36). And here as well, senescence theoreticians have shown that both theories can intersect (Gavrilov and
Gavrilova, 2002) but not be equated (Kirkwood and Rose, 1991).

As of today, it is still unclear whether genetic and physiological trade-offs are different manifestations
of a single underlying mechanism, two sides of the same coins acting at different levels, or even completely
different, even antagonistic, phenomena. A comprehensive theory encompassing genetic and physiological
trade-offs and disentangling their respective role is necessary. As Braendle et al. (2011) put it “. . . it
remains to be determined to what extent presumptive trade-offs are conclusively due to actual competi-
tion for limited resources or caused by alternative mechanisms, such as hormonal signaling independent
of resource allocation [...]. The very limited knowledge on the mechanistic underpinnings of trade-offs
therefore represents a current key problem in our understanding of life history evolution".

In order to advance towards answers to this central question to life history, one needs to have at hand
both a suitable model framework and adapted analysis tools that could tackle the complexity of trade-offs.
As mentioned in chapter 1 section 1.3.1 page 29, physiological costs are naturally suited to a family of
models called Individual Based Models, whilst population projection matrices are the model of choice for
the study of genetic costs. The multitrait population projection matrix (MPPM) framework developed in
chapter 2 is such a method that allows to incorporate, via the addition of physiological and evolutionary
traits to a standard matrix model, all aspects of the costs mentioned so far. Most importantly, it comes
supplied together with the Trait Level Analysis tool that we have developed in Chapter 2, which - by
folding the matrix over any subset of its traits - provides critical information on the evolutionary weight
of the traits, and the trade-offs that connect them.

The most important strength of the MPPM building technology is that it allows to increase scrutiny
enough so as to be able to incorporate processes that are almost individual based, like physiological trade-
offs, whilst still retaining the ergodic analysis capabilities of all matrix models (see section 1.3.2 page 30).
It does so by adding dynamic heterogeneity traits (a family of traits we called D in chapter 1) , to the basic
life history traits B containing the characteristic best determining vital rates of the organism (like age,
stage, size, etc.). Such dynamic heterogeneity traits may be resource capitals (the Ratchet and Fluctuating
Capitals of chapter 1 section 1.2.1 for instance), gauges tracking the accumulation of the reproductive
efforts required to produce one independent offspring, or any other tracker of individual life trajectory
that is affected by the studied trade-off. By allowing the addition of D to B, MPPMs allow to implement

59



Chapter 3 – Evolutionary consequences of physiological costs

physiological trade-offs in an evolutionary model framework.

This framework can be enhanced by the addition of hidden heterogeneity traits - regrouped in family
G – like genotypes or any heritable trait that is “fixed-at-birth”. Such an addition allows, for instance, to
embed polymorphism in a gene that is antagonistically pleiotropic with respect to the fitness components
linked by the studied trade-off. In the case of costs of reproduction, such a feature enables to implement
variance in genes driving the allocation towards reproduction; i.e. to implement genetic costs. However,
many other polymorphisms can be considered, and in particular in gene conferring, contrary to genetic
trade-offs, fitness advantages to the bearers of certain alleles. Implementing a polymorphism in a gene
driving acquisition of resources would generate such a fitness gradient in the population.

The ability to add several traits (potentially many and with large distributions thanks to the use of
sparse matrices and vectorization methods (see chapter 2 (p.41))) in a matrix model does not, in itself,
provide very useful evolutionary information. It certainly allows segmentation of ergodic abundances and
a refined calculation of resilience (adding traits in a model reduces damping ratio; see discussion of chapter
2, sec.2.5, p.51), but it does not provide any information with respect to the evolutionary importance of
the different traits and trade-offs implemented. This feature is made possible by the Trait Level Analysis
described in sec.2.3.2 (p.47). By folding an MPPM along the traits implementing a physiological trade-
off, one can measure its evolutionary implications by comparing the asymptotically equivalent pre-folding
and post-folding matrices. By folding an MPPM along genotypic traits, hard to measure and thus rarely
incorporated in matrix models, one can quantify the variation in demographic response such an addition
entails. This therefore allows to quantify the price to pay, in terms of understanding the life-history of an
organism, when forsaking genetic trade-offs (and genotypic polymorphism in general).

In most evolutionary mathematical models trade-offs are generally not implemented. This is quite as-
tonishing considering that these are at the heart of life history theory. Deemed non-evolutionary since their
window of action limits itself to lifetime of individuals, physiological trade-offs are altogether absent from
evolutionary models. They are also mostly inexistent in evolutionary theories with a notable exception of
Kirkwood and Holliday (1979)’s Disposable Soma Theory of senescence. Genetic trade-offs, for their part
are not implemented in (as an input of) evolutionary models either (apart from non-generation overlap-
ping population genetics models). To the contrary, they are actually mostly derived from such matrices
via the Optimality Theory (see section 1.3.1 page 30): from the assumption that the populations modeled
are at ESS (i.e. in Lande (1982)’s equation 0 = G∇y), the genetic constrains between vital rates (in
G) stem directly from the selection gradient ∇y corresponding to the vector of growth rates sensitivities
∂λ

∂Mi,j
. This approach can highlight genetic trade-offs and their mechanisms, from empirical data, when

in long-term constant environments. It has however the drawback of defining the constraints as functions
of vital rates (the entries of a projection matrix). Vital rates are the primary drivers of demography with
other parameters affecting these deemed secondary. The dependency is reverse with respects to trade-offs.
Even if a trade-off relate specific traits, its effect on population dynamics will be implemented via the
effects of each of these traits on the vital rates. This makes the trade-off hard to read at the level of
the matrix. As a matter of fact, considering a population modeled by a q × q matrix is at ESS, such an
optimality analysis will generate q2 pairwise genetic constrains, many of which are suspected of being by-
products (of demographic and other genetic relationships) of little life-history and evolutionary significance.

Moreover and most importantly, the study of trade-offs, both physiological and genetic, is about en-
vironmental changes that may be buffered by the costs with different time scales and that invites genetic
variance in the population. Understanding the role of genetic costs, and in particular their cross-effects
with physiological costs, prompts us not to use a constant environment (ESS) optimality theory method
to analyze genetic trade-offs. They thus need to be incorporated as traits in the matrix.

In this chapter, we wish to model physiological costs of reproduction in an evolutionary framework, and
to be able to incorporate genetic costs as well. To do this, we start by relating the concepts of chapter 1, with
the method of chapter 2, in order to design, in an MPPM framework, a model implementing physiological
costs of reproduction. This model will actually be a family of models, that can incorporate varying life
history strategies. We show how to implement the cohabitation of such varying strategies in a population
with physiological costs, via a three trait age-parity-heterogeneity-MPPM. We then extend for such models,
the classical calculation methods for selection gradient and for demographic and environmental variances,
and the, not so classical, method to compute the variance of lifetime reproductive success. We then use
these methods and the Trait Level Analysis to compute the deterministic and stochastic effects of costs of
reproduction on (i) the shape of fertility and survival curves by age (ii) the fertility selection gradient (iii)
the variance in lifetime reproductive output (and, consequently, the effective size of the population) and
finally, (iv) the environmental variance and, in general, the stochastic growth rate.
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3.2 Model for physiological costs of reproduction with ge-
netic basis

The model we build in this chapter aims not to apply to any particular kind of organism, but should relate
to most (aspects of) costs of reproduction for most species. For simplicity, we reduce the traits embedded
in the model to one for each of the three families of traits (B,G and D) described in chapter 1 (sec.1.3.2,
p.30) and that are required to implement both physiological and genetic trade-offs:

In the basic family of traits that best implement life-history, B, age is the obvious choice. It is indeed
the only trait common to all matrix models (explicitly or implicitly with infinite distribution).

Via the hidden heterogeneity family of traits, G, we will allow polymorphism in life history strategy
in the population; more precisely polymorphism on the position on the Slow-Fast Continuum with some
genotypes with higher fertility and lower survival than others. Thus the different genotypes will mainly
lie along an iso-fitness line (see figure 1.2 page 21). It is however also possible to incorporate fitter (re-
spectively frailer) genotypes which have both higher (resp. lower) fertility and higher (resp. lower) survival.

Finally, in the dynamic heterogeneity family of traits, D, we will also consider one unique trait. For
simplicity, we do not consider storage facilities (i.e., stor = 0, in the context of chapter 1) and thus relate
our trait to the Ratchet capital. Whilst Fluctuating Capital is not implemented as a trait per se, the
(intra-periodic) effects of the environment on FC can still be embedded via the effects of the environment
e on vital rates. In that case, instead of one MPPM M modeling the population in a constant environment,
the model will consist in a family of matrices, each defined for a specific environment e : {Me}.

We shall further simplify the analysis by equating, in this Chapter, reproductive effort and fertility
(in the context of chapter 1 section 1.2.1 page 12, this means that res = δ0 which implies re = f from
eq.1.1 page 12). Since demographic variance is an important driver of costs of reproduction, which are
therefore proportional to the organism reproductive granularity (See chapter 1 section 1.2.1 page 18), we
shall consider that the organism can produce at maximum 1 offspring per period (thus at the quality end
of the quality quantity spectrum, i.e., in the framework of chapter 1, gr ≈ 1). And therefore, we shall
implement the Ratchet Capital by tracking the parity (number of offspring ever born) of individuals as the
D trait. It starts at 0 and is maximized by the length of the organism’s reproductive period. Therefore trait
parity corresponds to (the opposite of) a RC starting at the species’ evolved duration of the reproductive
period reduced by a realized reproductive effort (RE(t) in Chapter 1) of 1 at each successful fertility period.

The particular effect of the lineage, i.e. of the genotype, on RC is embedded by assigning different
values to the zero-parity fertility and survival rates for the different genotypes. In general, in order to
help disentangling the roles of genetic and physiological costs, we shall consider that the former, together
with the environment, only affect these zero-parity vital rates, whilst the latter consist in the mechanical
reduction of vital rates with parity, from the zero-parity vital rate, at birth, to 0, when parity is maximum
(at the reproductive period length). This physiological trade-off mechanism is thus the same for all indi-
viduals which will only differ in vital rates depending on their parity and their genotype (as a consequence,
in this simple model, an individual which does not reproduce does not senesce). Indeed, as highlighted in
chapter 1 section 1.2.1 page 16, we expect, for a given genotype, the capitals (i.e; parity here) to be the
main drivers of the allocation process. In line with this consideration, we shall mostly consider, in this
chapter, that age - albeit necessary as a basic trait to account for the "arrow of time" - has no direct effect
on allocation and therefore on vital rates. These then only depend on parity and heterogeneity.

3.2.1 The three traits of (age,parity,heterogeneity)-MPPM

Trait age models life-history

In our one-sex model (with a time-step we consider to be one year without any loss of generality) we use a
simple age structure with a maximum age of ω, an age at first reproduction of α and an age at last repro-
duction of β . As discussed before, we simplify our model by considering no storage capacity and therefore
primarily focus our study on RC physiological costs of reproduction (related to the allocation of resources
that cannot be acquired, like time), with the effect of the environment (on FC costs) possibly implemented
in the general environmentally dependent model {Me} model by the differences between environments e
of the vital rates in the various Me. We also focus on organisms with high reproductive granularity, that
can only produce a few offspring per breeding season, and simplify our model by considering an organism
that produces, in its reproductive years, at most one offspring. Therefore, in the model of this chapter,
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fertility and survival rates are between 0 and 1.

We will consider both the general case where fertility and survival rates at different ages a - fa and
sa - can vary. More often that not, however and as discussed above, we shall consider that age does not
directly drive vital rates (parity, genotypes and environment do), in which case the zero-parity vital rates
are simply denoted f and s.

In the latter case, for ω = β = 3 and α = 2, this simple age-structured model can be represented by

its Leslie matrix equivalent : L =

[0 f f
s 0 0
0 s 0

]
.

Trait parity models physiological costs of reproduction
In our model, we equate reproductive effort with the effort it takes to produce recruits; and thus the cumu-
lative reproductive effort is commensurable with parity, the number of offspring ever born to an individual.
Because, for a given environment, a given genotype, and a given parity, the fertility rate f corresponds to
the expectation of the random variable F "having one offspring" at that time-step, each reproductive age
now constitutes a fork in the life cycle where, in expectation, a portion f of individuals will move on to a
higher parity class, and 1− f will remain in the same parity class.

We implement the costs themselves, i.e. the negative effect on fitness of having allocated towards
reproductive efforts, by indexing vital rates on parity. To remain general, we consider that fertility and
survival rates are affected by the costs (see chap.I sec.1.2.1 p.18), thus modeling both survival and fertility
costs of reproduction as chategorized by Bell (1984). For simplicity, the indexation is linear and both vital
rates become 0 when parity has reached the length of the species’ reproductive period β − α+ 1.

In practice, this means that, for a given genotype for which the zero-parity fertility and survival
rates at age a are fa and sa the fertility and survival rates at parity p are fa,p = fa.(1 − p

(β−α+1) ) and
sa,p = sa.(1− p

(β−α+1) ).

In order to build an (age-parity)-MPPM (the MPPM construction for the 3-trait age-parity-heterogeneity)-
model is detailed in section 3.2.2), it is required to generate for each state, i.e. for each pair of trait values
(a, p) first the vital rates (the survival and fertility rates) which we just computed, fa,p and sa,p and second
the output states and their associated probabilities. In a genotypically uniform framework, one state will
be the output state of any fertility transition: (1, 0) (as every newborn is aged 1 and has parity 0). Survival
transitions, on the contrary, will have 2 output states: (a + 1, p + 1) with probability fa,p if the fertility
event is successful and (a + 1, p) with probability 1 − fa,p otherwise. The resulting MPPM, in the case
where fertility and survival are independent of age with zero-parity vital rates f and s , in an age structure
where ω = β = 3 and α = 2 (that is, for an age-structured population with 3 age classes and maturity at
2 years of age) is then the following matrix:

C =


0 f f 0 0 f/2
s 0 0 0 0 0
0 s.(1− f) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 s.f 0 0 0 0

 (3.1)

Trait heterogeneity models genetic costs of reproduction
In chapter 1, we introduced a setting where two genes act on the physiological costs of reproduction: 1/
an acquisition gene acting on the overall amount of resources the organism can gather and 2/ an alloca-
tion gene acting on the portion of acquired resources allocated to reproductive effort (see figure 1.2 page 21).

With regards to an MPPM with heterogeneity, such genes and their effects would be implemented
by different categories in the heterogeneity trait. In an (age, parity, heterogeneity)-MPPM where the
physiological costs of reproduction are mechanistically drawn from parity, these different genotypes are
materialized by differing zero-parity Leslie matrices for the varying heterogeneity values. This way, the
mechanism modeling the physiological costs is unchanged (the relationship between vital rates and their
related zero-parity rates) but the genotypes differ via differing zero-parity vital rates between different
genotypes (heterogeneity categories).

However, as we saw in chapter 1, section 1.2.2 (page 20) and as represented on figure 1.3, genetic costs
of reproduction can be decomposed into two non-overlapping categories. First physiological costs of repro-
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duction with genetic basis, where the genetic costs lie in the variance in the allocation and acquisition genes
discussed above (sec.1.2.2 p.20). Second genetic non-allocative costs for which the genetic costs consist in
variances in genes we call slow-fast and robustness with the same overall effects than respectively allocation
and acquisition but where the action does not require any physiological allocative process (sec.1.2.2 p.22).
Simply put, the allocation gene acts on the allocation towards fertility, which via the underlying allocative
physiological costs, implies a cost on survival, whereas the slow-fast gene has the same effects, but because
it has antagonistic effects on the fertility and survival "functions". In other words, the allocation gene is
a slow-fast gene if the existence of physiological costs of reproduction is ignored. Similarly the action of
the acquisition gene necessitates the presence of the acquisition-allocation mechanism of the physiological
costs, on which it acts. To the contrary, the robustness gene, just segregates genotypes by fitness, without
the necessity of referring to an acquisition process.

Allocation gene heterogeneity Genotypes that differ only for the allocation gene correspond to
lineages, of similar fitness, which have developed over time different strategies of allocation towards re-
productive efforts. This categorization is only valid in a context of physiological costs. At both ends of a
simplified spectrum would we find 1/genotypes allocating consistently more towards reproduction, at the
cost of long-term fitness and 2/genotypes preserving the capital, with low fertility, and thus improved late
fitness. Those genotypes may be be able to coexist in the population under the current environment as
they have equivalent fitness (see fig.1.2, p.21 of chapter 1). Here are the (age,parity)-MPPM of 2 such
genotypes for a 2-year organism; organism all1 has f = 0.9 and s = 0.3; organism all2 has f = 0, 7 and
s = 0.8:
Mall1 =

[
0.9 0.9 0 0.45
0.4 0 0 0
0 0 0 0

0.4 0 0 0

]
Mall2 =

[
0.7 0.7 0 0.35
0.24 0 0 0

0 0 0 0
0.56 0 0 0

]
, yielding λall1 = λall2 = 1.04.

Acquisition gene heterogeneity In our model (in which stor is zero and where the capital, tracked
by trait parity, corresponds to RC), both the environment and the capacity to acquire FC resource from
it are still primordial. Indeed the combination of both affects the reproductive effort via FC (see eq.1.3
p.13 and eq.1.5 p.16 of chapter 1) and the reproductive effort produced, in turn, affects RC, i.e. parity
in this model (eq.1.2 p.13 of chapter 1). In this context therefore (requiring the presence of physiological
costs) genotypes that differ only for the acquisition gene would differ in fitness : some lineages would just
have higher vital rates than others (fig 1.2 p. 21). Such genotypes would only be allowed to cohabit in
the current environment if it is encountered by the population over short periods of time interrupted by
environments in which the reaction norms have crossed (see discussion in chap. I sec.1.2.2 p.20) Here are
the (age,parity)-MPPM of 2 such genotypes; organism acq1 has f = 0.9 and s = 0.8; organism acq2 has
f = 0.7 and s = 0.3:

Macq1 =
[

0.9 0.9 0 0.45
0.08 0 0 0

0 0 0 0
0.72 0 0 0

]
Macq2 =

[
0.7 0.7 0 0.35
0.09 0 0 0

0 0 0 0
0.21 0 0 0

]
, yielding λacq1 = 1.22, λacq2 = 0.86.

Allocation gene heterogeneity is particular case of slow-fast gene Without the context
of physiological costs, genotypes that differ only for the slow-fast gene correspond to lineages, of similar
fitness, which have developed over time different strategies along the slow-fast continuum. At both ends of
a simplified spectrum would we find 1/genotypes with higher early fertility rates at the cost of later fitness
and 2/genotypes where early fertility is low but late fitness is improved. The hidden heterogeneity caused
by the genetic polymorphism of the allocation gene is due to antagonistic pleiotropy : different alleles of the
gene have opposing effects on early fertility and late fitness. Such a variance is however just a particular
case of genetic costs of reproduction (fig. 1.3 p.23). The pleiotropy does not actually need physiological
costs of reproduction to have effect, and we can conceive of non-allocative genetic costs of reproduction
such as variance in a slow-fast gene. To illustrate this, here are the models for genotypes corresponding
to allocation genotypes all1 and all2, but in a context with no physiological costs of reproduction they are
now called sf1 and sf2 and correspond to variance in the (non-allocative but pleiotropic) slow-fast gene.
They are thus structured by age only and obtained by folding over parity Mall1 and Mall2 over parity (see
section 3.2.2 and chapter 2 (p.41)) :

Msf1 =
[

0.9 0.495
0.3 0

]
Msf2 =

[
0.7 0.455
0.8 0

]
, yielding λsf1 = λsf2 = 1.04.

In this case, vital rates change with age as we want to show the relationship between physiological costs of
reproduction with genetic basis and genetic non-allocative costs. In general however it is totally possible
to consider slow-fast genotypes with vital rates independent from age, as we shall see later in this chapter.

Such a framework of (age-heterogeneity)-MPPMs, where different genotypes are iso-fitness and only
differ in life history strategies, provides an illustration of the theoretical conclusions from chapter 1 with
regards to detectability of genetic costs (section 1.2.3 p. 22). In a constant environment, for such a
population with two genotypes (represented by Msf1 and Msf2) the costs of reproduction would not be
observable at the level of the individual trajectories: there is no dynamic tracking trait on which individual
trajectories can diversify. However, at the level of the population (in a constant environment still and
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because there is no robustness polymorphism), negative correlations would emerge as sf1 individuals that
are the most fertile at age 1 are less likely to have offspring at age 2 than individuals sf2.

Acquisition gene heterogeneity is a particular case of robustness gene heterogeneity
The hidden heterogeneity caused by the genetic polymorphism of the acquisition gene, can, when forsaking
underlying physiological processes, be called variance in robustness or frailty. With variance in robustness,
some lineages are just overall fitter (in that environment) than others. To illustrate this, here are the
models for genotypes, stemming by folding over parity from acq1 and acq2, but in a context with no
physiological costs of reproduction, they arerobustness rob1 and rob2 :

Mrob1 =
[

0.9 0.495
0.8 0

]
Mrob2 =

[
0.7 0.455
0.3 0

]
yielding λrob1 = 1.22, λrob2 = 0.86.

In this short study, we display simple (age-parity)-models for variance in "orthogonal" genes we call allo-
cation and acquisition in the context of physiological costs of reproduction. We also display the asymptotic-
equivalent (age)-models for variance in "orthogonal" genes slow-fast and robustness in a context with no
physiological costs. By doing so, and thanks to universality of the physiological trade-off (the general
form of the equation is the same for all genotypes), gene allocation can be considered as a particular case
of slow-fast genes, and gene acquisition as a particular case of robustness gene, both conceptually and
computationally.

3.2.2 Construction and analysis of deterministic (age,parity,heterogeneity)-
MPPM

MPPM construction

In chapter 2 (p.41), we describe the steps to follow in order to build an MPPM. The current model is a
simple use of the tool as it implements 3 traits only. It is however important we replace this model in the
framework of MPPMs in order to later use the analysis tools of sensitivity analysis and trait level analysis.

Trait structure. To summarize and agglomerate the above sections, this model requires age as
a trait. This trait can take ω values. We implement physiological costs of reproduction, via a negative
linear relationship, at any given age, between vital rates and trait parity. Parity needs to be added as
a trait; it can take par = β − α + 1 values. We also want to be able to implement genetic costs of
reproduction i.e. a polymorphism for a gene that antagonistically affects early and late vital rates, and
variance in robustness , i.e. a polymorphism for a gene that affects all vital rates in parallel. These different
genotypes need to be added as a heterogeneity trait. In most cases, for simplicity, when accounting for
heterogeneity in the population, we will implement het = 2 genotypes that can implement either genetic
costs of reproduction (the 2 genotypes have similar fitness but different allocation strategies), robustness
heterogeneity (all rates, and thus fitness, higher for one genotype) or a combination of both. Using the
notations of chapter 2 (p.41)the n = 3 traits of our model are t = (age,parity, heterogeneity) and the trait
structure (the n-tuple of trait sizes) is s = (ω, par, het). The number of states is then q = ω.par.het and
the MPPM M will be of size q × q.

Building-block vectors. The vital rates for each state 0 ≤ i ≤ q, than can also be identified
by its equivalent triplet of states i ←→ (a, p, h), are stored in vectors vrv where v represents the vital
process: fertility or survival. When given, for each genotype h, the zero-parity vital rates i.e. ∀v ∈
{fertility, survival}, ∀ 1 ≤ h ≤ het, ∀ 1 ≤ a ≤ ω, vrv(a,0,h) we can establish the vectors of all vital rates :

vrv(a,p,h) = vrv(a,0,h).(1−
p

par
)

From there, we can proceed to implement vectors oivi and opvi representing the vector of all possible output
states and related distribution for vital process v from state i. In this model, via fertility, an individual in
state i↔ (a, p, h) will generate offspring of age 1 and parity 0, that will be of the same genotype that the
parent genotype if no mutation occurs. If mutation rate per generation is m, then

oifertilityi↔(a,p,h) =
[

(1,0,1)
(1,0,2)

]
, opfertilityi↔(a,p,1) = [ 1−m

m ] and opfertilityi↔(a,p,2) = [ m
1−m ] (3.2)

Via survival, an individual in state i ↔ (a, p, h) will survive as itself, one time-step older.Hidden hetero-
geneity h will be, by definition, unchanged, and parity p either increased by 1 or unchanged depending on
reproductive success. Thus: oisurvivali↔(a,p,h) =

[
(a+1,p,h)

(a+1,p+1,h)

]
. The expectations of realization of the random

fertility process being the fertility rates, we have

opsurvivali =
[

1−vrfertility
i

vrfertility
i

]
(3.3)
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The emergence of a vital process in the output states distributions {opv,opv}, a general consequence
of the implementation of physiological trade-offs via the addition of active (i.e. that affects vital rates)
dynamic heterogeneity traits like parity in our (age-parity-heterogeneity)-MPPM, increases the complexity
of computations as soon as one departs the simple deterministic framework (see section 3.3.2 for the
computation of variance of reproductive success in such a model). More importantly, it raises questions
with respect to the interpretation and analysis of folded matrices (see following section 3.2.2) that are
structured with such traits (see appendix 3.0.4 for discussion).

The matrix. Vectors vrv, opvi and oivi are the building blocks of any MPPM construction. From
these, we can construct T the matrix of all transition triplets, which is the sparse definition of our MPPM
M (see chapter 2 (p.41)). And thus, in M, we have a model projecting over time, a population, where
individuals are characterized but their age, parity and genotype, that implements physiological costs of re-
production in a context of heterogeneity, i.e. where genotypes characteristics of genetic cost of reproduction
and/or variance in robustness can cohabit.

Folding and Trait Level Analysis

The Trail Level Analysis evoked in chapter 1 and formalized in chapter 2 (p.41), is an MPPM tool, setting
an evolutionary-neutral framework, that allows to understand the evolutionary demographic importance
of traits and underlying trade-offs. It is performed by comparing properties of the MPPM build with
all traits, M, with folded versions of M. Folding an MPPM over a defined subset of its traits consists
in Ergodic-Flow-Preserving of the transitions of M, for states which share the same values for traits not
folded upon.
Matrix Ma,p = Mfold

age,parity for instance is M folded over heterogeneity. Matrix Ma,h = Mfold
age,heterogeneity

is M folded over parity and Ma = Mfold
age is M folded over both parity and heterogeneity. As age is its

only trait, Ma is a Leslie matrix we call the reference Leslie matrix.

By construction all these matrices share the same ergodic growth rate λ and abundances vector w,
the right eigen-vector of M associated with λ. Ergodic abundances are denoted wa,h, wa,p and wa when
regrouped on certain traits as right-eigenvector of matrices Ma,h,Ma,p and Ma.

When traits "disappear" by folding, so do the trade-offs linking these traits. In model Ma,h vital rates
only depend on age and heterogeneity. Parity has no effect any more, and thus physiological costs of
reproduction are not implemented there. However Ma,h has the same ergodic properties as M, and thus
the same fitness. Comparing these evolutionary-equivalent models, differing only in the implementation of
physiological costs of reproduction, can thus provide useful information on the consequences of this trade-off.

Similarly, in model Ma,p vital rates only depend on age and parity, with only one apparent class of
heterogeneity. Models Ma,p and M have same ergodic properties. However it is important to keep in
mind, that Ma,p is not constructed bottom-up from vrv, oivi and opvi , but is a top-down product of M
via folding. Therefore, the relationship it embeds between vital rates and parity will generally not be
linear or even negative any more. Comparing both matrices will provide information on the detectability
of physiological costs of reproduction for various scenarios of genetic costs of reproduction.

3.2.3 Incorporation of stochasticity to (age,parity,heterogeneity)-MPPM
Matrix models, like the (age,parity,heterogeneity)-MPPM M we have just constructed, allow to project the
population over time in a constant environment and according to the expectations of transition rates as
incorporated in the model. Since the environment affects all individuals in a sub-population (we call here
genotype, but could also be grouped by "patches"), environmental variance can be implemented by consid-
ering an environmental time distribution, where each environment e is assigned a specific matrix Me. The
model then consist in a family of matrices, like the (age,parity,heterogeneity)-MPPM-environmental-suite
{Me}.

As mentioned earlier this extension from the single MPPM (in constant environment), to an MPPM-
environmental-suite allows to incorporate the intra-periodic FC costs (for our studied stor = 0 organism).
For instance, as we will illustrate later in this chapter (section 3.4.4), by assigning a higher zero-parity
fertility rate for all genotypes in good environments. The joint effects of RC and FC on reproductive effort
- discussed in chapter 1 - are then incorporated: FC, via the environment, affects the zero-parity vital rates
and RC impacts the actual fertility rate via parity. This extension also allows to implement reaction norms
for the various genotypes of the population. For instance, by assigning, in some specific environments,to
the "robust" genotype (in the constant mean environment) lower vital rates than the "frail" genotype, one
can generate crossing reaction norms which effects can then be analyzed (with the tools from section 3.4.4).
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Because individual stochasticity acts independently at the level of the individual time-step, there is
unfortunately no equivalent way to directly extract its effects from a matrix or suite of matrices. We will
later study ways to compute the variance in fitness generated by individual stochasticity (sections 3.3.2
and 3.3.3).

In the 19th century, demographers and mathematicians have started to investigate the effect of indi-
vidual stochasticity on demography. In particular Bienaymé and later Watson and Galton have devised
the first branching process - bearing their names - that investigates the effects of stochasticity in lifetime
reproductive output (the single vital rate in a non-overlapping generation framework) on asymptotic de-
mographic behaviors (Watson and Galton, 1875). Contrary to their predecessors who only considered the
expectation of the reproductive rate to predict survival of a population, they showed that certain distribu-
tions of R0 will both imply ergodic growth (whenever E(R0) > 1) and a large probability of extinction.
It would then take a century before branching processes modeling structured were developed (Crump and
Mode, 1969; Jagers, 1982). More recently demographers have developed new tools (explicitly or implicitly
derived from such branching processes) to understand and measure the effect of individual stochasticity on
dynamic heterogeneity in age-structured populations, and in particular to disentangle the relative effects
of individual and environmental stochasticity on the variance in life history trajectories in the population
(see section 3.3.2). We will, in this chapter, detail and use such tools and develop new ones to adapt to
the complexity of models implementing both dynamic and hidden heterogeneities as traits.

Environmental MPPM suite and vital rates random variables entirely define full
stochastic model

We account, in this model, for different genotypes via the addition of a heterogeneity trait. As such, in a
given environment e, fertility and survival rates, for a given age a, parity p and genotype h- fe(a, p, h) and
se(a, p, h) are only expectations. Indeed there is no such thing as fe(a, p, h) offspring in real life and the
difference between producing 1 and 0 offspring, in our simple model where reproductive effort is equated
to fertility, is individual stochasticity. Therefore fe(a, p, h) and se(a, p, h) represent the probability for an
individual in that state and that environment to respectively produce one offspring and to survive. In
other terms, fe(a, p, h) and se(a, p, h) are the parameters, and hence the expectancy, of Bernoulli random
variables – i.e. r.v. which only possible outcomes are 0 and 1 - representing fertility Fe(a, p, h) and survival
Se(a, p, h).

Random variables Fe(a, p, h) and Se(a, p, h) represent stochasticity at the level of, respectively, vrfertility
and vrsurvival. Whilst invisible at the level of the {Me}, these processes are essential components of the
model. A third distribution needs also to be made explicit: the allocation, for each state i, of the output
of vrvi towards the different states. Contrary to F and S, this distribution is already fully embedded in
M via vectors oivi and opvi . And by providing Fe(a, p, h) for all states i and environments e, it is clear
that distributions opfertilityi are independent from F(i) and S(i) (by MPPM construction, from equations
3.2 and 3.3). Therefore our (age-parity-heterogeneity)-model is fully described, and fully analyzable, both
deterministically and stochastically when presented as the combination of the deterministic transitions,
the random variables of the vital rates and the trait structure that relate them : {Me, s,Fe,Se} (where s is
the trait structure, in our case s = (ω, par, het) related to the trait vector t = (age, parity, heterogeneity)).

From time-step to lifetime individual stochasticity

The effects of the individual stochasticity, stemming from the random variables of the vital rates, F and
S, compounded time-step after time-step over individuals’ lifetimes generate diversity in lifetime trajecto-
ries. To illustrate this, let us simplify our model by forsaking traits parity and heterogeneity; the MPPM
of this simple age-structured model is therefore a Leslie matrix. In this model, each state a has, at each
time-step, only 2 possible outputs per vital rate. Via survival, because there is no dynamic heredity tracker
to account for, an individual can only transition towards death or a+ 1. Via fertility, because there is no
hidden heredity classes to assign to, an individual can only transition towards 0 or 1 offspring. There are
however 2ω+1 − 2 different individual trajectories allowed by the model, as shown in appendix 3.0.1. It
is not easy to make sense from such a large distribution, which size will increase with every addition of
dynamic heterogeneity a trait. Therefore from this large diversity of trajectories generated by individual
stochasticity, we extract moments with simpler distributions and higher significance from a demographic
and evolutionary standpoint.

Among such moments, lifetime statistics are favored as they directly show the accumulated effect of
time-step individual randomness at the level of the entire trajectories; like the commonly studied vari-
ance in longevity (corresponding to variance in age at death) (Tuljapurkar, 2011; Gillespie et al., 2014;
Engelman et al., 2014; van Raalte and Caswell, 2013; Caswell, 2009). From an evolutionary perspective
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however, two of these lifetime variances are of paramount importance as they measure the effects of individ-
ual stochasticity on the two main population fitness measures, respectively the asymptotic growth rate λ,
and the lifetime reproductive output LRO (which mean realization is often called net reproductive rate or
R0). These are known as, respectively, the "demographic variance" σ2

d which corresponds to the expected
variance of an individual contribution (survival and reproduction) to the following year’s population size,
and the variance of lifetime reproductive output σ2

LRO.

In this article, whilst we use λ as a genotype and population measure of fitness, we prefer to use
LRO as a measure of individual fitness. Indeed lifetime reproductive output has been shown to be less
relevant a fitness measure than λ at the level of a population, as it does not account for life pacing and
in particular reproductive rhythm (Giske et al., 1993; Murray, 1992; Nur, 1984). It has the drawback of
losing track of chronological time - a real shortcoming when dealing with models with strongly overlapping
generations - and only deal with generation time. However R0 has for itself the advantage that it is an
individual measure (that is readily aggregable at the level of the population). It is the expected number of
offspring, at birth, of an individual taken at random in the population. This is not the case for λ, despite
efforts to conceive an "individual growth rate" however still difficult to fathom (McGraw and Caswell, 1997).

From an evolutionary standpoint, σ2
d and σ2

LRO are key statistics that allow to quantify - beyond
the variance of fitnesses, induced by vital rates variance at the level of each time-step - many primordial
evolutionary measures for a population. On the own hand, these variances in fitness affect the sampling of
alleles from one generation to the next and therefore have been shown to affect effective population size and
thus the strength of natural selection (Barrowclough and Rockwell, 1993; Engen et al., 2005a; Felsenstein,
1971; Hedrick, 2005; Vindenes et al., 2010; Hill, 1979; Rockwell and Barrowclough, 1995), . On the other
hand, since variance in fitness is an individual variance, its effect at the level of the population is inversely
proportional to population size, with direct impact on extinction probabilities (Engen et al., 1998, 2005b).
Therefore it will itself be under negative selection (Gillespie, 1974, 1975; Vindenes et al., 2010; Shpak,
2007), which in turns can affect senescence rates (Giaimo, 2014). Finally, and most importantly, extending
Tuljapurkar (1982b)’s result for environment variance, Engen et al. (2005b) showed that demographic
variance affects stochastic fitness itself.

Effect of active dynamic heterogeneity trait

There are two kinds of dynamic heterogeneity traits in an MPPM. Neutral or passive traits which act as
trackers and have no effect on the model and active ones which determine the model and affect vital rates.
A neutral trait has no effect on vital rates and consequently, it is also neutral with regards to all fitness
and demographic measures. Such a trait acts as a tracker, that brings information useful to the ecologist.
This is the case for instance of age, which can be added as a neutral trait to a stage-structured model,
in order to compute longevity and its variance. This is also the case of trait parity which can also be
added, in the absence of costs or reproduction, to any age- or stage-structured in order to track parity
trajectories and, for instance, compute inter-birth intervals (see chapter 4 sec. 4.4.2 p.112). Folding an
MPPM on a neutral dynamic heterogeneity trait brings back the original model to which the "tracker"
trait was appended. Active dynamic heterogeneity traits, for their part, have a direct determining effect
on vital rates. This is the case, in particular, for traits which are part of a physiological trade-off.

In the (age-parity-heterogeneity)-MPPM of this chapter, via its action of vital rates, parity is both a
product and a producer of individual stochasticity. Indeed individual stochasticity, via the realizations
of F and S at former time-steps, generates stochasticity in parity. And, in turn, this variance in parity
affects all remaining steps of individual trajectories via the costs of the reproduction, represented by the
p indexation of Fe(a, p, h) and Se(a, p, h). Individual stochasticity creates a variance in trajectories, even
between individuals of same genotype and in same environments, that allows the costs of reproduction to
generate from this variety of inputs a plurality of outputs. It is for that reason that we called - in chapter 1
(sec.1.2.3 p.23) - individual stochasticity, the fuel of the detectability of physiological costs of reproduction.

Individual stochasticity in a context of hidden heterogeneity
If several genotypes cohabit in a population, the differences in expected vital rates between these, will
further increase the variance of λ and LRO. However, the subtle difference between both fitness measures
resurfaces when investigating the effect of (hidden) heterogeneity on their variances.

Let us consider, the now classical split of the variance of the stochastic growth rate into demographic
and environmental variance stated by Engen et al. (1998) : σ2 = σ2

d
N

+ σ2
e where N is the population size

and σ2
e is the environmental variance (the between-year variance of the expected individual contribution

to next year’s population size). With regards to λ at the level of the population, whilst the effects of the
variance around the mean evolved vital rates for each genotype will decrease with population size, the
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effects of the different genotypes on the population will not. They are therefore not part of the demo-
graphic variance, sensu Engen et al. (1998). This is especially true when not considering variability in
mutation/heritability (as is the case in our model). However, the differences in vital rates and heritability
implementable between the different environments, hint at the key fact that σ2

e already includes all effects
of the environment, including via its affecting of genotypes reaction norms.

At the individual R0 level however, no change in environment is required for the differences in vital
rates between genotypes to impact lifetime reproductive output. This implies that, here, genetic variance
will be included in σ2

LRO. And therefore, in this chapter, we will denote, in heterogeneous contexts, σsto
LRO

2

and σhet
LRO

2, the components of σ2
LRO arising, respectively, from individual stochasticity (i.e. dynamic het-

erogeneity) and from (hidden) heterogeneity. (notation alert: het is notation that we use to segregate the
two components of σ2

LROİt has nothing to do with het, the size of the heterogeneity class in our model)

In section 3.3.2, we shall demonstrate how to compute σLRO for the various types of MPPMs encoun-
tered in this analysis.

3.3 Methods
In this section, we apply, and when needed, extend computations of key measures for evolutionary demog-
raphy to matrix models incorporating hidden heterogeneity and/or dynamic heterogeneity traits. These
calculations stem 1/from the field of linear algebra - for eigen-analysis yielding λor R0 and related sen-
sitivity analysis - 2/ from the field of stochastic processes (in particular diffusion processes and Markov
processes considering the survival transitions of a projection matrix as a Markov chain) - for the calculation
of the variance in lifetime reproductive output and the demographic and environmental variances - and
3/ from both these fields - for the calculation of the stochastic growth rate for instance. We first extend
the calculation of selection gradients (the sensitivities of fitness to parameters) to MPPMs. Then we show
how to compute the variance of reproductive output in such models where a dynamic heterogeneity trait
(parity) and a hidden heterogeneity one (genotype number) both influence and reflect reproductive success.
Finally we specify how to calculate the infinitesimal demographic and environmental variances for such
models.

Some intermediary tools, are readily usable for MPPMs. Among others, from the split of any multitrait
matrix into its fertility and survival component : M = F+T, we can draw N = (I−T)−1 the fundamental
matrix, that contains the expectation of time spent in each state (columns), for an individual in each state
(rows). The fundamental matrix provides the distribution and thus all the moments of age-at-death (and
therefore the variance in longevity in the population). From the fundamental matrix, we can compute
R = FN the next generation matrix, that contains the expectation of offspring of each category (rows)
expected to be produced, over its entire remaining lifetime, by an individual in a particular state (columns).

3.3.1 Computation of selection gradients for multitrait models
In evolutionary demography, for simple age- (or stage-) structured populations, the force of selection (or
selection gradient) on survival or fertility is a concept equated with sensitivities or elasticities of ergodic
growth rate to vital rates. In particular it has been shown that Hamilton’s indicator of the force of
selection on mortality is exactly the elasticities of λ to entries of the sub-diagonal of the Leslie matrix
modeling the age-structured population (Baudisch, 2005). Indeed Leslie matrices’ transitions rates are
directly either fertility rates or survival rates and therefore elasticities can be directly calculated from the
right and left eigen-vectors w and v associated with λ, the maximum eigenvalue or the ergodic growth rate.

Two issues however complicate the extraction of selection gradients on mortality or fertility from a
multitrait model. First a conceptual one: the addition of hidden heterogeneity traits in an MPPM, and
thus of heredity, raises questions with respect to the interpretation of growth rate sensitivities as selection
gradients, as discussed in chapter 1 section 1.3.2 p.33. Second a computation issue. In MPPMs, because
of the multiple traits, these vital rates do not appear directly in the Mi,j matrix entries, which contain
combinations of such vital rates (vrvi ), probability distribution of output states opvi,j and other parameters;
they are lower level parameters. The sensitivity and elasticity of λ to any parameter p, including any
vital rate vrvi , for a population modeled by MPPM M requires the calculus chain-rule to be generated:
∂λ
∂p

=
∑

i,j
∂λ

∂Mi,j
.
∂Mi,j
∂p

(Caswell, 1989), which can computed directly from the multidimensional sensitivity
matrix S defined in chapter 2 (p.41).

In the specific case of (age-parity-heterogeneity)-MPPMs, vital rates appear directly in the reference
Leslie matrix Ma. In matrices M, Ma,p and Ma,h however, entries are combinations of different compo-
nents. First, external parameters (i.e., not a trait or a vital rate). In M and Ma,h, fertility transitions
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depend on mutation rate (called m in M ). Second multiple vital rates. In M and Ma,p, survival tran-
sitions are the product of survival rates with fertility or its complement to 1. And third these vital rates
are themselves combinations of trait values and zero-parity vital rates. In M for instance, parity p and
zero-parity vital rates generate all vital rates. Because these combinations are multiplicative, we measure
the selection gradient with elasticities. And because the trade-off we are studying, the physiological costs of
reproduction, is about the effects of the realization of fertility rates, we will specifically focus on elasticities
of λ to fertility rates.

To achieve this, we need to obtain both components of the chain-rule equation in order to calculate
eMt the multidimensional vector of elasticities to fertility of all states i of λt the growth rate of Mt (with
associated eigenvectors wMt and vMt) that is M folded on set of traits t (which can be empty) :

eMt =
{
ferti
λ

.
∂λ

∂ferti

}
i

=

{
ferti
λ

.
∑
j,k

∂λ

∂Mj,k
.
∂Mj,k

∂ferti

}
i

(3.4)

where
{

∂λ
∂Mj,k

}
j,k

= {wk.vj}j,k is the sensitivity matrix (Caswell, 1989) and
{
∂Mj,k
∂ferti

}
i,j,k

is the multi-

dimensional parameter sensitivity matrices (of dependencies of matrix entries to fertility rates) deduced
from the construction method. These are respectively denoted S and S in chapter 2 equation 2 (sec.2.3,p.
47), and the detailed steps to obtain these matrices are provided there.

In order to be able to compare eM, eMa,h , eMa,p and eMa , we need to fold these on their common
denominator trait: age; i.e. to produce the elasticity of λ to fertility for states sharing the same age
category. This is simply done by summing all elements of eMt with the same age value, thus considering
parallel moves in all fertility rates of the category. This makes all the more sense since, in the main matrix,
all fertilities are proportional to zero-parity fertilities with other factors structurally fixed. Thus we obtain
as a measure of the force of selection on fertility, for ergodic-equivalent models (M, Ma,p, Ma,h and Ma)
incorporating physiological costs of reproduction (M and Ma,p) and heterogeneity ((M and Ma,h) or not,
the elasticities of λ (by construction the same for all 4 models) to fertility rate by age classes eageM , eageMa,h

,
eageMa,p

and eMa .

Having extended the deterministic computation framework from matrices structured by one or several
basic traits to multitrait matrices incorporating dynamic and/or hidden heterogeneity traits, we now wish
to be able to compute the effect of stochasticity on such fitness measures as the variance in lifetime
reproductive output (next section 3.3.2) and the ergodic (stochastic) growth rate (section 3.3.3).

3.3.2 Variance in lifetime reproductive output for multitrait models
The net reproductive rate, R0 is an individual measure. The fate of individuals depends on environmental
conditions, the e in Fe(i) and Se(i). However since these are shared by all individuals in the population
(the reason why all individuals under e share the same stochastic model {Me, s,Fe,Se}), the effect of
environmental variance is better suited to analysis at the level of the population. This will therefore be
provided by the population fitness measure that is the stochastic growth rate λ (see next section 3.3.3).
To the contrary, the level of the individual, and its fitness measure R0 (or LRO when designated as
a random variable), befits the analysis of the effects of individual stochasticity. The entire distribution
of LRO is informative, but most key initial conclusions can be drawn from its second central moment σ2

LRO.

As we have seen before, formulas of deterministic transition rates are complicated by the addition
of parity and/or heterogeneity as traits (section 3.2.2). This is consequently also the case for stochastic
transitions. If every transition rate in Leslie matrix Macorrespond to a simple Bernoulli process (either
F or S), it is not the case for the other MPPMs. In M , for instance, for each state i and each vital
process v (fertility or survival), the set of all stochastic transitions towards every reachable state (i.e.
in set oivi ) constitute a categorical distribution (or generalized Bernoulli). For vital process fertility for
instance, the categorical process is the product of Bernoulli processes F and categorical process represented
by distribution opfertilityi . This increase in complexity in the stochastic processes causes necessarily an
increase in complexity for calculation of σ2

LRO.

Age-structured populations

The random variable LRO can be considered to be an extension of r.v. age-at-death. Whilst the later
is based solely on time-step stochastic process S, the former combines both S and F . This provides a
pathway towards the calculation of σ2

LRO in age- (or stage-) structured models: first generate the distri-
bution of survival trajectories, which act as a backbone on which to graft the stochastic fertility process
at each time-step. This was, we think the reasoning behind the approach of Tuljapurkar, Steiner and
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colleagues, who seemingly start from Caswell (2006)’s formula for variance in longevity as the first el-
ement of (2N − I).N, and write that the 2nd moment of LRO is the first element of F.(2N − I).F̂.N
(Tuljapurkar and Steiner, 2010; Steiner and Tuljapurkar, 2012), where F̂ is a matrix with only diagonal
elements equal to the fertility rates. At the same time, Caswell and colleagues adapted to demography, the
mathematical tool of Markov chain with rewards (MCwR) -its concept is detailed in next section 3.3.2 -
which provides the various moments of LRO by matrix multiplicative convergence.(Caswell, 2011; Caswell
and Salguero-Gómez, 2013; Caswell, 2014; van Daalen and Caswell, 2015; Caswell and Sánchez Gassen,
2015). Both approaches have in common to append on the stochasticity of survival trajectories (stemming
from N = (I − T)−1 or directly from T for MCwR), the stochasticity of fertility successes reaped along
these trajectories (stemming F or the reward matrix of MCwR, see sec. 3.3.2).

However we find these two approaches unsatisfactory. The matrix closed-form formula we deem in-
correct (we certainly are wrong, but it seems to append deterministic fertility behavior on top of survival
stochasticity). The MCwR’s complexity we deem unnecessary for such simple models. For these reasons,
we provide here a closed-form formula -all the steps that lead to the formula are to be found in appendix
section3.0.2- for the variance of reproductive output in an age-structured population:

V ar(LRO) = α1 =
n∑
i=1

Pi
[
V ar(Fi) + y2

i+1si(1− si)
]
, (3.5)

where Fi is the fertility process at age i of expectation fi, si the survival rate at age i, Pi =
∏i−1
k=1 si

the probability to survive to age i and y(i) = 1
Pi

∑n

j=i fjPj the expectation of LROi, the remaining
reproductive output for an individual aged i. Survival is necessarily a Bernoulli process in an age-structured
model. Fertility, for its part, can have any distribution as long as it is positive. In the framework of our
(age-parity-heterogeneity)-MPPM with maximum 1 offspring per time step, the equation can be simplified
by setting V ar(Fi) = fi(1 − fi) (see eq. 3.39 in section 3.0.2, p.92). From general equation 3.5, can one
draw the variance in longevity by simply setting all fi and Fi to 0. And it is also possible to disentangle
the effects of survival stochasticity on LRO, by setting all si at 1.

Multitrait models with hidden heterogeneity traits

The addition of hidden heterogeneity traits adds complexity to the calculation of the variance of reproduc-
tive success σ2

LRO. Indeed, the difference in the number of offspring between two individuals can now stem
either from dynamic heterogeneity generated by individual stochasticity (as studied in the previous section
3.3.2), or from the hidden heterogeneity that assigns different mean vital rates to the different genotypes.

As a matter of fact, the addition of hidden heterogeneity traits already adds complexity to the cal-
culation of the expectation of reproductive success R0. We provide in appendix section 3.0.3 (p.93), a
discussion on the matter and the calculation steps towards a new formula for R0 in heterogeneous popula-
tions (equation 3.42). This equation provides R0 from the projection matrix of any structured population
with several classes of offspring. In non-matrix notation, this formula can be written :

E(LRO) =
het∑
h=1

eLROh .w�h , (3.6)

where eLRO is the sum of all lines in Next-Generation Matrix R = F.(I−T)−1 (from the survival-fertility
decomposition of M = T + F) and w� is the vector of relative ergodic abundances of all states for which
age = 1.

We shall here use this result and extend this approach to calculate σ2
LRO in a population structured by

age and heterogeneity. In an heterogeneous population, this quantity corresponds to the variance of LRO
for an individual taken at random in the population and therefore will also make use of the ergodic relative
offspring abundances in w�. To simplify our formulas, but without any loss of generality, let us consider
het = 2 heterogeneity classes, we call h1 and h2. Let LRO1 be the random variable representing LRO
knowing the individual is of class h1 and respectively LRO2 for class h2. Then the vector eLRO defined
above and in appendix 3.0.3 (the expectation of lifetime reproductive output per heterogeneity class is the
couple {E(LRO1), E(LRO2)}.

Similarly, we can define vector σ2
LRO providing the variance of lifetime reproductive output per het-

erogeneity class, i.e. the couple {V ar(LRO1), V ar(LRO2)}. Contrary to vector eLRO (the sum of lines
of R), σ2

LRO cannot be vectorially extracted from M . Rather, from the full model {M, s,F} , one can
derive the survival rates and fertility random processes for each genotype from which the equation 3.5
obtained in previous section 3.3.2 yields the desired variances.
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From the usual decomposition of variance,

V ar(LRO) = E(LRO2)− E(LRO)2 , (3.7)

emerge two quantities. First E(LRO), which according to equation 3.6 corresponds to

E(LRO) = w�1.eLRO1 + w�2.eLRO2 (3.8)

Second E(LRO2), the expectation of the square of reproductive success, which can be decomposed, at the
stable state, like E(LRO) (eq.3.6):

E(LRO2) = w�1 .E(LRO1
2) + w�2 .E(LRO2

2) (3.9)

Equation 3.9 can be rewritten using the variance decomposition, already used in equation 3.7, for LRO1
and LRO2 :

E(LRO2) = w�1 .(Var(LRO1) + E(LRO1)2) + w�2 .(Var(LRO2) + E(LRO2)2) (3.10)

And thus, replacing equations 3.8 and 3.10 into equation 3.7, we can write σ2
LRO as a function of vectors

eLRO, σLRO and w�, in a manner - hinted at in section 3.2.3 - that reveals its decomposition into
σsto
LRO

2 the individual stochasticity component (related to dynamic heterogeneity) and σhet
LRO

2, the (hidden)
heterogeneity component:

σ2
LRO = w�1 .σ

2
LRO1 + w�2 .σ

2
LRO2︸ ︷︷ ︸

σsto
LRO

2

+w�1 .eLRO1
2 + w�2 .eLRO2

2 − eLRO2︸ ︷︷ ︸
σhet
LRO

2

(3.11)

We know the heterogeneity component, σhet
LRO

2, is indeed positive from the Jensen inequality applied to
the convex square function and indeed we can rewrite, as w�2 = 1− w�1 ,

σhet
LRO

2 = w�1 .eLRO1
2 + (1− w�1).eLRO2

2 − (w�1 .eLRO1 + (1− w�1).eLRO2 )2

which yields

σhet
LRO

2 = w�1(1− w�1)(eLRO1 − eLRO2 )2 (3.12)

Multitrait models with dynamic heterogeneity traits

The principle of the above formulae, providing σ2
LRO for age-structured populations (equation 3.5), and

(age-heterogeneity)-MPPMs (equation 3.11) can be extended to any basic trait (in the B family), hidden
heterogeneity trait (in the G family) trait and neutral dynamic heterogeneity trait (a trait in the D family
that serves as a tracker and not as a determinant). It can be shown to be also the case for the approaches
of Tuljapurkar and Steiner (2010) and Caswell (2011) mentioned above. However whenever an active dy-
namic heterogeneity trait is incorporated (a trait that influences vital rates), none of these approaches and
formulae can provide σ2

LRO. This is because with such traits, and contrary to all other cases, the random
processes behind the transitions cannot always be considered independent, a necessary condition for these
computations (see appendix section 3.0.2).

Specifically, if all traits of a model are drawn from B or G, or are passive members of D, then the
stochastic processes at play for state i, combining vital processes Fi and Si with output states distribu-
tions {oivi ,opvi } towards the various values of {B,G} (when v = fertility) and {B,D} (when v = survival)
are all independent. An equivalent alternative way to consider this, is to say that output states distribu-
tions {oivi ,opvi } do not depend on Fi and Si. Simply put, for such traits, the realization of vital rates only
depend on input state i.

To the contrary, whenever a physiological trade-off is implemented in a matrix model, via the addition
of an active trait in D, like parity, this is not the case any more. In our age-parity-MPPM, for instance, the
realization of Fi depends on the output state of i through oisurvivali . This may seem counter-intuitive at
first, as Fi is clearly only a function of i. However, since the output state of i via survival depends on the
realization of its fertility event at that time, Fi and the stochastic process behind {oisurvivali ,opsurvivali }
are dependent. Calculation of σ2

LRO for such a model, therefore requires the use of a tool for which the
fertility process is not implemented as vectors of moments per input state (like vector vrfertility which
provides the expectation of fertility rates of each state and, in the particular case where F is Bernoulli, all
further moments as well), but as a matrix containing the different moments of fertility for an individual
surviving from state i to state j. A Markov chain with rewards (MCwR) is such a tool, which "reward"
matrix can implement the various moments of F as a function of both ends of an i ↔ j transition. And
thus we will use MCwR to compute the variance of lifetime reproductive output in our (age-parity)- and

71



Chapter 3 – Evolutionary consequences of physiological costs

(age-parity-heterogeneity)-MPPMs.

To describe the MCwR mathematical framework, we will use the approach of Caswell (2011) when
he applied, first, these tools - originally described in (Howard, 1960; Hatori, 1966)- to demography. The
MCwR framework requires two instruments. First, T̃ the extended matrix of transitions which is T, the
usual matrix of transitions, where, ordinarily implicit absorbing state death is made explicit in the q+ 1th

position of the matrix : T̃ = [ T 0
m 1 ], where m is the vector of mortality rates, i.e. m = 1′ − 1′.T. Matrix

T̃ is a stochastic matrix - columns sum to 1 - that fully describes the Markov chain of all possible survival
trajectories that any individual in the population can take before being absorbed by death. Second, the
family of "reward matrices" Rwk where Rwk

ij is the kth moment of the random variable of the reward -
i.e. the birth of 1 offspring - for an individual transitioning for state j to state i.

As discussed above, whenever no trade-off involving fertility is involved, then matrices Rwk have rank
1, with all lines equal to the fertility rate vector vrfertility. In M -implementing physiological costs of
reproduction current reproductive success does not only depend on the state i = (a, p, h) of an individual,
but also on the state j it is transitioning toward. In detail, if j = (a + 1, p + 1, h) then reproduction
is being successful and thus its expectancy is Rw1

j,i = 1. If individual survives but reproduction is not
successful, i.e. when j = (a+ 1, p, h), then Rw1

j,i = 0. Finally, if individual dies at the end of the period,
i.e. j = death, then (as fertility and survival processes are independent) Rw1

death,i = fi = vrfertility
i. This

completes the construction of the "reward matrix" Rw1. It is, therefore, is an empty matrix, bar one
sub-diagonal made of 0s, one sub-diagonal made of 1s and the bottom row worth vrf . The reproductive
rewards are (in our model) Bernoulli processes, and thus reward matrices for any other moment, Rwk, are
equal to reward matrix of expectations Rw1. Let ρk be the vector of the kth moment of LRO, indexed
on individuals "starting" states. These are calculated as the convergence of backwards accumulation of
"remaining" rewards following individuals from death (where there is no remaining reward left) to birth
(or age a = 1). From (Caswell et al., 2011), we draw the following convergence equations, for the first two
moments:

ρ1 = lim
t→+∞

ρ1(t) with ρ1(t+ 1) = (T̃ ◦Rw1)′.1 + T̃.ρ1(t) (3.13)

ρ2 = lim
t→+∞

ρ2(t) with ρ2(t+ 1) = (T̃ ◦Rw2)′.1 + 2.(T̃ ◦Rw1)′.ρ1(t) + T̃.ρ2(t) (3.14)

with initial conditions ρ1(0) = ρ2(0) = 0 (◦ is the Hadamard, termwise, product)

Let us now reduce all LRO moments ρk to states of age a = 1 (and thus p = 0), i.e. to the offspring
states. Then ρ1 and ρ2 are of size het (the number of classes of trait heterogeneity).

Then the vector of expectancy of LRO for each offspring class is

eLRO = ρ1 (3.15)

and corresponds - the addition of heterogeneity has no effect here - to 1′.R∗ for any constructed matrix
model (see appendix 3.0.3). This is not true for some folded matrices such as Ma,p, which case we discuss
at the end of this section and thoroughly in appendix 3.0.4.

And the vector of variance of LRO for each offspring class is

σ2
LRO = ρ2 − ρ1 ◦ ρ1 (3.16)

Thus, in this section, we have provided, for the calculation of σ2
LRO, a closed-form formula for mod-

els structured by age only (equation 3.5), an eigen-analysis equation for variance at the stable-state for
models incorporating hidden heterogeneity (equation 3.11) and finally a convergence procedure to reach
that quantity via MCwR for models also embedding active dynamic heterogeneity traits (equation 3.16).
Since these categories are nested (a model structured by age only can, for instance, be considered to be
a model structured by age and heterogeneity, with only 1 heterogeneity class), the variance in lifetime
reproductive output of a population modeled by a simple Leslie matrix - implemented directly or folded
from a larger model like Ma- can be calculated via the three formulas. Similarly from a constructed
(age-heterogeneity)-MPPM Mage,heterogeneity or a folded one, like Ma,h, one can equivalently compute
σ2
LRO from either eq.3.11 or eq.3.16. Finally, whilst the variance of LRO can only be calculated from

eq.3.16 for models incorporating parity, we expect its expectation R0 to be equivalently calculated by
the MCwR approach (eq. 3.15) or by the Next Generation Matrix directly (see appendix 3.0.3). However,
because of the emergence of vital processes in the output states distributions due to the addition of active
dynamic heterogeneity traits implementing physiological trade-offs (see eq. 3.3 and eq. 3.2), this is not
the case for folded matrices incorporating dynamic heterogeneity traits. Matrix Ma,p in particular - M
folded on heterogeneity- is such a model for which the discrepancy between the MCwR and R approaches
for E(LRO) calculation is just a revealer of larger interpretation and analysis issues. This is an important
aspect of folding, and as we think we did not make this point clear enough in chapter 2 (p.41), we discuss
this issue further in appendix section 3.0.4.
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3.3.3 Computation of stochastic growth rate
So far, we have designed an evolutionary-demographic model that implements physiological costs of repro-
duction in a genotypically heterogeneous context via age-parity-heterogeneity-MPPM M . In order to be
able to understand the specific and combined consequences of costs of reproduction and heterogeneity, we
have derived, from M via EFP-folding, the evolutionary-equivalent models Ma,h, Ma,p and Ma. Then
we have designed tools to measure the consequences of costs and heterogeneity by comparing these models
for certain evolutionary outputs; the force of selection via the computation of selection gradients, and
the variance in lifetime reproductive output. These models implement variance in genotypes and we have
shown they can be used to compute the effects of individual stochasticity. All the tools so far were however
suitable for analyses in constant environment, by considering only the (age-parity-heterogeneity)-MPPM
M constituted of the mean environmental vital rates; M = Mē = Ee(Me), where Me is the MPPM in
environment e

We will now contemplate the effects of general stochasticity, and environmental stochasticity in partic-
ular. In other words, we will now consider the full stochastic model (see section 3.2.3) which consist of the
environmental suite of MPPMs, as well as the individual stochastic processes : {Me, s,Fe,Se}. There are
two approaches to such a problem, the probabilistic approach and the simulation approach. The simulation
approach consists in projecting over (long periods of time), over many runs, the evolution of a population
where, at each time-step, environment e is drawn from the family of all possible environments E , and
the survival and reproductive fate of each individual is drawn from the individual vital rates processes
associated with e, Fe and Se. This allows to picture the effects on both individual and environmental
stochasticities on the fitness of a population, measured as the long term stochastic growth rate. We will
display the results of such a simulation for our model in section 3.4.4.

The probabilistic approach consists in a direct calculation of the demographic and environmental vari-
ances, and therefore of the stochastic growth rate, using the sensitivity matrix of evolutionary demography.
As a consequence, it is an approach that is appropriate for small environmental variations (the sensitivity
matrix provides the marginal effect on λ of marginal changes in matrix entries). Drawing from earlier
work by Cohen (Cohen, 1977, 1979) on stochasticity in age-structured populations and by Tuljapurkar on
environmental stochasticity (Tuljapurkar, 1982a, 1990b), and his own earlier work on demographic vari-
ance (Engen et al., 1998), Engen et al. (2005b) showed, that the first-order approximation of the long-term
stochastic growth rate of an age-structured population depends on three parameters. First, λ the deter-
ministic ergodic growth rate drawn from the matrix M of mean (environmentally and demographically)
vital rates (see section 3.2.2). Second, the environmental variance introduced by Tuljapurkar (Tuljapurkar,
1982a, 1990b) which measures the (infinitesimal) variance induced on the growth rate by (infinitesimal)
changes on vital rates due to environmental stochasticity :

σ2
e ≈

∑
i,j

∑
k,l

λ−2 ∂λ

∂Mi,j

∂λ

∂Mk,l
Cove(Mi,j ,Mk,l) (3.17)

where Cove(Mi,j ,Mk,l) is the environmental component of the covariance between entries Mi,j and Mk,l

(Tuljapurkar, 1982a). Third, the demographic variance, measuring the variance induced on the stochastic
growth rate due to individual stochasticity, which in an MPPM is much simplified in :

σ2
d ≈

∑
i,j

∑
k,l

λ−2 ∂λ

∂Mi,j

∂λ

∂Mk,l
.N.Covd(Mi,j ,Mk,l) (3.18)

where N is population size and Covd(Mi,j ,Mk,l) is the demographic component of the covariance of real-
izations of transitions Mi,j and Mk,l (Engen et al., 2005b).

Let us quickly describe these two variances and how they combine to generate σ2, the total variance
in individual contribution to the population at next time step in growth rate:

σ2 = σ2
e + σ2

d
N
≈
∑
i,j

∑
k,l

∂ln(λ)
∂Mi,j

∂ln(λ)
∂Mk,l

.Cov(Mi,j ,Mk,l) , (3.19)

which can be interpreted as the effect on ln(λ) of the flexibility allowed by the model: all pairs of
entries are "authorized" to draw nearer or pull away according to their covariance, and the effect on
ln(λ) is proportional to sensitivities ∂ln(λ)

∂Mi,j
and ∂ln(λ)

∂Mk,l
. Then this total variance is decomposed between

amongst time-steps variance (eq. 3.17) and within time-step variance (eq. 3.18). The emergence of N
in eq. 3.18 comes from the original definition of overall variance σ2 primarily environmental variance
σ2
e . When individual stochasticity is not accounted for, the individual contribution to population growth

is: V ar(Nt+1 | Nt = N) = N2σ2
e . Individual stochasticity can be added into the mix, however, since

the individual processes are all independent, we get : V ar(Nt+1 | Nt = N) = N2σ2
e + Nσ2

d and there-
fore the stochastic growth rate lnλs = limt→+∞

lnN
t

has therefore the infinitesimal variance σ2
e + σ2

d
N
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found in eq. 3.19. The same difference would emerge if instead of analyzing LRO, one would focus on
variance of average reproductive success in the population (popLRO) At the level of the population (N
individuals), the variance of popLRO is then (as individuals reproduce independently from one another):
V ar(popLRO) = V ar( 1

N

∑N

i=1 LROi) = 1
N2

∑N

i=1 V ar(LROi) = V ar(LRO)
N

and thus we have the same
ratio between variance of LRO at the level of the individual and the population than demographic variance
(an individual measure).

From equation 3.19, Tuljapurkar (1982a) and Engen et al. (2005b) provided the approximation of the
stochastic order at the first-order (stemming from ln(1 + x) = x− x2

2 + o(x2)):

lnλs ≈ lnλ− σ2
e

2 −
σ2

d
2.N (3.20)

(Engen et al., 2005b).

Computation of demographic variance for MPPMs

In the general MPPM framework we have designed to implement physiological costs of reproduction, the
addition of traits enlarges the model, but stochasticity analysis is made simpler. Indeed, contrary to the
general probabilistic framework (e.g. equation 3.18), the individual scrutiny provided by the numerous
traits allows to make all individual processes between different states independent. For instance, instead of
rendering physiological costs by declaring that the 2-year and 3-year fertility rates have negative covariance
(a method which would fail to implement the costs as defined in chapter 1), the indexation of states on
parity in our (age-parity)-model ensures that for all states i↔ (a, p) and j 6= i, and any pair of states (k, l),
Covd(Mk,i,Ml,j) = 0. This allows us to simplify equation 3.18, in the MPPM framework {Me, s,Fe,Se}
where all determining traits are in trait structure s and all constrains implemented in the Me, Fe and Se:

σ2
d ≈ λ−2

q∑
i=1

wi
∑
j,k

vjvkCovd(Mj,i,Mk,i) (3.21)

where w and v are the right- and left-eigenvector of the MPPM, corresponding to λ. This simplification
- not as radical as for a Leslie matrix, see equation 3 in (Engen et al., 2005a) - stems from the consid-
eration that the only non-negative covariances are those between transitions sharing same input state,
e.g. Covd(Mj,i,Mk,i). Then from the sensitivity matrix formula ∂λ

∂Mi,j
= vi.wj (Caswell, 1978), one gets

equation 3.21.

In the specific case of model M of this chapter (simplified by considering only het = 1 genotype),
the knowledge of the specific stochastic processes driving all transitions from i = (a, p) allows to further
develop the σ2

d formula. 3 transitions are possible from i. The fertility transition is towards (1, 1) via
Bernoulli process Fi of parameter fi. The first possible survival transition is towards (a+ 1, p+ 1) via the
product of Bernoulli processes Fi and Si of parameter si. Because these processes are independent (the
realization of Fi only affects later survival, via parity), the r.v. product Fi.Si is itself a Bernoulli process
of parameter fi.si. The second survival transition is towards (a+ 1, p) via Bernoulli process Fi(1− Si) of
parameter (1− fi).si. And thus we can compute the covariances between all 3 process using the property
that all moments of a Bernoulli process are equal to its parameter and that Fi and Si are independent :



Covd(M(1,1),(a,p),M(1,1),(a,p)) = Var(Fi) = fi(1− fi)
Covd(M(a+1,p+1),(a,p),M(a+1,p+1),(a,p)) = Var(FiSi) = fisi(1− fisi)
Covd(M(a+1,p),(a,p),M(a+1,p),(a,p)) = Var(Fi(1− Si)) = (1− fi)si(1− si − fisi)
Covd(M(1,1),(a,p),M(a+1,p+1),(a,p)) = Cov(Fi,FiSi)

= E(F2
i Si)− E(Fi).E(FiSi) = fisi − fifisi = (1− fi)fisi

Covd(M(1,1),(a,p),M(a+1,p),(a,p)) = Cov(Fi, (1−Fi)Si)
= E(Fi(1−Fi)Si)− E(Fi).E((1−Fi)Si) = −(1− fi)fisi

Covd(M(a+1,p),(a,p),M(a+1,p+1),(a,p)) = Cov(FiSi, (1−Fi)Si)
= E(Fi(1−Fi)S2

i )− E(FiSi).E((1−Fi)Si) = −(1− fi)fis2
i

(3.22)

Integrating these covariances (equations 3.22) into the general MPPM formula for demographic variance
(eq. 3.21) yields σ2

d for each genotype of (age-parity-environment)-MPPM M : :

σ2
d ≈ λ−2

∑
(a,p)

wa,p[v2
1,1fi(1− fi) + v2

a+1,p+1fisi(1− fisi) + v2
a+1,p(1− fi)si(1− si − fisi)+

v1,1va+1,p+1(1− fi)fisi − v1,1va+1,p(1− fi)fisi − va+1,p+1va+1,p(1− fi)fis2
i ] (3.23)
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The averaging of all such quantities over all genotypes g ∈ G , weighted by the offspring classes abundances
w� and all environments e ∈ E , weighted by their time distribution, yields the demographic variance of our
model. This demographic variance formula, even though analytic and thus easier to analyze than a simu-
lation result, is still an approximation. It reduces, for instance, all stochastic processes to their covariances
notwithstanding fundamental differences like the mutual exclusivity of the two survival transitions from a
given state. Still it allows to compute and ponder the effect of individual stochasticity on the stochastic
growth rate and to compare it to the effect of environmental variance.

Computation of environmental variance for MPPMs

Environmental variance can be computed in a similar fashion. We shall explicitly here consider the
model (see section 3.2.1) for which vital rates are independent from age: in the mean environment,
f(a, p) = fp = f(1 − p/ω) and s(a, p) = sp = s(1 − p/ω). For simplicity, let us reduce E to two envi-
ronments, E = {g, b}. Environment g is frequent and good (and therefore close, in its effects on vital rates,
to the average environment). Environment b is very rare - appearing randomly with probability ε (ε� 1)
- and is so bad that the Fluctuating Capital is empty and therefore reproductive effort is impossible. We
have fg = f(1 + ε), sg = s, fb = 0 and sb = s.

In both matrices of the full model - {Mg,Mb} - physiological costs of reproduction are at play, and
thus 

fgp = fg(1− p/ω) = f(1 + ε)(1− p/ω)
sgp = sg(1− p/ω) = sp

fbp = 0
sbp = sb(1− p/ω) = sp

Matrixwise this means: 

Mg
(a,p)→(1,1) = fgp

Mg
(a,p)→(a+1,p+1) = sgpf

g
p = spf

g
p

Mg
(a,p)→(a+1,p) = sp(1− fgp )

Mb
(a,p)→(1,1) = 0

Mb
(a,p)→(a+1,p+1) = 0

Mb
(a,p)→(a+1,p) = sp

(3.24)

Let us now check, that the assumption, made earlier, that M is the mean environment matrix is correct.
By definition, the mean environment model is Mē = εMb + (1− ε)Mg, which implies

Mē
(a,p)→(1,1) = (1− ε)fgp = (1− ε)f(1 + ε)(1− p/ω) ≈ fp

Mē
(a,p)→(a+1,p+1) = (1− ε)spfgp ≈ fpsp

Mē
(a,p)→(a+1,p) = (1− ε)sp(1− fgp ) + εsp = sp(1− (1− ε)fpg ) ≈ sp(1− fp)

And thus we have demonstrated that M̄ ≈M

From equation system 3.24, we can now calculate, for E = {}, b}, all the environmental covariances of
matrix entries : 

Vare(M(a,p)→(1,1)) = (1− ε)(fgp .fgp )− [(1− ε)fgp ]2 ≈ εf2
p

Vare(M(a,p)→(a+1,p+1)) ≈ ε(fpsp)2

Vare(M(a,p)→(a+1,p)) ≈ ε(fpsp)2

Cove(M(a,p)→(1,1),M(a′,p′)→(1,1)) ≈ εfpfp′
Cove(M(a,p)→(1,1),M(a′,p′)→(a′+1,p′+1)) ≈ εfpfp′sp′
Cove(M(a,p)→(a+1,p+1),M(a′,p′)→(a′+1,p′+1)) ≈ εfpfp′sp′sp′
Cove(M(a,p)→(a+1,p),M(a′,p′)→(a′+1,p′)) ≈ εfpfp′spsp′
Cove(M(a,p)→(1,1),M(a′,p′)→(a′+1,p′)) ≈ −εfpfp′sp′
Cove(M(a,p)→(a+1,p+1),M(a′,p′)→(a′+1,p′)) ≈ −εfpfp′spsp′

(3.25)

Integrating these covariances (equation 3.25) in the general formula for environmental variance (equa-
tion 3.17) whilst using eigenvectors to measure sensitivies ( ∂λ

∂Mi,j
) allows to generate a closed-form analytic

formula for σ2
e . The method can obviously be extended to any number of environments, genotypes and to

age-dependent vital rates.
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3.4 Results
Equipped with a battery of tools, we can investigate the effect of physiological costs of reproduction on
the dynamics and the evolutionary demography of a (possibly heterogeneous) population. With regards to
research investigation methods, this entails to combine two toolboxes. First, the various methods to yield,
for the two main fitness measures, their expectancy and variances. Some of these methods are generic
and well-known. Some, especially when related to multitrait models, are new tools develloped in section
3.3. Second, the Trait Level Analysis which provides an evolutionary-demography neutral framework as
it generates, by folding, asymptotically-equivalent matrices. Thanks to both tools, it is now possible to
compare these various fitness measures between equivalent models either implementing the costs or not,
either embedding heterogeneity others not.

First we describe the mechanical effect of these costs on the mean vital rates of a population, showing
they certainly influence the shapes of survival and fertility curves in nature. Second, we investigate the
effects of costs of reproduction on selection gradients in order to understand how such a physiological
trade-off can have evolutionary consequences through its effects on the force of selection for certain vital
rates. We also study the effect of heterogeneity on the detectability of the phenomenon. Third, we
investigate the effects of the physiological costs of reproduction on the variance of reproductive success
and contemplate their consequences on effective size. And finally we both study, both formally in the
probabilistic framework, and via a simulation, the effects of the costs on environmental and demographic
variance.

3.4.1 Mechanical effects of costs and heterogeneity on aggregated vital
rates

The most immediate repercussion of physiological costs of reproductionconcerns the vital rates by age of
an age-structured population. In most models for structured populations used by empiricists, the indi-
viduals are categorized by one trait only, mainly age, sometimes stage. There are interesting arguments
regarding the benefits of each kind of model, but in reality one single trait, even if clearly explanatory,
cannot generally capture more than the simplest characteristics of a population dynamics nor segregate
the organism into groups of individuals with very similar vital rates. Conversely, the particular shapes of
fertility and survival rates curves by age, that are the building blocks of age-structured models are likely to
be influenced by these other determining traits that are not implemented. The simplest way to illustrate
this is to consider models where vital rates are actually independent from age as we have done in section 3.2.

To illustrate this, let us consider the (age-parity)-MPPM C (formula 3.1) built in section 3.2.1 that
corresponds to a 3-year model with zero-parity fertility and survival rates f and s, with implementation
of physiological costs of reproduction. Folding C over parity yields Cfold

age , the reference Leslie matrix,
representing the ergodic-equivalent population model with only age as a trait :

Cfold
age =

0 f f.(1− f

2 )
s 0 0
0 s 0


Though originally age-independent, fertility now decreases with age, in the population now only char-

acterized by age. This the work of physiological costs of reproduction, happening in the population but not
implemented any more.

Obviously, when implemented, heterogeneity would also have effects, and combine with implemented
trade-offs to shape the aggregated vital rates for populations studied by age only. To understand this,
we generate an (age, parity, heterogeneity)-MPPM M for a population with 2 genotypes, one robust with
zero-parity vital rates of 0,9 and one frail with vital rates at 0,55. Vital rates are independent of age, and
only depend on the genotype and on parity (model of section 3.2.2). Then we generate the reference Leslie
matrix Ma by folding M on parity and heterogeneity, and we observe its (inferred) fertility and survival
rates by age depicted in figure 3.1.

Here again, once aggregated by age, vital rates fluctuate with age. The familiar shape of these curves
are due to the cross-effects of physiological costs of reproduction and heterogeneity. First, once age at
maturity is reached, the proportion, in each genotype, of low parity individuals diminishes, and thus so
do the mean vital rates with age after maturity. We can observe this phenomenon on both fertility rates
(figure 3.1a) and survival rates (figure 3.1b). Second, heterogeneity generates an opposite effect. As frail
individuals survive less, and therefore die sooner, their proportion is the population decreases with time.
And thus the mean vital rates in the population correspond increasingly to the vital rates of the robust
genotype as age increases. The heterogeneity effect is smaller than the parity effect, and is therefore easier
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observable in survival rates at young ages, before cost of reproduction kicks in, where they increase until
maturity (left part of figure 3.1b) and at old ages where heterogeneity seem to generate a mortality plateau
(right part of figure 3.1b). The link between heterogeneity and mortality plateaus is actually a topical
issue in the field of senescence both for theorists (Charlesworth and Partridge, 1997; Missov and Vaupel,
2015) and empiricists (Drapeau et al., 2000; Vaupel et al., 1998; Chen et al., 2013).

The argument, here, is not to claim that shapes of vital rates curves in nature are single-handedly
produced by physiological costs of reproduction in a context of heterogeneity. Actually, the effects on
potential but unaccounted for physiological and genetic trade-offs on vital rates are well known. We
however wish to stress the importance of MPPMs and folding process, in order to measure the pressures
exerted by these unimplemented traits on the age (or stage) demographics of population.

(a) (b)

Figure 3.1: fertility and survival rates of Ma, the folded reference Leslie matrix of M the
(age,parity,heterogeneity)-model with one genotype with zero-parity fertility and survival rates
of 0.95, and a second genotype with zero-parity fertility and survival rates of 0.55. Mutation rate
m is 0.3, maximum age ω = 15 age-at-maturity α = 5 and last reproductive age β = 13

3.4.2 Effects of physiological costs of reproduction on selection gradi-
ents

We can now use the tools developed and discussed in section 3.3.1 in order to quantify the effect of
physiological costs of reproduction on selection gradients, measured as elasticity of ergodic growth rate
to a fertility rate. As we incorporate physiological costs of reproduction, only the realization of fertility
events has relative effects on fitness, not the realization of survival events; see appendix section 5.2.1 for a
discussion on that subject. As hinted at in chapter 2 (p.41), the first important evolutionary consequence
of physiological costs of reproduction is the drastic reduction in selection gradients, especially at maturity.
Let us illustrate this, with a simple model implementing the costs of reproduction in an homogeneous
population. The selection gradient for such a population modeled by an (age,parity)-MPPM are provided
in figure 3.2.

Mechanical explanation

The contraction of selection gradients at all ages between M , the model with physiological costs of re-
production and Ma, its asymptotically-equivalent model, where the costs have disappeared by folding,
results from a mechanical buffering effect. To understand this, let us consider the emergence of a new
allele in the population, which bearers have, everything else being equal, a slightly higher fertility rate
at maturity. These individuals will be obviously be fitter than the host, but their increased fertility at
maturity causes them, on average, to reach higher parities faster and thus have weaker late reproduction
than other individuals. As physiological costs of reproduction buffer the impact of successful reproduction
by promoting those individuals which have so far not been able to recruit efficiently, the force of selection
on fertility is much reduced when these costs are present.

Since this compensating effect needs time to act, the effect of the costs on selection gradients is maxi-
mum at maturity and decreases with age. At the last reproductive age, a failed reproductive event will have
no more beneficial impact than a successful one, as the parity effect has run out of reproductive time to be
able mitigate the damage. This can be illustrated by the distribution of the time an individual is expected
to spend in the different parity classes during its entire lifetime. In figure 3.3, we represent the difference
in these distributions between the model M with physiological costs of reproduction and Ma its ergodic-
equivalent Leslie matrix with no trade-off. It is clear that physiological costs of reproduction concentrate
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Figure 3.2: selection gradient measured by the elasticity of ergodic growth rate to fertility rates,
summed by age, for M modeling an (age-parity) population with physiological costs of reproduction
and Ma its reference Leslie matrix, which is M folded on parity, modeling the same population but
characterized only by age. The population has maximum age ω = 15 and age-at-maturity α = 5.
The zero-parity fertility and survival rates are 0.85. Cost of reproduction is modeled by relatively
decreasing each vital rate by 1/(1 + ω − α) per parity.

trajectories towards central parities through relative improvement of rates for low parity-individuals and
deterioration for high-parity ones. In a model embedding the costs, individuals thus spend less time in
’extreme parities’ than in the population without the costs.

Figure 3.3: Difference between the probability distributions of the expected time spent in each
parity over its entire lifetime (for an individual of age 1), for the model incorporating costs of
reproduction M and its ergodic equivalent-Reference Leslie matrix (with no cost of reproduction)
Ma. The population has maximum age ω = 15 and age-at-maturity α = 5. The zero-parity
fertility and survival rates are 0.85. Cost of reproduction is modeled by relatively decreasing each
vital rate by 1/(1 + ω − α) per parity.

Evolutionary consequences

From an evolutionary standpoint, the difference in selection gradients between a population with phys-
iological costs of reproduction and its ergodic-equivalent population devoid of any trade-off, depicted in
figure 3.2 leads to contemplate this result in the light of the general question about the relative role of
physiological and genetic costs that we discussed theoretically in chapter 1 section 1.2. A question akin to
the relative roles of the two main theories of senescence (see chapter 1 section 1.4.2 page 36).

In the age-structured and homogeneous population of a fast organism (higher fertility and mortality
rates), physiological costs of reproduction have a weaker effect than for a slow one. Indeed, the physiolog-
ical costs lack the temporal room for manoeuvre that allows to efficiently buffer variations in reproductive
effort (see chapter 1 section 1.2.1). From a sensitivity analysis perspective, this weakness of physiological
costs is reflected in the steepness of the selection gradient curve by age (the decrease of the sensitivity of λ
to fertility rates by age of an age-structured organism is universal (Hamilton, 1966; Baudisch, 2005)). In a
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fast organism, this curve is steeper than for slower ones, as illustrated in figure 3.4. Indeed, we know from
section 3.4.2 and in particular figure 3.2 that physiological costs reduce that incline. This steepness of
selection gradients will then, according to the antagonistic pleiotropy theory devised by (Williams, 1957),
invite alleles with faster strategy. This mechanism will therefore (temporarily) increase the genetic vari-
ance in allocation strategy in the population: genetics costs of population would emerge. This increase in
variance would be mainly unidirectional however - genotypes allocating more towards reproduction would
be easily accepted in the population. This trend towards a faster mean strategy in this - now heterogeneous
- population, would in turn make the physiological even weaker. As a matter of fact, the compounding over
evolutionary time of this process - where steep gradients invite faster alleles with even steeper gradients -
would surely lead, after after a period of augmented genetic variance, to the collapse of heterogeneity: all
individuals are semelparous, a strategy on which physiological costs do not exist (see Bell, 1984).

Conversely in a slow organism, physiological costs would have a strong effect on the gradients (fig-
ure 3.4). This influence may lead to a selection gradient that is flat enough, with regard to genetic
drift/selection balance, to prevent the proliferation of alleles of alternative strategies in the population.
Simply put, the strength of physiological costs, caused by the slow original strategy in the population,
prevents the emergence of genetic costs.

This dichotomy - when physiological costs are weak, genetic costs can emerge and vice versa - is akin
to Williams (1957)’s implication that the life-history scenarios favoring the emergence of senescence via
AP (steepness of gradient) may be different from the scenarios actually showing (actuarial) senescence
(the negative correlations caused by physiological costs).Our analysis actually goes one step further, as it
seems to imply, at first sight, that genetic and physiological costs of reproduction are mutually exclusive.
Physiological costs prevent the emergence of genetic costs. The framework of genetic costs -the steep se-
lection gradient - favors in time the emergence of organisms on which physiological costs have no effect.

This saddle point is however unsatisfactory from an ecological point of view. All fast organisms are
not doomed to become semelparous, and within slow organisms there is inter-specific variance in slow-fast
strategies that one would expect to also find intra-specifically (see Nilsen et al., 2009). The deficiency
of the above approach stems, we think, from the absence, in a deterministic selection gradient analysis,
of one crucial factor : stochasticity and within stochasticity, chiefly, environmental variance. As we have
discussed in chapter 1 (see, for instance, section 1.4.2), we expect genetic and physiological costs of repro-
duction to be key components of the adaptability of organisms to their varying environment. They buffer
the environment with differing time horizons of effects: generation time for physiological costs, evolution-
ary time for genetic costs. It is the environment, for instance, that can positively select slower genotypes in
a population end thus, acting together with AP, enlarge the genetic variance in strategies bidirectionally.
And the strength of physiological costs for slow organisms can then be interpreted as a way to compensate
the absence of effect of genetic variance within individuals’ long life-trajectories; in other words, as a spare
environmental buffering mechanism.

As a consequence, in order to progress in our interpretation of the evolutionary consequences of selection
gradient reduction by the physiological costs, we need to add stochasticity to the deterministic tool that
is the selection gradient - yielding the effective selection gradient concept of section 3.4.3 - or to use
approaches readily integrating fitness stochasticity, like the stochastic growth rate (section 3.4.4)

Effect of heterogeneity

In this section, we aim at extending the analysis of the effects of heterogeneity on selection gradients,
initiated in chapter 2 (p.41). These effects are not evolutionary per se as selection works at the level of
genotype. However, the selection gradient approach combined with the trait level analysis generate an ade-
quate framework to study the potentially deleterious effect of genotypic polymorphism on the detectability
of physiological costs of reproduction that we have theoretical analyzed in chapter 1 (section 1.2.3 p. 22).
Via Trait Level Analysis we can fold M , the(age-parity-heterogeneity)-MPPM, over heterogeneity to gen-
erate Ma,p, and then over parity to generate Ma.

Overall fitness of the population is preserved by folding (a key property of trait level analysis, see
chapter 2 (p.41)), and therefore we can compute the selection gradients of population modeled by Ma,p
and Ma(section 3.3.1). From these folded matrices also, we can infer vital rates as we did in section 3.4.1.
Aware of the ambiguity of the interpretation of fertility rates in Ma,p(see section 3.0.4), we decide that
they are to be found on the first line of the matrix, where they are categorized by age and parity.

In order to understand the effect of heterogeneity on these gradients and on these inferred fertility
rates, and therefore on the detection of the costs, we compare two heterogeneous populations (fig. 3.5).
Population A (fig.3.5a,fig.3.5c) is constituted of genotypes G1 and G2, and population B (fig.3.5b and
3.5d) is constituted of genotypes G1 and G3. All three genotypes are iso-fitness and differ by their posi-
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Figure 3.4: selection gradient measured by the elasticity of ergodic growth rate to fertility
rates,summed by age, for three genotype models G1 G2 and G3 modeling an (age-parity) pop-
ulation with physiological costs of reproduction. The population has maximum age ω = 15 and
age-at-maturity α = 5. The zero-parity fertility and survival rates of M1 are 0.85. Fertility rate
is 0.98 and survival rate 0.83 for G2 modeling an alternative genotype with higher early fertility
but reduced late fitness.Fertility rate is 0.23 and survival rate 0.98 for G3 modeling an alterna-
tive genotype with lower early fertility but improved survival. All three models have same fitness
λ = 1.055. Cost of reproduction is modeled by relatively decreasing each vital rate by 1/(1 + ω − α)
per parity.

tion on the Slow Fast Continuum. Genotype G1 is central (zero-parity fertility and survival rates of 0,85
and 0,85) . G2 is a little faster (0,98 and 0,83) and G3 much slower (0,23 and 0,98). Therefore these
two populations can be considered to display physiological costs of reproduction with genetic basis. The
physiological costs are implemented by parity, the genetic costs by the cohabitation of different allocation
strategies. With respect to that variance in allocation however, population B is much more heterogeneous
than population A. For these two populations, we thus display the selection gradient (of M ,Ma,p et Ma)
on fig.3.5a-3.5b and the inferred fertility rates (for Ma,p) on fig.3.5c-3.5d.

We can see on fig. 3.5a-3.5b that selection gradient for the models folded over heterogeneity (Ma,pand
Ma) are higher than those of the full models, M ; with differences varying massively between less heteroge-
neous population A and more heterogeneous population B. This hints at the fact that, when heterogeneity
is not taken into account, the costs of reproduction detected are smaller (population A) than reality (selec-
tion gradient forMa,pis in between those for M and Ma,p) but can also be reversed for very heterogeneous
populations (population B) as can be seen from the selection gradient for Ma,p being even higher than
for Ma.

This is confirmed by comparing inferred fertility rates by parity of Ma,p for population A (fig. 3.5c)
and population B (fig. 3.5d). Whilst at the level of each genotype the fertility-parity relationship is,
by construction, exactly linear: fertility rates are independent from age and decrease linearly from the
zero-parity rate to zero. At the level of the populations, this relationship generally seems to hold for
population A with however slightly weaker observed costs of reproduction (fertility rates decrease less for
age classes 7 and 11 than for age class 15, which is almost exclusively occupied by G1. This is not at all
the case for very heterogeneous population B, where observed costs of reproduction are, for some parity
classes, even reversed : 11-years old have increasingly higher fertility rates as parity increases from 2 to
4. This phenomenon is due to a gradual shift in genotype distributions by age classes. The slower geno-
types "realize" their (equivalent) fitness later than the fast ones, thus progressively invading the age classes.

This phenomenon is related to the deceptive effect of heterogeneity on perceived trade-offs famously
brought to light by van Noordwijk and de Jong (1986), but our structured model allows to deepen this
general detectability analysis. The natural extension of van Noordwijk and de Jong (1986)’s analysis to
an heterogeneous population corresponds to genetic variance in acquisition strategy (Houle, 1991). In sup-
plementary material section 5.2.2 (page 140) we display the selection gradient (fig. 5.3a) and the inferred
fertility rate (fig. 5.3b) for such a population with acquisition heterogeneity. Unsurprisingly, as the fitter
lineages, the super-flies of (Reznick et al., 2000), survive better, and thus progressively invade the age
classes, positive correlations emerge between fertility and parity, at low and mid parities.

Our structured model allows to go further as it shows (fig. 3.5) that a similar phenomenon can
derive from an heterogeneity that is purely allocative. We have indeed shown that the cohabitation of
several iso-fitness genotypes (that have therefore similar acquisition capabilities) - i.e., that genetic costs
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of reproduction - can also mask the underlying physiological costs of reproduction.

(a) (b)

(c) (d)

Figure 3.5: Selection gradient measured by the elasticity of ergodic growth rate to fertility rates,
summed by age for population A (fig. 3.5a) and population B (fig.3.5b) and inferred fertility rates
by parity for population A (fig.3.5c) and B (fig.3.5d). Population A is constituted of genotypes
G1 and G2 and population B of genotypes G1 and G3. Mutation rate is m = 0.3. The inferred
fertility rates are obtained from each model folded on heterogeneity. Both populations are modeled
by (age-parity-heterogeneity)-MPPMs with physiological costs of reproduction, with maximum age
ω = 15 and age-at-maturity α = 5. The zero-parity fertility and survival rates of G1 are 0.85.
Fertility rate is 0.98 and survival rate 0.83 for G2 modeling an alternative genotype with higher
early fertility but reduced late fitness. Fertility rate is 0.23 and survival rate 0.98 for G3 modeling
an alternative genotype with lower early fertility but improved survival. All three genotypes have
same fitness λ = 1.055. Cost of reproduction is modeled by relatively decreasing each vital rate by
1/(1 + ω − α) per parity.

3.4.3 Effects of physiological costs of reproduction on σ2
LRO and effective

size
In previous section 3.4.2, we have studied the effects of physiological costs of reproduction on the force of
selection on expected vital rates. However, the stochastic realizations of these vital rates, as they combine
with the fertility-parity trade-off, also have repercussions on fitness, and in particular its variance. This
fitness variance can either be measured by the exact calculation of the variance in lifetime reproductive out-
put σ2

LRO or by demographic variance σ2
d the infinitesimal variance of individual contributions to growth

rate. These two measures are projections in the dimension of individual variance, of the two main fitness
measures R0 and λ and, for the same reasons mentioned in section 3.2.3, often correspond to different
research areas.

In appendix section 3.0.5 section we try and reconcile these two concepts in the case of age-structured
populations, and disclose their equivalence for stationary populations.

In this section, we shall focus on σ2
LRO as it was until the recent advent of stochastic growth rate

studies, the key measure of individual variance in evolutionary demography, and in particular with respect
to its evolutionary consequences on effective population size. We will briefly discuss σ2

d in following section
3.4.4.

81



Chapter 3 – Evolutionary consequences of physiological costs

However, investigating the impact of the costs on the variance of reproductive success only makes sense
if the effect on the expectancy of that quantity - R0 - is known. In other words, if we know R0 [Ma],
R0 [Ma,p] and R0 [Ma,h] as functions of R0 [M]. Because, by construction λ is preserved by folding, this
step is not necessary when investigating σ2

d and σ2
e (as we will do in next section 3.4.4), but necessary for

σ2
LRO. Intuitively we expect R0 to be preserved by folding. This is however, in general, not the case

(see supplementary material 5.2.3 page 140). However we show, in appendix 3.0.6, that, for multitrait
models implementing age, folding over other traits than age does preserve the net reproductive rate, thus
encompassing, in the evolutionary neutral framework of Trait Level Analysis both λ and R0 . As we now
know that R0 [Ma] = R0 [Ma,p] = R0 [Ma,h] = R0 [M], we can now turn ourselves to the study of the
effects of the costs on σ2

LRO.

Physiological costs of reproduction lessen σ2
LRO

We have just analyzed the buffering effect of physiological costs of reproduction with respect to the deter-
ministic mean vital rates at the population level (in previous section 3.4.2). We have already observed
that this buffering effect is also at work at the level of each individual when comparing the distribution
of time spent in the different parity classes between (i) the full (age-parity)-model implementing the costs
and (ii) the folded ergodic-equivalent model Mfold

parity = M∗ in which they are absent (figure 3.3 page 78).
In this section, we will focus on this distribution at age-at-death, i.e. on the lifetime reproductive output
LRO. In particular, we will aim our attention at the second moment of this distribution, σ2

LRO, in order
to bring to light the patterns of the effects of physiological costs of reproduction on individual trajectories.

In appendix section 3.0.7, we formally demonstrate (eq. 3.53) that costs of reproduction reduce σ2
LRO.

Indeed we show that σ2
LRO [M]− σ2

LRO [M∗] ≤ 0, by focusing on the parity distributions, at stable-state,
in the successive age-classes in both models. If M ’s transitions are known, this result can be easier ob-
tained by using the sensitivity matrix-based calculations of the demographic variance (when given a specific
model, see supplementary material section 5.2.4) and the σ2

dσ
2
LRO equivalence (see appendix section 3.0.5).

With this equivalence in mind, the easiest way to confirm the intuition that costs of reproduction lower
the variance in reproductive output, is however, simply, to consider the general formula of σ2

d (equation
3.18, p.73) for both M and M∗, but in a way where M is only characterized by age. In other words, this
means, that instead of using the general MPPM framework, where in the full model {M, s,F ,S} where all
traits are incorporated in M , and thus the stochastic processes for different states are independent (which
allowed to simply equation 3.18, p.73, into equation 3.21, p.74), the complexity of the other traits than age
is tranfered from the matrix to the stochastic processes. In that framework, by properties of Trait Level
Analysis, M = M∗. By applying eq. 3.18 to M , and eq. 3.21 tp M∗, we get :

σ2
d [M]− σ2

d [M∗] ≈ λ−2.N.
∑
a1<a2

∂λ

∂M1,a1

∑
l={1,a2+1}

∂λ

∂Ml,a2
.Covd(M1,a1 ,Ml,a2 )

As the realization of fertility at age a1 decreases the probability to reproduce (M1,a2) and survive (Ma2+1,a2)
at age a2 > a1 (as it increases p, in both thf f(a, p) and s(a, p) formulas, see section 3.2.1), we get :
σ2

d [M] − σ2
d [M∗] < 0. And therefore, as predicted in chapter 1, physiological costs of reproduction buffer

individual stochasticity.

To better understand the effects of physiological costs of reproduction on σ2
LRO we plot in figure 3.6, for

a range of zero-parity fertility and survival rates (and maximum age ω = 5), the difference in variance for the
model with (M ) and without (M∗) the costs. Figure 3.6a depicts the difference in variance - σ2

LRO [M]−

σ2
LRO [M∗] - and figure 3.6b the difference in coefficient of variation,

√
σ2
LRO

R0
[M] −

√
σ2
LRO

R0
[M∗]. For

references we also plot the σ2
LRO [M∗] in fig. 3.6c and the iso-fitness curves (for both λ and R0 ) on the

zero-parity rates map (fig 3.6d).

The first observation, is that the costs reduce variance (fig.3.6a) and coefficient of variation (fig. 3.6b)
of LRO. The first, we have discussed above and formally demonstrated in appendix 3.0.7. The second
ensues from the first, as R0 is preserved by folding in such models (see section 3.0.6). The second ob-
servation, is that the effects of the costs on σ2

LRO (fig.3.6a), follows the general shape of σ2
LRO itself (fig.

3.6c), on which we shall now take a closer look.

The shape of σ2
LRO as a function of zero-parity rates f and s - which exact formula, equation 3.5

(page 70), we have computed in section 3.3.2) - reveals that it results from the combined effects of three
parameters. First, the variance in fertility rates at each age, V ar(F∗a) = f∗a (1− f∗a ) , which is the engine
of the variance in LRO and confers to the latter, the x(1− x) shape of the former, along the zero-parity
fertility rate axis. The importance of V ar(F∗a) for late ages however requires survival (Pi in eq. 3.5),
and thus the increase in σ2

LRO as survival increases. At the same time, as age increases, on average f∗a
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(a) (b)

(c) (d)

Figure 3.6: For (age-parity) models (differing only by their zero-parity vital rates) and their related
reference leslie matrices, we plot the difference in variance 3.6a and coefficient of variation 3.6b of
reproductive output between the model (implementing physiological costs of reproduction) and its
its reference leslie model with no trade-off implemented. The variance in reproductive output for
the reference leslie model is also displaid fig. 3.6c. The value for each combination of zero-parity
vital rates of fitness measures, R0 and λ are represented on fig 3.6d. The population has maximum
age ω = 5 and age-at-maturity α = 1. Cost of reproduction is modeled by relatively decreasing
each vital rate by 1/(1 + ω − α) per parity.
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decreases because of the costs. Therefore even very high zero-parity fertility rates (conferring no variance
in Fa at early ages) will at late ages generate variance. Hence, the asymmetrical x(1 − x) shape at high
survival rates, across fertility rates. Finally, survival does not only act as a promoter of variance in fertility,
but as a stochastic process itself - si(1 − si) in eq. 3.5 - which explains the decrease in the variance as
survival reaches its maximum levels. These last two effects, explain why in our model, the maximum σ2

LRO
is attained by organisms with zero-parity (survival, fertility) coordinates of (s = 0.94, f = 0.64).

This general shape - the x(1−x) pattern on zero-parity fertility axis and general increase with survival-
is preserved when switching from σ2

LRO (fig.3.6c) to σ2
LRO [M]− σ2

LRO [M∗] (fig.3.6a). This is due to the
difference being a linear function of variance itself, as shown in equation 3.52 (appendix 3.0.7 page 3.52).
However this equation also shows the difference in variance to also linearly depend on survival and fertility.
This explains why the difference in variance between models with and without the costs (fig.3.6a) increases
with survival even at high survival rates, and is flat at very low survival rates. These patterns are preserved
when correcting for R0 , i.e. for high fertility and survival rates, as can be observed from the differential
in the coefficient of variation (fig.3.6b). Logically both the exponential increase with survival and the the
asymmetrical effect for high fertilities disappear. These observations demonstrate the prediction made in
chapter 1, than even though very short-lived or semelparous organisms (i.e., with s ≈ 0) exhibit variance
in reproductive success (fig 3.6c), the costs of reproduction does not affect it (figs 3.6a and (fig 3.6b)) and
that the effects of the costs will increase with iteroparity/longevity.

From an evolutionary life history perspective however, considering organisms with very different fitness
(the iso fitness curves for R0 and λ are represented on figure 3.6d) does not make a lot of sense. However,
from the statistics of figure 3.6 for all possible zero-parity vital rates, we can extract the combinations
that are iso-fitness. In figure 3.6d, we represent, for each possible zero-parity fertility rate, first, the corre-
sponding zero-parity survival rate for a fitness of λ ≈ R0 ≈ 1 (grey curve, right y-axis). Second, for each
such pair of coordinates, we extract the variances in LRO for each model (blue curves, left y-axis), and
the difference (red curve, left y-axis). This specifies the general conclusions drawn above when considering
organisms that are iso-fitness (here all organisms have stationary growth rate, and therefore R0 worth
unity). The variance in reproductive success requires both variance in fertility and survival and is therefore
maximal for intermediary values of f and s, but survival is also required to promote late fertility, and this
pushes smax higher and therefore fmax lower than the point of equal coordinates (f = 0.54, s = 0.54).
As expected, because of the costs of reproduction, this is less true for M , for which smax is lower and
therefore fmax higher than for M∗. To the contrary, the differential in variances between the two models
(red curve), is maximal for the maximum possible survival rate s = 1 and its related zero-parity fertility-
rate f ≈ 0.22. In other words, this result shows that whilst the effect of individual stochasticity is not a
monotonous function of the pace of organisms as measured by their position on the slow-fest continuum,
the effects of costs of reproduction on such individual stochasticity increase with pace and are maximum
for slow organisms.

Figure 3.7: For all combinations of zero-parity vital rates yielding an ergodic growth rate 1−ε ≤ λ ≤
1+ε (with ε = 0.01),for each zero-parity fertility rate, the related zero-parity survival rate, and the
variance of reproductive output for the model (implementing physiological costs of reproduction)
and its its reference leslie model with no trade-off implemented and their difference;The population
has maximum age ω = 5 and age-at-maturity α = 1. Cost of reproduction is modeled by relatively
decreasing each vital rate by 1/(1 + ω − α) per parity.

Adding heterogeneity into the mix raises questions with regard to the cross-effects of the costs and het-
erogeneity on the variance in reproductive success of the overall population and of the relative importance
of heterogeneity and stochasticity as components of σ2

LRO for populations with and without the costs. In
appendix 3.0.8, we demonstrate that costs of reproduction and heterogeneity act independently on σ2

LRO
and in particular that the heterogeneity component of the variance in lifetime reproductive success is un-
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affected by costs : σhet
LRO

2 [M] = σhet
LRO

2 [M∗]. We also show that, whilst the costs of reproduction increase
the heterogeneity portion of σ2

LRO (as it remains constant whilst stochasticity is reduced), it remains very
low with comparison to the principal generator of demographic variance: individual stochasticity.

Demographic variance and effective size

In the field of population genetics, the effective size, Ne, corresponds to the size of an ’ideal’ population
yielding the same rate of genetic drift (Wright, 1931) than the ’real’ population of total size N . The ’ideal’
population of population genetics is a stationary population of diploid individuals with non-overlapping
generations and where all individuals in the current generation have the same probability of being the
parent of each individual in the next one. This characteristic implies that, in the ideal population, each of
the Ne adults has probability p = 1

Ne
of being parent of each of the Ne offspring. The expected LRO of a

parent is therefore the sum of Ne independent Bernoulli processes of parameter p, that is, by the Poisson
paradigm, a Poisson law of parameter

∑Ne
i=1 p = 1. Therefore, a variance larger (respectively lower) than

1 - or, more generally for non-stationary populations, than the mean - implies conversely a non-Poisson
family size, and thus a non-random distribution of parents. This implies an increase (resp. decrease) in
genetic drift rate, and therefore a smaller (resp. larger) effective size Ne < N .

By definition, the effective size of a population thus determines the strength of genetic drift. It also
determines the increase in inbreeding coefficients and the effectiveness of selection: the fate of an allele, of
selection coefficient s in a population of effective size Ne, is provided by the effective selection coefficient
s.Ne which combines both the effect of selection (s) and the effect of variance of reproductive success on
genetic drift (through Ne). The effect of demographic variance on effective selection has also been studied
directly. First, by Gillespie (Gillespie, 1974, 1975), showing the selective advantage of reduced variance in
offspring number; and later many others (see, for instance, Shpak, 2005, 2007; Giaimo, 2014).

An age-structured population model - represented matrixwise by a Leslie matrix - infringe many laws
of Wrightean ’ideal’ populations. The population it models is made of haploid individuals, which number
of offspring is not a Poisson and which generations overlap. Moreover the growth rate of such models is
allowed to deviate from the stationarity of the population genetics ’ideal’ population. The effective size
of such age-structured populations has been extensively studied by Felsenstein (1971), Hill (1979, 1972)
and Nomura (1996) but our study is not so much about the absolute effect of trait age on effective size as
about the relative effect of trait parity, embedding the physiological costs of reproduction, and its folding
upon, in an age-structured population.

The allele frequency variance - the engine of genetic drift - is, in an haploid population, Vp ≈
p(1 − p)σ2/N . From this, Engen et al. (2005a) demonstrates that for age-structured populations the
effective size can be approximated by Ne = N

σ2
d.T

where T is generation time. From the equivalence be-
tween σ2

LRO and σ2
d established in appendix 3.0.5, we can consider that Engen et al. (2005a)’s result is

a generalization of Hill (1972)’s effective size formula for age-structured stationary populations Ne = Nb̄T
σ2
LRO

.

Thus, in all cases, the reduction of demographic variance caused to the fertility buffering effect of
physiological costs of reproduction implies that costs of reproduction increase effective size. In other words,
the Ne of an age-structured population is underestimated when the costs are not accounted for. Compared
to an asymptotically equivalent population without costs of reproduction, the population with the costs is
therefore less prone to genetic drift and more to selection. This is all the more important to consider when
modeling age-structured populations of small sizes. This result also implies that inbreeding coefficient will
increase less in the population with physiological costs of reproduction. From a kinship demography point
of view, finally, this difference between the two models in variance of family sizes hints at the fact that the
entire kinship distribution in the stable-state population will be vary.

The reducing effect of the costs on selection gradient (section 3.4.2) now needs to be revisited in the
light of their concurrent positive effect on selection effectiveness. To do that we devise the following
effective selection measure, we call variance-effective selection gradient, 1

σ2
LRO

∂λ
∂fa

, that allows to compare
selection gradients between models with differing σ2

LRO. As we can see in figure 3.8, representing the
variance-effective selection gradient for the same ergodic-equivalent models with and without for which
the absolute selection gradient were plotted in fig. 3.2, the reducing effects of the costs on demographic
variance does not necessarily obliterate their weakening effects on the force of selection.

In some cases however the variance-effective selection gradient for fertility at age a is actually increased
by the implementation of physiological costs of reproduction. To measure this effect, we have calculated for
a range of models, varying in maximum age ω in {2, 7, 12, 17}, age-at-maturity α in {1, 5, 9}, in zero-parity-
fertility f(α) in {0.2, 0.4, 0.6, 0.8, 1} and in zero-parity-survival s(α) in {0.2, 0.4, 0.6, 0.8, 1}, the ratio, at
α of variance-effective selection gradient between M∗ the ergodic-equivalent model without any cost and
the full model M with the costs, and : σ2

LRO
σ∗2
LRO

∂λ
∂f∗a

∂fa
∂λ

. Among these 4 × 3 × 5 × 5 = 300 models, 24 had
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Figure 3.8: Effective size-scaled selection gradient measured by the sensitivity of ergodic growth
rate to fertility rates,summed by age divided by variance of reproductive success, for M modeling
an (age-parity) population with physiological costs of reproduction and Maits reference Leslie
matrix, which is M folded on parity, modeling the same population but characterized only by age.
The population has maximum age ω = 15 and age-at-maturity α = 5. The zero-parity fertility and
survival rates are 0.85. Cost of reproduction is modeled by relatively decreasing each vital rate by
1/(1 + ω − α) per parity.

a variance-effective selection gradient ratio below 1, and the 12 models with the lowest ratio values are
presented (by increasing value of this ratio) in table 3.1. As we can see, all models for which the effective
selection gradient is increased by the costs of reproduction correspond to long-lived organisms (high ω
and maxmial zero-parity survival), with long reproductive periods (low α), and among this group to those
with central zero-parity fertility (which we know, since previous section 3.4.3, maximizes the reduction of
variance in reproductive success).

The mechanical explanation for such a phenomenon is simple. The buffering effect of physiological
costs of reproduction needs individual stochasticity at each time-step, i.e. a fertility rate with maximum
variance (f(α) ≈ 0.5). It also needs time (high ω, low α) and life (s(α)) to efficiently buffer this individual
stochasticity. These characteristics are reflected in the difference in demographic variance, and therefore
in Ne, but is not compensated by the ratio of selection gradients. This is because, for such organisms,
fertility selection gradients for the model M with costs are definitely very low, but not much lower that the
age only model M∗ with no costs. Indeed, the sheer longevity of these organisms already strongly buffers
fertility (Morris et al., 2008). Unrealized fertility events are not postponed, via promoted future rates like
in the case of the costs of reproduction, but irrevocably lost for the individual. However, the large number
of these fertility events means that failure at a particular time-step is much less costly than it would be for
a short lived or semelparous organism. Therefore, whilst further reducing the absolute selection gradients,
the physiological costs of reproduction will actually overall increase variance effective selection gradients in
long-lived organisms.

This results hints at a stabilizing role on AP - i.e., on genetic costs - for physiological costs of repro-
duction. Whilst in age-structured populations without costs, the selection gradient will vary massively
between fast organisms - with steep gradients fast inviting even faster alleles in the population - and slow
ones, which almost flat gradient incline seems to prevent any AP, we see that physiological costs of repro-
duction will smooth these differences, straightening the gradients of fast organisms and curve the gradients
of slow ones. This seems therefore to put away any question surrounding the disparity of selection gradients
among organisms’ life pace as ill-founded. Thanks to the physiological costs of reproduction, antagonistic
pleiotropy on fertility seems to work at a similar rate on all organisms, fast and slow, to which, in a
constant environment, it continuously provides faster alleles better suited to benefit from this constancy.

3.4.4 Effects of physiological costs of reproduction on environmental
stochasticity and stochastic growth rate

In this section, we shall further extend our analysis of the effects of physiological costs of reproduction
considering how they affect the stochastic growth rate of a population. Like the variance-effective selec-
tion gradient of the previous section, the stochastic growth rate lnλs of a population, has deterministic
component related to the mean vital rates, and stochastic components. This appears clearly in Engen’s
equation eq. 3.20 : lnλs ≈ lnλ− σ2

e
2 −

σ2
d

2.N .
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Table 3.1: Models with the 12 smallest values, in increasing order, for variance-effective selection
gradient - σ2

LRO
σ∗2
LRO

∂λ
∂f∗a

∂fa
∂λ - among 300 models with zero-parity vital rates ranging from 0.2 to 1, ω

ranging from 2 to 17 and α from 1 to 9

f(α) 0,4 0,4 0,2 0,6 0,6 0,6 0,4 0,8 0,2 0,8 0,8 0,4
s(α) 1 1 1 1 1 1 1 1 1 1 1 1
α 1 1 1 1 1 1 1 1 1 1 1 5
ω 17 12 17 12 7 17 7 7 12 12 17 17

σ2
LRO
σ∗2
LRO

∂λ
∂f∗a

∂fa
∂λ 0,64 0,65 0,69 0,70 0,71 0,72 0,76 0,79 0,80 0,81 0,83 0,87

Remaining in the general framework of the preceding section, with an (age-parity)-MPPM M implementing
the costs, and its related asymptotically-equivalent matrix, folded on parity, M∗ in which the costs are
absent, we wish to finalize the analysis by comparing lnλ∗s and lnλs.

By the principles of Trait Level Analysis we know that the deterministic growth rate is preserved by
folding, lnλ∗ = lnλ. Moreover from the previous section we know, that σ∗LRO = σLRO, hence, from the
equivalence in appendix 3.0.5, σ∗d = σd (the specific calculations of this difference, and that of σ2

e for a
given full model is provided in supplementary material section 5.2.4). The comparison of lnλ∗s with lnλs
therefore comes down to calculating σ∗d − σd.

Demonstration of σ2
e [ Mage,parity] < σ2

e

[
Mfold

age
]

In this section we shall formally express the environmental variance for model with and without physiolog-
ical costs of reproduction to calculate their difference. We will provide the calculations for an (age-parity)-
model with 2 age classes, and 2 environments. The computations can then be extended to any number of
age-classes and any number of environments.

Let p be the probability of the ’bad’ environment occurring at any time, and Mg and Mb the vital
rate expressions of the full model in each environment. Let them be M∗

g and M∗
b for the folded model.

For the full model, the mean-environment matrix M is worth M = (1− p).Mg + p.Mb which we can also
write vertically :vec(M) = (1− p).vec(Mg) + p.vec(Mb).

Now, from section 3.3.3, let us rewrite the environmental variance in matrix notation :

σ2
eλ

2 = 1′(Ŝ ◦ V̂)1 , (3.26)

where Ŝ is the symmetric matrix (of size q2 × q2,) of products of all pairs of sensitivities of entries of M :
Ŝ(i,j),(k,l) = ∂λ

∂Mi,j

∂λ
∂Mk,l

= Si,jSk,l = viwjvkwl, i.e.,

Ŝ = vec(S).vec(S)′ = vec(v.w′).vec(v.w′)′ , (3.27)

and where V̂ is the environmental variance-covariance matrix of size q2 × q2,

V̂ = p.vec(Mb).vec(Mb)′ + (1− p).vec(Mg).vec(Mg)′ − vec(M).vec(M)′ (3.28)

Then Mg =
[

f f 0 f/2
(1−f)s 0 0 0

0 0 0 0
fs 0 0 0

]
and M∗

g =
[
f f(1− f

2 )
s 0

]
computed, for the first one, thanks to the

parity-fertility formula of the costs Mg1,4 = f(1− 1
1+ω−α ) and, for the second one, from the principles of

Trait Level Analysis M∗
g = Mg

fold
age and in particular, the mean 2-year fertility is the transition-weighted

2-year fertility for both parities : M∗g1,2 = (1− f)f + f. f2

For the sake of simplicity, bad environment is here an environment that cancels any fertility event.

Then : Mb =
[

0 0 0 0
s 0 0 0
0 0 0 0
0 0 0 0

]
and M∗

b =
[

0 0
s 0

]
Then from 3.28, and with factorization we get :{

V̂ = p(1− p)f2.B
V̂∗ = p(1− p)f2B∗

(3.29)

, with intermediary matrices B (eq. 3.54) and B∗ (eq. 3.55) displayed in appendix 3.0.9.

The Ŝ matrices can be expressed via the eigenvectors and eigenvectors themselves can be expressed as
functions of w1 and v1 which are the relative abundance and reproductive value of the first age class of M∗.

87



Chapter 3 – Evolutionary consequences of physiological costs

By construction and because there is only one parity class at age 1, w1 is also the relative abundance of age
1, parity 0 class of M. And because this particular folding is a ’perfect aggregation’ (see chapter 2 (p.41)),
then wivi is preserved for each age class i. In particular this means v1 is also the scaled reproductive
value of age 1, parity 0 class of M1. Because age 2 individuals all come from the same state, we have
:w2,0 = (1−f)w2 and w2,1 = fw2. and because of the perfect aggregation :w2,0v2,0 +w2,1v2,1 = w2v2. But
the ratio of v2,0 to v2,1 is the ratio of their fertilities :v2,0 = 2v2,1. Thus, the perfect aggregation equation
becomes, v2,0 = v2/(1 − f/2) or v2,1 = v2/(2 − f). Moreover, the eigen.equations yield w2 = sw1/λ and
v2 = (1− v1w1)/w2. And thus all 4 vectors can be expressed as functions of v1 and w1.

w∗ =
(
w1 w1/λ

)
v∗ =

(
v1 λ(1− v1w1)/sw1

)
w =

(
w1 (s/lam)w1(1− f) 0 (s/lam)w1f

)
v =

(
v1 (2λ(1− w1v1)/(s.w1(2− f)) 0 (λ(1− w1v1)/(sw1(2− f))

) (3.30)

Then implementing these elements (eq 3.30) into eq.3.27, gives us Ŝ and Ŝ∗ which we can combine
with the expressions of V̂and V̂∗ (eq 3.34) we get from overall equation 3.26:{

σ∗2e λ2 = 1′(Ŝ∗ ◦ V̂∗)1 = p(1− p)f2w2
1v

2
1(1 + s(1−f/2)

λ
)

σ2
eλ

2 = 1′(Ŝ ◦ V̂)1 = p(1− p)f2w2
1v

2
1(1 + s(1−f/2)

λ
+ λ(v1w1−1)

(2−f)v1w1
)

(3.31)

This system of equation provides us with important information. First, as expected, the environmental
component of the growth rate variance is directly related with the environmental variance of the time series
: p(1−p). Second it is also directly related to fertility itself (unsurprisingly for such an environment which
effect is to cancel reproduction) and to generation time 1

v1w1
. Most importantly, it provides

σ2
e − σ2∗

e = 1′(Ŝ ◦ V̂− Ŝ∗ ◦ V̂∗)1 = p(1− p)f2w2
1v

2
1(λ(v1w1 − 1)

(2− f)v1w1
) (3.32)

As v1w1 = 1 − v2w2 ≤ 1, in all cases, the environment variance of the model with physiological costs
of reproduction implemented is lower than the one of its equivalent Leslie matrix. Therefore, we have
demonstrated that physiological costs of reproduction also buffer environmental variance. This effect on σ2

e

combined with the effect on σ2
d and the preservation of deterministic λ, yields :

lnλ∗s > lnλs (3.33)

Through its effects on both σ2
d and σ2

e the physiological costs of reproduction improve the stochastic fitness
of the population. We shall now illustrate this with a simulation.

Simulation of stochastic growth for model with and without costs

the model

In this section we will simulate the dynamics of the same initial population both via the model implement-
ing physiological costs of reproduction and via its asymptotically-equivalent folded model where the costs
are absent. We track a 5 year organism (ω = 5) that can produce one offspring every year, from the first
year of its life (α = 5).

We will use the environmental model setup in section 3.3.3 and used in previous section 3.4.4, with a
bad environment that prevents reproduction (nullifying all fertility rates but leaving survival rates identical
to these of the good environment) and occurring ε = 10% of the time. We want our mean zero-parity vital
rates to be 0.49 for fertility (at all ages for M̄ ) and 0.65 for survival (at all ages for M̄), implying an
asymptotic growth rate for M̄ of λ ≈ 1.02.

As described in section 3.3.3, for that purpose, we set the zero-parity fertility rate of M = Mg, the
"good" environment matrix at 0.49 × (1 + ε) = 0.539. This ensures that the relative difference in all fer-
tility rates between the desired mean matrix and the actual mean matrix is less than ε2 = 0.01, and thus
containing also the relative difference in ergodic growth rate between the two matrices (which actually is
maxeigs(M)−maxeigs(M̄)− = 0.004).

In order to preserve at best the mean growth rates between the models with and without costs (an
arbitrary choice), the folded models are obtained by folding their full versions according to the ergodic
abundance vector of the mean matrix, incurring slight differences between the growth rates and abun-
dances of the "good" environment matrices (0.008), but limiting the differences in mean matrices growth
rates (0.0008).
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Finally, we pick an initial population of 250 individuals which is, for our 5-year organism, large enough
so that individual stochasticity is not too strong a driver of the behavior of each population, obliterating
the influence of the environment, but small enough for its effects to be observable. The detectability is
enhanced by the use of one, common, environmental time series (where the environment at each time-step
is drawn at random with probabilities ε and 1 − ε) for all populations, in which each model (with costs
and without costs) will be run 5 times.

results The resulting graph is pictured in figure 3.9. It illustrates the result we have formally proven
in previous section 3.4.4: the stochastic growth rate is improved for the population with the costs (blue
curves) with respect to the populations without the costs (red curves). The physiological costs of reproduc-
tion, through they buffering effect on lifetime reproduction, limit the variance in fitness of a population,
and thus improves the stochastic growth rate, increasing the population’s resilience. This is due to the
combined effect of the costs on demographic and on environmental variance.

The effect on individual stochasticity can be visualized by the differences of trajectories for the various
seeds for each model (i.e. between the different lines of same color, as they correspond to the same model
in the same environmental series). The folded model M∗ (red curves) quickly generates a larger variance in
population numbers between the different runs (experiencing the same environment) than M (blue curves);
see at t ≈ 300.

The effects on environmental stochasticity, observable over time as environments unfold (dotted line),
are obvious at t ≈ 200 where a series of bad environments has stronger effects on the population with
physiological costs of reproduction, and then again at t ≈ 400 where a poor and sustained environment
pushes down numbers of all populations.

The combined effect of environmental and demographic variance brings about the extinction of 4 of
the 5 populations with no costs implemented, between t ≈ 380 and t ≈ 410. The unique remaining
population goes extinct later ( t ≈ 760 ), whereas all 5 populations with physiological costs of reproduction
implemented survive until the end of the simulation of 1000 years. These populations obviously suffer
also from environmental and demographic stochasticity: they stochastic growth rates are lower than the
deterministic growth rate resulting from the mean-environment matrices (black lines; the slight difference
between them due to the 0.0008 difference in growth rate discussed above accumulated over 1000 time-
steps). However, they have higher resilience than the populations from the ergodic-equivalent model
missing the physiological costs.

3.5 Discussion
This chapter consists in hinting at the first answers to the questions asked in chapter 1 thanks to the
MPPM framework developed in chapter II. In chapter 1, we saw that physiological and genetic trade-offs,
whilst having similar phenotypic manifestations (negative correlations between vital rates at different ages
for costs of reproduction, for instance) have very different mechanisms with differences at many levels
: level of action (individual vs population), location of mechanism (intermediate structure vs genotypic
level), time window of effect (generation time vs evolutionary time). However, despite these differences,
we noticed they were not mutually exclusive, and devised the mixed mechanism of physiological costs of
reproduction with genetic basis. This possible cohabitation of genetic and physiological trade-offs implies,
inter alia, that the life history scope of each of the two kind of trade-offs is not limited to the location
of its mechanism. Whilst we all know that genetic trade-offs have physiological effects, promoting certain
functions in certain lineages in the population and not in others, it should be equally obvious that physi-
ological trade-offs have evolutionary consequences.

The MPPM framework allows to implement - with the addition of dynamic and hidden heterogeneity
traits – both physiological and genetic trade-offs. Via the Trait Level Analysis, it permits to analyse the
evolutionary demographic repercussions of these trade-offs by folding the model on the trait incorporating
it. In the particular - but essential - case of costs of reproduction, such a model therefore enables the study
the cross effects of genetic and physiological costs and, above all, to measure the evolutionary consequences
of physiological costs of reproduction.

In the first section of this chapter, we start by devising a family of MPPMs able to model various pop-
ulations differing in their early-life fertility and survival rates, but all encountering the same physiological
trade-offs. The zero-parity vital rates, defining the life history strategy of the population, is reduced as
parity increases. This simple setup allows to incorporate the key elements of physiological costs of repro-
duction as discussed in chapter 1, with trait parity in the role of Ratchet Capital, and Fluctuating Capital
reduced to environmental effects. In case of heterogeneity in the population, i.e. if different genotypes with
different life-history strategies- iso-fitness or not – cohabit in the population, we show how to integrate
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Figure 3.9: Simulations on 1000 time-steps for populations modeled by good/bad environment
matrix pair (Mg/Mb) for populations with physiological costs of reproduction and (M∗

g/M∗
b) for

populations without physiological costs of reproduction. Environmental series has been computed
once for all simulations (environment is drawn at random each time-step, with probability ε = 0.1
to be bad). Then the simulation has been run 5 times for each matrix pair. In all runs, initial
population is 250 newborns. All matrices model populations with maximum age ω = 5 and
age-at-maturity α = 1. Mb (model used in good environment) and Mg (model used in bad
environment) are (age-parity)-MPPM with physiological costs of reproduction. Their zero-parity
fertility are 0.5390 and 0 and the zero-parity survival rate is 0.65. To these models correspond,
for the populations incurring no costs of reproduction, M∗

b (model used in good environment) and
M∗

g (model used in bad environment), which are Mb and Mg folded over parity, along the ergodic
abundance vector of M̄ = εMg + (1− ε)Mb

these elements to generate an (age-parity-heterogeneity)-MPPM that can incorporate physiological costs of
reproduction, genetic costs of reproduction and heterogeneity in fitness in the population.

In the second section, we describe current tools -for one trait model - and come up with new ones –
for multitrait models – to yield the key fitness measures of a population. First, whilst λ is preserved by
folding, this is not the case for its elasticity to fertility rates, the selection gradients, that we show how to
compute for a multitrait model. Second, as R0 is also preserved by folding such models (this is shown
in appendix 3.0.6), we show how to compute its second moment, the variance in lifetime reproductive out
σ2
LRO for age-structured populations (closed-form formula). We then formulate the use of Markov chains

with rewards in order to compute σ2
LRO for memory models and in particular for models embedding an

active dynamic heterogeneity trait (to implement a trade-off for instance) like parity in our family of mod-
els. Finally we show the steps to compute demographic and environmental variance for multitrait models.

We can now combine these fitness measures tools with the properties of Trait Level Analysis that
allow to fold a model implementing the costs over parity to generate an asymptotic-equivalent model
from which the costs are absent, to measure the demographic and evolutionary effects of physiological
costs of reproduction. First, by extracting the vital rates from the Leslie reference matrix of an (age-
parity-heterogeneity)-MPPM, we show the mechanical role played by physiological and genetic costs of
reproduction on the shape of mortality and fertility curves represented by age only.

Second, we show that physiological costs of reproduction reduce the fertility selection gradient. This
result highlights the buffering effect of the costs on fertility stochasticity (described in chapter 1) whereby
the increase of realization probability of a particular fertility event would have limited positive effect on
λİndeed, it would set individuals on higher parity trajectories with therefore reduced future vital rates.
By considering the selection gradients of the matrices folded on parity, heterogeneity and both, we can
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extend the results from van Noordwijk and de Jong (1986) and Houle (1991) and show that the variance
in allocation strategy itself might prevent detectability of the allocative costs.

Surprisingly, the overall decrease in selection gradients caused by physiological costs of reproduction,
seems to imply, contrary to our expectations from chapter 1, that physiological and genetic costs might not
cohabit in organisms. Physiological costs, if present, would flatten the selection gradient, preventing the
invasion of different life-history strategies in the population, whilst if absent the steep curve of the gradients
would, according to Williams (1957)’s antagonistic pleiotropy theory, invite faster alleles in the population.

This puzzling result is contrasted by the analysis of the effects of physiological costs of reproduction on
the variance in reproductive success, which strongly reduced by the costs as expected from chapter 1. We
show moreover that this effect is stronger for long-lived individuals, for which, even along an iso-fitness
continuum, the decrease in variance caused by the costs is maximal. Via the role played by the variance
in reproductive success on the effective size of a population, this results has important consequences on
efficient selection. This prompts us to revisit the results stemming from the calculation of the absolute
selection gradient and introduce the variance-effective-selection gradient that scales the absolute selection
gradient by the inverse of σ2

LRO. When considering this efficient selection measure, we realize that, whilst
the net effect of the costs is still a reduction for most models used in this chapter, for very slow organisms
the variance-effective-selection gradient is increased by the physiological costs of reproduction. This hints
at the fact that the seemingly very large differences in gradients between short (very steep gradients) and
long-lived (much flatter gradients) organism, when structured and analysed by age (only), with its corollary
exponential invasion of faster alleles for already fast organisms, may be an artifact of models forsaking the
implementation of trade-offs.

In the following section, we consider another measure that, like the variance-effective-selection gradi-
ent, combines both the deterministic and the stochastic effects of the costs: the stochastic growth rate.
We know that Trait Level Analysis preserves λ. We showed that costs reduce σ2

LRO it therefore reduces
demographic variance by their equivalency (appendix 3.0.5). In that section, by formally proving that
physiological costs of reproduction also buffer environmental variance, we establish that they, in all cases,
increase the stochastic growth rate. To illustrate this, we have simulated the fate of populations mod-
elled by the two ergodic-equivalent matrices with and without the costs, in the same environments. The
effect of the costs on environmental variance can be observed by comparing the populations between the
two models. The effect of the costs on demographic variance can be seen by comparing the variance in
trajectories within the populations (sharing the exact same mean parameters) of the same model. The
combination of both effects provides a better resilience to the model with physiological costs of reproduction.

This relatively simple MPPM model therefore yields several important results, in the light of senes-
cence theories. It highlights the general buffering effects of the Disposable Soma Theory on environmental
and demographic variance and its beneficial impact on stochastic fitness. However it also shows that the
allocation process at the core of DST is not the only mechanism able to buffer life-history. The sheer
longevity of certain organisms, and by then the spreading of their reproductive schedule, already reduces
the importance of single fertility events. And therefore the Disposable Soma theory seems to act as a
regulator of the strength of the Antagonistic Pleiotropy theory, which, in turn, may hint at a combined
role in inviting and filtering the variance in life history strategies in a population.

From a methodological point of view, this chapter also highlights the strong limitation of life-history
models structured by age (only). It is often argued that these models are ideal to study populations for
which age is the main determinant of life history. However this paradigm, we have shown here, has to
be moved beyond. First because trade-offs are a key component of life history and that, to be imple-
mented, a trade-off needs at least two traits to lean on. Second, because age is only the best predictor
of vital rates as it already encompasses the trade-offs. We showed, in section 3.4.1, how a model where
vital rates do not depend on age, can seem to be strongly age-driven when folded on the physiological
and genetic trade-offs. Whilst using only one trait, partially incorporating, by linkage the underlying
trade-offs (and thus seemingly life history determinant) will generally provide appropriate results with
respect to population dynamics and demography, it will generate poor results from an evolutionary de-
mography viewpoint. This can be readily ascertained by any empiricist when comparing the variance in
reproductive success inferred by the Leslie matrix of her/his studied organism with the actual number.
We show, in this chapter, that this discrepancy is only one in many consequences of interpreting age-
structured models without understanding the effects of the simplification. The effect on selection gradients
is another. It could therefore be argued that the addition of a 2nd trait on an age-structured model is as
key to understand the life history of an organism from an evolutionary perspective, than the addition of
the 1st trait (age) on a non-overlapping generation model is from a demographic viewpoint. In general,
this prompts us to revisit general results stemming from one trait analyses. For instance, Charlesworth
(1980) demonstrated that the age-structure of population has little impact on their population genetics.
Would that result hold when a 2nd trait, implementing a constraint, is added to the age-structured model ?
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In this chapter, we implement key elements of costs of reproduction as identified in chapter 1. How-
ever, for simplicity, many specific components, the combination of which make up the vast diversity of
costs of reproduction in nature, were left aside. This is the case, for instance of the storage capacity,
stor, which positions organisms on the income-capital breeding continuum according to their ability to
save some of the resources they acquire from the environment (forsaking stor in our model, allows to
implement FC from the environmental matrices directly). This the case also of the reproductive effort
schedule res which represent the time distribution of effort required to produce an independent offspring.
In the model of this chapter, we equate reproductive effort and fertility event. However, in most organ-
isms, reproductive efforts start before birth (e.g., mating, gestation) and continue after (e.g., lactation).
Post-natal care can be protracted, especially in social species where it takes the name of parental care.
We hinted, in chapter 1 (section 1.3.2 page 34), at a way to implement an extended reproductive effort
schedule in general, and parental care in particular, by adding extra dynamic heterogeneity traits to the
model trait structure. These “buckets” would segment the reproductive effort schedule, and only when the
last “bucket” is filled would a new independent offspring be deemed to appear in the population. Further
extending parental care to kinship care is a natural step. When an adult male human takes time and
spends money to care for his grand-children, his nephew or his pregnant sister, he can be considered to
be promoting the future reproductive value of his genotype, at the cost of current reproduction. Stretch-
ing Williams (1966)’s definition of the costs of reproduction to include kinship care may be frowned upon,
but the analogy of principles implies an analogy in potential models that we shall evoke in the next chapter.

Whilst it seems that kinship may be added as an input to the evolutionary model framework of MPPMs,
section 3.4.3 shows us that it is an (overlooked) output of any structured model. We showed here the effect
of the costs on variance of reproductive success, or family size as Hill (1972) calls it, but the kinship
consequences of the structure of a population extend far beyond that measure to include all distributions
of kin. The combined study of the kinship input and output of structured populations, we call kinship
demography, will be the topic of the next short chapter.

3.6 Appendices

3.0.1 Note on the number of life trajectories inferred by a Leslie matrix
For an age-structured population, with maximum age ω, and all fertility f and survival rates s strictly
comprised between 0 and 1 with the maximum of number of offspring per time-step at 1 (i.e. F is Bernoulli)
we can compute different individual lifetime trajectories. Survival trajectories are blind to fertility and
therefore only differ by age-at-death. Reproductive trajectories consist of the sequence of reproductive
realization over life, but are blind to longevity. Finally lifetime trajectories, per se, consider both survival
and fertility events and therefore individuals of the same lifetime trajectory have both the same survival
and reproductive trajectories. For such a Leslie matrix, there are therefore ω possible survival trajectories
corresponding to all longevities between 1 and ω. For the survival trajectory of length i, 1 ≤ i ≤ ω, there
are as much as i possible fertility events, hence 2i possible different sequences. In total therefore, there are∑ω

i=1 2i = 2ω+1 − 2 different individual lifetime trajectories allowed by the model.

3.0.2 Computation of σ2
LRO for an age-structured population

In an age-structured population, with n age classes (rendered by a n×n Leslie matrix), let fertility process
at age i be Fi of expectation fi and survival process Si of expectation si (then sn = 0). Let Pi =

∏i−1
k=1 si

be the probability to survive to age i (then Pn+1 = 0 and we let P1 = 1 ). Then let us define

yi = 1
Pi

n∑
j=i

fjPj (3.34)

which represents the expectation of LROi, the remaining reproductive output for an individual aged i
(and alive at that age): yi = E(LROi). Therefore we have y1 = ELRO = R0. Similarly let us define vi
the variance of LROi : vi = V ar(LROi). Then vi = LRO = σ2

LRO is the quantity we are looking to
compute. The series of vi can be computed backwards :

{
v(n) = V ar(Fn)
∀ 1 ≤ i < n v(i) = V ar(Fi) + V ar(Si × LROi+1) (3.35)

Now, if the population is structured only by age, then all vital processes can be considered independent,
and thus eq. 3.35 is equivalent to :
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{
v(n) = V ar(Fn)
∀ 1 ≤ i < n vi = V ar(Fi) + y2

i+1si(1− si) + vi+1.si
(3.36)

We can multiply all four sides of equation system 3.36 by Pi and, by letting αi = viPi, we get :

{
αn = PnV ar(Fn)
∀ 1 ≤ i < n αi = Pi

[
V ar(Fi) + y2

i+1si(1− si)
]

+ αi+1
(3.37)

As αn+1 = vn+1Pn+1 = 0 and sn = 0, we can rewrite eq. 3.37 :

∀ 1 ≤ i ≤ n αi − αi+1 = Pi
[
V ar(Fi) + y2

i+1si(1− si)
]

(3.38)

The sum of the n equations of eq. system 3.38 yields

α1 = v1P1 = V ar(LRO) =
n∑
i=1

Pi
[
V ar(Fi) + y2

i+1si(1− si)
]

which, in the case where the fertility process consist in producing either 1 or 0 offspring per period (as in
the framework of this chapter), gives:

α1 = V ar(LRO) =
n∑
i=1

Pi
[
fi(1− fi) + y2

i+1si(1− si)
]

(3.39)

3.0.3 Note on R0 in matrix models with hidden heterogeneity trait
The net reproductive rate, the expectation of lifetime reproductive output noted R0 by Dublin and Lotka
(1925) - a concept extensively used in epidemiology (see review by Heesterbeek, 2002)- is a key demo-
graphic measure. The extension of the concept and its calculation towards structured population models
is not however without difficulty. This is in particular the case for models incorporating both a basic trait
(say age)and a hidden heterogeneity trait (i.e. several classes of offspring), despite numerous works on the
subject (De-Camino-Beck et al., 2008; Caswell, 2011; Cushing and Zhou, 1994).

Such a (age-heterogeneity)-population model can be represented by two matrices. The first one, we
have fully developed in section 3.2.2, is the MPPM M , which we can call the next time-step matrix. It
provides, inMi,j , the expected number of individuals in state i↔ (ai, hi) an individual in state j ↔ (aj , hj)
generates at each time-step. The second one is the Next Generation Matrix R. It provides, in Ri,j , the
expected number of individuals in state i ↔ (ai, hi) an individual in state j ↔ (aj , hj) generates over its
remaining lifetime. As all offspring produced have age 1, Ri,j will only be strictly positive if ai = 1; that
is, the only non-zero lines of R lines will correspond to the het offspring states (1, 1), (1, 2), ..., (1, het).
Therefore we can reduce, without any loss of ergodic information, R to R∗ the sub-matrix of R defined
only in these het offspring states. We can further define horizontal vector eLRO as the sum of all lines in
R∗; in matrix notation eLRO = 1′.R∗. This way, eLROh represent the expected number of offspring (of all
classes) for an individual in heterogeneity class h during its entire lifetime, hence the notation.

In the case where R is the only matrix provided - i.e. intra-generational dynamics are completely
unknown - then the population ergodic generation growth rate (whatever the interpretation of such a
measure when generations massively overlap) represent the maximum of likelihood for the mean lifetime
reproductive success : E(LR′) = R0 = max eig(R∗) = max eig(R) (De-Camino-Beck et al., 2008; Caswell,
2011; Cushing and Zhou, 1994; Jones, 2007). Indeed, such a population will tend toward a stable-state
with regard to generation time, of growth rate the maximum eigenvalue R0 and relative abundance the
vector of offspring categories w∗ the associated right-eigenvector :

R∗w∗ = R0w∗, (3.40)

with w∗ scaled to sum to 1. Then, by summing all lines on both sides of eq. 3.40, one gets :

eLRO.w∗ = R0, (3.41)

This Net Reproductive Rate is thus the w∗-weighted sum of all the lifetime reproductive output per geno-
type, i.e. the expected lifetime reproductive output by an offspring taken at random in the generation
ergodic heterogeneity distribution. As such, it is only the "best guess" when intra-generational dynamics
are ignored, and a potentially acceptable approximation of E(LRO) when the vital rates vary little with
heterogeneity.
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However, in the general case where M and therefore intra-generational dynamics are known, this is
not the case, despite opposite statements in the literature aforementioned. This is because, in that case,
the stable-state distribution of offspring classes is only poorly approximated by distribution w∗ of eq.3.41.
Indeed the eigen-equation at the time-step level then yields Mw = λw, with w scaled to sum to 1, which
provides vector w representing ergodic abundances of all (a, h) states.
Vector w� is the sub-vector of w containing only offspring states (age 1):

w� = 1
w1,1 + w1,2 + ...+ w1,h

.(w1,1, w1,2, ..., w1,h).

It represents the exact ergodic distribution of heterogeneity classes at birth, and should therefore replace w∗
in eq. 3.41. Indeed, from the decomposition of the MPPM into survival and fertility matrices M = T + F,
can one easily generate the fundamental matrix N = (I−T)−1, and therefore the Next-Generation Matrix
R = F.N, and thus R∗ and eLRO.

Therefore, we get, for a population structured by age and heterogeneity classes, for which the time-step
transition matrix M is known, the following formula for R0 :

R0 = eLRO.w� (3.42)

3.0.4 Note on matrix Ma,p: calculation of R0 and interpretation
Matrix Ma,p is matrix M, the age-parity-heterogeneity MPPM, folded over heterogeneity. In Ma,p, hetero-
geneity is not implemented as a trait any more, but since it was implemented in the full-traited matrix M
from which it is derived, it has effects on Ma,p, making its interpretation both challenging and interesting.

Discrepancies in calculation of R0

In M, because of the implementation of physiological costs of reproduction via trait parity (see section
3.2.2), survival transitions output states depend from fertility (see equation 3.3). Simply put, sur-
vival transitions from any state i = (a, p, h) to either j1 = (a + 1, p, h) or j2 = (a + 1, p + 1, h) are
Mj1,i = si∗(1−fi) and Mj2,i = si∗fi, with a 3rd, implicit transition towards death worth M̃death,i = 1−si.
These three transitions sum to 1. In the MCwR tool, the corresponding fertility rewards expectations
for these three transitions (in Rw1) are respectively 0, 1 and fi. Thus the mean expected reward is
0.(si.(1− fi)) + 1.(si.fi) + fi.(1− si) = fi and therefore both MCwR and R approaches (eLRO = 1′.R∗,
see appendix 3.0.3) provide the same results for E(LRO). In Ma, the Leslie reference matrix, survival
and fertility transitions are completely separated, with only one output per survival transition. Thus in
this case also, both MCwR and R provide the same results.

However for the intermediary matrix, Ma,p - M folded on heterogeneity- both measures differ. In-
deed, through folding, the survival transitions from state i = (a, p) towards either j1 = (a + 1, p) or
j2 = (a + 1, p + 1) will, in general, not be distributed according to the transition value between i and
the (unique) offspring state 1 which we interpret as fertility rate (M1,i↔(a,p) = fi). This is caused by the
heterogeneity modeled in M expressing itself through EFP-merged vital rates, now that heterogeneity is
not a trait any more (see chapter 2 (p.41)).

Let us illustrate this, seemingly paradoxical, situation with a simple example : Let us imagine a
population structured by 2 age - and therefore 2 parity classes - and 2 heterogeneity classes (A and B)
produced in equal measures (m = 0.5) at each fertility event. A individuals have all vital rates at 1 and
B individuals at 0.5. Then all A newborns (half the population of newborns), will produce 1 offspring
and become individuals of age 2 and parity 1. Half of B newborns will produce 1 offspring and half of B
individuals will survive. Those halves are independent, and thus a quarter of B individuals will survive
and become adults of parity 1, and another quarter will become adults of parity 0. Thus for the population
folded on heterogeneity, i.e. where individuals are only characterized by age and parity, the newborn fertility
rate is 0.5 × 1 + 0.5 × 0.5 = 0.75. Similarly the survival rate for newborns is 0.5 × 1 + 0.5 × 0.5 = 0.75.
However, for an average newborn in the population, the probability of transitioning towards a parity 1
adult is 0.5× 1 + 0.5× 0.25 = 0.625 and to a parity 0 adult is 0.5× 0 + 0.5× 0.25 = 0.125. As we can see
here, the sum of the survival transitions is (by construction) equal to the survival rate, but the distribution
towards higher parity 0.625

0.625+0.125 ≈ 0.83 is not equal to the fertility rate 0.85 as one does not make the
distinction between individuals A and B any more.

Interpretation of Ma,p

These considerations have important consequences with regards to the interpretation of Ma,p. It basically
comes down to deciding whether fertility rates are to be found on the first line of the matrix, on in the
distribution rates towards classes of higher parity. In the first case, E(LRO) should be calculated using
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R0 = R1,1, in the second case, via MCwR. Because, as we just illustrated, the ’inferred’ fertility rates are,
in general, different between fertility transition and distribution of survival transition, these two methods
provide different results for R0 . Considering that the folding operation does not alter the fact that Ma,p
is an age-based MPPM with no heterogeneity implemented and thus only 1 offspring class, it makes sense
to resolve the dispute in favor of considering the first line of the matrix as fertility rates for all states.
Then, however, it implies that, the second trait of the model is abusively called parity. The categories it
generates still correspond to states with decreasing vital rates as the category number increases (i.e. to
physiological costs of reproduction on survival and fertility), but an increment in the category number does
not imply 1 exact additional offspring.The relationship is not linear any more, and the trait parity rather
becomes a general "measure of overall reproductive success" than parity exactly, though we will still use
that name for the trait itself.

That the second trait of Ma,p cannot be interpreted as parity stricto sensu also has repercussions
in terms of measures for the variance of LRO. We just saw, that MCwR cannot be used to measure
E(LRO) and for the same reason, this framework cannot be used for precisely calculating σ2

LRO either.
Moreover, even if parity does not account for the exactly reproductive success any more, there is still
interdependence between fertility rates and survival transitions, making the formulas stemming from R
equally unsatisfactory. We shall therefore use both approaches, as proxies, keeping in mind that none
can provide an exact result, which reflects the fact that matrix Ma,p is not a constructed model, but the
product of folding from a model embedding a physiological trade-off, implying a shift in the interpretation
of its dynamic heterogeneity trait.

3.0.5 Two individual variances : σ2
LRO and σ2

d

Variance in lifetime reproductive output σ2
LRO (self explanatory) and demographic variance σ2

d (defined in
section 3.3.2) are two measures of the effect of individual (or demographic) stochasticity on fitness either
taken as the ergodic growth rate λ in the case of σ2

d or as the lifetime reproductive output (R0 ) in the
case of σ2

LRO.

Similar concepts lead to similar usage

Corresponding to similar concepts, these two measures have a lot in common, and in particular they are
used in analogous computations. For instance, the effect of individual stochastiocity of effective population
size (we discuss in section 3.4.3 is studied via σ2

d by (Engen et al., 2005a) and via σ2
LRO by Crow and Kimura

(see equation 7.6.2.17 page 351 of Crow and Kimura, 1970) and later refined by Rockwell and Barrowclough
(1995) and Hill (1979). Extinction probabilities also can be approached either via the populationwise and
infinitesimal approach (σ2

d) or by the individual and exact method (σ2
LRO). The former framework is

used by Lande and Orzack (1988) and Tuljapurkar (1982b) who show that the distribution of extinction
time follows an inverse Gaussian distribution of variance proportional to overall individual variance in
contribution to growth rate σ2. The latter framework, extended to the entire distribution of lifetime
reproductive success as a field known as branching process theory, was used to calculate extinction times
and probabilities from Galton-Watson processes (modeling non-overlapping generations, see (Keyfitz and
Caswell, 2005; Ellison, 1994)), Birth-death processes (implementing variability in longevity, see (Goodman,
1967)) and Crump-Mode-Jaggers processes (modeling age-structured populations, see (Crump and Mode,
1968, 1969)).

Similar concepts but different approaches

However similar, stemming from different approaches, σ2
LRO and σ2

d correspond to different concepts. Life-
time reproductive output, the random variable LRO which expectation is R0 is an individual concept. The
exact distribution of LRO can be computed, provided the stochastic processes of vital rates. Compounded
over the different (categories of) individuals in the population, R0 becomes a population fitness measure.
But, in age-structured populations, R0 is a poor fitness measure compared to λ, as the latter also takes
into account the life history pace of the organism, whilst LRO does not ’care’ whether the offspring are
produced early or late in reproductive life (see discussion in appendix 3.0.3).

From its individualistic roots, LRO retains two important properties. First, it is a random variable
that each individual (within a genotype × environment configuration) will realize differently and inde-
pendently, with expectancy, variance and higher moments exactly describing the variety of all possible
reproductive life trajectories in the population. Second, it does not depend on the population being at
stable-state regime and is meaningful even for a population which distribution is very different from w.
These properties are reminiscent of those of Fisher’s reproductive value (Fisher, 1930), v/v(1) which, in
age-structured population, only depends on the age of the individual and is the same in transient or stable-
state regime, a fact clouded by its computation as left-eigenvector of the matrix model. The ’individuality’

95



Chapter 3 – Evolutionary consequences of physiological costs

of v is also obvious from v(a) being frequently described as "individual reproductive value" (for an indi-
vidual in age class a) by contrast with the age a class reproductive value : c(a) = v(a).w(a) (Taylor, 1990;
Taylor et al., 2007). This reminiscence is not surprising as, in age-structured populations, expressions of
reproductive value at birth and R0 only differ in the discounting or not by λ: R0 =

∑
i
f(i)

∏i−1
j=1 s(j)

and v(1) =
∑

i
λ−if(i)v(1)

∏i−1
j=1 s(j).

By contrast, and despite efforts from (McGraw and Caswell, 1996) and others, λ, as fitness, is a pop-
ulation concept. It is possible to compute λ for a population with heterogeneity in expected vital rates
or for a given genotype within that population (Charlesworth, 2000) but it is hard to fathom at the level
of the individual. However, since the asymptotic growth rate is the population fitness measure of choice
for populations with overlapping generations, efforts have been made to implement the individual contri-
butions to λ in order to take individual stochasticity into account. Such efforts, produced by Engen and
collaborators (Engen et al., 1998, 2005b,c) yielded the demographic variance σ2

d which measures the vari-
ance in growth rate inferred by stochasticity in vital rates. In age-structured populations, the calculation
is based on the sensitivities of λ to infinitesimal changes in vital rates (see eq. 3.18 in section 3.3.3). As
such, the demographic variance calculations can only provide an approximation (sensitivities are only valid
for infinitesimal changes in rates) and is only valid at the level of the stable-state.

Actually, as the individual stochasticity of vital rates are generally larger than their environmental
stochasticity, equation 3.18 is expected to be a worth predictor of demographic variance, than equation
3.17 is of environmental variance. Let us mention here an interesting approach by (Engen et al., 2007,
2009) who circumvent the pitfall of stable-state dependency of σ2

d by measuring the population, not by its
numbers in each age class n(a) (regrouped in population vector n of sum N), but by its class-reproductive
value n∗(a) = v(a).n(a) (regrouped in vector n∗ of sum N∗); taking advantage of the fact, contrary to N ,
N∗ does not require stable-state to grow at λ; indeed, N∗t+1 = v.nt+1 = v.M.nt = λ.v.nt = λ.N∗t .

Comparison of formulas for age-structured populations

Let us now compare the specific formulas for σ2
d and σ2

LRO for age-structured MPPMs (i.e., populations
for which vital rates only depend on age and are their realizations are independent). From section 3.3.2,
we have the formula for σ2

LRO(eq. 3.5 and 3.34 ):{
σ2
LRO =

∑n

i=1 Pi
[
V ar(Fi) + y2

i+1si(1− si)
]

yi = 1
Pi

∑n

j=i fjPj
(3.43)

From section 3.3.3, we can adapt the generic formula for σ2
d in age-structured populations (eq. 3.21

) to implement independence of vital rates, i.e. Covd(M1,i,M1,i) = V ar(F i) and Covd(Mi+1,i,Mi+1,i) =
V ar(Si) and all other covariances at 0:

σ2
d =

n∑
i=1

λ−2

wi

[
( ∂λ
∂fi

)2V ar(Fi) + ( ∂λ
∂si

)2V ar(Si)
]

Using the entries of the sensitivity matrix of the model as we did for (age-parity)-MPPM in section 3.3.3,
i.e. ∂λ

∂fi
= v1wi and ∂λ

∂vi
= vi+1wi, and introducing b̄ = (

∑n

1 Piλ
−i)−1 the birth rate, and T =

∑n

1 ifiPiλ
−i

the generation time (mean age of parents), we can write σ2
d as a function of v∗ (with v∗1 = 1) the Fisherian

reproductive value : {
σ2
d = 1

b̄T2

∑n

i=1
Pi
λi

[
V ar(Fi) + v∗2i+1si(1− si)

]
v∗i = λi−1

Pi

∑n

j=i fjPjλ
−j (3.44)

(Engen et al., 2005a)

Comparing eq. systems 3.43 and 3.44 is very informative with respect to the similarities and differences
between the exact formula for σ2

LRO and the approximation of σ2
d. The structures are strikingly similar,

with the major differences arising from the relation with λ of σ2
d and from the time-step building block of

each approach (chronological time for σ2
d and generation time for σ2

LRO) from which emerges T and b̄.

These connections are made even clearer but reducing the problem to stationary populations:

λ = 1 =⇒ σ2
d = σ2

LRO

b̄T 2
(3.45)

The relationship in that particular case (eq. 3.45), allows incidentally to reconcile Hill (1972)’s equation
for effective size in populations with overlapping generations with constant size as a function of variance
in reproductive success, with Engen et al. (2005a)’s formula using the infinitesimal approach.
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Particular case of 2 age classes. In the particular case of two age classes only.The model is
H =

[
f1 f2
s1 0

]
and we consider λ = 1. From the Euler-Lotka equation (Euler, 1760; Lotka, 1939) we know

this implies λ = f1 + s1f2 = 1 = R0. From R0 = f1 + s1f2 we can easily calculate the variance of
reproductive output : σ2

LRO = f1(1− f1) + s1f2(1− s1f2). To compute demographic variance, we observe
that w is the right-eigenvector, summing to 1, i.e. H.w = λ.w which implies s1w1 = λw2 thus w1 = 1

1+s1
and w2 = s1

1+s1
. And v is the right-eigenvector, such that v′.w = 1 , i.e. v′.H = λ.v′ which implies

v1f2 = λv2, but w1v1 + w2v2 = 1 = w1v1 + w2v1f2 and thus v1 = 1+s1
1+f2s1

and v2 = f2(1+s1)
1+f2s1

. And thus

σ2
e = w1v

2
1 [f1(1− f1) + f2

2 s1(1− s1) + s1f2(1− f2)]. Here, T = (w1v1)−1, therefore we have σ2
e = 1

T2
σ2
LRO
w1

.

3.0.6 Preservation of R0 by folding for models with age
We shall demonstrate here that for MPPMs with age as a trait, R0 is preserved by folding (over any
combination of any other trait than age). This may may seem self-evident, but it really is not. Trait Level
Analysis - developed in chapter 2 (p.41)- allows to draw conclusion between matrices considered equivalent
because their share the asymptotic stable state properties; and chiefly among them, λ. However in general
it does not preserve R0 . to see that, one needs only to contemplate the folding of a simple non-age based
MPPM, as we do in Supplementary Material 5.2.3 page 140.

To prove the preservation of R0 by folding in the specific case where age is a trait and is not folded
upon, let us consider a model M , that is re-organized (if need be) so that age is the last trait of the
trait structure s. Let us regroup all other traits as one unique trait t which can take values from t = 1 to
t = tmax, representing the tmax combinations of other (than age) traits. Trait vector is thus t = {t, age}
and trait structure s = (tmax, ω) (there are ω age classes). With no loss of generality therefore, we shall
study the effect of folding M over t on R0 . The operation produces Mfold

age = Ma only characterized by
age: tMa = {age} and trait structure sMa = (ω).For simplicity, we shall use a block-matrix approach for
the demonstration.

Matrix Ma is a Leslie matrix: Ma =
[
f1 f2 ... fω
s1 0 ... 0
... ... ... ...
0 0 sω−1 0

]
with well-know net reproductive rate, we denote

Ra
0 : Ra

0 =
∑ω

i=1 fi(
∏i−1
j=1 sj).

Matrix M can be written a block-Leslie matrix :

M =


F1 F2 . . . Fω−1 Fω
S1 0 . . . 0 0
. . . . . . . . . . . . . . .

0 0 0 0 0
0 0 . . . Sω−1 0

 ,

where each submatrix is a square matrix of size tmax× tmax. Specifically they are such that for a vector
ni of abundances of individuals at age i, Fi.ni is the vector of abundances of offspring produced by these
individuals at a given time step and Si.ni is the vector of abundances of their survived selves. By con-
struction M and Ma share the same growth rate λ. Their related right eigenvectors, both summing to 1,
w =

[
w1 w2 . . . wω

]
(this formula displays w as a vector of vectors) and w∗ =

[
w∗1 w∗2 . . . w∗ω

]
are such that 1′.wi = w∗i .

Then, from appendix section 3.0.3 p. 93 providing the general formula for R0 when the model has
several classes of offspring and a known time-step projection matrix, we get (we allow ourselves to equate
matrices of different sizes whenever they have equal non-zero diagonal block-matrices on their Frobenius
normal form):

R0 = 1′.R.w1

w∗1
(3.46)

Writing out R, we get :

R = F.(I + T + T2 + · · ·+ Tω) =
ω∑
i=1

FiPi (3.47)

where Pi =
∏j=1
j=i−1 Si (order of multiplicands is important here) and P1 = I. Then from equations 3.47

and 3.46 we get :

R0 = 1′.
ω∑
i=1

FiPi.
w1

w∗1
=

ω∑
i=1

1′.FiPi.
w1

w∗1
(3.48)
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Considering the eigen.equation M.w = λw by blocks, we immediately get Si.wi = λwi+1 and
∑ω

i=1 Fi.wi =
λw1. The eigen.equation at the level of Ma- Ma.w

∗ = λw∗ - implies that si.w∗i = λw∗i+1. Thus
Si.
wi

w∗i
= si

wi+1

w∗i+1
. From there, we infer

Pi.
w1

w∗1
= (

i−1∏
j=1

sj)
wi

w∗i
(3.49)

By definition of the EFP-folding (see chapter 2 (p.41)), the folding of matrices by ergodic abundance
weighted average of transitions

fi = 1′.Fi.
wi

w∗i
(3.50)

Multiplying both sides of equation 3.49 1′.Fi, and simplifying the result thanks to equation 3.50, we
can rewrite equation 3.48 in a way that provides the proof:

R0 =
ω∑
i=1

fi(
i−1∏
j=1

sj) = R∗0 (3.51)

3.0.7 Demonstration of σ2
LRO [ Mage,parity] < σ2

LRO

[
Mfold

age

]
Let us consider an (age-parity)-model, Mage,parity we denote here M, implementing physiological costs of
reproduction, as described in section 3.2.1. Without loss of generality, for simplification, we shall consider
that only fertility rates are affected by the costs. Let us also consider, Mfold

age , which M folded on parity, that
we denote here with an asterisk: M∗. In order to demonstrate that σ2

LRO [ Mage,parity] < σ2
LRO

[
Mfold

age
]
,

we shall set our investigation at the sable-state. By the properties of Trait Level Analysis, at the stable
state, M and M∗ have the same growth rate and the associated right-eigen vector on age wa.

Let us denote Pa and P∗a the random variables giving the parity of a random individual in the a
age-class, in the stable state population, for respectively M and M∗. The parity r.v. at age (a + 1) are
worth Pa+1 = Sa.Fa,p + Pa and P∗a+1 = S∗a.F∗a + P∗a.

We can get expectations for the r.v. of the multitrait model, according to parity. Ep(Pa) =
∑a

p=1
p.wa,p
wa

is p̄a the average parity at that age a. Ep(Fa,p) =
∑a

p=1
f(a,p).wa,p

wa
. Since f(a, p) = fa(1− p

ω
), and from the

Trait Level Analysis principles, we have Ep(Fa,p) = fa
wa

∑a

p=1(1− p
ω

).wa,p = fa
wa

[∑a

p=1 wa,p −
1
ω

∑a

p=1 p
]

=

fa(1 − p̄a
ω

) = E(F∗a) = f̄a = f∗a . From the summation of E(Pa+1) = E(Sa).E(Fa,p) + E(Pa) over a,
we therefore get ∀a Ep(Pa) = E(P∗a). A result related to the preservation of R0 we demonstrate in
section 3.0.6. To simplify further calculations, as we base our analysis at the time-step level, we shall now
consider only one process projecting an individual from age a to a+1, which combines survival and survival:
Qa,p = Sa.Fa,p. As a product of Bernoulli processes, Q is itself Bernoulli, of parameter qa,p = fa.sa.(1− p

ω
).

Let us now turn ourselves to the variances of these r.v., since in a population structured by age
only, the vital rates are independent from parity, we have V arp(P∗a+1) = V arp(Q∗a) + V arp(P∗a) and
thus V arp(P∗a+1) − V arp(P∗a) = q∗a(1 − q∗a). We also have : V arp(Pa+1) = V arp(Qa) + V arp(Pa) +
2.Covp(Qa,Pa). As Q is Bernoulli, we have V arp(Qa) =

∑a

p=1 12.q(p).wa,p − (q∗a)2 = qa.(1 − qa) =
V arp(Q∗a). And therefore, the difference in change in variances, by age, lies in the covariance Cov(Fa,Pa)
component:

[V arp(Pa+1)− V arp(Pa]− [V arp(P∗a+1)− V arp(P∗a ] = 2.Covp(Qa,Pa)
We can explicit this component :

Cov(Qa,Pa) =
a∑
p=1

p.q(a, p).wa,p − p̄a.q∗a

where
a∑
p=1

p.q(a, p).wa,p = q(a)
a∑
p=1

p.(1− p

ω
).wa,p = q(a)

a∑
p=1

p.wa,p −
1
ω
q(a)

a∑
p=1

p2.wa,p

= q(a)p̄a −
1
ω
q(a)

a∑
p=1

p2.wa,p = [ ¯q(a) + q(a)pa
ω

].p̄a −
1
ω
q(a)

a∑
p=1

p2.wa,p
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and thus

Covp(Qa,Pa) = qa
ω

[
p̄a

2 −
a∑
p=1

p2.wa,p

]
= qa

ω
.(−V arp(Pa))

And therefore,

[V arp(Pa+1)− V arp(Pa]− [V arp(P∗a+1)− V arp(P∗a ] = 2. fa.sa
ω

.(−V arp(Pa)) (3.52)

And thus ∀a, V ar(Pa) < V ar(P∗a): in each age-class, the variance of parity is lower for the population
modeled by M than for the population modeled by M∗. At a given time, in age class a of each population,
some individuals will be removed, their lifetime trajectory stopped and therefore their parity at that time
will be their LRO. As survival is the same for both populations (and here independent from parity), we
get σ2

LRO =
∑ω

a=1 V ar(Pa).
∏a−1
i=1 s(i) and therefore we get

σ2
LRO [M]− σ2

LRO [M∗] =
ω∑
a=1

(V ar(Pa)− V ar(P∗a)).
a−1∏
i=1

s(i) ≤ 0 (3.53)

3.0.8 Effect of heterogeneity on σ2
LRO

We analyze here the cross-effects of the costs and heterogeneity on the variance in reproductive success of
the overall population. And more we try and hint at the relative effects of heterogeneity and individual
stochasticity in the making of σ2

LRO.

Heterogeneity, costs and σ2
LRO

Let us now imagine that the population modeled by M contains two genotypes. These two genotypes will
therefore also be found in M∗ which is an (age-heterogeneity)-MPPM, corresponding to M folded over
parity. By the principles of Trait Level Analysis w∗ the (age,heterogeneity)-right-eigen.vector, associated
to λ for M∗, correspond to (age-parity-heterogeneity)-right-eigen of M when summed on parity. Since
offspring are all of parity 0, this implies the offspring abundances are the same for both models: w∗� = w�.
Put simply, this means that the effects of the costs and heterogeneity are independent. This can be further
understood by considering the heterogeneity component of σ2

LRO (introduced in section 3.3.2). From
the equality between offspring abundances and between R0 (see section 3.0.6) between the two models,
equation 3.12 yields σhet

LRO
2 [M] = σhet

LRO
2 [M∗], and therefore,

σ2
LRO [M]− σ2

LRO [M∗] = σsto
LRO

2 [M]− σsto
LRO

2 [M∗]
= w�1 .(σ2

LRO1 [M]− σ2
LRO1 [M∗]) + w�2 .(σ2

LRO2 [M]− σ2
LRO2 [M∗])

is independent from heterogeneity.

Order of magnitude of heterogeneity component of σ2
LRO

If the difference in variance in LRO between the models with and without the costs only depends on the
stochastic difference - i.e. on the differences at the level of each genotype - the variance itself can be strongly
impacted by heterogeneity, and specifically by differences in R0. As we can see from equation 3.12 (page
71), the effect of heterogeneity on the variance of LRO is exactly proportional to both the square of the
difference inR′ and to the variance of the offspring distribution. These two components are not independent
(high difference in reproductive rates causes high difference in genotypic λand therefore large discrepancy
in offspring abundances) but for small variations, the heterogeneity component of σ2

LRO is maximal, for
two genotypes cohabiting in the population, when w1 = w2 = 1

2 and the difference in R0 between the
genotypes is maximum. This implies that they are located - in the zero-parity vital rate map of figure 3.6d
- on a line orthogonal to the iso-R0 curve. For the 5-year models figured in fig. 3.6, moving away from
a stationary mean genotype located at (f, s) = (.60, 49) in a direction (roughly (1, 1)) orthogonal to the
stationary line, towards coordinates (f1, s1) = (.70, 59) on one side and (f2, s2) = (.50, 39) on the other side.
For the mean genotype (i.e. for the Reference Leslie matrix of the model) R0 ≈ 1, λ ≈ 1, σ2

LRO [M] =
.594 (for the full model) σ2

LRO [M∗] = .6862 (for the model folded on parity). For the fit genotype
(numbered 1), R01 = 1.2947, λ = 1.1986 σ2

LRO [M1] = .7071 and σ2
LRO [M∗

1] = .8461, whereas for the
frail genotype (numbered 2), R02 = 0.7528, λ = 0.8310 σ2

LRO [M2] = .4776 and σ2
LRO [M∗

2] = .5293 . For
this heterogeneous population, we can therefore compute the heterogeneity component of σ2

LRO :σhet
LRO

2 =
w1(1−w1)∗ (R01−R02)2 = (0.5)2(1.2947−0.7528)2 = 0.0734. And the stochastic component component
for the model with the costs σsto

LRO
2 = w1.σ

2
LRO [M1] +w2.σ

2
LRO [M2] = 0.5× 0.7071 + 0.5.4776 = 0.5923

and without the costs σ∗ sto
LRO

2 = w1.σ
2
LRO [M∗

1] + w2.σ
2
LRO [M∗2] = 0.5 × 0.8461 + 0.5.5293 = 0.6877.

We can see here, that even though the costs raise the heterogeneity component of σ2
LRO in the population

from 0.0734
0.6862 = 0.107 to 0.0734

0.594 = 0.123 (as they keep the heterogeneity component unchanged), that the
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demographic variance of a population is more driven by stochasticity than heterogeneity even for genotypes
with differences in fitness.

3.0.9 Intermediary matrices for section 3.4.4

B =



1 −s 0 s 1 0 0 0 0 0 0 0 1/2 0 0 0
−s s2 0 −s2 −s 0 0 0 0 0 0 0 −s/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s −s2 0 s2 s 0 0 0 0 0 0 0 s/2 0 0 0
1 −s 0 −s 1 0 0 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 −s/2 0 s/2 1/2 0 0 0 0 0 0 0 1/4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(3.54)

B∗ =
[ 1 0 1−f/2 0

0 0 0 0
1−f/2 0 (1−f/2)2 0

0 0 0 0

]
(3.55)
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4.1 Introduction
In this short chapter, we discuss kin transfers - the transfers of resources between related individuals of a
population- in the light of the theoretical (chapter 1) and modeling (chapter 3) considerations of this thesis
regarding costs of reproduction. We set our discussion in a framework that can study the coevolution of
kinship and life history - i.e., both the effects of kin transfers on vital rates and the reciprocal influence of
life history on kinship distribution - that we call kinship demography.

From the costs of reproductions to kinship demography
Kin transfers can, on the one hand, be considered to be a component of the costs of reproduction. Indeed
we showed in chapter 1 (sec.1.2.1,p.19) that parental care, the postnatal transfer of time, food, energy
and care from a parent (let us say, for simplicity, the mother) to its offspring, is a part of physiological
costs of reproduction. Specifically, it emerged as the post-birth segment of the reproductive effort schedule
(we denoted it res) representing, for one average adult in the population, the average time distribution
of efforts required to produce one independent offspring, see figure 4.1. In organisms with protracted
altricial juvenile period with respect to the mean interbirth interval, this (per birth) reproductive effort
distribution will have a long tail and therefore the reproductive effort schedule corresponding to successive
offspring will overlap, see figure 4.2. In chapter 1 (section 1.3.2 p.34) we devised a method to account for
this characteristic by the segmentation of res into reproductive efforts buckets incorporated as dynamic
heterogeneity traits in the model. Since the two effects of parental transfers - a cost to the mother and a
benefit to the offspring - are included in the costs of reproduction, the most fundamental of kin transfers
- parental transfer can be considered to be component of physiological costs of reproduction. This hints at
the possibility to extend the conceptual models of chapter 1 (sec. 1.3.2, p.30) with the method of chap-
ter 2 (p.41), and the tools of chapter 3 (sec. 3.3, p.68) to model kinship demography in an evolutionary
framework.
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Figure 4.1: Reproductive effort schedule for altricial mammal. The figure display a typical repro-
ductive effort schedule for an altricial mammal, with efforts on both sides of birth, but a long
post-natal tail corresponding to parental care.
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Figure 4.2: Overlap of reproductive effort schedules for altricial mammal. The figure shows that an
inter-birth interval shorter than the duration of parental care implies the overlap of reproductive
effort schedules
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On the other hand however, the scope of kin transfers extends beyond the concepts of costs of repro-
duction for two reasons. First, because it is possible to contemplate kin transfers from the point of view
of only one of the two actors: the payer or the beneficiary. This is often the case, as we shall see in the
forthcoming review, but frowned upon by some theoreticians who consider it important to control for the
net nullification of transfers in a population (i.e. to focus on the transfers between all pair of individuals in
a population and not on the individuals themselves) (Lee, 2003). Second, and most importantly, because
kin transfers, apart from parental care, cannot be implemented in a life-cycle: they connect individuals
that are more than than a fertility event away from one another.

As a matter of fat, even kinship models that would implement both sides of transfers within a life cycle
- i.e., the benefit (for the offspring) and the costs of maternal care - differ conceptually from the cost of
reproduction model of chapter 1 (sec. 1.3.2, p.30). As the costs of reproduction are individual-based, there
are only two ways to represent them in a life cycle. Either by implementing the full life history from birth
until death and therefore forsaking post-natal maternal care (in a life cycle, the only connection between
a parent and its offspring is at time of birth, via the fertility rate). Or by having the life cycle start at
maturity and to transfer the premature period into the reproductive effort schedule (a parent then "gives
birth" to a fully independent offspring, see discussion in sec.1.3.2 p.34). Whilst in the latter case, parental
care is implemented, its effects on juveniles cannot be extracted from the model, as it only starts at the
first age of reproduction. Simply put, in that case, juveniles are not individuals in the model, but mere
demographic properties (components of the reproductive value) of the the mother. The simplest of kinship
models - a maternal transfer model implementing both the costs of the mother and the benefits to the child
- would therefore already be a significant step forward from the costs of reproduction model. This implies
that the extension we call for, will need to incorporate traits that allow to embed either (allo)parental care
or cost of care or both, and tools to account for the asymmetry of only implementing on side of transfers.

Therefore kinship transfers can both be considered as a special case (when considering the costs of
maternal care) and, more generally, an extension (as transfers are about pairwise relationships and not
individuals and extend beyond the mother-offspring connection to any alloparental care) of the costs of
reproduction. In other words, kin transfers can be considered, in the light of (Williams, 1966)’s definition
of the costs of reproduction, as individual allocative processes between current inclusive reproductive effort
and future inclusive reproductive value (Hamilton, 1964b,a). This implies that similar models can be used,
but that alterations are required. This also hints at the complexity of the conjoint study of kin transfers,
life history and demography, the intricacy of which make up the field of kinship demography.

Kinship demography as the study of the coevolution of kinship and de-
mography
In a social species, demography is a function of cooperative and competitive interactions between individu-
als. Growth, reproduction, survival of an individual depend on growth, reproduction and survival of other
individuals in the population. On of the main factors structuring competitive and cooperative behavior
is kinship. Kinship demography studies the interactions between demographic traits and kinship. First,
by asking how kin relationships influence demographic traits, population dynamics and evolution of Life
History traits. Second, in return, by studying how demographic traits structure kinship in a population.

First level of kinship demography would consist in the study of maternal/parental care/investment,
common to many species, and thoroughly studied either directly or in the context of the costs of repro-
duction, of which it is an important component (as mentioned in previous section see sec. 4.1 and chapter
1 section qdsjdhsqhd). However in social species, and in particular in humans, family structures assign a
caring function to other kin : grandparents, sibling which can act as helpers at the nest, uncles, aunts,
cousins etc. In such cases, growth, survival and reproduction are both a function and a determinant of the
family structure. Non-kin obviously also interact, raising the questions of the differing effects of kin and
non-kin in alloparental care. In humans - see box table 4.1 - the sociality of the species, combined with its
longevity, renders the study of kinship demography both complex and primordial to the understanding of
our evolution.

In this chapter, we will therefore first describe the scope and the main characteristics of kinship de-
mography in humans, a species both social and long-lived, see box table 4.1. The interactions between
evolutionary demography and sociality imply that human kinship demography lies at the cross-roads of
many fields, each considering specific aspects of the effect of kinship on demography, of demography on
kinship, and of both on adaption, genetics, and human culture. We will discuss some of these fields and
then go on to specifically review two specific but key components of human kinship transfers. First the
determinant of child survival, and second, the costs of parental care.

In the second part, we will then hint at the initial steps to extend the MPPM framework for the costs
of reproduction (chapter 1, sec. 1.3.2, p. 30) to implement kinship transfers.
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Table 4.1: Life history , parental investment and sociality in humans

Primates have long average adult lifespans and few offspring relative to other mammals (Charnov
and Berrigan, 1993). They are at the slow end of the slow–fast continuum observed in mammals.
At this slow end of the continuum, juvenile survival is the most important fitness component
and drives the evolution of other life-history traits (Heppell et al., 2000). Humans are among
the "slowest" primates with respect to life history traits, with the exception of fertility. Relative
to other primates, human females can bear a large number of children over a short reproductive
period due to short birth spacing (Mace, 2000). The reproductive window is narrowed at one
end because of protracted periods of infancy and childhood and, at the other end, because of
reproductive senescence and eventual cessation at menopause. As a consequence, females may
care for several children of different ages at the same time. This care includes feeding, protection,
affection and education and is needed for the physiological and behavioral development of offspring.
The relationship between child development and post-natal care exhibits two particularities in
humans.
First, the psychomotricity and sensori-motricity of human neonates are immature relative to
those of neonatal great apes (Parker, 1977), reflecting the fact that human gestation length is
shorter than expected based on body size (Little, 1989). As a consequence, juveniles are thought
to have become more dependent on post-natal care for survival during human evolution (Martin,
2007). Second, post-natal care is crucial for the development of the cognitive, linguistic and social
capabilities particular to our species (Geary and Flinn, 2001) and juveniles have likely evolved to
become increasingly dependent on post-natal care for education and socialization.

In humans, the primary caregiver is the mother. Her survival is a major predictor of child survival
in many populations (Sear and Mace, 2008). While the role played by fathers, grandparents
and older siblings in caring for infants and children have recently been the focus of a few studies
(Bentley and Mace, 2009; Derosas, 2002), these have failed to show common patterns among human
populations. It is however increasingly recognized that non-maternal care is nonetheless crucial
for children survival because, in any human population, dying is not the unavoidable fate of a
motherless newborn, which it is in other mammal species. Because post-natal care is protracted
and occurs within complex social and generational structures, child survival depends on both the
age and kinship structures of human populations. Going beyond age-trajectories of fertility and
survival to incorporate these linkages within and across generations is therefore fundamental for
understanding human population dynamics and the coevolution of life-history traits and sociality
(Metcalf and Pavard, 2007); and is the subject of increasingly numerous theoretical and empirical
research. Theoretical modeling predicts that human population growth is limited, not only by
resources, but also because of the importance of age structure for resource acquisition (Lee, 2003).
For example, the proportion of juveniles relative to adults increases in a growing population, up
to a point where adults cannot produce enough resources to care for more immatures (Cyrus Chu
et al., 2006; Lee and Tuljapurkar, 2008). From an evolutionary point of view, Pavard and Branger
(2012) showed that an increase in newborn altriciality may have favored the emergence of human
specific life history traits such as extended longevity and females’ physiological capacity to give
birth to a large amount of children and that maternal and grand maternal care may explain the
emergence of menopause and post-reproductive life. However, the coevolution of maternal care
with traits specific to humans, such as altricial infancy, long childhood, extended lifespan, short
but intense reproductive period, menopause and post-reproductive life, is still poorly understood.
More generally, the role played by familial investments on individual survival and reproduction
throughout the individual life is still largely unknown.
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In the third and last part, we will discuss approaches to extract, from a multitrait demographic model,
the inferred kinship distribution of a population. And we illustrate this by calculating the effects of
physiological costs of reproduction (as implemented in chapter 3, sec. 3.2, p.61) on kinship moments such
as the mean inter-birth interval or the expected number of older sisters.

4.2 Kinship demography in humans : a short review

4.2.1 The large scope of human kinship demography
Economic anthropology has demonstrated the existence of a complex network of resources transfers be-
tween kin and non-kin in human societies. A large body of literature explores transfers among and between
age classes and kin categories in terms of foraging, food-sharing, childcare or transfers of wealth. For ex-
ample, while foraging trip composition is not based on kinship in Ache, food is primarily shared within
the family (Gurven, 2004), although this also depends on the nature of the food (Gurven et al., 2004).
This type of study gave birth to a function summarizing the net balance between resources acquisition and
consumption at each age, which has then been incorporated into life-history models (Gurven et al., 2012;
Kaplan and Robson, 2002; Lee, 2003).

These studies were the first to demonstrate the importance of inter-generational transfers in the evo-
lution of aging in humans. Although remarkable, they do not analyze demographic data and they suffer
therefore from strong assumptions linking the balance of resources production/consumption to demographic
traits. Population dynamics and evolution studies consist mainly in counting births and deaths, and a
demographic approach is required to measure to what extent kin investments influence individuals’ survival
and reproduction. In this context, most studies have focused on the effect of maternal care on infant and
child survival (qualitatively reviewed in (Sear and Mace, 2008)). The fact that motherless children at birth
are not doomed to a certain death in humans has however led to the recognition of the crucial role played
by other caregivers than the mother: father, grandparents and older siblings (Bentley and Mace, 2009;
Derosas and Oris, 2002; Sear and Mace, 2008). What are the implications and ramifications of kinship
demography in humans?

History of the family, kinship ethnology and cultural anthropology Human is a species
where kin are organized in families and family structure is organized by cultural rules. In recent books
(Bentley and Mace, 2009; Derosas and Oris, 2002), the editors have gathered articles providing a demon-
stration of the complexity of allomaternal care and of the socio-demographic consequences of orphanhood
across cultures and through time. For example in Mayas, Kramer (2009) shows the complex interactions
between family dynamics and individual life-cycles with respect to childcare: mother, father and older
siblings invest differently in direct child care or food/wealth production according to their age, but also
according to family structure (mainly in terms of survival status of the parents and grandparents and sib-
lings’ number, age and sex). More generally, the study of familial determinants of demographic behaviors
has allowed an “ecologically founded comprehension of cultural kinship” (Leonetti 2008) and, by allowing
objective quantifications and tests of the qualitative theories, “strengthened and reinvigorate” the field
(Shenk and Mattison 2011).

Statistical demography and population dynamics When adult mortality is high, the pro-
portion of orphans is far from negligible (eg up to 30% of children are motherless when e(15) = 15 (Pavard
and Branger, 2012)). As a consequence, recording data on orphans’ survival is crucial for demographers;
especially in population without registers where orphans are more difficult to record because of adoption,
institutionalisation, or more often omission in retrospective data. For example, in populations experienc-
ing HIV pandemics, accounting for the increased mortality of motherless children has proved crucial in
estimating child survival (Mahy and Zaba, 2003) and HIV related mortality (Zaba et al., 2005). This has
also important consequences in modeling population dynamics. For example, lower levels of allomaternal
care may largely compromise population growth because motherless children are not properly taken care
of (Pavard et al., 2007a) and kin transfers of resources between and within generations may modify long
term population growth in constant (Lee and Tuljapurkar, 2008), finite (Puleston and Tuljapurkar, 2008)
or fluctuating (Lee et al., 2009) environments.

Population genetics, quantitative genetics and medicine Cultural traits influence the
fate of the different alleles in a population. This factor has therefore to be accounted for by population
and quantitative geneticists and can have important medical consequences. This was exemplified by
Austerlitz and Heyer (1998) who demonstrated that the socially driven heritability of reproductive success
in historical Quebec had increased the frequency of inherited disorders in the population. The effect
of social structures and kinship networks on genetic diversity is an integral part of kinship demography
as it considers the cross influence of kinship distribution and demographic parameters on the drivers of
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population genetics. In chapter 3 (sec.3.4.3, p.81), for instance, we showed that the basic principle at
the core of parental care - the costs of reproduction - had consequences on the variance in reproductive
success σ2

LRO. And whilst a portion of this variance (we denoted σhet
LRO

2) is due to genetic variance in the
population, a larger component (σsto

LRO
2) is caused by stochastic variance intrinsic to heritable genotypes.

This heritable variance affects, in turn, the effective size of the population, with consequences on the force
of selection with respect to genetic drift. We also showed in chapter 3 (sec 3.4.2, p.77) that kinship care
also affects the force of selection via the spreading of reproductive efforts over protracted periods of time.
This overall effect of kin transfers on both components of effective selection has therefore important impact
on human population and quantitative genetics and therefore on medicine. Age-structured population
genetics allows, for instance, to disentangle the puzzle of the allelic spectrum of late onset diseases (see an
article in prep. "Are old ages useless? Shedding light on the allelic spectrum of late-onset diseases" and
presented in Annex 5.3.1, 142).

Life History theory and evolution of sociality Other domains are concerned with both the
reciprocal effects of demography on kinship. The formation, the stability, the organizational structure, and
the social dynamics of biological families has been theorized upon three conceptual evolutionary pillars: the
ecological constraints theory (which focuses on offspring dispersal and kinship spatial structure), inclusive
fitness theory (which analyzes how social interactions among family members optimized individuals fitness;
Hamilton, 1964b,a), and reproductive skew theory (which analyze how reproductive conflicts may be solved
in group-selection modeling) (Emlen, 1995). In humans, the coevolution of life-history and sociality has
mainly been analyzed through the perspective of inclusive fitness theory (Hamilton, 1964b,a). Allomaternal
care and cooperative breeding are seen as important reproductive strategies, as a buffer to child mortality
in a context of rapid reproduction (Mace, 2000). Reproductive cessation at menopause in females has
been explained by trade-off between giving up their own reproduction in exchange of greater survival of
depending children (ie “the good mother theory”; eg Pavard et al., 2008; Peccei, 1995) or grand children
(ie "the grandmother theory"; eg Hawkes et al., 1997); as well as by reduced conflict in reproductive
competition with daughters and daughters in law (Cant and Johnstone, 2008). Maternal or grand-maternal
investments, or, more generally, all transfers of resources from adults towards juveniles, have also been
proven to increase tremendously the strength of natural selection on late survival and be a major factor
explaining long life-expectancy in humans (Gurven et al., 2012; Lee, 2003; Pavard et al., 2007a). In Annex
5.3.1, 142 (an article in preparation), we demonstrate, via a population genetics model, how features of
human social relationships - maternal care, grandmaternal care late male reproduction - influence the
selection gradient with age and therefore the evolution of senescence.

4.2.2 Analysis of a receiver of kin investment : child survival
Maternal death compromises children survival in all demographic studies, most of the time to a large
extent, although the magnitude of these effects varies in a large amount. The higher risk of dying of moth-
erless children remains significant throughout childhood, although a decrease in dependency from maternal
care as the child grows older is clearly visible (Pavard et al., 2007a). Results are largely contrasted in the
case of fathers. In half the studies using appropriate statistical techniques, the father’s death makes no
difference to child survival, and, when it does, it has substantially a lesser impact than the mother’s death
(Sear, 2008). This may be because paternal care may vary with the sex of the child. For example, in a
patrilineal Ethiopian community, father’s absence doubles a son’s risk of dying in infancy but has a positive
influence on daughter survival (Gibson, 2008). It may also be that paternal care is more important at a
later child age, a transfer little covered by these studies.

A meta-analysis of grandmaternal care by Strassmann and Garrard (2011) showed that maternal rather
than paternal grandmother tend to have the larger effect on grand-child survival, even in patrilineal so-
cieties. No clear pattern can however be generalized across populations and no age-dependent effect is
demonstrated. Little is known on the importance of siblings for infant and child survival despite the
widespread observation that the labor of older children is used by parents both for domestic work (in-
cluding child care) and productive activities (eg, Borgerhoff Mulder and Milton, 1985, , and for a review
(Kramer, 2005)). A few contradictory studies show that older siblings have either a protector effect on
younger siblings survival (ie “helper at the nest”; eg Sear 2008) or a deleterious effect (due to competitive
relationships; eg Sparks et al., 2013). It is also acknowledged that these estimations are especially difficult
to carry out because of the cofounding effect of clusters of sibling deaths due to shared environmental
conditions (Ronsmans, 1995), and because siblings interactions are sex-specific (Sear, 2008). Moreover,
it is thought that siblings may switch from helping to competing according to abundance of familial re-
sources (Sear, 2008). Overall, whether or not these variations reflect differences in population behaviors
with respect to child care is far from being clear for two reasons.
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Statistical problems in estimating intrafamilial correlation in survival

First because of statistical problems in estimating intrafamilial correlation in survival. The study of child
mortality following parental death presents many difficulties with regards to the distinction between causes
and confounders. Three main factors may indeed increase both parents and children mortality, leading to
clusters of parents–child deaths (Pavard et al., 2005; Ronsmans, 1995; Sear, 2008).

Between-family heterogeneity: All families are not equal with respect to mortality levels. It is well
known by demographers that heterogeneity in mortality between families arise from socioeconomic condi-
tions and behavioral characteristics of the parents (Sastry, 1997), as well as biological endogenous factors
shared by the members of the same family (ie genetic and obstetric factors; Yerushalmy et al., 1956).
Parents and children deaths may therefore cluster within a given family and, in this case, children deaths
do not result from the loss of parental care following parental deaths.

Within-family heterogeneity. Children of the same family may have a differential risk of death linked
to parental reproductive history. The most obvious is parental age at child birth. Children born to old
parents have a larger risk of death due to decrease in gametes quality and increased birth defects. The risk
of mortality varies also from one child to another with respect to birth interval, survival of the preceding
child, sibship size and/or birth order (eg Ikamari, 2000; Kuate Defo, 1997). For example, birth intervals
resulting from the death of the preceding child increases the mortality of both the index child and the
mother because of maternal depletion syndrome (Jelliffe and Maddocks, 1964).

Sporadic increase of mmortality. Pavard et al. (2005) have first demonstrated that the mortality of
children whose mother will die start increasing before maternal death. This is due to factors leading to a
sudden rise in familial mortality such as accidents, epidemics, cross-infections or any familial reversal of
fortune. Since then, this has specifically been analyzed in two articles confirming a bell-shaped increased
risk centered on maternal death (Clark et al., 2013; Ronsmans et al., 2010).

Child dependency as a dynamic multi-actors process

Second because child dependency to parents and grandparents care is a dynamic multi-actors process
involving child physiological and psychological development and mourning process. Indeed, most studies
analyzed the increased risk of dying of a child whose parent dies into a given period. However, Beekink
et al. (2002) have first shown that the time elapsed since the parent’s death matters. For example, a
child whose parent has died a long time ago has a higher survival rate than a child who has recently lost
its parent (Pavard et al., 2005; Willführ and Gagnon, 2013). The increased mortality due to the loss of
parental care is therefore a dynamic process depending on both the current child age and the child age at
the death of the parent(s). Moreover, the effect of a parent’s death depends also on the family structure
both before and after the death of the parents. Curiously, only one study demonstrates the obvious: the
effect of a parent’s death varies according to whether and which other parents are still alive (Derosas,
2002). Step-parents also exhibit various effects. For example, the mother’s remarriage has no effect in
historical Germany, while it is beneficial for children survival in historical Québec. In contrast, the father’s
remarriage dramatically reduces children survival in historical Germany, while such an effect is not seen for
historical Québec (Willführ and Gagnon, 2013). This is fundamental because it gives indication on who is
compensating, or not, for the loss of parental care after the death of a parent. This type of analysis holds
the only way to untangle the multi-actor network of investments that allows children to reach maturity in
humans.

4.2.3 Analysis of a payer of kin investment: human costs of parental
care

Optimal age-trajectories of adult survival and reproduction have been extensively formalized by life-history
theory based on two main trades-off: (i) the costs of reproduction : the trade-off between present repro-
duction and future survival/reproduction; (ii) the trade-off between quantity and quality of offspring. This
theoretical framework has proved efficient in explaining evolution of life-history across a large range of
species, including species where post-natal parental investment is required for improving offspring quality
at the cost of parental future reproduction (Clutton-Brock, 1991; Gross, 2005). In humans however, the
empirical demonstration of trade-off between survival and reproduction has proved difficult (Gagnon et al.,
2009) and reproductive success has been reported to vary both positively and negatively with women adult
survival (reviewed by Larke and Crews, 2006). One of the reasons is that individual heterogeneity may
mask this trade-off because robust individuals that survive better may also be those that reproduce the
most. This heterogeneity may also be familial resulting from socio-economic differences. For example,
Lycett et al. (2000) showed that trade-off between reproductive success and survival was only detectable
in the lowest economic class in historical Germany (see also Gillespie et al., 2008, for historical Finland).

Another reason is because family investments have rarely been incorporated in these analyses (Larke
and Crews, 2006). Reproduction does not ensure reproductive success in humans and parental investment
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is required for children survival until maturity . Giving birth to a large number of children does not mean
paying large costs in terms of parental investment if most of them die. As a consequence, intergenerational
transfers has proved crucial in optimizing quantity/quality trade-offs faced by human females (Borgerhoff
Mulder, 2000). Understanding familial strategies to enhance the competitive success of offspring is there-
fore needed to understand the balance between fitness components throughout the males and females life
course (Lawson and Mace, 2011) and thus the peculiar feature of human reproductive life history. Repro-
ductive schedule in human females is strikingly faster than that of other great apes, even when body size
is controlled for (for example, interbirth intervals is 3 yrs in humans against 4.5 years in chimpanzees and
8 years in orang-utans; Mace, 2000). This rapid pace of child bearing could be even physiologically faster,
demographers and anthropologists having long recognized that all human societies limit birth rates to some
extent, ensuring that few women reach the biological maximum, even under the most favorable conditions
(Bongaarts, 1975). As a consequence, parents have an increasing number of offspring at different stages of
dependency, needing to be cared for simultaneously.

To achieve this, mothers need help with childcare and nutrition, whether it is coming from male provi-
sioning or post-reproductive females. However, if there is increasing empirical evidence that a mother gets
help in caring for her children (from the studies associating child survival with the presence or absence
of family members discussed previously ), the fact that this help allows a mother to reproduce more is
less clear; although there is an extended body of literature on the topic Lawson and Mace (2011). Effect
of kin investments on child survival and females’ fertility may even be opposite. For example, in rural
Gambia, Sear et al. (2003) found that parents in law increased a female’s fertility while her parents and
her elder sisters had no effect. This is the opposite of what had been found regarding children survival on
the same population (Sear et al., 2002): maternal grandmother or elder sisters had a significant positive
effect on the survival probabilities of children, whereas paternal grandparents had no effect. The answer to
this apparent paradox may be that relationships between females in this population may be structured by
age and dispersal: females compete only when they are reproductively active and co-residing in the same
compound (Mace and Alvergne, 2012). To our knowledge, the only study that demonstrates a clear and
coherent effect of grandmothers is that of Lahdenpera et al. (2004) for two historical populations, where
post-reproductive mothers allow their children to breed earlier, more frequently and more successfully.

The role of siblings is even more ambiguous. In historical Finland, the presence of elder siblings
improved the chances of younger siblings to survive until sexual maturity. However, after reaching sexual
maturity, same-sex elder siblings’ presence was associated with reduced adult reproductive success (Nitsch
et al., 2013). In Historical Germany, socioeconomic condition matters: children’s probabilities of marrying
or emigrating unmarried are affected by the number of living same-sexed sibs in farmers’ families but not
in the landless laborers (Voland and Dunbar, 1995). To the contrary, the number of older siblings are a
strong predictors of fertility in !Kung of Botswana, especially for males (Draper and Hames, 2000). More
generally, Mathews and Sear (2013) analyzed results from a large body of literature and showed that, the
extent to which the presence of kin (parents, parents-in-law, siblings) is correlated with fertility, is mainly a
matter of environment and culture. For example, levels of intergenerational transfers of wealth depend on
subsistence mode (substantial among pastoral and agricultural societies and limited among horticultural
and foraging peoples; Mulder et al., 2009). In return, it has also been suggested that kin investment is a
key factor in explaining emergence of cultural kinship practices. For example sex-specific competition for
household resource, in matrilines between mothers/daughters/sisters (Mace, 2013) or in patrilines between
fathers/sons/brothers (Ji et al., 2014) may have underpinned the cultural evolution of marriage, residence,
and inheritance norms (such as late male marriage or primogeniture). Unfortunately, to date, no cross-
cultural study succeeds to demonstrate the precise role of social organization (in particular according to
descent, marital and residence rules) in determining who help mothers to bear children, and at which cost.

4.3 Implementing kinship demography in evolutionary mod-
els

In order to flourish, kinship demography requires models that can implement kin transfers - whether ac-
counting for both sides of the transfer or only the payer/receiver side - for a wide range of kin relationships.

4.3.1 Precursor models
To achieve this, our concepts will be derived from the costs of reproduction model of chapter 1, but will
also stem from two precursors: Lee (2003)’s intergenerational tranfers model and the ad-hoc evolutioanry
kinship models from (Tuljapurkar et al., 2007; Pavard et al., 2008; Pavard and Branger, 2012).

Lee’s models of age-structured intergenerational tranfers In 2003, Ronald Lee proposed
a theoretical model integrating transfers in an aged-structure population (Lee, 2003). In this model,
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great importance is attached in implementing both sides of transfers: the net balance between resources
production and consumption of individuals of age a is given by a transfer function. If positive (i.e.,
individuals are producing more resources than they consume), excess of resources is transferred to younger-
age classes. Among others results, assuming a link between resources consumed and survival, makes
juveniles (who consume more than they produce) dependent on resources produced by adults for their
survival. As a consequence, this also models positive and negative correlations of survival and reproduction
between age-classes. This theoretical framework has led to emphasize the fundamental role of transfers
in evolution of aging (Cyrus Chu et al., 2006) but also to better understand what may have been human
population dynamics in constant (Lee and Tuljapurkar, 2008), fluctuating (Lee et al., 2009) and finite
(Puleston and Tuljapurkar, 2008) environments. We may however address two critics to these models.
First, these models become rapidly unsolvable when complexity is increased by addition of other traits
than age. For example, when adding sharing groups in his transfer of resources structures, Lee (2008) had
to switch to agent-based models because non-linear equations were not solvable. Second, these models
assume these transfers are unrelated to kinship, whilst we know that, in humans, they are in reality mainly
(but not only) structured by kinship. We may wonder to what extent the authors’ results still hold when
kinship is incorporated, together with age, in the model.

Early multitrait kinship models Recently, the implementation of kinship in evolutionary demog-
raphy models has become increasingly topical. For instance, Samuel Pavard has shown, by implementing
different vital rates for orphans and non-orphans, that maternal care is not only crucial for explaining
emergence of menopause in humans (Pavard et al., 2008) but also for population dynamics (Pavard et al.,
2007b) and evolution of life history traits throughout an individuals life (Pavard and Branger, 2012). For
example, Pavard et al. (2007a)) incorporated maternal care into an Hamiltonian framework of evolution
of senescence (Hamilton, 1966). The authors showed that the whole gradient of selection on age-specific
survival and reproduction changes dramatically in magnitudes and shape by age compared with a species
where maternal care is not (or less) required for children survival. Using a numerical equivalent of the
Trait Level Analysis, this has allowed the authors to provide a new coherent scenario for the emergence of
traits peculiar to humans, such as the extended juvenile period, the intense but short reproductive period
for females, menopause and long post-reproductive life (Pavard and Branger, 2012). In parallel another
multitrait model was used to implement kinship: the sex and age model by Tuljapurkar et al. (2007). This
model allowed the authors to implement husband-wife transfers and provided interesting evolutionary re-
sults on the effect of mating patterns on human longevity.

4.3.2 A new general template for Kinship Models
From these early efforts, we know that a general kinship model therefore requires the incorporation of
kinship traits. In the first chapter of this manuscript (sec. 1.3.2 p.30), we have discussed a general method
to incorporate all aspects of a trade-off in a multitrait population projection matrix (MPPM, see chapter 2
(p.41)). We have shown that it meant incorporating three families of traits in the model. The basic traits
B that best determine the life-history of the organism, the dynamic heterogeneity traits D modeling the
physiological (mechanistic) side of the trade-off and the hidden heterogeneity family of traits G modeling
the genetic trade-off (the genotypic polymorphism). In chapter 1, this was applied to the most prominent
of all trade-offs : the costs of reproduction. In the wide acceptance of the term, these costs include all
post-birth investments provided by a parent, a cost known as parental care. In this section, we wish to
indicate modeling paths allowing to extend the trade-off MPPM framework towards an evolutionary kin-
ship models incorporating kin transfers.

The general model.

To do this, we first simplify the framework by focusing on the mechanistic constrains - the dynamic traits
that track resources capitalized by individuals via B and D - forsaking G the genetic variance in the
population (but keeping in mind a genotypic polymorphism can be later added as theorized in chapter 1
and performed in chapter 3). When modeling transfers, the resources provided to another individual or
received from it can be considered to be acquirable (for instance food transfers as in (Lee, 2008)) or not
(if for instance transfers are about time spent educating kin). In the first case, transfers could be modeled
by the Fluctuating Capital (FC) described in chapter 1, and the second case by the Ratchet Capital (RC).
In practice these resources transferred may be modeled by the addition of a special trait NTC that would
account for the net transfer received by an individual since birth (Lee, 2003). Capital NTC may be merged
with FC/RC in order for vital rates to depend on the total amount of resources, acquired and net received.
NTC could also be kept segregated from FC/RC if total transfers at the level of the population are required
to cancel out (Lee, 2003). The effect of kin transfers can then be implemented by implementing vital rates
as functions of capitals NTC/FC/RC, themselves function of the environment, the life trajectory of the
individual and its kinship distribution. In a simplified version of the model focusing on kinship only, vital
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rates can just be direct functions of the distribution of kin alive. In all cases therefore, this requires us to
track kinship distribution.

In order to be able to analyze the demographic and evolutionary consequences of kinship, a kinship
model requires first to identify the kin providing care to an individual and to add these as active dynamic
heterogeneity traits : the K kinship traits. This turns a kinship model into a memory model where the
entire kinship distribution is tracked time-step after time-step. Via a survival transition, this distribution
will be affected by basic trait B: all kin alive will survive one more time-step or die according to their
basic trait in B. Via a fertility transitions, the kinship distribution is transferred and shifted, according
the basic genealogical rules, from mother to child.

Illustration

Let us illustrate this with the example of an aged-structured population model (B = {age}) that imple-
ments the (positive) effect of older sisters and aunts on fitness. Let r = β−α+1 be the number of fertility
events of the age-structured population. Then kinship family of trait K would consist in the position k of
individuals’ birth in their mother’s reproductive period, m the aliveness of the mother of individuals, posi-
tion k∗ of the mother’s birth in the grand-mother’s reproductive period and 3 r-tuples of traits : {si}i∈(1,r)
, {di}i∈(1,r) and {ti}i∈(1,r) providing the aliveness of the ith sister, daughter and aunt (in their respective
sisterhood) of the individuals. This therefore implies the model has 3r + 4 traits and its trait vector and
trait structure are t = (age, k,m, k∗, s1, . . . , sr, d1, . . . , dr, t1, . . . , tr) and s = (ω, r, 2, r, 2, . . . , . . . , 2).

As the individual - we call ego - survives to the next age-class (as a function of K), age increases by
1. k is constant but provides the age of the mother age+ k, which in turn yields, from a baseline survival
function s† by age defined for a mean individual in the population, the state m of the mother. Similarly,
the position of each of ego’s ith aunts (respectively daughters, sisters) is constant, but its age age+k+k∗−i
(respectively age− α+ 1− i and age− i) which yields her aliveness at the next time-step ti (respectively
di and si). Equivalently, the baseline fertility functionf† by age defined for a mean individual in the pop-
ulation, will provide new values for the younger sisters and aunts, unborn at ego’s birth {ti}age+k+k∗≤i≤r
and {si}age+k≤i≤r.

As the mother produces an offspring, her, yet unexisting, dage−α daughter becomes alive. Moreover,
her sisters become the child’s aunts and her daughters the child’s older sisters. she transfers her {di}i∈(1,r)
(respectively {si}i∈(1,r)) into her daughter’s {si}i∈(1,r) (respectively {ti}i∈(1,r)). The daughter is also as-
signed the following values: m is set at 1 (mother is alive) , r = age− α+ 1.

And therefore, thanks to trait family K and basic family B (on which baseline vital rate function
f† and s† are defined) , the distribution of kin is tracked throughout the life history trajectory of in-
dividuals and can therefore be made to affect vital rates : f(age,m, s1, . . . , sr, d1, . . . , dr, t1, . . . , tr) and
s(age,m, s1, . . . , sr, d1, . . . , dr, t1, . . . , tr). This can be done by considering, for instance, an additive im-
pact (each kin alive has a positive effect, which effect can be weighted, for instance, by the coefficient of
relationship), or a multiplicative impact (to implement, for example, the fact that the role of aunts is only
positive if the mother is dead).

Solving the transfer asymmetry issue

The model, as it stands, suffers however from one major inconsistency. The model implements vital rates
of individuals of a population -f and s - as affected by basic traits B and by the distribution of their kin.
However the fate of their kin only depends on B -via f† and s† - whilst they are obviously also part of
the modeled population. This is due to the fact that we implement kinship only one-way: the receivers
benefit from transfers provided by they kin alive, whilst the payers bear no cost. In order to correct the
erroneous results such a model with non-zero net transfer would yield (Lee, 2003), there are two possibilities.

The first possibility is to implement kinship transfers two-way. That is incorporating the positive effect
of aunts on nieces, together with the negative effect of nieces on aunts. Embedding both the benefits of
having older sisters, and the costs of caring for younger ones. By netting the transfers and turning the
model into a symmetrical design, the side effects of the baseline vital rates will also be (partially) netted
as they will be used to implement both costs and benefits. In a two-way kinship model, the net transfer
capital NTC aforementioned - increased (or decreased) at each time-step by the net kinship-coefficient-
weighted number of kin - should be added as a trait. It allows to segregate the effects of kinship on net
transfers from its effect on vital rates. By construction, the NTC whilst evolving for each individual, will
be constant at the population level (Lee, 2003): there are as many individuals aged x with and aunt aged
y, than individuals aged y with a niece aged x. This does not mean that the population is necessarily
stationary. Indeed, if vital rates are asymmetrically affected by kinship (for instance if the transfer benefits
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more the niece than it costs its aunt) the population can grow.

The second possibility, if two-way kinship tracking is too tedious or impossible to implement, is to
make the one-way model consistent by convergence. Indeed, implementing the status of kin requires to
add potentially numerous traits to K. Implementing the status of kin of kin would require the square of
these numbers and so on and therefore in a kinship model the fate of kin do not depend on K but only on B.
We called these vital rates, baseline fertility and survival rates f† and s†. However the kin of individuals
are part of the same population and should therefore share the same vital rates on the characteristics
in which they are defined. Simply put, the baseline vital rates should be the expected vital rates in the
population for kin’s B characteristics, i.e. the mean vital rates, we denote f◦ and s◦.

This consideration is however circular - the mean vital f◦ and s◦ result from the model, itself a function
of the baseline vital rates f† and s† - and the model cannot therefore be implemented directly. In order
to ensure that f† and s† are the mean vital rates f◦ and s◦, a convergence process is required. Let us call
M(f†, s†) the kinship model, where the population is characterized by {B,K}, implementing kin benefits -
via functions f and s defined on {B,K} - and where kin vital rates are represented by f† and s† defined on
B. Then the mean vital rates of the population defined on B can be extracted from Mfold

B (f†, s†), which
is M(f†, s†) folded on all traits in K (see chapter 2 (p.41)). These two matrices are ergodically equivalent,
and share the same asymptotic abundances when characterized by traits in B. The kinship transitions
of M(f†, s†) are averaged (weighted by their asymptotic relative abundances) to yield the transitions of
Mfold
B (f†, s†). In other words, the mean vital rates of the populations are those emerging from the folded

matrix, such that: f◦ = f(Mfold
B (f†, s†)) and s◦ = s(Mfold

B (f†, s†)).

By considering ft and st as series of vectors of size, the size of B, then - if converging - the following
iterating folding process

f0 = f†

s0 = s†

ft+1 = f(Mfold
B (ft, st))

st+1 = sMfold
B (ft, st))

(4.1)

would tend towards M(f+∞, s+∞) , which is the desired kinship model. This is another application of the
Trait Level Analysis described in chapter 2 (chapter 2 (p.41)).

These theoretical and practical considerations are only first steps towards a general theory of kinship
MPPMs. Further analysis will benefit from comparing the outputs of Lee (2003)’s transfers models by
age in an evolutionary demography framework that segregates age and transfer structures, with ours. The
economics field of input-output analysis, put in matrix form by Leontief (1951) - and which 20 years
before demographers had started to investigate the addition of traits on a projection matrix (see chapter
2 (p.41)) - is likely to provide help here, once again, especially as it integrates transfers in the framework
of input-output matrices (Leontief, 1936; Chichilnisky, 1983; Lopes and Neder, 2017).

4.4 Extracting kinship demography from evolutionary mod-
els

In the previous section, we showed how to implement kinship in an MPPM to build what we call a kinship
model. But kinship demography requires also to be able to measure the effect of demography on kinship.
We will discuss here, methods - first particular for particular kinship then in the general case - to measure
the general effects of vital rates on kin distribution. We will illustrate these by drawing on the model
implementing costs of reproduction of chapter 3.

As we saw in that chapter, the simplifying choices made when building a population model are not
neutral. They need to be kept in mind when asserting the results provided by the model. Some of the
implications of these simplifications are obvious. Characterizing a population only by age, for instance,
implies that all vital rates depend only on age, and are therefore, implicitly, independent from one another,
which leads to further implications rarely accounted for. For instance, we saw (sec.3.4.3, p.85) that the
independence of successive fertility processes (as Bernoulli r.v.) violates the simplified model of population
genetics, which requires that, on average, every individual in the population has the same probability of
being the parent to any offspring of the next generation (Kimura, 1958; Hill, 1972; Felsenstein, 1971). The
effect of age (only)-structuring can then be measured, for instance, by comparing the variance in lifetime re-
productive success stemming from the Leslie model (sec.3.4.3, p.85) with the variance assigned to it by the
Wright-Fisher population genetics model (that will be higher, the variance of a Poisson distribution being
its mean , whilst the variance of a Bernoulli/Binomial distribution is lower than the mean), and the actual
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number in the natural population (that we expect to be lower due to the underlying trade-offs, and in par-
ticular the physiological costs of reproduction which we studied the effects of variance in LRO in chapter 3).

But the consequences of the simplifying choices of model do not stop at family size (as σ2
LRO is often

called), they impact the entire kinship distribution. The aliveness (and number) of an individual’s mother,
sisters, aunts, grand-mother, daughters, etc. are functions of the vital rates of the population. A population
structured only by age (i.e., modeled by a Leslie matrix), for instance, automatically generates a kinship
distribution in the asymptotic population. We shall now consider historical approaches to measure the
kinship distribution inferred by a population model. Then we will provide examples for specific kin like
the expected number of older sisters at birth. This quantity is important as these older sisters are, in some
social species and especially in humans, helpers at the nest, providing care to the individual, and along
with other kin of close relatedness with the individual, replacing the mother in this role when she dies.
And finally we hint at a generalization of such methods to any kin.

4.4.1 Precursor methods
Different fields have long been looking for mathematical predictions of kinship structure as a result of
population demography. The first demographers to attack the problem based their computations on age-
structured populations and resorted to stable-state theory (Le Bras, 1973; Goodman et al., 1974b,a). From
the relative ergodic abundances by age-class, they would draw for an individual ego taken at random in the
sable-state population, the distribution of the age and (alive) status of its mother, grandmother, etc. and
from these the distributions of sisters, aunts, etc. The approach is very interesting but the computations
are analytic, strenuous and adhoc. These draw-backs meant that these methods were quickly abandoned,
with a new focus on a simplified structure where the multiple random processes corresponding to fertility
and survival rates at each age were replaced by two random variable only : longevity and net reproduction
(Pullum, 1982). Deemed too complex to implement still, it prompted demographers to turn to individual-
based modeling (called microsimulation in that field) to simulate the projection of kinship networks over
time (Pullum and Wolf, 1991; Reeves, 1987; Smith, 1987; Wachter et al., 1997).

In parallel mathematicians attacked the problem from the field of Branching Processes. First by con-
sidering life history as a Birth and Death process (the BP equivalent to the two vital processes - longevity
and net reproduction - just described) (Waugh, 1955), by setting the life cycle aside completely and con-
sidering non-overlapping generations (this corresponds to the Galton-Watson BP process Waugh, 1981;
Joffe and Waugh, 1982), and finally by considering age as trait (corresponding to multitype BP Joffe and
Waugh, 1985).

Therefore whilst mathematicians augmented the complexity of their object, to finally start studying
the BP equivalent of a Leslie matrix, the complexity of the probabilistic approach meant demographers
could not extract the desired quantities from such models, and proceeded on their side to simplify their
framework from an evolutionary age-structured model to IBM simulations. As of today, the distributions
provided by Goodman et al. (1974b) are therefore still the most accomplished kinship inference method in
a structured population, and constantly referred to (Lahdenperä et al., 2012). Our aim here is to take up
the torch and to reinvigorate this field by hinting at the first steps towards a general kinship extraction
method.

4.4.2 Neutral trait approach: application to inference of the inter-birth
interval from matrix model

For simple kinship-related measures, the computations and the analysis can be made even simpler by the
addition of a neutral dynamic heterogeneity trait, i.e. a trait that acts as a tracker and indicator of an
individual’s state but has no effect in itself on vital rates. Among such neutral traits that can be readily
appended to any structured model is age (tracking chronological time in a stage-structured population
for instance) and parity. Parity, as a neutral trait, could be implemented to produce ergodic abundances
or calculate reproductive values as functions of it. It can also benefits the calculation of kinship related
measures in the population, like the inter-birth interval.

As a matter of fact, in order to compute the expected inter-birth interval that is determined by a
population characterized by trait structure t, we add to it two neutral traits: parity and newparity, that
indicates if the individual just had a successful fertility event at the last time-step. From the initial model
(characterized by, say, age, denoted a, we build Ma,p,np the model with parity (we denote p) and newparity
(denoted np) counters added as traits. In order to do so, it required to split each survival transitions into
two transitions according to the success of the fertility event which parameter is the fertility rate, as we
did for the model of chapter 3 (sec.3.2.2, p.64). Fertility successful survival transitions increment parity
and assign a 1 to newparity. Fertility unsuccessful survival transitions keep parity constant and assign a 0
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to newparity.

The full matrix can be split into fertility and survival components: Ma,p,np = Fa,p,np + Ta,p,np. It
can also be folded on newparity, yielding Mfold

a,p = Ffold
a,p + Tfold

a,p . Eigen analysis of Ma,p,np allows to
extract the vector of relative abundances wa,p,np from which we extract the second half, scaled to one :
w∗ =

wa,p,npnp=1
1′.wa,p,npnp=1

. Vector w∗ provides the distributions, at the stable state, of the age and parity of the
individuals which just had a successful fertility event at the previous time step.

We are now required to compute, for each of these age × parity combinations, the expected inter-birth
interval, i.e. the expected time spent in the current parity. From Tfold

a,p , we can generate T� - such that

T �i,j =
T
fold
a,p i,j∑
i
T
fold
a,p i,j

- which is the matrix of survival transitions of the model characterized by age and

parity and where death is not accounted for. This is implemented so that mortality does not interfere
with the computation of interbirth interval (if one wishes to take it into account in the computation, then
the computation of T� is unnecessary and Tfold

a,p can be used directly in what follows). From T�, we
can compute fundamental matrix N� = (I − T�)−1 which provides the required expected time that an
individual (characterized by age and stage) is expected to spend in subsequent age and parity states as its
life trajectory unfolds. From these states we are only interested in those sharing the same parity than the
input state, matrixwise, this means we are only interested in the diagonal blocks of

N� =


Np1,p1 Np1,p2 . . . Np1,ppmax

Np2,p1 Np2,p2 . . . Np2,ppmax

. . . . . . . . . . . .

Nppmax,p1 Nppmax,p2 . . . Nppmax,ppmax


, of which we sum the columns : t =

[
1′.Np1,p1 1′.Np2,p2 · · · 1′.Nppmax,ppmax

]
. Vector t rep-

resents the expected time an individual, in a given age × parity combination will remain in the current
parity. From these we yield the desired formula for the mean birth interval at stable state:

ibi = t′.w∗

4.4.3 Genealogical Markov chain approach
For most kinship inference calculations however, the addition of neutral traits is not sufficient to provide the
expected number, and we have to use the properties of genealogical Markov chains, as we shall illustrate,
here, for the computation - in a one-sex one-offspring-class model with independent vital processes - of the
expected number, at birth, of older sisters. A simplified version of this quantity - the expected number of
ever-born older sisters - can be computed via the addition of neutral trait parity: the parity of the ego’s
mother at its birth is ego’s number of ever-born older sisters. We illustrate this, by providing, in appendix
section 4.6.1, the effects of physiological costs of reproduction, as modeled in chapter 2, on that kinship
measure. In order to compute the expected number of older sisters alive however - an arguably more
meaningful measure from a kinship demography standpoint - we have resort to the genealogical Markov
chains.

Application to inference of the expected number of older sisters from matrix model

Let us call M such a model with ergodic growth rate λ and related abundance vector w. From these, we
can derive its related backward genealogical Markov chain P, a concept that was introduced by (Demetrius,
1974, 1975) and later used by (Tuljapurkar, 1982c, 1993) and Bienvenu (Bienvenu and Legendre, 2015;
Bienvenu et al., 2017). Matrix P represents the asymptotic distribution of input states for each possible
output state. Simply put, Pi,j is the probability that an individual observed in class i at time t comes
from class j : Pi,j = Mi,j

λ
.
wj
wi

.

Let us split M into the matrix of fertility transitions F and the matrix of fertility transitions T , and
let us split P into its first line d (di = P1,i) and the rest of the matrix P̃. In a 1-sex 1-offspring-class
model, like M , d is thus the asymptotic distribution of maternal state. For each maternal state i at
birth of individual (ego), the expected number of daughters produced by the mother t time-steps before
birth of ego, is then the first and only element of FP̃

′tei (ei is a vector of zeroes with 1 in ith position).
Therefore the number of ever-born older sisters to ego is

∑
t
FP̃

′tei = F(
∑

t
P̃
′t)ei. Thus, the vector of

expected number of older sisters ever born - characterized by state of mother - is e′1.F
∑

t
P̃
′t (the first

line of F
∑

t
P̃
′t). Similarly, the expected number of older sisters alive at birth of ego, distributed by state

of mother i, is
∑

t
TtFP̃

′tei and thus, the vector of expected number of big sisters alive , distributed by
age of mother, is the first line of

∑
t
TtFP̃

′t.
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We can extend this approach to other kin. The distribution of combination of states at birth for mother
and grandmother is given by D = d.d′, where Di,j = di.dj the probability that mother give birth to ego
at state i = (ia, ..) (ia is the age component of state i) and that her own mother had her at j (this general
approach stemming from (Goodman et al., 1974b) is used, in an equivalent but non matrix form in Annex
5.3.1, p. 142. The distribution of state of the grandmother at birth is given by Tiaej

Aunts distribution can also be computed this way. Aunts are either born between at (ia+ja) ≥ t ≥ (ia+
1) and the vector of expected number of aunts older than mother, alive, distributed by state of grandmother
j, is

∑
t
Tt−ia−jaFP̃′t−iaej . Or they born between at (ia−1) ≥ t ≥ 1 then the vector of expected number

of aunts younger than mother, alive, distributed by state of grandmother j,
∑

t
Tt−ia−jaFTt+jaej . Such

calculations (applicable to any matrix model, as soon as the independence is respected, as is the case for
most matrix modes), can be extended to further and further kin, thus, in practice drawing the outline of a
kinship matrix providing the distribution of kinship that can be expected at stable state for an individual
picked at random.

Word categorization of individuals in a structured-population’s genealogy

To understand how one could extend this calculation to other kin, let us first consider the case of an
age(only)-structured population, where fertility and survival rates at age i are Fi and Si, with maximum
age n and where mothers can have either 0 or 1 offspring at each time-step. The related survival probability
is thus Pi =

∏i−1
j=1 Sj and Euler-Lotka provides us with λ:

∑n

i=1 FiPiλ
−i = 1.

Let us now characterize all potential individuals in the population by a word system relating them
to one common ancestor which is represented by the one-letter word "1". Each individual’s word would
consist of a series of letters drawn from the n letters of [1, n]. Any individual named with a word of length
k + 1, 1l1l2..lk", would have a daughter at age j, with probability Fj (providing it is alive then, and that
it ever existed). We call her, its jth potential daughter and she would be named "1l1l2..lkj". Thus "132"
is a potential grand-daughter of the ancestor, and more precisely the offspring given birth to at age 2, by
her mother herself produced when her mother (the ancestor) was 3.

Such a word system would help to relate genealogies and demographic processes. Let us contemplate
individual "1l1l2..lk". From its word, we can draw its generation number (since the ancestor): k. We call
also get its age: it was born in the year

∑k

i=1 li (after birth of the ancestor). Its word also provides the
probability it was ever born:

∏k

i=1 PliFli , and the probability it is alive at time t (taken as the number of
years after the birth year of the ancestor) : (

∏k

i=1 PliFli)Pt−
∑k

i=1
li

(unless for cases where t <
∑k

i=1 li

or t > n+
∑k

i=1 li where the probability is 0).

Let us now contemplate the genealogy and demography of ego, a newborn in the population issued
from the ancestor, but alive at a time long enough from the ancestor’s birth that the population is at
stable-state. Let us denote ego’s word "1l1l2..lk−1lk" (with k therefore very large). Then the only individu-
als that are known to have ever existed are the ancestors of ego : its mother "1l1l2..lk−1", its grand-mother
"1l1l2..lk−2", up until its most ancient ancestors "1l1" and "1", the population’s ancestor. Given the name
of ego we know therefore its entire lineage from which the genealogy and the fate of all other potential indi-
viduals can be derived. Let us consider potential individual m "1m1m2..mk∗". The Most Recent Common
Ancestor (MRCA) of ego and m is thus "1l1..lk′"="1m1..mk′" such that k′ is the largest number for which
that property holds. Simply put, the word of ego’s and m’s MRCA is the longest beginning of ego’s word
that is also the beginning of m’s word. This MRCA being in the lineage of ego, we know it existed, and
was alive at the time it gave birth to "1l1..lk′ lk′+1". And thus the probability that m was ever born (ever
existed) is, if mk′+1 < lk′+1, provided by em = Pmk′+1/Plk′+1

Fmk′+1

∏k∗
i=k′+2 PmiFmi . The age of m at ego’s

birth is am =
∑k

i=k′+1 li−
∑k∗

i=k′+1 mi. This, in turn, provides us with the probability of m’s aliveness at
ego’s birth : emPam (where Pi is extended to be worth 0 outside its natural domain of definition).

Therefore, for a random individual in the population, ego and for any other potential individual m, we
know the likelihood of m’s aliveness at ego’s birth - emPam - from m’s word. Moreover we can also infer
the kinship relatedness ego and m. It is the sum of their distances to the MRCA :

r(ego,m) = (k − k′) + (k∗ − k′) = k + k∗ − 2k′

Vectorizing the words - vectorization of individual "1l1..lk" is 1 +
∑k

i=1 li(n)i−1 - of any two potential
individuals m1 and m2 in the population into "kinship states" i and j, and considering that m1 is ego and
m2 is m, we can compute

Ki,j = r(ego,m).emPam
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, the relatedness weighted abundance. Together, these Ki,j constitute the symmetrical and infinite kinship
matrix K.

The distribution, for an existing ego, of its possible lineages is provided by the stable-state distribution
of maternal age at birth (we called d in the general case) which is, in an age-structured population:
d(i) = PiFiλ

−i. Indeed, from this, the probability distribution for the lineage of newborn ego "1l1l2..lk−1lk"
is
∏k

i=1 d(li). From there one can compute the expected number of individuals in the population that are
related with related coefficient r∗ :

k(r∗) =
∏

ego=1l1l2...lk−1lk

d(li)× (
∑

m|r(ego,m)=m∗
emPam)

, thus generating a k a (infinite) vector of kinship distribution, providing for an individual taken at random
in the stable state population, the distribution of kin for each relatedness as inferred by the demographic
parameters of the model.

4.5 Discussion
In this chapter we have hinted at the theory, the concepts and models that constitute the new field of
kinship demography we hope to promote. With regards to the theory, a lot needs to be done in order
to relate to the different approaches of the different fields connected, one way or another, to kinship de-
mography. As we have shown, the inputs from cultural anthropology and kinship ethnology affect the
evolutionary demography of a population and therefore its life history and the dynamics of its genes with
further implications in many fields. Conversely, the demography of a population and its life history, as
collected by human demographers and conservationists has effects on its kinship distribution which itself
has effect on sociality. These two, coevolutive, sides of kinship demography however require new methods
in order to be implemented and inferred from/to the models of evolutionary demography.

Stemming from the conceptual model for physiological costs of reproduction over chapter 1 and its ap-
plication in chapter 3, we propose the initial steps of a new kind of kinship models that allow to implement
the effect of transfers between various kin in the population. It extends the works of Tuljapurkar et al.
(2007) - who proposed a husband and wife model - and Samuel Pavard - who has built daughter-mother
and daughter-mother-grandmother models (Pavard et al., 2008; Pavard and Branger, 2012). Because the
effect of kinship on the demography of a population is about transfers of resources from one individual
- paying the cost of the transfer - and another - benefiting from it - we wish for our model to be able
to implement both sides of transfers, i.e. both effects of kinship care. We also devise a way to correct
for the asymetry of only incorporating costs or benefits, and ensure the implemented vital rates of kin
correspond to that of the population they belong to. However, this approach requires further analysis, and
in particular with regards to (Lee, 2003)’s work on transfers in age-structured population. As a first step,
we would need to study the similarities and the differences between the kinship model, folded on kinship
and the (Lee, 2003)’s transfer model.

From the initial work from Le Bras (1973); Goodman et al. (1974b,a) - that still constitutes the state
of the art, we built tools that enable to extract the kinship distribution inferred by a population model.
We first show the ability of MPPMs to implement further neutral traits makes it possible to compute for
simple kinship distributions. We then show how genealogical Markov chains - introduced by (Demetrius,
1974, 1975) and later used by (Tuljapurkar, 1982c, 1993; Bienvenu and Legendre, 2015; Bienvenu et al.,
2017) - can provide, for a slightly more complex kinship distribution - the expected number of older sisters
alive - the calculation steps to extract it from a general structured population model. Finally we extend
the concepts to include the distribution of all kin relatedness distribution in the population, in the case of
age-structured models.

A further step will consist in emulating this approach towards computation of kinship distribution vec-
tor k and kinship matrix K for any matrix model. The structure of the ancestry lineage from ego would
then be provided by genealogical matrices P and its two components : di = P1,i across generation P̃
within generation. Then, the branching out forward towards all potential descendants of the ancestors of
ego could be performed by matrices F (equivalent to the Fi of the age-structured model) and T (equivalent
to the Si and Pi of the age-structured model).

Most importantly however, we think further progress in the kinship inference from demographic models
will require the incorporation of multitype branching process, in particular the so-called Crump-Jaggers-
Mode multitype BP (Crump and Mode, 1968, 1969; Jagers, 1982; Jagers and Nerman, 1984). The con-
nection between kinship, demography and branching processes was made early by (Waugh, 1955), who,
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together with Joffré went on to use Birth and Death and Galton-Watson processes to compute kinship
distributions (Waugh, 1981; Joffe and Waugh, 1982). The multitype model they proposed in 1985, will be
the base from which to improve our kinship extraction approach (Joffe and Waugh, 1985).

4.6 Appendix

4.6.1 Illustration: effect of costs of reproduction on the expected num-
ber of older sisters

In this section, we will illustrate the calculations of section 4.4 by displaying the result of the computing of
the expected number of older sisters for the models of chapter 3. By using the trait parity on the matrix
implementing the costs and by adding it back, but as a neutral trait, on the asymptotically-equivalent
matrix folded on parity from which the costs are absent, we can compute the distribution of older sisters
ever-born (by state of mother) for both models and for a range of zero-parity vital rates.

In all cases, we find the expected number of big sisters to be higher for the model without the costs
(see 4.3a). This may seem surprising since the number of sisters is obviously linked to lifetime reproductive
output, the expectation of which is equal between the two models as we demonstrated (sec.3.0.6, p.97).
The difference can be explained however, by the fact that, in the model with the costs, fertility is reduced
by parity. And thus, whilst a 1st offspring is "easier" to have compared to the model without the costs, a
2nd child (that would be the first one to have an older sister) - let alone a 3rd child etc. - will be "harder"
to obtain.

However most importantly for our study, we want the distribution of older sisters with respect to the
aliveness of the mother. We characterize this relation by plotting the coefficient of correlation between
the two distributions for both models (figure 4.3b). Unsurprisingly the correlation between survival of
mother and number of older sisters is extremely low for the model with fertility parity trade-off. This
is because, in our model, maternal survival declines with the number of offspring : s(a, p) = s.(1 − p/n).
Because the survival at the last age-class is always zero whatever the parity, this correlation is not exactly
−1 and can rise for large survival rates and small fertility rates (as then almost all children are firstborns).
In all cases however, it is much lower than the correlation for the model without the costs, even though
the latter still display negative correlations. This is because in any model, parity is positively correlated
with age (as it never decreases) whilst the correlation of survival with age is established (see sec.3.4.1, p.76).

This implies that in the models with the costs, the expected number of older sisters at birth helps
compensate for the potential loss of the mother. If the care provided by a sister is a portion c of the care
provided by a mother, then the expected care received by a newborn which mother is at stage (a, p), when
giving birth to it, is c.p+ s.(1− p/n). This total transfer from kin a newborn receives is thus independent
from the state (age or parity) of the mother whenever c = s

n
. In the model without the costs, survival of

the mother is a function of age, independent from parity, and there will be no such compensation effect.

(a) (b)

Figure 4.3: For (age-parity) models (differing only by their zero-parity vital rates) and their related
reference leslie matrices, we plot the and the difference in expected number of big sisters at birth
between the model (implementing physiological costs of reproduction) and its its reference leslie
model with no trade-off implemented and that quantity for the models with the costs. We also plot,
for each model, the correlation between the expected number of big sisters at birth and survival
of the mother. The population has maximum age ω = 15 and age-at-maturity α = 1. Cost of
reproduction is modeled by relatively decreasing each vital rate by 1/(1 + ω − α) per parity
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In the introduction of this thesis, I have set out the questions ecologists are currently asking with respect to
the cross, relative and conjoint evolutionary consequences of genetic and physiological trade-offs. In chapter
1, I proposed a new life-history conceptualization of physiological costs of reproduction, and its integration
in a framework of genetic costs of reproduction has allowed us to disentangle the specific mechanisms and
detectability patterns of each of these two families of trade-offs. In chapter 2 we developed a new family
of evolutionary models - the Multitrait Population Projection Matrix (MPPM) - and its related analysis
toolbox – the Trait Level Analysis that allows to investigate the demographic and life history consequences
of traits. It therefore enables to implement and analyze physiological trade-offs in a context of genetic
variance. In chapter 3, we built such a model for costs of reproduction, and analyze it to better understand
the joint evolutionary roles of physiological and genetic costs of reproduction.

Intermediary results and related further investigations
This study in three steps – (life-history) conceptual, (evolutionary model) theoretical, and (costs of repro-
duction) analytical – brought results along the way that do not pertain directly to the subject of the thesis.
Moreover, we have indicated, in chapter 4, an extension of the general model template for trade-offs to
incorporate kinship transfers. Many of these intermediary results pave the way to further investigations,
either because additional research is required to circumscribe the question asked, or because our research
hints at new angles that we are urged to consider. We shall now summarize these intermediary results and
discuss related further investigations.

Chapter 1
In chapter 1, we go back to Williams (1966)’s initial definition of the cost, and infer, from it, that phys-
iological costs of reproduction combine a physiological allocative process that affect resource capitals as
chronological times passes "forward" and an evolutionary mechanism that controls "backward" the resource
capital expenditures according to the species evolved life-history strategy. We argue that these two pro-
cesses correspond to two types of resources making up, respectively, the Fluctuating Capital related to
acquirable resources (like food) in the environment and the Ratchet Capital associated with resources that
cannot be acquired (like time) and that is related to the organism’s evolved lifetime reproductive schedule.
From this differentiation, we make predictions on the strength and therefore on the patterns of detectability
of physiological costs depending on an organism’s evolved position on three key life-history continua: the
Slow-Fast continuum, the Income-Capital Breeding spectrum, and the Quantity-Quality continuum.

First, the position on the SFC controls the pace at which reproductive efforts have evolved to be made
and therefore the strength of the long term RC costs. Long-lived organisms have large RC in early-life
which makes their RC costs long-term and only observable at the back-end of the organism life expectancy.
Second, the position on the ICB controls the capacity to build reserves and therefore the strength of the
short-/mid-term FC costs. Income breeders cannot store FC resources, and their FC costs are therefore
confined to survival costs in the current season. Capital breeders can, with therefore mid-term FC costs.
Finally the position on the Quantity-Quality continuum drives the effect of demographic variance on re-
productive effort, and therefore the strength of both costs.

The differing compositions of both capitals, connected by the time-step reproductive effort that depends
on both capitals being supplied, prompts us to forecast templates for the detectability of physiological costs
as a function of the environment, its variance and individual stochasticity. We show that these observabil-
ity patterns differ from those of the genetic costs of reproduction, for which we also discuss the effects of
genetic variance.

Going forward, these detectability patterns need to be tested, both empirically and theoretically. In
particular, our approach that considers physiological costs of reproduction as functions of the position
of an organism on multiple life history continua - we also discussed the effect of the organism on the
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semelparous-iteroparous spectrum - will be required to be further examined in the light of Charnov (1990)’s
dimensionless numbers (see also Charnov, 2002).

In the last part of the chapter, we discuss the adequate population models for each family of costs
of reproduction – Agent-Based Models for physiological costs and matrix models for genetic costs – and
suggest that the addition of traits in a matrix models could make it possible to study both kinds of trade-off
in a single evolutionary model. In particular, adding genotypic polymorphism in a matrix model prompts
us to revisit Charlesworth (2000)’s reconciliation of the allele-frequency equilibrium of population genetics
and the stable-state of evolutionary demography, from a matrix model perspective. This hints at the role
that MPPMs, and in particular Trait Level Analysis (see below), can play in simplifying and deepening
– via the incorporation of other traits - the study of age-structured population genetics (Charlesworth,
1980).

Chapter 2
In chapter 2, the pivotal methodological chapter of this thesis – presented in its article version as published
in Theoretical Population Biology in July 2017 - we first describe a method to build a Multitrait Population
Projection Matrix (MPPM). The methodological efforts towards extending matrix models to populations
characterized by age and stage and location etc. is topical as evidenced by the publication in Methods in
Ecology and Evolution in September 2016 of an alternative building technique (Roth and Caswell, 2016).
Because vector-based (avoiding loops and making use of sparse matrices), our method allows to build the
model in a computationally inexpensive manner. Both time and space complexities are reined in compared
to the alternative method, allowing for more traits to be implemented. We extend the sensitivity analysis
of a one-trait matrix to an MPPM, but first discuss the latter’s primitivity. Contrary to most one-trait
models, MPPMs will not be primitive, but we show how to extend Perron-Frobenius results on ergodicity
by considering the Frobenius normal form of an MPPM.

The key result of the article lies in the Trait Level Analysis which aims at being an asymptotically
neutral framework for MPPMs. We define the merging of nodes with weights equal to their ergodic abun-
dances, as Ergodic-Flow-Preserving merging of a graph. We extend EFP-merging to entire traits via an
operation we call EFP-folding or simply folding. By construction, a matrix and its folded versions – among
which the Reference Leslie Matrix, where only age remains as a trait – share the same asymptotic growth
rate and relative abundances. This versatile tool has many properties and allow, among other things, to
compare the modeling effects of different levels of scrutiny on a population (e.g., for conservationists),
and to compare populations with various underlying processes (as for instance physiological and genetic
trade-offs) in an ergodic-neutral framework (e.g., for evolutionary demographers).

The advent of multitrait matrices and their trait-based analysis tools open up multiple theoretical
and empirical fields of research. Among these, we wish to isolate two key angles of investigation, which if
fruitful will further enhance the interest of MPPMs and promote the development of a multitrait-structured
population theory.

First, the application of Trait Level Analysis to transient dynamics, which may help answer questions
such as the relative effect of a specific trait on the damping ratio, and the stabilizing/destabilizing effects of
some traits on perturbation analysis. It could possibly be approached by comparing the spectra of folded
matrices, or by comparing two folded versions of the same full model, either via EFP-folding, or via the
transient-dynamics merging tool of economical input-output theory (Fisher, 1969, 1958; Simon and Ando,
1961).

Second, the incorporation into the theory of alternative folding methods that preserve other ergodic
properties of models. We show, in the article, that the EFP-folding is only one specific choice of merging
and that, even when focusing on the ergodic state, alternative forms of merging are conceivable. In a
recent article published in Theoretical Population Biology, Bienvenu et al. (2017) use the genealogical
Markov chains stemming from the work of Demetrius (1975, 1974) and Tuljapurkar (1982a) to describe an
alternative state-merging process they call "genealogical collapsing". Life EFP-merging, it preserves the
asymptotic growth rate and abundances. Contrary to EFP-merging however, it also preserves reproductive
value, but at the cost of ergodic flows. It remains now to be investigated whether such a tool – once extended
from states to traits – could be embedded in Trait Level Analysis and what it would mean to the field of
evolutionary biology.

Chapter 3
The exploration of the cross effects of physiological and genetic costs, in chapter 3, prompted some method-
ological results.
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First, it drove us to reconsider the generally accepted interpretation and computation of the net re-
productive rate for (matrix) models with several classes of offspring. We also produced a closed-form
formula of the variance in reproductive success for age-structured populations and combined these two
results to yield a formula for variance in reproductive success in a population characterized by age and
fixed-heterogeneity, in a manner that segregates the portion due to stochasticity and the portion due to
hidden heterogeneity.

We also showed how to compute the variance in reproductive output for a population characterized
with a dynamic heterogeneity trait implementing a trade-off, via the use of Markov chains with rewards.
And finally we extended to multitrait models the age-based formula for vital rates selection gradients,
demographic variance and environmental variance.

This research also encouraged us to initiate a study of the conceptual and formal similarities and
differences between the variance in reproductive success related to the net reproductive rate and the
demographic variance related to the stochastic growth rate. We provide an equation between these for
stationary populations. This study will need to be further investigated in order to yield the long-needed
reconciliation of two demographic approaches: the one focusing on the stochastic growth rate and its
infinitesimal variations and the other considering the net reproductive rate R0 and its variance.

Chapter 4
In chapter 4, we hint at an extension of the theoretical model developed in the second part of chapter 1
towards kinship models, which can implement and infer the distribution of kin in a population and the
transfers of resources between kin. We discuss important features required of such models and in particular
show how to resolve the "transfer asymmetry issue" stemming from the implementation of only on side of
kin transfers (only vital rates of beneficiaries or of payers are impacted by kinship distribution).

Across this new field of kinship demography - that aims at studying the coevolution of demographic
and kinship parameters in a population – we also demonstrate how to infer, from an evolutionary model,
simple kinship distributions and indicate the first steps to extend these computations to the general kinship
distribution of a population, we call the kinship matrix.

The new field constitutes a vast area of future research in itself. In particular the kinship model
framework presented here will need to be tested and compared with the evolutionary models focusing
on intergenerational transfers, but forsaking kin, stemming from (Lee, 2003). Progress is also needed
on the other facet of kinship demography where we wish to push forward the quest for tools generating
the kinship matrix. The methods presented in chapter 4 are only first steps and an immense amount of
work still remains to be done. Help towards that goal will stem from the initial works of demographers
(Goodman et al., 1974b; Pullum, 1982), the early use of Galton-Watson branching process for inferring
kinship (Joffe and Waugh, 1985, 1982; Waugh, 1981) and the mathematical field of multitrait branching
processes (Crump and Mode, 1969, 1968; Jagers, 1982; Jagers and Nerman, 1984; Mode et al., 1987).

Main results regarding genetic and physiological trade-offs
The theoretical and mathematical formulations of the costs of reproduction - the "most prominent life-
history trade-offs" (Stearns, 1989b) – of chapters I and III, bring initial answers to the fundamental ques-
tions asked by Braendle et al. (2011) and Edward and Chapman (2011) (Introduction pages 4 and 5) on the
nature of physiological and genetic trade-offs and on their relative, cross and joint effects on the ecology,
demography and evolution of populations.

Physiological and genetic trade-offs are different mechanisms
In the first chapter of this manuscript, we describe the mechanisms of genetic and physiological trade-offs
by stepping back to the fundamental considerations of the founding fathers of theoretical life history trade-
off theory (Partridge et al., 1991; Roff, 1992; Stearns, 1989b; Stearns and Koella, 1986). Both trade-offs
are evolutionary mechanisms. As a matter of fact, genetic costs of reproduction stem from a purely genetic
apparatus, the variance in a portion of a genome (one - at least - pleiotropic gene or several linked genes)
that is antagonistic for two life history features. To the contrary, physiological costs of reproduction com-
bine, as we saw in chapter 1, two components: a physiological one (we model via the Fluctuating Capital)
and an evolutionary one (represented by the evolved Ratchet Capital). However, as we can see from the
differences in mechanisms, understanding the physiological costs of reproduction as an evolutionary mech-
anism does not make them genetic costs. This can be seen, first, by the fact that they can co-habit in a
framework we call physiological costs of reproduction with genetic basis.
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The profound differences between genetic and physiological costs stem from the distinct position of
their mechanism in the Stearnsian trade-off architectural triptych – genotypic level, intermediate structure
and phenotypic level (Stearns, 1989b). The related divergence in their level of action – individual for phys-
iological costs, population for genetic costs – has also important consequences, often disregarded. First,
whilst, on the surface, both costs seem to have the same life history consequences (negative correlations
between early fertility and late fitness) and environmental variance buffering effects - a similarity which
historically bestowed them the same name of costs of reproduction - we show that they actually have
different detectability patterns. Second, their different time levels of action hints at different windows
of evolutionary effects. Physiological costs act at the time-step level and buffer environmental and indi-
vidual stochasticity on a time scale of the order of the species’ life expectancy. Genetic costs act at the
level of the whole individual life trajectory and buffer environmental variance on an evolutionary time scale.

These results regarding the physiological and genetic costs of reproduction can be readily projected on
their related senescence theories, respectively (Kirkwood and Holliday, 1979)’s Disposable Soma Theory
and Williams (1957)’s Antagonistic Pleiotropy Theory. In particular, they bring to light the fact that the
DST is most likely not a special case of the APT.

The joint role of physiological and genetic costs of reproduction
Thanks to the Multitrait Population Projection Matrix tools of chapter 2, and in particular the Trait
Level Analysis, we were able to go further in the analysis of physiological and genetic costs. In particular
in our understanding of their joint demographic and evolutionary effects as well as of the evolutionary
consequences of physiological costs of reproduction. Indeed, this enabled us to build an (age-parity-
heterogeneity)-structured model in which the physiological costs were implemented by having the vital
rates dependent on parity, and the genetic costs by embedding several classes of genotypes differing with
respect to their life history strategies.

We first showed the mechanical effects that the joint trade-offs have on an age-structured population
by considering a model where vital rates only depend on parity and the heterogeneity but do not depend
on age. Folding this model over parity and heterogeneity yields the Reference Leslie Matrix, its asymptot-
ically equivalent model now only characterized by age. The analysis of this Reference Leslie Matrix shows
us that, when the population is only characterized by age, the population’s vital rates – i.e. the vital rates
by age for an average individual in the population – now vary with age, yielding the familiar shapes of
survival and fertility curves often found in the literature (Jones et al., 2014). Both costs of reproduction
affect therefore age-structured demographics.

Second, we show that physiological costs have a strong impact on the selection gradient by age. As
they spread out the reproductive effort of individuals over their lifetime, the force of selection on fertility at
a specific age decreases strongly when passing from the model implementing the costs to its folded asymp-
totically equivalent model without costs. This has profound implications on the validity of estimations of
the selection gradient as extracted from a population structured by age only, especially if one considers
physiological costs to be ubiquitous in nature.

Moreover, this result provides a theoretical illustration and an extension to the corollary of Williams
(1957)’s second prediction. This prediction indicates that, for a given population, the senescence-to-come
(as anticipated by APT, given the shape of its age-structured selection gradient) does not depend on the
current observed (actuarial) senescence in the population (but only on the absolute level of vital rates).
Indeed physiological costs generate - by ensuring that high early fertilities lead up to shorten longevity
and weaker late-life reproduction - actuarial senescence in the population. They also flatten the slope of
the age-structured selection gradient, and in doing so, prevent further senescence propagating in the pop-
ulation. By contrast, the absence of physiological costs will limit actuarial senescence in the population.
However, the steep gradient, promoted by this absence, ensures that senescence will be increase in the near
evolutionary future.

The analysis of physiological costs of reproduction in the light of selection gradient also provides an
interesting extension of the famous Houle (1991); van Noordwijk and de Jong (1986)’s results. van Noord-
wijk and de Jong (1986) showed that physiological costs of reproduction can be made undetectable by a
large variance in acquisition capabilities among individuals in the population. Houle (1991) demonstrated
that genetic costs of reproduction could be blurred by a larger genetic variance in robustness (both these
results are re-established and discussed in chapter 1). We show, in chapter 3, that the genetic costs them-
selves conceal the underlying physiological costs of reproductions.

The last key results from chapter 3 regarding the costs of reproduction, consist in the (formal and via
simulation) demonstration that physiological costs of reproduction indeed buffer individual stochasticity

120



Discussion

(accounted via the variance in lifetime reproductive output or the demographic variance) and environmen-
tal variance. This therefore confirms the theoretical inferences of chapter 1. Moreover, the reducing effect
of physiological costs on the variance in reproductive success has further consequences. Via its increasing
impact on the effective population size, it affects effective selection. We measure effective selection with the
ratio of fertility sensitivities by age by the demographic variance. We denote this ratio variance-effective
selection gradient.

The antagonistic effects of physiological costs on both components of effective selection hints at their
stabilizing role on APT with respect to life history strategy. Indeed when considering population struc-
tured by age only - the common framework for the study of senescence - fast organisms on the slow-fast
continuum have steeper selection gradients that slow ones. This is because longevity itself buffers the
effects of individual age-specific fertility events and spread out the reproductive effort of individuals over
their lifetime. This result, although widely accepted as a good approximation of reality, seem however to
point towards an evolutionary dichotomy, segregating organisms along their life history strategies, that
has no empirical support. Indeed, on the slow side of a saddle point on the SFC - corresponding to a
gradient steepness that is not strong enough to counter genetic drift – "faster" alleles have no significant
selective advantages and the organism remains slow. On the fast side of this point however, "faster" alleles
are allowed to invade the population, steepening the selection gradient, and therefore inviting even "faster"
alleles and so on and so forth until the organism has evolved into a very short-lived living thing.

Instead of conjuring (very strong) environmental forces to explain why this effect is unobserved in na-
ture, one needs to turn to the physiological costs of reproduction. When accounted for, fast organisms have
flatter gradients and slow organisms steeper gradients than when omitted. Physiological costs therefore
stabilize the strength of APT along the slow-fast continuum.

The costs of age-structured populations models
These key results from chapters I and III, considered with a step back, prompt us to ask a more general
question about the pertinence of age-structured models.

Age-structured population studies are ubiquitous in evolutionary demography. Age-structured models
are deemed, from a life historian’s perspective, to be a major progress from models with non-overlapping
generations, as they allow to incorporate the intra-generational transitions related to a life cycle. For that
reason, as we saw in the introduction, age-structured models are even deemed to incorporate genetic life
history trade-offs (in the sensitivities of their transitions).

However, as we saw in chapter 1, age-structured models do not incorporate genetic trade-offs, but only
the position of a specific genotype on a life-history trade-off. To the contrary, at this genotypic level, they
should be able to incorporate physiological trade-offs. But a physiological trade-off, a bivariate function
of traits, requires a model with at least two traits. From our point of view, therefore, an age-structured
model is merely the Reference Leslie Matrix of "nature’s multitrait-model with trade-offs". In other words,
age-structured populations are massively studied in life history, whereas they are only projections of life
cycles on a single dimension which therefore cannot account for the keystones of life history: physiological
trade-offs.

Obviously, we are not claiming that when basing their analysis on age-structured populations, Williams
(1957),Hamilton (1966) or Charlesworth (1980) deemed it an exact representation of natural behavior and
were not aware of some implications of the simplification. However, the focus on age structures, may have
induced a shift from a paradigm of age-structured population to a paradigm of populations structured by
age only. Therefore, many results put forward by these inspiring authors on subjects such as selection
gradients, effective selection, fitness measures and their variance in the population do not hold, as we saw
throughout this thesis, when accounting for the most basic of all trade-offs: the costs of reproduction.

The use of age as the trait of study – for many but not all organisms – is a product of statistical analysis
(PCA for instance) that suggests it is the single trait that best determines the vital rates in the population.
From a physiological trade-off perspective this is not a surprise as their effects are compounded over time,
and therefore over age. As we saw in chapter 3, vital rates independent from age became functions of age
when the model implementing the costs of reproduction was folded over them. However trade-offs relate
life history features, not traits, and considering age as the best single determining trait does not diminish
its weak signification as a sole parameter for life history. In other words, age may be the most explanatory
of traits and the best sole determinant of the demography of a population, but – unable to implement
trade-offs - it is a poor determinant of its life-history evolutionary demography.

We claim that the addition of a second trait in a population model - allowing to implement the trade-
offs at the core of life history, in an evolutionary framework – finally bridges the gap between the two

121



Discussion

branches of life history – trade-off theory and evolutionary demography – discussed in the introduction.
We also allege that the addition of a trade-off trait has more effect on the accuracy of evolutionary inter-
pretations with respect to a model structured by age only, than an age-structured model has with respect
to a model with non-overlapping generations. The multitrait model (the MPPM), described and analyzed
(the Trait Level Analysis) in this thesis, will go a long way, we hope, towards rebuilding the field of struc-
tured populations studies upon stronger life history foundations. Armed with MPPMs, other important
evolutionary results stemming from age-structured models may be challenged in the light of life history.
It would be worthwhile, for instance, to extend the study of age-structured population genetics towards a
multitrait-structured population genetics theory and test whether, in that framework too, the addition of
a structure to a non-overlapping model is of little consequence for population genetics (Charlesworth, 1980).

On the 5th of October 2015, at the Evolutionary Demography Society Annual Meeting, Hal Caswell,
discussing the implementation of heterogeneity into evolutionary models pronounced this phrase “Account-
ing for heterogeneity [...] is the oldest problem in demography. When the heterogeneity is not accounted
for, it can distort the conclusions based on demographic models. Heterogeneity is tamed by accounting for
it !”, that we can paraphrase as such:

Accounting for the physiological trade-offs of life history theory is an important but only recently
acknowledged problem in evolutionary demography. When trade-offs are not accounted for, it can distort
the conclusions based on demographic models. The evolutionary consequence of physiological trade-offs

is tamed by accounting for them via MPPMs.
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Parametrization of Model of Illustration of Chapter II  

Yearly survival P𝑥 is fitted using a Siler model (Siler, 1979) parameterized by Gurven and Kaplan (2007) for an 

average hunter-gatherer population (see fig. A below). Distribution of females’ heterogeneity in quality at birth 

p(h) is fitted with a discretized lognormal distribution (mean=0.5, var=0.3) whose class 1 is set to 10%.(see fig. B 

below).  Effect of heterogeneity e(h) is set linear, with fertility of class 1 being 0 (i.e. for sterile women) to 1 for 

class 10. Baseline fertility density with age F𝑥̂  is first fitted with a 4-parameters Brass polynomial (Brass, 1960) 

from Ache fertility table (Hill et al., 1996) multiplied by the mean effect of heterogeneity ∑ 𝑝(ℎ)𝑒(ℎ)ℎ  and 

rescaled such that ∑ F𝑥̂ =𝑥 TFR̂  (Baseline fertility F𝑥̂ is then defined as the fertility by age of women whose 

fertility is not compromised by parity and TFR̂ is the Total Fertility Rate (i.e. the mean number of daughters born 

to women surviving the end of the reproductive period) of these women (see fig. C below).  

Now assuming that parity 𝑝 compromised linearly fertility by a factor 𝜎(𝑝) ∈ [0,1]  (from 1 for parity 𝑝=0 to 0 

for 𝑝>10; 10 daughters meaning an averaged parity of 20 children). Mean population fertility F𝑥 can be calculated 

at each age 𝑥 such that F𝑥 = F𝑥̂𝜎(∑ F𝑥
𝑥−1
0 ) where ∑ F𝑥

𝑥−1
0  is the mean parity of women at age 𝑥.  

 

 

Figure - (A) Survival S(x) from birth to age x  (plain line) and yearly survival P(x) = S(x+1)/ S(x) (dotted line), fitted 

with a Siler model (Siler, 1979) such that  S(x) = exp(
a1

b1
(e−b1x − 1)). e−a2x. exp(

a3

b3
(1 − eb3x)) with 

[a1=0.422,b1= 1.131, a2=0.013, a3=1.47E-04 and b3=0.086]. (B) Probability distribution of being in heterogeneity 
class h, with class 1 corresponding to sterile women with a coefficient σ(1) = 0 and class 10 corresponding to 
most robust women with coefficient σ(10) = 1. (C) Fertility rates from first to last age at reproduction 

(respectively α=15, β=49) in the case where parity has no compromising effect on fertility rates (Fx̂, plain line 
). Fertility by age is fitted by a Brass polynomial (Brass, 1960) y = (14 − x). (49 − x)3. (x2 − 49x + 700) scaled 

so  TFR̂ = 4 and in the case where mean parity p at age x compromise fertility by a factor σ(p) ∈ [0,1]  declining 
linearly from σ(0) = 1 to σ(p > 10) = 0 (F(x), dotted line). 

 

Bibliography 

Brass, W., 1960. The Graduation of Fertility Distributions by Polynomial Functions. Popul. Stud. (NY). 14, 148–
162. doi:10.2307/2172011 

Gurven, M., Kaplan, H., 2007. Longevity Among Hunter-Gatherers Examination. Popul. Dev. Rev. 33, 321–365. 

Hill, K., Hurtado, A.M., Low, B.S., 1996. Aché Life History: The Ecology and Demography of a Foraging People, 
Evolution and Human Behavior. doi:10.1016/S1090-5138(97)00035-4 

Siler, W., 1979. A Competing-Risk Model for Animal Mortality. Ecology 60, 750–757. doi:10.2307/1936612 

 

Annexes

124



Nullification of approximated zeroes in MPPM eigenvector. 

Finding all eigenpairs (λ, 𝒘) of a square matrix 𝐌 means solving (𝐌 −  λ𝐈)𝒘 = 0. This can be done by first 

finding the eigenvalues λ as the solutions of the characteristic equation 𝑑𝑒𝑡(𝐌 −  λ𝐈) = 0, and then finding 

the associated eigenvectors. The left member of the characteristic equation is a polynomial in λ of degree 

the size of 𝐌. 

Abel’s impossibility theorem (Abel, 1824) states that there is no algebraic solution (i.e. solution in radicals) 

to the general polynomial equations of degree five or higher with arbitrary coefficients. This implies that 

algorithms that calculate exact eigenvalues in a finite number of steps only exist for general square 

matrices of size four or below. For larger matrices, and MPPMs will be amongst them, these solutions can 

be computed to any desired degree of accuracy using numerical methods ranging from naïve iteration 

algorithms to fast sparse convergence algorithms. In all cases however, the resulting eigenvectors will be 

proxies of the solutions.  Consequently each element of 𝒘 and 𝒗 will itself be approximated and this is 

generally acceptable except for zeroes. Indeed the proxy of a zero (even if computed with a great level of 

accuracy) will lack many properties of a real zero.  

The importance of zeroes in abundances and reproductive values in population-dynamics-related 

eigenanalysis means those near-zeroes have to be replaced by actual zeroes.  This can be done by analysing 

the distribution of the logarithm of absolute eigenvector entries (indeed some near-zeros may be 

negative); this allows discriminating between non-zeros and real zeroes (see figure below). Indeed, the 

distribution of small value entries decreases with the log of their value. The sudden peak in the distribution 

after a certain threshold (corresponding to the accuracy of the algorithm used) is due to the 

approximations of the zeroes of the eigenvector. These near-zeroes have to be nullified (see code in 

supplementary material 7).  

 

Figure: distribution of log values of maximal-eigenvalue-related right-eigenvector of the parity-fecundity 

MPPM constructed in the illustration, obtained by sparse matrix fast convergence algorithm. The figure 

shows that the majority of entries of 𝒘 below 10−15 are actual zeroes. As such they have to be nullified.  
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Code for Chapter II 

 

Functions and script published with MATLAB® R2012a 

In this section, we provide the code for the main computations described in the article, mainly in the vector-based 

construction of the MPPM (in I) and the Fold function (in II) that allows the specific trait-level analysis of the illustration (in 

III). We also provide the code for sensitivity analysis to parameters for MPPMs constructed via the vector based technique 

(IV), and the code for the vec() function (only necessary for older versions of Matlab) (V) and for the generation of the input 

parameters of the illustration (VI). Finally we provide the code for the vec-permutation construction of the (same) model 

described in the illustration (VII) that necessitate the adaptations of subfunctions from (Roth and Caswell, 2016)  (VIII).  

I. VECTOR-BASED CONSTRUCTION OF MPPM  
 

%% We construct the 3-trait MPPM (age, parity, heterogeneity class) described in 

the illustration from the following inputs (than can be obtained from section VI of 

this Supplementary Material): 
% 1/ baseline survival and fertility rates 
surv %the baseline yoy survival  
fert %the baseline fertility  

% 2/ trade-off coefficients for the parity effect  
parityeffect %containing the multiplying factors affecting fertility for each 

parity class 
% 3/ heredity coefficients (distribution of offspring in the different 

heterogeneity classes)  
classdistrib %containing the probability distribution of heterogeneity class at 

birth 
% 4/ frailty coefficients (effect of frailty on baseline fertility)  
classeffect  %containing the multiplying factors affecting fertility, for each 

heterogeneity class  

  
%% 
maxparity=length(parityeffect)-1; % maximum parity is inferred from the fertility-

parity trade-off coefficients  

  
%% FIRST STEP OF MPPM CONSTRUCTION  : define set of traits and trait structure 
% we order the 3 traits as such : (age,parity,heterogenity), this leads to 
% the following trait structure s : 
s=[length(surv)+1 (maxparity+1) length(classeffect)] % trait structure i.e. 

(ordered) trait sizes vector  
n=size(s,2) %number of traits 
q=prod(s) %number of states 

  
%% SECOND STEP OF MPPM CONSTRUCTION : generate the vector of survival rate for each 

state and the vector of fertility rate for each state  

  
% in our illustration, survival only depends on age, so we replicate 
% the baseline survival vector surv for all parity and heterogeneity classes : 
Vrsurvival=repmat([surv' 0]', [1 (maxparity+1) length(classeffect)]) ; %repmat 

matlab function replicates a vector (first argument) along the dimension(s) in the 

second argument 

  
% in our illustration, fertility rate for state (a,b,c) is 

fert(a)*parityeffect(b)*classeffect(c) 
% this is translated vector-wise as : 
Vrfertility=reshape(vec(fert*parityeffect')*classeffect',s);  
% explanation : fert*parityeffect'  generates the matrix providing fertility rate 

at a given age (row) and parity (column) for the robust class. 
% vec() then turns this matrix into a vector by stacking the columns on top of one 

another 
% we then repeat the process by multiplying this vector by  classeffect', which 

provides fertility rate at a given (age,parity) state (row) and heterogeneity class 

(column)  
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% We then "reshape" this 1-dimensional vector into a 3-dimensional one (of 

dimensions s) in order to be able to read fertility for all ages (dimension 1), 

parity classes (dimension 2) and heterogeneity class (dimension 3) 

  
%% THIRD STEP OF MPPM CONSTRUCTION  : generate the transition matrix T (of width 3) 

containing all transitions (one per row) 
% where, for each transition, the element in the first column is the input 
% state, the element in the 2nd column the output state, and the element in 
% the 3rd column the transition rate = vital rate * output probability 
% distribution 

  
order=reshape(1:q,s); % state indices redistributed over the 3 dimensions of s 
% this multidimensional vector will be very useful to relate state number and 

triplet of states in an efficient manner. 

  
% we will first generate transitions for vital process = survival (and 
% store them in T1 and T2) 

  
% survival transitions : for each input state, there are 2 potential output 
% states, as age is deterministic, heterogeneity is invariant and parity 
% can either remain the same or increase by one : (age+1,parity,classfert) and 

(age+1,parity+1,classfert) 
% We store the transitions towards (parity) in T1 and (parity+1) in T2. 

  
% transitions towards (parity) 
% transition rate : the output probability is (1-fertility rate), hence the 

transition rate (= vital rate * output probability) for each input state is  
tS1=Vrsurvival.*(1-Vrfertility);  
% input states : we have to limit input states to those which are not at maximum 

age, i.e. those which state numbers are order(1:end-1,:,:) 
%output states: to each such input state, the related output state is 
%located in the following "row" of the 3-dimensional vector "order". 
% Then, the matrix of transitions - (input,output,transition) - for all transitions 

towards (parity) is  
T1=[vec(order(1:end-1,:,:)) vec(order(2:end,:,:)) vec(tS1(1:end-1,:,:))] ;  

  
% transitions towards (parity+1) 
% transition rate : the output probability is fertility rate, hence the transition 

rate is :  
tS2=Vrsurvival.*Vrfertility;  
% input states : we have to limit input states to those which are not at maximum 

age and parity , i.e. those which state numbers are order(1:end-1,1:end-1,:) 
%output states: to each such input state, the related output state is located in 

the following "row" and "column" of the 3-dimensional vector "order". 
% Then, the matrix of transitions is  
T2=[vec(order(1:end-1,1:end-1,:)) vec(order(2:end,2:end,:)) vec(tS2(1:end-1,1:end-

1,:))] ; 

  

% now we turn to vital process = fertility (and store those transitions in T3) 
% fertility transitions : for each input state, there are 10 potential 
% outputs corresponding to the 10 heterogeneity classes (age will always be 
% 1 and parity 0). We will treat those 10 outputs simultaneously.  
% transition rate : the output probability is by construction classdistrib, hence 

the transition rate (= vital rate * output probability) for 
% each input state AND each outputstate, is classdistrib * Vrfertility 
% we can generate T3, containing all fertility transitions, where these fertility 

transitions are sorted, first by input state, then by heterogeneity class of the 
% output sate :  
T3=[ repmat(vec(order),length(classdistrib),1)  

vec(repmat(vec(order(1,1,1:length(classdistrib)))',q,1)) 

vec(Vrfertility(:)*classdistrib) ]; %transition triplet for fertility towards 1, 1, 

1:10 
% 1st column of T3 repeats all input states 10 times (for each output state 

heterogeneity class)  
% 2nd column of T3 repeats all 10 outputstates [(1,1,1), (1,1,2) (1,1,3) 
% ...(1,1,10)] for each inputstate 
% 3rd column of T3 provides the relevant transition rate, dependent of the 
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% fertility rate of each input state and the distribution probability 
% toward the output state 

  
% we can now generate the matrix T containing all transitions : 
T=vertcat(T1,T2,T3);  

  

% we can also generate the matrices TV (resp.  TF) containing all survival (resp. 

fertility) transitions  
TF=vertcat(T3);  
TV=vertcat(T1,T2);  

  

  
%% from the matrix of transitions T to the MPPM M 

  

% T is the sparse definition of M, i.e.  
% instead of determining the value for each (i,j) entry, we have determined 
% the transition triplet : ( j , i , M(i,j) ) for each relevant transition 
% We can then generate the (square) projection matrix for our population, 
% the MPPM M : 
M=sparse(T(:,2),T(:,1),T(:,3),q,q); %  
 

% we can also generate the projection matrix for fertility F and survival V 
% : 
F=sparse(TF(:,2),TF(:,1),TF(:,3),q,q); % fertility transitions 
V=sparse(TV(:,2),TV(:,1),TV(:,3),q,q); % survival transitions 

  

  
%% density of M  
ntrans=size(T,1) %number of transitions implemented 
density=ntrans/q^2 % density of M=sparse(T) 

 

II. FOLD FUNCTION 
%% generates the Ergodic Flow Preserving -folding of an MPPM M of trait structure 

traitsize with ergodic abundance vector w on the traits to be found in positions 

apos of the trait structure.  

 

function [ Mfolded ] = fold(M,w,traitsize, apos) a=length(apos); % those a traits 

will “disappear” 
n=length(traitsize); % (n-a) traits will remain 
sign=1:n; [Lia,Locb] = ismember(apos,sign); 
sign(Locb)=[];sign=[apos sign] ; % reordering trait order so traits to disappear 

appear in the first a positions, remaining traits in the (n-a) last positions 
order=reshape(1:prod(traitsize),traitsize); %all state-indices of M, in M 

multidimensional notation 
I = eye(n,n);P = I(sign,:); traitsize2=(P*traitsize')';% traitsize vector for new 

ordering of traits  
order=permute(order,sign); signstate=order(:);I = 

eye(prod(traitsize),prod(traitsize));PermutStates = sparse(I(signstate,:));       % 

permutation matrix reordering traits in M to match traitsize2 
W=reshape(w,traitsize);% multidimensional version of w 
W2=permute(W,sign); % permutation of dimensions in w to match new ordering 
 wnewstates=sum(reshape(W2,[prod(traitsize2(1:a)) traitsize2(a+1:n)]) ,1); % w for 

remaining traits after folding over the other traits 
wnewstates2=repmat(wnewstates(:),1,prod(traitsize2(1:a)))'; % replication of this 

new w (a row vector) over folded traits   
weightmat=sparse(repmat( (W2(:)./wnewstates2(:))' , 

prod(traitsize2),1));weightmat(isnan(weightmat))=0;weightmat=sparse(weightmat); 
%matrix of all weights to be applied to M : for each state w(state)/w(all states 

sharing same remaining traits)  
Mweighted=sparse( (PermutStates*M*PermutStates').*weightmat); %M, reordered and 

weighted by the appropriate weights 
Pr=sparse(kron(eye(prod(traitsize2(a+1:n))),ones(1,prod(traitsize2(1:a))))); %trait 

reduction "permutation" matrix 
Mfolded= Pr *Mweighted* Pr';  
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end 
 

III. TRAIT LEVEL ANALYSIS OF THE ILLUSTRATION 

 
%% spectral analysis 
find(sum(M,1)==0); %M is reducible   
d = eigs(M,2); % 2 largest eigenvalues absolute value are not equal 
[vcpd,vlp] = eigs(M,1); %convergence of calculation of lambda and associated right 

eigenvector of M  
[vcpg,vlpg] = eigs(M',1);%convergence of calculation of lambda and associated right 

eigenvector of transpose of M (thus left eigenvector of M) 
lam=vlp %lambda 
w=vcpd/sum(vcpd); %w is scaled to sum to 1 
v=vcpg/(vcpg'*w); %v is scaled so v'*w=1 

  
% analyse and zeroing of close-to-zero values of v and w  
figure;plot(histc(-log10(w),0:1:25)); 
i=1e-17; wcut=w ; wcut(find(abs(w)<i))=0; 
w=wcut; 
figure;plot(histc(-log10(v),0:1:25)); 
i=1e-13;vcut=v ; vcut(find(abs(v)<i))=0; 
v=vcut; 

  

  
%% trait-level analysis 1 : folding w and M 
%multidimensional w and its folded versions 
W=reshape(w,s); % 3-dimensionnal version of w 
wage=sum(sum(W,2),3); % w  folded on all traits but age 
wparity=squeeze(sum(sum(W,1),3))'; % w projected on parity 
wfertclass=squeeze(sum(sum(W,1),2));% w projected on fecundity class 
wageparity=squeeze(sum(W,3)); % w folded on fecundity class  
wagefertclass=squeeze(sum(W,2)); % w folded on parity 
%folded versions of M 
Mage=fold(M,w,s, [2 3]); % reference Leslie matrix 
Mparity=fold(M,w,s, [1 3]); % M folded on age and fecundity class 
Mageparity=fold(M,w,s, [3]); % M folded on fecundity class 
Magefertclass=fold(M,w,s, [2]); % M folded on parity 

  
%% trait-level analysis 2 : number of births and abundances for age and parity and 

full-traited-model 
Mageparityreshape=reshape(Mageparity(1,:),s(1:end-1)); 

birthperyearforageandparityofmother=Mageparityreshape.*wageparity; % births by age 

and parity 
rspwageparity=reshape(wageparity,s(1),s(2)); % abundances by age and parity 

  
birthperyearforageparityandfertofmother=fertstates.*wM; % number of births and 

abundances for age and parity and hetero 

  
%% trait-level analysis 3 : sensitivities to fertilities of various folded forms of 

M 

  
% 1/ M 
statenum=prod(s); % number of states 
% fertilities for all states are transitions towards triplets (1,1,class)  
fertstates=M(sub2ind(s,ones(1,nclasses),ones(1,nclasses),(1:nclasses)),:); 
fertstates=sum(fertstates,1); 
fertstates=reshape(full(fertstates),s); % fertility for all states  
 % all other transitions are survival  
MM=M;MM(sub2ind(s,ones(1,nclasses),ones(1,nclasses),(1:nclasses)),:)=sparse(nclasse

s,statenum);survstates=sum(MM,1); % survival for all states 
survstates=reshape(full(survstates),s); clear MM; 
% eigenanalysis 
[vcpd,vlp] = eigs(M,1); %convergence of calculation of lambda and associated right 

eigenvector of M  
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[vcpg,vlpg] = eigs(M',1);%convergence of calculation of lambda and associated right 

eigenvector of transpose of M (thus left eigenvector of M) 
lamM=vlp 
wM=vcpd/sum(vcpd); %w is scaled to sum to 1 
vM=vcpg/(vcpg'*wM); %v is scaled so v'*w=1 
wM=reshape(wM,s); 
vM=reshape(vM,s); 
% sensitivities of fertility 
% we build K the matrix where each column i represent the sensitivity of M to 

fert(i)  
K=sparse(size(M,1),size(M,2)); 
% we use classdistrib for fertility transitions output  
K(sub2ind(s,ones(1,nclasses),ones(1,nclasses),(1:nclasses)),:)=repmat(classdistrib'

,1,statenum); 
diago=survstates;diago(s(1),:,:)=zeros(1,s(2),s(3));diago(:,s(2),:)=zeros(s(1),1,s(

3)); 
diago=vec(diago); 
K1=-spdiags(diago,-1,size(M,1),size(M,2)); 
K2=spdiags(diago,-1-s(1),size(M,1),size(M,2)); 
K=K+K1(1:statenum,1:statenum)+K2(1:statenum,1:statenum); 
% now we can compute sensitivity to fert  
sensifertstatesM1=ones(1,statenum)*(S.*K); 
sensifertstatesM1=reshape(sensifertstatesM1,s); 
elastifertstatesM=(1/lam)*(sensifertstatesM1.*fertstates); 

  
% 2/M folded on fecundity class 
%eigenanalysis  
[vcpd,vlp] = eigs(Mageparity,1); [vcpg,vlpg] = eigs(Mageparity',1);  
lamMageparity=vlp 
wMageparity=vcpd/sum(vcpd); %w is scaled to sum to 1 
vMageparity=vcpg/(vcpg'*wMageparity); %v is scaled so v'*w=1 
wMageparity=reshape(wMageparity,[s(1) s(2)]); 
vMageparity=reshape(vMageparity,[s(1) s(2)]); 
%states 
nts=s(1:2); % new trait structure 
statenum=prod(nts) % number of states 
%fertilities and survivals 
nfertstates=Mageparity(1,:); % all fertilities are on line 1 

nfertstates=reshape(full(nfertstates),nts); 
nfertstates=reshape(full(nfertstates),nts);  
MM=Mageparity; MM(1,:)=sparse(1,statenum); 
nsurvstates=sum(MM,1); % survival transitions are all other transitions  
nsurvstates=reshape(full(nsurvstates),nts); clear MM; 
% sensitivity and elasticity matrices 
Sageparity=vMageparity(:)*wMageparity(:)'; %sensitivity of lambda to each entry  
Eageparity= (1/lamMageparity)*Sageparity.*Mageparity;  % elasticity  
% sensitivities of elasticities  
% we build K … 
K=sparse(size(Mageparity,1),size(Mageparity,2)); 
K(1,:)=ones(1,statenum); 
diago=nsurvstates;diago(nts(1),:)=zeros(1,nts(2));diago(:,nts(2))=zeros(s(1),1);dia

go=vec(diago);K1=-diag(diago,-1);K2=diag(diago,-1-nts(1)); 
K=K+K1(1:statenum,1:statenum)+K2(1:statenum,1:statenum); 
% now we can compute sensitivity to fert  
sensifertstatesMageparity=ones(1,statenum)*(Sageparity.*K); 
sensifertstatesMageparity=reshape(sensifertstatesMageparity,nts);  
elastifertstatesMageparity=(1/lamMageparity)*(sensifertstatesMageparity.*nfertstate

s); 

  
% 3/M folded on parity 
%eigenanalysis  
[vcpd,vlp] = eigs(Magefec,1);[vcpg,vlpg] = eigs(Magefec',1); 
lamMagefec=vlp 
wMagefec=vcpd/sum(vcpd); vMagefec=vcpg/(vcpg'*wMagefec); 

wMagefec=reshape(wMagefec,[s(1) s(3)]); 
vMagefec=reshape(vMagefec,[s(1) s(3)]); 
%states 
nts=s;nts(2)=[]; % new trait structure 
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statenum=prod(nts) % number of states 
%fertilities and survivals 
% fertilities are all transitions towards (1,1,class) states to sum  
nfertstates=Magefec(sub2ind(nts,ones(1,nclasses),(1:nclasses)),:); 
nfertstates=sum(nfertstates,1);nfertstates=reshape(full(nfertstates),nts); 
nsurvstates=sum(Magefec,1)-nfertstates(:)'; 
nsurvstates=reshape(full(nsurvstates),nts); 
% sensitivity and elasticity matrices 
Sagefec=vMagefec(:)*wMagefec(:)'; %sensitivity of lambda to each entry of M 
Eagefec= (1/lamMagefec)*Sagefec.*Magefec;  % elasticity  
% sensitivities of elasticities  
% we build K … 
K=sparse(size(Magefec,1),size(Magefec,2)); 
K(sub2ind(nts,ones(1,nclasses),(1:nclasses)),:)=repmat(classdistrib',1,statenum); 
% now we can compute sensitivity to fert  
sensifertstatesMagefec=ones(1,statenum)*(Sagefec.*K); 
sensifertstatesMagefec=reshape(sensifertstatesMagefec,nts);  
elastifertstatesMagefec=(1/lamMagefec)*(sensifertstatesMagefec.*nfertstates); 

  
% 4/Reference Leslie Matrix : M folded on parity and fecundity class 
%eigenanalysis  
[vcpd,vlp] = eigs(Mage,1); [vcpg,vlpg] = eigs(Mage',1);lamMage=vlp 
wMage=vcpd/sum(vcpd); vMage=vcpg/(vcpg'*wMage);  
%states 
nts=s(1); % new trait structure 
statenum=prod(nts) 
%fertilities and survivals 
nfertstates=Mage(1,:); 
MM=Mage; MM(1,:)=sparse(1,statenum);nsurvstates=sum(MM,1); 
% sensitivity and elasticity matrices 
Sage=vMage*wMage'; Eage= (1/lamMage)*Sage.*Mage;  
% sensitivities of elasticities  
sensifertstatesMage=Sage(1,:); 
elastifertstatesMage=(1/lamMage)*(sensifertstatesMage.*nfertstates);  

  
%% multidimensional elasticities are summed  

  
elastifertstatesM_sumonage=sum(sum(elastifertstatesM,2),3); 
elastifertstatesMageparity_sumonage=sum(elastifertstatesMageparity,2); 
elastifertstatesMagefec_sumonage=sum(elastifertstatesMagefec,2); 

  
%% table with elasticities of lambda to fertilities of each folded matrix of M. If 

multidimensional, elasticity is summed on age 
elasfert=[elastifertstatesM_sumonage elastifertstatesMageparity_sumonage 

elastifertstatesMagefec_sumonage elastifertstatesMage' Elastibaselinefert'] 

  
figure; 
plot(1:99,elasfert(:,1),'-ro',1:99,elasfert(:,2),'-bx',1:99,elasfert(:,3),'-

m.',1:99,elasfert(:,4),'k^',1:99,elasfert(:,5),'y') 
legend('M','Mageparity','Magefec', 'Mage','baseline') 
%% end 

 

 

IV. SENSITIVITY ANALYSIS TO PARAMETERS (HIGHER LEVEL SENSITIVITY ANALYSIS) FOR THE ILLUSTRATION 

 
%% vectors and matrices functions of p 
ssurv = sym(zeros(1,length(surv))); %  
for k=1:length(surv) ssurv(k) = sym(sprintf('ssurv%d', k)); end 
assume(ssurv,'real'); 

  
sfert = sym(zeros(1,length(fert))); 
for k=1:length(fert) sfert(k) = sym(sprintf('sfert%d', k)); end 
assume(sfert,'real'); 
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sparityeffect = sym(zeros(1,length(parityeffect) )); 
for k=1:length(parityeffect) sparityeffect(k)=sym(sprintf('sparityeffect%d',k)); 

end 
assume(sparityeffect,'real'); 

  

sclasseffect = sym(zeros(1,length(classeffect))); 
for k=1:length(classeffect) sclasseffect(k)=sym(sprintf('sclasseffect%d', k));end 
assume(sclasseffect,'real'); 

  
sclassdistrib = sym(zeros(1,length(classdistrib))); 
for k = 1:length(classdistrib) sclassdistrib(k) = sym(sprintf('sclassdistrib%d', 

k)); end 
assume(sclassdistrib,'real'); 

  
%formal vector of all parameters 
sp = [ssurv sfert sparityeffect sclasseffect sclassdistrib ];  

  
% vital rate vectors as function of p  
sVrsurvival=repmat([ssurv 0]', [1 (maxparity+1) length(sclasseffect)]) ;%  
sVrfertility=reshape(vec(sfert'*sparityeffect)*sclasseffect,s); % 

  

%transition triplets matrices as function of p 
stS1=sVrsurvival.*(1-sVrfertility); 
sT1=[vec(order(1:end-1,:,:)) vec(order(2:end,:,:)) vec(stS1(1:end-1,:,:))]; 
stS2=sVrsurvival.*sVrfertility; 
sT2=[vec(order(1:end-1,1:end-1,:)) vec(order(2:end,2:end,:)) vec(stS2(1:end-

1,1:end-1,:))]; 
sT3=[repmat(vec(order),length(sclassdistrib),1)  

vec(repmat(vec(order(1,1,1:length(sclassdistrib)))',q,1)) 

vec(sVrfertility(:)*sclassdistrib) ]; 

  
% T as function of p 
sT=vertcat(sT1,sT2,sT3);  

  
%% 2nd level analysis : sensitivity to  p 
deriv=zeros(ntrans,psize);% deriv is the gothic S of the method : the matrix of 

sensitivity of M's entries to p 
spar=zeros(1,psize); % is (will be) sensitivity of lambda to all parameters 
T2=T(:,2);T1=T(:,1);sT3=sT(:,3); 
for i=1:psize % loop on all parameters 
    param=sp(i);% 
    deriv=double(subs(diff(sT3,param),sp,p)); %  
    spar(1,i)=full(sum(sum((S).*sparse(T(:,2),T(:,1),deriv,q,q))));  
end 
epar= (1/lam)*spar.*p; % elasticity of lambda to all parameters  
Sensibaselinefert=spar(parameterstable(2,2):parameterstable(2,3)); 
Elastibaselinefert=(1/lam)*Sensibaselinefert.*fert'; % elasticity to all components 

of fert 

  

V. VEC FUNCTION 
function x = vec(X) 
x = X(:); 

 

VI. INPUT PARAMETERS FOR ILLUSTRATION 
% this part generates for our future MPPM where maximum age is 99 : 
% 1 : the vector "surv", the baseline yoy survival from a Siler with parameters  
% 2 : the vector "fert", the baseline fertility from a Brass polynomial with 

parameters  
% 3 : the vector "parityeffect",  containing the multiplying factors affecting 

fertility for each parity class 
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% 4 : the vector "classdistrib",  containing the probability distribution of 

heterogeneity class at birth  
% 5 : the vector "classeffect",  containing the multiplying factors affecting 

fertility, for each heterogeneity class  

 
agemax=99;  

  
%% 1/ baseline yoy survival vector : "surv" 
% we draw this vector from a Siler hazard function 

  
syms x a1 b1 a2 a3 b3 t % classic variables of Siler hazard function 
h(x,a1,b1,a2,a3,b3) = a1.*exp(-b1.*x)+a2+a3.*exp(b3.*x); % mortality hazard 
S(t,a1,b1,a2,a3,b3) = exp(-int(h,x,0,t)); % Probability of surviving to age t  
a1=0.157;b1=0.721;a2=0.013;a3=4.80E-05; b3=0.103;% Siler hazard function parameters 

values 

  
surv=double(S(1:1:agemax,a1,b1,a2,a3,b3)./S(0:1:agemax-1,a1,b1,a2,a3,b3))';%yoy 

survival, birth pulse - prebreeding 
surv(end)=0; % yoy survival has to be zero for last age class  
firstyearsurvival=surv(1);surv=surv(2:end); % 1st element represents 1st year 

survival and is actually part of fertility vector 
surv; % our surv vector, of size 98, integrating yoy survival  from (age 1 to age 2 

survival) to (age 98 to age 99 survival)  
clear x a1 a2 a3 b1 b3 t h S 

  
%% 2/ baseline fertility vector : "fert"  
% we draw this vector from a  brass polynomial 
brassfert=@(age, p1,p2,p3,p4,alphaplusone, beta )  (age>=(alphaplusone -

1)).*(age<beta-1).*((age-(alphaplusone -1)).*((beta-

age).^2).*(p1+(p2*age)+(p3*(age.^2))+(p4*(age.^3)))); 
brassfert2=@(x,xdata) brassfert(xdata,x(1),x(2),x(3),x(4),10,49); 
% we fit from data  
a=[0.008 0.151 0.275 0.298 0.318 0.279 0.219 0.069 0];ydata=a/sum(a); 

xdata=10:5:50; 
x = 

lsqcurvefit(brassfert2,[0,0,0,0],xdata,ydata);fert0=brassfert2(x,0:1:100)';fert0=fe

rt0/sum(fert0);fert0=fert0*6; % fit and rescaled for TFR=6 
fert0=fert0(2:100); 
fert=fert0*firstyearsurvival; % survival to year 1 factored in 

  

clear brassfert brassfert2 a fert0 x xdata ydata firstyearsurvival 
%% 3/ effect of parity on fertility 
parityeffect=zeros(36,1); parityeffect(1:11)=1:-.1:0; % multiplying effect of 

parity on fertility 
maxparity=max(find(parityeffect)+1); % we deduce maximum parity from multiplying 

effect of parity on fertility 
parityeffect= parityeffect(1:maxparity+1); % adjustment of size parityeffect with 

maxparity 

  
%% 4/ fertility class heterogeneity 
classdistrib = 

.9*(lognpdf(0.05:.1:.95,log(0.5),0.3))/sum(lognpdf(0.05:.1:.95,log(0.5),0.3)); 
classdistrib(1)=0.1; %  
classdistrib; % distribution of heterogeneity class at birth  

  
%% 5/ effect of heterogeneity on fertility 
classeffect=(0:1/9:1)'; % multiplying effect of fertility class on fertility 

  
%% we combine all those parameter vector of parameters 
psizes= [length(surv) length(fert) length(parityeffect) length(classeffect) 

length(classdistrib)] ;% sizes of parameter vectors 
p= [surv' fert' parityeffect' classeffect' classdistrib ]; %concatenation of 

parameter vectors into one large parameter vector p 
psize=sum(psizes); % total size of parameter vector 
pnames = char('surv','fert','parityeffect','classeffect','classdistrib'); % name of 

parameter vectors 
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parameterstable=[  1:length(psizes); 1 1+cumsum(psizes(1:end-

1));cumsum(psizes(1:end))]'; 
parametercell=[cellstr(pnames) num2cell(parameterstable) num2cell(psizes') ] 

%parameter table with names, parameter numbers, indices in p and sizes  
clear pnames  

  

%% end 

 

VII. VEC-PERMUTATION CONSTRUCTION OF MPPM  
% in order to generate our MPPM the vec-permutation way, we first need to 
% decide for a chronological order for the various "processes" at play : 
% demography (survival,fertility), "change in parity class" "change in 
% heterogeneity class" 

  
% First, as we can see, when the other traits are not related to physical 
% properties : (size, stage, location) but hereditary, or kinship 
% properties, the concept of sequential processes is hard to fathom 

  
% Second, because those processes are sequential, not all MPPMs (taken in 
% the broad sense of a matrix representing the projection from any n-tuple 
% of traits to itself) can be represented/constructed via vec-permutation 
% example of age/location where the mother's pattern for the location of 
% its eggs depends also on the mother's age. 

  
% Here we decide, the processes are  
% demographic (individual survives and/or gives birth) then the parity of 
% the outcome of this demographic process changes, then its heredity class 

  

  
%% we use the same input than our construction : 
% from it we generate the same  traits/states measure and the same vectors 
% of survival and fertility for all states :  
clear all  
% load parameters (from part VI) 

  
maxparity=length(parityeffect)-1; % maximum parity is inferred from the fertility-

parity trade-off coefficients  
s=[length(surv)+1 (maxparity+1) length(classeffect)]; % (ordered) trait sizes 

vector  
n=size(s,2); %number of traits 
q=prod(s); %number of states 
Vrsurvival=repmat([surv' 0]', [1 (maxparity+1) length(classeffect)]) ; %repmat 

matlab function replicates a vector (first argument) along the dimension(s) in the 

second argument 
Vrfertility=reshape(vec(fert*parityeffect')*classeffect',s);  
%% then following caswell presentation .. 
% we are supposed to have the q*(1/s1 + 1/s2 + ...) matrices representing the 

transitions, for each trait, between the different values of that trait when all 

other traits are fixed  
% they are called the transition matrices and are stored in a : 
% a{1}(:,:,par,het) for age , a{2}(:,:,age,het) for parity, and  a{3}(:,:,age,par) 

for heterogenity  
m=n; siz=s ; 
% we dont have them so have to construct them. this is equivalent to 
% constructing oi and op in our vector-bases approach. 

  
%a{1} 
% a{1}(:,:,par,het) is a leslie matrix which fertility rates are 

Vrfertility(:,par,het) and survival Vrfertility(:,par,het) 
for par=1:s(2) 
for het=1:s(3) 
a{1}(:,:,par,het)=diag(Vrsurvival(1:(s(1)-1),par,het),-1); 
a{1}(1,:,par,het)=Vrfertility(:,par,het);end 
end 
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%a{2} 
%a{2}(:,:,age,het) is the 12*12 matrix (parities) for individuals of age age and 

heterogeneity het 
% if age=1 it means, we deal with a newborn, its parity has to become 1 
% otherwise parity remains or increments depending on the fertility rate of (age-1)  
% indeed the demographic process, ageing the individuals, has already passed  
for het=1:s(3) 
    for age=1:1 
a{2}(:,:,age,het)= zeros(s(2),s(2)); 
a{2}(1,:,age,het)= ones(1,s(2)); 
    end  
    for age=2:s(1) 
a{2}(:,:,age,het)= diag(1-Vrfertility(age-1,1:s(2),het)) + diag(Vrfertility(age-

1,1:(s(2)-1),het),-1); 
    end 
end 

  
%%a{3} 
% a{3}(:,:,age,par) is the 10*10 matrix (heterogeneity classes) for 
% individuals of age age and parity par  
% if age 1, new born, then the distribution is 'classdistrib'  
%otherwise it is an invariant 
for par=1:s(2) 
    for age=1:1 
a{3}(:,:,age,par)=repmat(classdistrib',1,s(3)) ; 
    end 
    for age=2:s(1) 
a{3}(:,:,age,par)=eye(s(3)) ; 
    end 
end 
%% CONSTRUCTION 
tic 
%% Create the block diagonal matrices A1...Am with the function BD proj mat and 
% store them in a cell array A of size m as follows: 

  
% for k=1:m 
%     A{k}=BD_proj_mat(a{k}); 
% end 

  

% 'out of memory' so we have tweaked the code to make it sparse  
for k=1:m 
    A{k}=BD_proj_mat_sp(a{k}); 
end 

  
%% Construct the total projection matrix MM, according to equation  
%MM=hyper_state_matrix(siz,A); 

  

% 'out of memory' so we have tweaked the code to make it sparse  
MM=hyper_state_matrix_sp(siz,A); 
vecpermutation_construction_time=toc 

  
%% M and MM are the same 

  
% M construction 
tic 
order=reshape(1:q,s); % state indices redistributed over the 3 dimensions of ts 
tS1=Vrsurvival.*(1-Vrfertility);  
T1=[vec(order(1:end-1,:,:)) vec(order(2:end,:,:)) vec(tS1(1:end-1,:,:))] ;  
tS2=Vrsurvival.*Vrfertility;  
T2=[vec(order(1:end-1,1:end-1,:)) vec(order(2:end,2:end,:)) vec(tS2(1:end-1,1:end-

1,:))] ; 
T3=[ repmat(vec(order),length(classdistrib),1)  

vec(repmat(vec(order(1,1,1:length(classdistrib)))',q,1)) 

vec(Vrfertility(:)*classdistrib) ]; %transition triplet for fert towards 1, 1, 1:10 
T=vertcat(T1,T2,T3);  
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M=sparse(T(:,2),T(:,1),T(:,3),q,q); %  
vectorbased_construction_time=toc 

  
% comparison 2 methods 
M-MM 

 

VIII. VEC-PERMUTATION SUBFUNCTIONS FROM AND ADAPTED FROM (ROTH AND CASWELL 2016)   
 

% Those functions are taken from (Roth and Caswell 2016) 

% some are adapted by us to use sparsity (function names ending in _sp) 

function A = BD_proj_mat(B) 
siz=size(B); 
siz=siz(2:end); 
s=prod(siz);                    %size of the expected block-diagonal matrix 
sk=s/siz(1);                    %number of block on the diagonal 
siz=siz(2:end);                 %maximal value of each index i_1,...,i_r 
A=zeros(s,s); 
 for i=1:sk  
 A=A+kron(Emat(i,i,sk),B(:,:,ind2sub(siz,i))); 
end 
end 

 
function A = BD_proj_mat_sp(B) 
siz=size(B); 
siz=siz(2:end); 
s=prod(siz);                    %size of the expected block-diagonal matrix 
sk=s/siz(1);                    %number of block on the diagonal 
siz=siz(2:end);                 %maximal value of each index i_1,...,i_r 
A=sparse(zeros(s,s)); 
 for i=1:sk  
 A=A+sparse(kron(sparse(Emat(i,i,sk)),sparse(B(:,:,ind2sub(siz,i))))); 
end 
end 

 
function k= Qmat(u,v) 
 k=zeros(u*v); 
a=zeros(u,v); 
for i=1:u 
    for j = 1:v 
        e=a; 
        e(i,j)=1; 
        k = k+ kron(e,e'); 
    end 
end 

 

 

function k= Qmat_sp(u,v) 
k=sparse(zeros(u*v)); 
a=sparse(zeros(u,v)); 
for i=1:u 
    for j = 1:v 
        e=a; 
        e(i,j)=1; 
        k = k+ sparse(kron(e,e')); 
    end 
end 

 

function p = vecperm_hyp(k,s) 
[~,m]=size(s); 
if k==1 
    p=eye(prod(s)); 
elseif k == m 
    p = Qmat(prod(s(1:m-1)),s(m))*kron(eye(prod(s(m))),Qmat(prod(s(1:m-2)),s(m-

1)))'; 
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else 
    p=kron(eye(prod(s(k+1:m))),Qmat(prod(s(1:k-

1)),s(k)))*kron(eye(prod(s(k:m))),Qmat(prod(s(1:k-2)),s(k-1)))'; 
end 

 
function p = vecperm_hyp_sp(k,s) 
[~,m]=size(s); 
if k==1 
    p=sparse(eye(prod(s))); 
elseif k == m 
    p = Qmat_sp(prod(s(1:m-

1)),s(m))*sparse(kron(sparse(eye(prod(s(m)))),Qmat_sp(prod(s(1:m-2)),s(m-1))))'; 
else 
    p=sparse(kron(sparse(eye(prod(s(k+1:m)))),Qmat_sp(prod(s(1:k-

1)),s(k))))*sparse(kron(sparse(eye(prod(s(k:m)))),Qmat_sp(prod(s(1:k-2)),s(k-

1))))'; 
end 

 
function E= Emat(i,j,u) 
    E=zeros(u); 
    E(i,j)=1; 
End 

 

function hsm=hyper_state_matrix(siz,A) 
m=length(siz);          %number of dimensions 
s=prod(siz); 
K=eye(s);    
tildA=A{1};  
for k=2:m 
    tildA=A{k}*vecperm_hyp(k,siz)*tildA; 
    K=vecperm_hyp(k,siz)*K;                  

end 
hsm=K'*tildA; 
end 

 
function hsm=hyper_state_matrix_sp(siz,A) 
m=length(siz);          %number of dimensions 
s=prod(siz); 
K=sparse(eye(s));    
tildA=sparse(A{1});  
for k=2:m 
    tildA=sparse(A{k})*sparse(vecperm_hyp_sp(k,siz))*sparse(tildA); 
    K=sparse(vecperm_hyp_sp(k,siz))*sparse(K);                  
end 
hsm=sparse(K)'*sparse(tildA); 
end 
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Annexes

5.1 Annexes from chapter 3

5.1.1 Survival selection gradients
In figure 5.1, we illustrate the fact that the (age-parity-heterogeneity)-MPPM of this chapter does not ex-
hibit any variation in survival selection gradients between the full model implementing physiological costs
of reproduction and heterogeneity and the folded models with no trade-off and/or no heterogeneity. Indeed,
whilst aiming to model the ’Stearnian’ intermediate structure (Stearns, 1989a) of such costs, our model,
because a population model and not a physiological one, can only implement its immediate effects at the
phenotypic level, i.e. the vital rates. A matrix cannot model consequences of the realization of allocations
towards current reproductive effort and future reproductive value, only the consequences of the resulting
realization of vital rates (on other vital rates).

Figure 5.1: selection gradient measured by the elasticity of ergodic growth rate to survival rates,
summed by age, for M modeling an (age-parity) population with physiological costs of reproduction
and Ma its reference Leslie matrix, which is M folded on parity, modeling the same population but
characterized only by age. The population has maximum age ω = 15 and age-at-maturity α = 5.
The zero-parity fertility and survival rates are 0.85. Cost of reproduction is modeled by relatively
decreasing each vital rate by 1/(1 + ω − α) per parity.

Simply put, in a matrix model, it is possible to implement the effect of realized and unrealized fertility
events - this is what this chapter is about - but not the effect of realization of survival process, because of
the rather definitive consequence of the latter on an individual. However the physiological mechanism for
survival is finer that the all-or-nothing phenotypic result: an individual may allocate more or less towards
survival at a given time-step. Let us hint at a way to measure the force of such "survival effort" on λ(by
contrast with the meaningless survival selection gradient we just considered)

Let us consider that "survival effort" at age a, se(a) is constrained by reproductive effort re(a) = f(a)
, i.e. fertility, at that age. This constraint can be best approximated by using an optimality theory
approach on the model devoid of trade-off on either fertility or survival rate : Ma. By considering that
in this model, that does not contain any asymmetry in treatment of vital rates, λ is locally maximized
- d ln f(a). ∂ lnλ

∂ ln f(a) + d ln s(a). ∂ lnλ
∂ ln s(a) = d lnλ = 0 - we get the ratio of survival to reproductive effort at

age a, r(a): r(a) =
∂ lnλ/∂ ln fMa

(a)
∂ lnλ/∂ ln sMa

(a)
=
{

efMa

}
a{

esMa

}
a

. This equation provides the iso-fitness (i.e. λ is constant)

possible distribution of allocation towards current reproductive effort and survival effort : −d ln f(a).r(a)+

d ln s(a) = 0. Making the assumption, this ratio holds for M , we have r(a) =
∂ lnλ/∂ ln fM(a)
∂ lnλ/∂ ln sM(a)

and therefore

from there, we have the "survival effort" selection gradient :

∂ lnλ
∂ ln sM(a) =

{
efM
}
a

r(a)

We depict "survival effort" selection gradients in figure 5.2.

This approach shows a way to try and quantify the selection gradient on survival effort that takes into
account the allocation process that selection gradient on survival rates does not. However, this is still not
satisfactory as it does consider that the allocation only starts when sexual maturity is reached, hence a
jump between selection gradient before alpha where every increase in survival effort bears no cost, and
after alpha where the energy allocated towards survival effort is effectively taken from reproductive effort.
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Figure 5.2: selection gradient measured by the elasticity of ergodic growth rate to "survival effort",
summed by age, for M modeling an (age-parity) population with physiological costs of reproduction
and Ma its reference Leslie matrix, which is M folded on parity, modeling the same population but
characterized only by age. For Ma this ’survival effort’ selection gradient is equated to elasticity
to survival rates. For M , it is calculated by multiplying the ratio of survival over fertility selection
gradient for Ma by M ’s fertility elasticity . The population has maximum age ω = 15 and age-
at-maturity α = 5. The zero-parity fertility and survival rates are 0.85. Cost of reproduction is
modeled by relatively decreasing each vital rate by 1/(1 + ω − α) per parity.

5.1.2 Heterogeneity effect on detectability of costs when heterogeneity
is related to variance in acquisition capability

We illustrate the effect of genotypic heterogeneity characterized by variance in acquisition strategies (overall
differences in fitness between the genotypes), by two figures. Figure 5.3a displays the selection gradients
and figure 5.3b the inferred fertility rates by parity, for such an heterogeneous population

(a) (b)

Figure 5.3: Plot of selection gradient (fig.5.3a) measured by the elasticity of ergodic growth rate
to fertility rates,summed by age and inferred fertility rates by parity (fig. 5.3b) for heterogeneous
population C with variance in acquisition strategy. Population C is constituted of genotypes
G1 and G4. Mutation rate is m = 0.3. The inferred fertility rates are obtained from each model
folded on heterogeneity. Both populations are modeled by (age-parity-heterogeneity)-MPPMS with
physiological costs of reproduction. The population has maximum age ω = 15 and age-at-maturity
α = 5. The zero-parity fertility and survival rates of G1 are 0.85. Fertility rate is 0.3 and survival
rate 0.6 for G4 modeling a less fit genotype with lower fertility and lower survival rates. Fitness of
G1 is 1.05 and fitness of G4 is 0.7. Cost of reproduction is modeled by relatively decreasing each
vital rate by 1/(1 + ω − α) per parity.

5.1.3 Illustration of general non-preservation of R0 by folding
Consider 2 traits, t1 and t2, with 2 trait values each, and where there is only 1 offspring state: (1, 1) .

Let us further consider that the (t1-t2)-MPPM for this population is : M =
[

0.6 0.6 0.6 0.6
0.5 0 0 0
0 0 0.5 0
0 0.5 0 0

]
. Then we

get λM = 1.0317 and - by letting F be the first line of M , T the complement of F in M , and R0
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the first element of R = F.N (see appendix 3.0.3 of chapter III, page 93) - we also get R0 = 1.05. The

eigen-analysis of M allows us to fold it over t1 (see chapter 2 (p.41)), and we get Mfold
t2 =

[
0.9368 0.6
0.1632 0

]
.

Eigen-analysis of Mfold
t2 yields λMfold

t2
= 1.0317 = λM. By construction, in this matrix also, offspring

are only to be found on the first line. And therefore, we can proceed as we just did for M , to generate
the net reproductive rate, and we get R0 = 1.035. Therefore this simple model illustrates the general
non-preservation of R0 by EFP-folding.

5.1.4 demographic and environmental variances calculations for M and
Ma

In this section, we wish show calculation steps to calculate σ2
d and σ2

e for model M implementing the costs
and Ma, which is M folded over parity, in which the costs are absent, using the eigen-attributes of M .

σ2
d

Let us first restate the generic formulation of σ2
d : σ2

d =
∑

i,j

∑
k,l
λ−2 ∂λ

∂Mi,j

∂λ
∂Mk,l

.N.Covd(Mi,j ,Mk,l). We
also know the demographic covariances of matrix elements for M from section 3.3.3. For Ma the demo-
graphic covariances are simpler : Var(Fi) = fi(1−fi) and Var(Si) = fi(1−si), and all other covariances are
zero (each vital process is independent from all others). Then for Ma, σ2

d = λ−2N
∑

i

[
S2

1,ifi(1− fi) + S2
i+1,isi(1− si)

]
where S is the sensitivity matrix; specifically in that case S = {viwj}i,j . And for M (processes among
ages are dependent but not between ages) for which we denote i+, for each state i, the state corresponding
to the next age class and next parity class, i.e. the state reached, from i, through successful reproduction,
and i− the other reachable state.{

σ2
d = λ−2N

∑
i

[
S2

1,ifi(1− fi) + S1,iSi+,i(1− fi)fisi − S1,iSi−,i(1− fi)fisi +A
]

A = (S2
i+,i − S2

i−,i)fisi(1− fisi) + S2
i−,isi(1− si)− Si+,iSi−,i((1− fi)fis2

i )

which we can rewrite:
σ2
d = λ−2N

∑
i
(C +D)

C = S2
1,ifi(1− fi) + S2

i−,isi(1− si)
D = siS1,i(Si+,i − Si−,i)− (S2

i+,i − S2
i−,i)fisi(1− fisi)− Si+,iSi−,i((1− fi)fis2

i )

C contains elements equivalent to these of the demographic variance of the Leslie matrix and D contains
the sum of three negative elements. Indeed Si+,i < −Si−,i as higher parity individuals have a smaller
reproductive value than lower parity ones. This is because the difference of sensitivities of λ to elements
from the same state is proportional to the difference in the reproductive values of the destination states.

σ2
e

Let us first restate the generic formulation of σ2
d :σ2

e =
∑

i,j

∑
k,l
λ−2 ∂λ

∂Mi,j

∂λ
∂Mk,l

.Cove(Mi,j ,Mk,l) We know
the demographic covariances of matrix elements for M from section 3.3.3. The demographic covariances
of matrix elements for M∗ are Cov(Fi,Fj) = εfifj and all other covariances are zero. Then for M∗,
σ2
e = ελ−2∑

i,j
S1,iS1,jfifj , where S is the sensitivity matrix; specifically in that case S = {viwj}i,j . For

M (all processes are interdependent with regards to the environment) (we denote i+, for each state i, the
state corresponding to the next age class and next parity class, i.e. the state reached, from i, through
successful reproduction, and i− the other reachable state).

σ2
e = ελ−2

∑
i,j

[
S1,iS1,jfifj + (Si+,i − Si−,i)S1,ififjsj + (Si+,i − Si−,i)(Sj+,i + Sj−,i)fifjsisj

]
Like for demographic variance, we find, inside the sum, the first element, akin the one in the Leslie case,
and then a sum of negative elements (same reason as for demographic variance)

5.2 Annex from chapter 4
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Introduction 

The role played by selection in shaping the allelic spectrum of common late-onset genetic 

diseases is yet unknown. It is however at the core of the long lasting debate between the 

tenants of the Common Disease Common Variant (‘CDCV’) and those of the Common 

Diseases Rare Variant (‘CDRV’) hypotheses (reviewed in 1, 2). In the ‘CDCV’, Susceptibility 

Alleles to Late-Onset Diseases (hereafter denoted ‘SALOD’) are considered as close to 

neutrality. Genetic drift is the dominant evolutionary force shaping the diseases’ allelic 

spectrum and it thereby predicts that most diseases prevalence results from a limited number 

of alleles at moderate/high frequency (theorized by 3; see box 1). By contrast, the ‘CDRV’ 

emphasizes the importance of numerous rare variants in diseases prevalence resulting from 

a balance between mutations and purifying selection at a large number of loci (theorized by 

(4) and compared to (3) in (5)).  

Several lines of evidence can be discussed on whether purifying selection occurs on SALOD. 

The first line of evidence comes from the fact that the allelic spectrum of common late-onset 

diseases is mostly characterized by a multitude of rare and recent variants: a pattern more 

compatible with the CDRV than with the CDCV hypothesis. This is notably the cases of 

familial forms of cancer, coronary artery and Alzheimer dementia (6, 7). The example the 

most frequently cited is that of familial form of breast and ovarian cancers. More than 2000 

mutations in the BRCA1 and BRCA2 genes have been associated with larger risk of breast 

and ovarian cancer; most of them are found at very low frequencies and most of those 

reaching larger frequencies do so due to founder effects and populations history (8). The 

CDRV hypothesis also receives support from the crossing between genetic and 

epidemiological data demonstrating that alleles frequencies decline as a function of alleles’ 

effect size in the case of late-onset diseases (9-11) which suggests a differential of level of 

selection between SALODs. These studies also find unquestionable signature of antagonistic 

pleiotropy: the fact that many alleles frequency is also determined by positive selection from 

a beneficial effect at young age even to the detriment of a deleterious effect at later age. 

Finally selection test found no difference in magnitude of selection between mutations 

causing early- vs late-onset disorders which may suggests that SALODs remains under 

significant selection (12). Although evidence for selection on SALOD accumulates, the 

dominant idea is still that late-onset diseases did not compromised reproductive success. 

When discussed, evidence for selection is rather explained by antagonistic pleiotropy or by 

selective effects due to recent environmental changes (12-14). 
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Box 1 – Theory behind the ‘Common (late-onset) Diseases Common Variant’ hypothesis. 

In the late nineties, the quest to unravel the allelic spectrum of common genetic diseases took a new 

turn with the development of DNA sequencing and microarrays. Massive effort has been invested in 

genetic and epidemiological research in the hope to eventually ‘map’ the individual genetic 

susceptibility to common genetic diseases; especially for late-onset diseases in a context of ageing 

populations. Together with these technological developments, this hope has been supported by the 

theoretical prediction that most of the prevalence of common late-onset diseases is associated with a 

small number of allelic variants coexisting at large frequencies in a given population. 

This ‘Common Diseases Common Variant’ (CDCV) hypothesis postulates that common diseases are 

either complex and/or late onset (15). Complex diseases, in which susceptibility alleles modify only a 

single element of a complex molecular circuitry regulated by epistatic relationships between many loci, 

are opposed to diseases which transmission obeys Mendelian segregation rule (reviewed in (1)). 

Susceptibility alleles to complex diseases are thought to be leading to low disease penetrance that 

does not significantly compromise carriers reproductive success and are therefore consider under 

negligible purifying selection. Late-onset diseases are - generally defined as diseases whose mean 

age at onset is later than age 40 (12) – are incorporated into the CDCV hypothesis, whether they are 

complex (as Alzheimer) or quasi-Mendelian (as BRCA1 and BRCA2 forms of breast cancer) (14). 

Magnitude of selection is indeed predicted to decrease drastically with age: the later in life an allele is 

deleterious, the lower the proportion of carriers surviving at these ages, and the smaller the fraction of 

reproductive success (RS) compromised by this deleterious effect (16, 17). Because of menopause in 

humans, this fraction is zero in post-reproductive years during which the death of a woman no longer 

reduces her already achieved RS. The biomedical community has also long believed that the males 

and females survivors past 45 years were anyway too few in pre-industrial humans for alleles 

deleterious past these ages to compromise carriers’ fitness.  

 Being under negligible negative selection, the fate of alleles involved in complex and/or late-onset 

diseases is therefore mainly driven by genetic drift, which tends to randomly eliminate most of the 

genetic variants while the remaining ones reach higher frequencies (Reich and Lander 2001). More 

precisely, the authors predict that, in a growing population, the disappearance of susceptibility alleles 

with slightly deleterious (corresponding to a selection coefficient about s=10
-6) effect is sufficiently 

slowed down by genetic drift to facilitate the emergence of common variants. As a consequence, the 

CDCV predicts that a small number of alleles at high frequency are expected to account for most of 

the prevalence of familial form of common diseases. By contrast, the Common Diseases Rare 

Variants (CDRV) hypothesis a mild purifying selection (of an order of magnitude of s=10
-4

) which, 

combined with genetic drift into a multilocus Wright-Fischer model, can lead to the accumulation of 

rare variants and the maintaining of few variants at intermediate frequencies (4).  

 

Estimating magnitude of selection on SALOD is therefore crucial for understanding the allelic 

spectrum of late-onset diseases. Even more, we need to estimate how fast purifying 

selection declines with SALOD-specific mean age at diseases onset to assess the potential 

for positive selection due to antagonistic pleiotropic effects: a faster decline means that a 

smaller beneficial effect a young age can be positively selected at the expanse of a lager 

cost at older age. Both magnitude and decline are thus the missing parameters to population 

genetic models essential to predict the respective share of late-onset diseases prevalence 

originating from common and rare variants. To do this, one has to link an allele age-specific 
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phenotypic expression to its carrier’s fitness. But was this link can it be? Three phenomena 

may explain the persistence of selection on SALOD:  

Variance in disease onset – A particular familial form of a late-onset disease never occurs 

exactly at one specific age. Rather, onset probability spread across a range of ages 

according to an age-specific risk function characterized a minima by a mean and a variance 

(as illustrated in figure 1). It was first suggested by (18) that late-onset disease may therefore 

occur in a non-negligible proportion of young individuals even though mean age at onset is 

late in life. Such a proportion could significantly compromise the average reproductive 

success of SALOD carriers. This has been proved true in the case of BRCA1 alleles (19): 

although the mean age of onset occurs after menopause (around 55 years old), between 15 

to 27% of cases occur before age 45, allowing negative selection to operate. To our 

knowledge, variance in diseases onset was not accounted for in previous tests of selection 

(10, 12). Of course this variance reflect in part the fact that age at onset is influenced by the 

type or the location of mutations on susceptibility genes (e.g, in the case of polycystic kidney 

diseases linked to PKD1 and PKD2, (20)) or by epistatic relationships between mutations 

and risk-modifying loci (e.g., (21) for Alzeimer Dementia linked to PSEN2, (22) for breast and 

ovarian cancer linked to BRCA1, or (23) for Huntington disease linked to HTT). However 

aggregated data at the gene level gives a fair suspicion that large variance at onset is an 

ubiquitous characteristic of familial form of late-onset diseases. Even more, it has been 

shown in the case of neurodegenerative disorders that genetically-driven diseases occur on 

average sooner than sporadic not-familial diseases (24). There is also fair suspicion that 

variance in age at onset increases with mean age at onset (see SM2 for empirical data) as 

predicted in (25). Huntington disease, a unique case where mutation-specific age at onset 

distributions is known, variance increases with mean age at onset (26). 
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Figure 1 - Cumulative risk of disease onset with age according to change in Mean Age at disease 

Onset (MAO) and First Age at disease Onset (FAO). If disease onset is confounded with morbidity or 

full incapacitation, cumulative risk is 1 ( )dL x  where ( )dL x  is the disease specific survival at age x . 

Age at onset distribution if fitted with a two parameters logistic function (see SM2). FAO is defined as 

the age at which one 1% of SALOD carrier have develop the disease (1 ( ) 0.01dL x   and setting 

1 ( ) 0dL x FAO   ). This modeling approach allows the exploration of a parameter space 

encompassing distribution of constant MAO and varying FAO (Left panel); constant FAO with varying 

MAO (middle panel) and constant MAO-FAO but varying in MAO (right panel). An incomplete 

penetrance at age 100 can be modeled by multiplying these functions by a factor lower than 1.  

Reproduction of men at old ages - Although women stop reproducing at menopause, men 

can pursue reproduction until late in life. Tuljapurkar et al. (2007) (27) showed that male 

fertility provides a non-negligible selective force against autosomal deleterious mutations at 

ages far past female menopause. The proportion of children born to old men depends on 

population survival and matrimonial behaviors. To the opposite of great apes where males 

seems to favor reproduction with older females (28), human males are prone to reproduce 

with younger women. First, men are on average older than women at first marriage and 

reproduction (e.g., men are six years older in average (29); and see SM3), even in societies 

were sexuality is not prohibited before marriage (30) and in matrilineal/matrilocal societies 

(31, 32). Second, because widowed or divorced men can remarry even at old ages. In 

absence of modern medicine, around 20% of men surviving at age 50 years old have lost 

their first wife (see SM3). Divorce, nearly absent in western Christian historical populations, 

are allowed in most ethnological populations (33) and may reach very large rates (e.g., in 

Ache, 61% of marriage end up during the first year (34)). Third, most past-human 
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populations were likely mildly polygynous (35). Polygyny is often associated with large 

difference of age between husband and wife; for example because men has to queue for 

access to matrimonial market (ie, “wealth increasing” poygyny) or because they marry the 

younger sisters of their first wife (ie, sororeal polygyny, SM3).  

 

Figure 2 - Scaled age-specific fertility rates for women ( ( )F x , red) and men ( ( )mF x , blue) fitted with a 

Brass-Polynomial Function from published estimates for non-industrialized populations (i.e., Kung, 

Ache, Tsimane, rural Gambia, Peul Bandé, and French canadians of the XVII-XVIII
th
 centuries). Data 

and modeling are detailed in SM3. Blue area emphasizes ages at which males fertility is larger than 

that of females, and dashed area the part of this surface where female fertility is down to zero. 

Parameters for males are fine tuned in order for lifetime reproductive success of males to be equal to 

that of female in the case of a particular population mortality (here that of an averaged Hunter-

Gatherer population (36)). 

Parental and grandparental care – Humans are mammals. As such, neonates are altricial: a 

newborn that is not taken care for is doomed to death. But humans are also cooperative 

breeders where the mother is the primary caregiver but not the only one. Maternal care but 

also in a lesser extent paternal and grandmaternal care has been proved keeping children 

alive  (37, 38). In demographic terms, this means than an infant or a child having loss its 

mother, father or maternal and/or paternal grandmother is less cared for, and have a lower 

chance of surviving until adulthood (see figure 3 in SM4). Form the (grand)parental 

perspective this means that a individuals may continue to increase their reproductive 

success by increasing their children chance to survive, even if they do not reproduce. 

Diseases morbidity or incapacitations have therefore an additional cost than prohibiting 

future reproduction by compromising the chance of already born children to reach adulthood 

and to reproduce. This effect may be large. For example, maternal care has been proved 
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sufficient to enhance selection maintain purifying selection in the ten yrs following 

menopause (39).  

 

Figure 3 – Relative risk of death of a child having lost is mother (plain line), grandmother (dash line) or 

father (dot line) compared to those who have not, according to the child’s age at maternal, (paternal or 

maternal) grandmaternal or paternal death (denoted respectively 1y , 2y  and 3y  in model). Data are 

fitted from published estimates from 31 articles detailed in SM4. All further calculations consider only 

the care provided by the maternal grandmother (see Box 2). Assuming that these risks are 

multiplicatives (see SM4), a child’s age-specific relative risk of death 1 2 3( | , , )RR t y y y  can be 

calculated at any age t  for any combination 1 2 3[ , , ]y y y ; then its age-specific mortality hazard 

0 1 2 3( ) ( | , , )h t RR t y y y  for any baseline mortality 0 ( )h t , and thus its mean survival until age at maturity

 ,  1 2 3 0 1 2 3
0

, , exp ( ) ( | , , )S y y y h t RR t y y y dt
  

   .   

In this study we aim at calculating selection coefficients (i) for SALODs leading to diseases 

whose onset probability varies across ages; (ii) in a two-sex model where men can 

potentially reproduce until old ages and; (iii) in a three-generations model where child 

survival depends on maternal, paternal and grandmaternal care. The predictive value of such 

calculations lies in the careful discussion of these input parameters (hence detailed in SM2, 

SM3 and SM4). Assumptions made by the model and caveats are also fundamental (and 

listed in Box 2) because it emphasizes what we do not know; what we do not model to limit 

model’s complexity or because, even if modeled, empirical data would not support enough 

careful parameterization; what may vary vastly between human population entailing results’ 

generalization; and what we considered as negligible.  
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Box 2 – Main assumptions and caveats 

Mutation is rare – Required by the model. Incorporating frequency-dependence is vastly complex and 

data for parameterization are missing. This hypothesis is however reasonable since most SALODs are 

rare or de novo. Our model will however fail to predict the fate of mutations having reached large 

frequency (as due to founder effects).  

Mutation is autosomal, dominant, disease occurs in equally in both sexes, penetrance is complete – 

Not required by the model and results for recessive alleles, alleles located in mitochondrial or sexual 

chromosome, for disease occurring in females or males only, and for incomplete penetrance are 

respectively provided in Supp. Fig1 and Supp. Fig2.  

No antagonistic pleiotropy – Could be incorporated. However, if antagonistic pleiotropic (AP) have 

been demonstrated at the genome level (10) and for particular couple gene-disease (as for BRCA1 

(40)), data on allele-specific effect sizes are still missing for parameterization. Decline of selection 

coefficients with mean age at onset provides nevertheless the potential for AP to occur. 

No epistasis, no epigenetic and no environment-gene interactions – These mechanisms may modulate 

late-onset gene expressions; e.g., (21, 23, 41) for epistasis or (13) for environmental changes. 

However, their incorporation would be complex and data for parameterization are mostly missing. For 

example, our model allows to calculate selection coefficients for a given haplotypic combinations but 

would fail to predict its fate when recombination occurs.  

Disease is lethal or fully incapacitating at a given age – Many late-onset diseases are slowly 

degenerative and/or not lethal (e.g., age-related macular degeneration or neurodegenerative 

diseases). Data are however missing on how the disease compromises individual’s age-specific 

fitness through decreased fertility or the care towards offspring. Disease can also lead children to 

invest time and energy towards their parents’ care (a phenomenon referred to as ‘filial piety’ by (42)) 

and as such entails their fitness.  

Population is stable – Required by the model to access to population age-structure. Incorporating 

transient dynamics (through density-dependence or stochasticity) would make the model vastly more 

complicated. 

No cost of reproduction, effect of care is similar on sons and daughters, no effect of parental care on 

children adult life – Required by the model. The incorporation of these phenomena to the model would 

make the Euler-Lotka equation unsolvable or requiring the addition of traits defining individuals. 

Recent development of Multitraits Population Projection Matrix model (Coste et al. 2017) may however 

make it possible. This is also promising to incorporate importance of transfer of behavior or knowledge 

for offspring survival and reproduction throughout life.  

No difference in survival between males and females – Not a required by the model. Sex-specific 

survival data are however missing for not-industrial populations.  

No effect of maternal and paternal age on offspring fitness – Not a required by the model. How 

parental age compromises children fitness because of increased gametes’ mutation load is yet 

unknown. Moreover, many social factors increasing with parental age (as parental experience, 

influence and wealth) are by contrast correlated with better offspring survival. 

Only one-side grandmaternal care (here the maternal one) is considered. Not a required by the model. 

However data suggest that most of the time, only one of the two grandmothers is primarily caring for 

grandchildren, and more frequently the maternal one (see SM4).  

No structure of matrimony and fertility (beyond the fact that women reproduce with men of the same 

age or older). Required by the model. Demographic models for age-structured matrimony are 

available. However, matrimony varies widely across human population (see SM3) and incorporating it 

would add a new layer of complexity to the detriment of results’ generalization. Moreover, this would 

also require to model and parameterize extramarital reproduction, remarriage and polygamy, which 

are also known to interact with maternal and paternal care. 
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Results and discussion 

Old ages in the selection light - In the absence of pleiotropic effects, most Susceptibility 

Alleles to Late-Onset Disease (SALOD) are unlikely neutral, but rather purified by negative 

selection. First this is due to the epidemiology of the late-onset disease. Variance in disease 

onset means that a proportion of cases occurs at reproductive age even when Mean Age of 

Onset (MAO) is well beyond the end of reproduction. SALODs would be purified up to MAO 

between 60-65 years old if First Age at Onset (FAO) is 20 years earlier (corresponding to a 

standard deviation  around the mean of 6.32 years, Fig. 4B) while selection would not occur 

beyond age 50 if MAO and FAO were confounded (Fig. 4A).  

 

Figure 4 – Coefficient of selection s as a function of Mean Age at Disease Onset (MAO) in the case 

where disease onset has no variance (i.e., disease occurs at a unique age, A) and where age at first 

onset (FAO) is observed 20 years before the mean (constant Standard deviation equaled to 6.32 

years; B). Calculations are calculated for various socio-cultural scenarios. Nemin indicates, for one 

given selection coefficient, the minimum effective size for which 4 1eN s  , holding that, in humans, 

Ne is rarely lower than 100 and larger than 10,000. Mortality is that of a mean hunter-gatherer 

population (36). Allele is rare, autosomal, dominant, disease in both sexes and penetrance is 

complete.   

Second selection on SALOD also arises from socio-cultural factors. Deaths occurring past 45 

do not fall under a “selection shadow” (16) where selection has no leverages to operate. The 

fuel to negative selection comes primarily from the fact that, even in hunter-gatherers, 

individuals surviving at first reproductive age have large chance to survive past age 45 (here 

63% (36)). [Calculations with survival of Sweden 1765 in SR4- STILL TO DO]. Then, 

individuals may enhance their fitness past this age. Maternal care (MC) has a large effect in 

magnitude but limited in time to 10-15 years after menopause (as in (39)). Grandmaternal 

care (GMC) has a large effect up to old ages (60-70 in Fig.1A and 60-85 in Fig.1B). This is 
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because, although GMC is much less important for child survival than that of MC (see Fig.3), 

increased risk of disease onset is much larger at grandmaternal age than at maternal age. 

Finally, if paternal care has little effect, males’ ability to reproduce at ages where women are 

menopaused increases selection coefficients in a large extent.  

 

Figure 5 – Coefficient of selection s as a function of Mean Age at Disease Onset (MAO) and First Age 

at Onset (FAO). Above s=2.5e-02, Nemin<100 and selection is expected in all human populations 

(darker grey). Below s=2.5e-04, Nemin>10,000 and alleles are neutral in most human populations. In 

between selection levels of selection will vary of ‘small’ (dark grey) or large ‘Ne’ (light grey). Allele is 

rare, autosomal, dominant, disease in both sexes and penetrance is complete   

When all socio-cultural factors are incorporated, an allele of MAO-FAO>20 will be under 

significant purifying selection in most human population, even if the MAO is at 80 years old of 

age. (Fig. 4B and Fig. 5). Levels of selection considered by (4), about 10x-04 is found only 

for very late-onset diseases (MAO>75) with low variance  and those considered by (3), about 

10x-06, never occur. Even more, an allele leading to FAO earlier than 25 will always be 

strongly negatively selected (s>10x-03, not shown), whatever the MAO is. This argues for a 

revision of the prediction done by (3, 4). Levels of selection is found in a similar range of 

magnitude for automosal alleles leading to sex-specific diseases or supported by Y or 

Mitochondrial chromosomes because of the dual effects of (grand)maternal care operating 

throughout the females lineages and late males’ reproduction operating through the male 

lineage (see Supp. Fig1). By contrast, levels of selection are a linear function of diseases 

penetrance (when the age at onset distribution is conserved; see Supp. Fig2). A “rule of 
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thumbs” table of coefficients of selection as a function of mean and variance age at onset 

and cumulative risk at age 100 is provided in Supp. Table1. [STILL TO DO] 

All these factors also change the shape of the decline of selection coefficient with MAO, 

making it less steep (from a more-than- to a less-than-exponential decline). Does this make 

antagonistic pleiotropy less likely to occur? Late-life deleterious effects (after age 60-70) will 

still entail 100 to 10,000 times less fitness than very early effect (before age 45). Early 

positive effect will still trade easily to very late negative effects. But this may be less easy 

against aged 40-60 deleterious effects than entails only 10 to 100 folds more fitness than 

early effects. This is important for example in the case of BRCA1. (40) find large beneficial 

effect of BRCA1 mutations on carriers fertility which led (43) to propose that grandmother 

effects, maintaining deleterious effects under significant selection, was the best explanation 

to explain why alleles have not reached fixation. Here we confirm this and go beyond 

showing that grandmaternal care is an important but not the only factor maintaining SALODs 

in the “selection light”. 

Prediction for specific late-onset diseases – We predict selection coefficients for different 

couple gene-diseases (preliminary results in Figure 6 not accounting for uncomplete 

penetrance of the disease: Results are overestimated by a factor equaled to cumulative risk 

at age 100).  

 

Figure 6 – Coefficient of selection s for mutation in specific genes. MAO and FAO for Huntington 

diseases comes from  (26). Other MAO and FAO from Table 1 in SM2. 
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For most diseases s never falls under the mild selection threshold at s=10-4 from Pritchard (5) 

and the slight selection at s=10-6 from Reich (3), due to variance in disease onset and 

whatever the socio-cultural scenario considered, and in the case of survival taken for an 

hunter-gatherer population. As a consequence we think that the CDCV is largely wrong. 

Selection do occurs on SALOD and its level is as key than Ne or mutation rate to understand 

the allelic spectrum of late-onset diseases. 

Importance of evolution of aging in humans – Selection gradient with age is the founding 

ground of the two major evolutionary hypotheses of ageing: antagonistic pleiotropy and 

mutation accumulation. But nobody has ever seen a selection gradient estimated from 

empirical data. Rather, it is conceptual tools, mainly calculated from life tables, considering 

theoretical allele with an infinitesimal deleterious effect at a specific age. We show here that 

the steepness of selection gradients is likely massively overestimated in humans but likely in 

most long lived species. This is because, from the allele perspective, selection lies not only 

into a one-space age distribution but into a multiple axes epidemiological-space 

encompassing mean and variance at onset as well as cumulative penetrance. From the 

disease perspective, diseases specific selection gradient should moreover encompass the 

multiplicity of loci from potentially different genes having different epidemiological output. At 

the species level, ageing encompass the increased incidence with age of many diseases 

aggregated into one unique age-specific mortality trajectories. Inferring senescence pattern 

from such an aggregated mortality trajectory sweeps this complexity under the carpet and 

one has yet to proof the predictive power of such a conceptual tool.  

This is even truer in humans because selection is not only a matter of number of children 

produced in a live time but that of those taken care for and educated over a protracted 

infancy and childhood by several kin. By flattening the “true” allele-specific selection gradient 

all these socio-cultural factors tends to make accumulation of deleterious mutation and 

antagonistic pleiotropy less efficient in our species promoting extended lifespan. This 

emphasizes the fact that evolution of life-history and sociality are intermingled in our species 

and that genomic, genetic, epidemiology, demography and anthropology are all required to 

make sense of the allelic spectrum of late-onset diseases.   
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Methods 

We aim at calculating the selection coefficient s for a SALOD for (i) diseases onset 

characterized by a distribution of onset probability, in (ii) a two-sex model were men can 

reproduce at old ages, and where (iii) child survival depends on maternal, paternal and 

grandmaternal care. To do this we need to calculate the reproductive value of men and 

women carrying or not the SALOD; carriers exhibiting an excess of mortality due to allele-

specific disease morbidity. It must be stressed that any incapacitating disease fully 

compromising reproductive success will have an identical effect on s than a lethal disease 

and the following model applies to both. 

1. Population genetics frameworks 

Assuming that the mutation is autosomal, dominant and rare (Box 2), the selection coefficient 

associated with the mutation is given by 1 C NCs W W  , where reproductive values of 

respectively non-carriers and carriers NCW and CW are defined as the mean number of 

children produced during their lifetime. If the mutation is rare enough, the proportion of 

carriers relative to that of non-carriers is negligible at all ages and the population’s age-

specific mortality hazard (i.e., the instantaneous rate of mortality) is that of non-carriers 

 NCh t  (Pavard and Metcalf, 2007). Assuming that carriers’ age-specific morbidity is 

independent from any other causes of death existing into the population (i.e. the 

corresponding mortality hazards are independent), then morbidity is an additive excess of 

mortality of carriers relative to non-carriers such that      C NC dh t h t h t  , where  dh t  is 

the mortality hazard resulting from disease’s morbidity. Assuming that mutation has no 

antagonistic pleiotropic effect (Box2), then reproductive success of non-carriers and carriers 

are the sum overall ages x  of the product between the survival probability ( )l x  for non 

carriers and ( ) ( )dl x l x  for carriers; with 
 

0( )

x
NCh t dt

l x e
  and 

 
0( )

x
dh t dt

dl x e
 ) and the 

fertility ( )F x  at these ages:   

 ( ) ( )NC

x
W l x F x dx   (0.1) 

And 

 ( ) ( ) ( )C d

x
W l x l x F x dx   (0.2) 
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2. Reproductive success of non-carriers NCW  

We aim at incorporating maternal, grand maternal and paternal cares through the extent to 

which a child survival until maturity is compromised by the death of his mother, and/or 

grandmother and/or father. To do this, let us first write NCW  as a function of the population’s 

mean children survival S  at maturity   such that equation (1.1) becomes: 

 ( ) ( )NC

x
W L x F x Sdx




   (0.3) 

where    L x l x S  and   1L x   . 

In what follows, maternal, grand maternal and paternal care are integrated via the function 

 1 2 3, ,S y y y  which gives the survival probability at age   of a child who has lost its mother, 

grandmother and father at ages 1y , 2y  and 3y  respectively (see SM4). A child with 1y , 2y  and

3y  larger than   is fully cared for and exhibit a maximal chance of surviving until maturity. 

By contrast, a child with any one of 1y , 2y  or 3y  lower than   has lost one of its parents 

before reaching maturity and exhibits a compromised survival.  

In this setting, survival varies among children according to their mother’s, grandmother’s and 

father’s survival probabilities within the years following the child’s birth. As a consequence, a 

child survival is a function the age of its mother, grandmother and father at its childbirth 

(denoted respectively 1x , 2x  or 3x ): the older its (grand)parents at its childbirth, the higher 

their risk of dying (or being already dead for grandmothers) within the following years (a 

demographic relationship first explored by Goodman 1974), and the lower the child survival 

until maturity. This leads to a negative covariance between parents’ ages at the birth of a 

child and this later survival (Pavard et al. 2007a). As a consequence, the population’s mean 

children survival S  will depends on the population distribution of 1x , 2x  or 3x . In an infinite 

and constant environment these distributions are stable and depend on the male and female 

age-structure of the population. Distribution of 1x  and 2x are independent: a mother’s age at 

the birth of a child does not depend on the age of her own mother at her birth. Distributions of 

mother’s age 1x  and father’s age 3x  at child’s birth are not independent when matrimony is 

age-structured.  
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The aim of the following derivations is to calculate S  as a function of the survival space

 1 2 3, ,S y y y , knowing adult survival and fertility for female ( ( )L x and ( )F x ), and males (

( )mL x  and ( )mF x ), and holding that S  determines and is determined by males and females 

age-structures. To do this, we express the probability that  1 2 3, ,y y y  occurs as a function of 

maternal age at childbirth 1x .These derivations are detailed in SM1 Child and are 

summarized below. 

Let us define  1S x  as the probability for the daughter to survive until maturity as a function 

of the female’s age at child’s birth. The probability  1S x  can be calculated as the sum over 

all possible child’s age at mother’s, grandmother’s and father’s death ( 1y , 2y  and 3y  

respectively) of the product between (a) the probability for a child born to a mother at age 1x  

to lose his/her mother at age 1y , his/her maternal grandmother at age 2y  and his/her father 

at age 3y  and (b) the survival  1 2 3, ,S y y y : 

(0.4)          1 1 1 2 1 3 1 1 2 3 1 2 3| | | , ,S x p y x p y x p y x S y y y dy dy dy   

Equation (1.3) can then be rewritten as: 

(0.5) 
1

1 1 1 1( ) ( ) ( )NC

x
W L x F x S x dx




   

Population mean children survival depends on population parental age-structure and can be 

calculated as follows, 

(0.6) 1

1

1 1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

x

x

L x F x S x dx
S

L x F x dx

















 

It must be stressed that S could also have been calculated by expressing equation (1.4) as a 

function of father’s age at childbirth x3 and the 
NCW of men (equaled to that of women) 

calculated. 
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3. Reproductive success of carriers CW  

The SALOD (rare, autosomal, dominant, and increasing the risk of disease onset in both sex 

equally) can be carried out by a man or by a woman with a probability equals to the sex-ratio 

(hereafter considered equaled to ½). If the mutation is carried by a man, and because the 

mutation is rare, we can consider that his wife(s) and his mother(s) in law are not carrying the 

mutation. If the mutation is carried by a woman, her husband is also free of mutation. In this 

case however, the woman may have inherited her mutation from her mother or her father 

with a probability equaled to ½. In mean the reproductive success of carriers can be written 

as: 

(0.7) 

1
man , wife(s) , wife(s)' mother

2

1
woman ,husband(s) , woman's mother

1 2

12
woman ,husband(s) , woman's mother

2

C C NC NC

C NC NC

C NC C

W W

W

W

   

 
   

 
     

 

where the superscripts NC and C define whether or not the individual carries or not the 

SALOD;  individuals carrying the SALOD being at risk of developing the diseases and 

exhibits an excess of mortality do to disease morbidity ( )dL x . Equation (1.7) makes it also 

easy to calculate s in the case of other genetic compartments or for sex-specific disease 

(Box 2). 

4. Parameterization 

Age at onset distribution, age-specific fertility and effect of maternal, grandmaternal and 

paternal care on child survival are respectively detailed in Fig. 1 and SMX, Fig. 2 and SMX 

and Fig. 3 and SMX. All results are provided for a population mortality corresponding to that 

of an averaged hunter-gatherer population fitted with a Siler mortality model (36). In this case 

 15 0.57l   and  45 0.36l   which means that      45 45 15 0.63L l l  : 63% of 

survivors at age 15 will survive at age 45. While life expectancy at birth is 31 years, the 

remaining life expectancy at age 45 is 45 20.7e   years. Parameter Am of the Brass 

polynomial is fine tuned to 4.97e-05 according to this mortality. Mean number of children 

equal to 2.29 (for both male and female) while TFR is respectively 4.79 for females and 5.66 

for TFR males. The proportion of children born to father older than 50 years old is 14% 

(around 1 child over 5.66) which is about 11% of mean males reproductive success. Results 

for larger survival pre-industrial population, i.e., 1765 Sweden, is provided in Fig.Sx [STILL 

TO DO].  
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5. Scaling selection to genetic drift in humans 

In population genetics, selection coefficients are scaled by a factor 4Ne , where Ne is the 

effective population size, to account for  the stochastic effect of genetic drift in determining 

the fate of an allele. This is especially crucial in the case of alleles under weak selection or 

close to neutrality. In humans, population sizes have to refer to a carefully defined 

population, over a given time-scale and with a given demographic history, for which the 

allelic spectrum is observed.  For example, (3-5)  aimed a explaining the allelic spectrum 

defined at the level of the humanity since its origin and considered that 10,000eN  . By 

contrast, if one wants to explain the allelic spectrum of the descendants of the French 

Canadian settlers, one would consider a founder population having undergone a large 

population growth during 300 years (i.e., 1000 from (44)). Finally, human populations’ Ne 

rarely falls below 100, which is the range found for very isolated insular populations (45). To 

discuss our results let us, let us consider them forward, focusing on one given allele. The 

probability of fixation approaches the neutral value at 4 1eN s   (i.e., the process of genetic 

drift and selection are equal, reviewed in (46)). Here we consider that selection is weak when 

1 4 10eN s   and strong when 4 10eN s  . 
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SUPLEMENTARY MATERIAL 1 - Child survival as a function

of mother's age at childbirth

1. Objectives and notation

Maternal care is easily incorporated into a non-overlapping population genetics framework [3] because it
involves only one generation (the scale upon which is built population genetics model) and because popula-
tion age-structure is not required. As described into the main text, in a two-sexes/two-generations model,
the population's age-structure is required to estimate the frequencies of the mother-grandmother's age or
husband-wife's age at th birth of a child. To present this model, we �rst denote:

• y1, y2 and y3 the daughter age at the death of her mother, grandmother and father respectively.

• x1, x2 and x3 the ages of the mother, the grandmother and the father at the birth of their child (ie the
daughter for mother and father, the mother for the maternal grandmother).

• α is the age at maturity (the age at which maternal, grandmaternal and paternal care is not anymore
needed for daughter survival). It is also the age at �rst observed reproduction for female.

• β is the age at last reproduction for female.

• βm is the age at last reproduction for men.

• ω is the maximum lifespan.

• S (x) is the daughter survival probability until age α as a function of a parent's age at childbirth x.

• S (y1, y2, y3) is the daughter survival probability until age α as a function of her age at mother's,
grandmother's and father's death.

• L (x) and Lm (x) are the survival of indivividual surviving at age α, in the following adult years (ie for
x ≥ α and with L (α)and Lm (α) equalled to 1), for women and men.

• F (x) and Fm (x) are the fertility at age x of women and men respecively.

• λ and λm are the �nite rates of women and men population growth.

In order to calculate the female non-carrier reproductive success WNC [Female] (see SM4, equation (6)),
we need to express S (x1) as a function of S (y1, y2, y3) . The probability S (x1) can then be de�ned as
the sum over all possible child's age at mother's, grandmother's and father's death y1, y2 and y3, of the
product between (i) the probability for a child born to a mother at age x1 to lose his/her mother at age y1,
his/her maternal grandmother at age y2 and his/her father at age y3 and (ii) the survival S (y1, y2, y3). The
probability S (x1) can then be written:

S (x1) =

ˆ
y1

ˆ
y2

ˆ
y3

p (y1|x1) p (y2|x1) p (y3|x1)S (y1, y2, y3) dy3dy2dy1 (1)

1
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2. Probability for a daughter to lose her mother at age y1

The probability p (y1|x1) is the probability for a child born to a mother at age x1 to lose its mother at age
y1. Because the mother is obviously alive at the child's birth this probability is (see [2, 3] for more details):

p (y1|x1) =
L (x1 + y1)

L (x1)
h (x1 + y1) (2)

The child's age at mother death y1 is de�ned between 0 (the mother dies at child's delivery) and $ − α
(the mother is at the youngest possible age α at childbirth and dies at the maximum lifespan $). For any
given age x1, we have min (y1|x1) = 0 and max (y1|x1) = $ − x1. The sum over all possible age y1 of the
probability p (y1|x1) equals one such that:

ˆ
y1

p (y1|x1) dy1 =

ˆ $−x1

0

p (y1|x1) dy1 = 1 (3)

3. Probability for a daughter to lose her grandmother at age y2

The probability p (y2|x1) is the probability for a child born from a mother at age x1 to lose its maternal
grandmother at age y2. This probability depends therefore of the grandmother's age x2 at the birth of the
mother. This age is independent of the mother's age at child birth x1 and can range from α to β. The
probability p (y2|x1) can then be written as follows:

p (y2|x1) =
ˆ β

α

p (x2) p (y2|x1, x2) dx2 (4)

• The probability p (x2) is the probability that the mother is born to the grandmother at age x2. When
the age-structure of the population is stable, the probability p (x2) equals the proportion of children
born to a mother at age x2 such that:

p (x2) = (λ)
−x2 L(x2)F (x2)S (5)

with the sum
´ β
α
(λ)

−x2 L(x2)F (x2)Sdx2 = 1 being the Euler-Lotka equation.

• The probability p (y2|x1, x2) is the probability for a child born to a mother at age x1, herself born to a
mother at age x2, to lose its grandmother at age y2.The grandmother being obviously alive at age x2
when she gave birth to her daughter, this probability is:

p (y2|x1, x2) =
L (x2 + x1 + y1)

L (x2)
h (x2 + x1 + y1) (6)

For any given x1 and x2, we have min (y2|x1, x2) = −x1 (the grandmother died at the birth of the mother,
thus x1 years before the child's birth) and max (y2|x1, x2) = ω − x1 − x2 (the grandmother died at age $).
The sum over all possible y2 of the probabilities p (y2|x1) is therefore:

ˆ
y2

p (y2|x1) dy2 =

ˆ β

α

p (x2)

ˆ $−x1−x2

−x1

p (y2|x1, x2) dy2dx2 (7)

Setting p (y2|x1, x2) = 0 for impossible occurences such that y2 < −x1 and y2 > ω − x1 − x2, equation (7)
can be written as:

ˆ
y2

p (y2|x1) dy2 =

ˆ $−x1

−x1

ˆ β

α

p (x2) p (y2|x1, x2) dx2dy2 (8)

2
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4. Probability for a daughter to lose her father at age y3

The probability p (y3|x1) is the probability for a child born from a mother at age x1 to lose its father at
age y3. This probability depends therefore of the father's age at the birth of the child x3. For simplicity
we assume that fathers are always of the same age or older than the mother without further matrimonial
structuring (structuring matrimony would indeed imply extending the model for incorporating widowing and
divorced probability, remarriage probability and polygamy). The probability p (y3|x1) can then be written :

p (y3|x1) =
ˆ β

α

p (x3|x1) p (y2|x3) dx3 (9)

The probability p (x3|x1) is the probability for the father of being x3 years old at daughter's birth, know-
ing that his wife is x1 years old at that time and was younger than him. When the stable males distribution is

reached the distribution of fathers' age x3 is given by (λ
m)

−x3 Lm (x3)F
m (x3)S, with

´ βm

α
(λm)

−x3 Lm(x3)F
m(x3)Sdx3 =

1 being the Euler-Lotka equation. Knowing that x3 ≥ x1, the probability p (x3|x1) can be written:

p (x3|x1) =
(λm)

−x3 lm (x3)F
m (x3)S´ βm

x1
(λm)

−x3 lm (x3)Fm (x3)Sdx3
(10)

The probability p (y3|x3) is the probability for a daughter born to a father at age x3 to lose her father at age
y3. Assuming that the father is alive at child's birth, this probability is:

p (y3|x3) =
L (x3 + y3)

L (x3)
h (x3 + y3) (11)

For any given x3 we have min (y3|x3) = 0 and max (y3|x3) = $ − x3. The sum over all possible y3 of the
probabilities p (y3|x1) is therefore:

ˆ
y3

p (y3|x1) =
ˆ βm

x1

p (x3|x1)
ˆ $−x3

0

p (y3|x3) dy3dx3 (12)

Setting p (y3|x3) = 0 for impossible occurrence such that y3 > $ − x3, equation (12) can be written:

ˆ
y3

p (y3|x1) =
ˆ $−x3

0

ˆ βm

x1

p (x3|x1) p (y3|x3) dx3dy3 (13)

5. Solving the Euler-Lotka Equation and calculation of S (x1)

To calculate S (x1) from equation (1) we �rst need to �nd the two �nite growth rates of the female and the
male populations λ and λm in order to calculate the age-structure of females and males in equation (5) and
(10). To do this, we solve the Euler-Lotka equation:

1 =

ˆ ω

α

(λ)
−x1 L (x1)F (x1)S (x1) dx1, (14)

replacing S (x1) by its expression from equation (1). To solve equation (14) we use the approximation
log λ ≈ logR0/T , discussed in [1], in order to estimate λ from λm, with R0 being the mean number of children
produced by individuals druing a lifetime and T being the generation time. Indeed, because males and females
produce in mean the same number of children over a lifetime, males' and females' R0 are identical. Therefore
log (λm) = log (λ) (T/Tm). It must be stressed that T depends only on adult survival and fecundity and is
independent of juvenile survival; this relationship holds therefore for any level of maternal, grand maternal
and paternal care implemented into the model.

Finite population rate of increase λ can therefore be estimate by iteration: a given λ corresponds to a given
approximated λm, which together allow the calculation of a given distribution S (x1). We iterate λ until , λ,
λm and S (x1) satis�es Euler-Lotka equation (14).
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SUPLEMENTARY MATERIALS 2 - Age at Onset Distribution

1 Data

Mutation-speci�c distribution of age at disease onset is unknown for most of familial form of late-onset
diseases. Table SM2 gathers published data (ploted in Figure SM2.1) for mean and minimum age at onset
(hereafter respectively denoted MAO and FAO) for a range of couple gene-diseases. Of course, these are
crude data (i) di�ering in sample size between studies and therefore in the probability of detecting early
onset, (ii) aggregated at the level of the gene across mutations, (iii) not accounting for di�erences in
populations survival between studies, (iv) di�ering in the de�nition of diagnosis, (v) not accounting for
epistatic relationships modifying age at onset patterns (as for example in [7] in the case of BRCA1 ). It
gives however a crude idea of the extent to which individuals sharing mutations on susceptibility genes
may developp disease at very di�erent ages due to the physiopathology of the disease, epistatic e�ects or
gene-environment interactions. For example, the two-hit Knudson rule [11]applies in the case of germinal
mutations in BRCA1 and BRCA2 susceptibility gene to breast and ovarian. A �rst germinal mutation
compromises one copy of the gene, but this tumor suppressor gene is fully inactivated only when a second
somatic mutation compromises the second copy of the gene. Variance in disease onset arises therefore,
at least in part, from the random occurence of the second mutation.

Figure SM2.1 shows that MAO varies roughly between 30 and 65 and FAO between 25 and 55. A
linear regression weighted with sample sizes show a signi�cant linear relationship between MAO and
FAO (p=1.27e-05). If further con�rmed, this indicate that variance in disease onset, as much as the
mean, should be considered as a age-related phenotype of late-onset diseases.

1
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Figure 1: Di�erence MAO-FAO as a function of MAO in the case of the couple gene-diseases listed in
Table SM2 (to the exeption of PARK2 and PINK1 linked to juvenile cases of parlinson diseases). Size
of the points is proportional to the coresponding study sample size. Light grey area is the convex hull of
the points. Dark grey area is the 99% con�dence interval of predicted linear relationship between MAO
and MAO-FAO (β=0.45, p=1.27e-05)

2 Model and Parametrization

The aim here is not to estimate parameters of disease onset distibution from data, but to explore a
large parameter space encompassing most of its epidemiological variabillity amongst late-onset diseases.
To do this, we model the distribution of the age at disease onset for SALOD carriers in a population
absent of any other causes of death than that resulting of the disease. This can be described by three
equivalent functions: the distribution of age at onset f (x) , the cumulative risk F (x) ,of developing the
disease before age x, p (x ≤ X) and the onset hazard h (x) = f (x)/(1− F (x)). This distribution can be
de�ned by three parameters: its mean age at onset, its variance and the cumulative penetrance at old
ages (hereafter considered at age 100 years old). This last parameter �t the fact that, for some disease
with incomplete penetrance, SALOD carriers may not developp the disease.

Although complex models have been proposed to predict age-speci�c risks (e.g., [2] for mutations in
BRCA1 and BRCA2 ), logistic distribution has been proved a good �t for Hungtington disease [12] and
provides a �exible distribution that would encompass di�erences in distribution between diseases as well
as modi�cation of distribution due to epistatic relationship within diseases (as for example the logistic-
shaped epistatic changes demonstrated for BRCA1 mutation in [7]). Assuming a logistic distribution of
mean equals to MAO and variance 1

3s
2π2, the cumulative risk function F (x) is:

F (x) =
1

1 + e−
x−MAO

s

Because we �nd more intuitive to describe such distribution in terms of mean and �rst age at onset
(MAO and FAO) rather than in termes of mean and variance, let us de�ne the disease �rst age at onset
FAO as the age at which the proportion φ of SALOD carriers have developped the disease such that
F (FAO) = φ. Then we can calculate the coresponding parameter s sur that:

2
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s = −FAO −MAO

log
(

1
φ − 1

)

Setting F (x < FAO) = 0, disease occurs at a rate φ at age FAO. Using this setting, age at onset
distributions can be modelled accoring to a MAO- and FAO- space despicted in Figure 1 of the main
texte.

Table 1: Data on mean and minimum age at onset for di�erent pathologies and associated genes

Phenotype Gene
Age at onset n

Reference Note
Mean Min

Alzheimer

Dementia

APP 61.2 35 19 [14] Families with at least one

early onset (<60 yrs) in

three generation

APP 52 35 90 [8] Data extracted from �gure

APP promoter 65 56 14 [10]

PSEN1 41.7 35 108 [14]

PSEN1 42.6 35 6 [9]

PSEN1 NA 24 120 [5] Families with at least one

early onset (<61 yrs) in

three generation

PSEN1 42 24 217 [8] Data extracted from �gure

PSEN2 57 46 39 [8] Data extracted from �gure

Frontotemporal

Lobar

Degeneration

MAPT 48 28 172 [8] Data extracted from �gure

GRN 60 42 89 [8] Data extracted from �gure

VCP 49 26 26 [8] Data extracted from �gure

CHMP2B 63 57 11 [8] Data extracted from �gure

Parkinson Disease

PARK7 31 30 26 [8] Data extracted from �gure

PARK2 31 3 164 [8] Data extracted from �gure

PINK1 33 16 69 [8] Data extracted from �gure

SNCA 47 31 49 [8] Data extracted from �gure

LRRK2 56 24 176 [8] Data extracted from �gure

Hungtington

(adult onset)

HTT, 40 CGA rep 53 32 38 [16] Data extracted from �gure

HTT, 40 CGA rep 56 35 64 [4]

HTT, 40 CGA rep 58 31 134 [12]

HTT, 50 CGA rep 26 20 26 [16] Data extracted from �gure

HTT, 50 CGA rep 26 16 13 [4]

HTT, 50 CGA rep 31 12 65 [12]

Breast and/or

ovarian cancer

BRCA1 42.5 31 8 [1] Breast cancer only

BRCA1 51,2 37 39 [15] Ovarian cancer only

BRCA1 50.8 30 57 [13] Ovarian cancer only, onset

range taken from 30-40 and

80-90 yrs categories

BRCA1 41 26 48 [3] Breast cancer

BRCA1 49 38 11 [3] Ovarian cancer

BRCA2 42 31 16 [1] Breast cancer only

BRCA2 57,5 40 21 [15] Ovarian cancer only

BRCA2 62.1 30 29 [13] Ovarian cancer only, onset

range taken from 30-40 and

80-90 yrs categories

BRCA2 47 28 47 [3] Breast cancer

BRCA2 54 24 10 [3] Ovarian cancer

Autosomal

Dominant

polycystic kidney

disease

PKD1 56.1 for
males

59.5 for

females

30 571 [6] Age at End Stage Renal

Disease, minimum age from

personal communication

PKD2 62.8 for
males

65.4 for

females

41 133 [6] Age at End Stage Renal

Disease, minimum age from

personal communication
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SUPLEMENTARY MATERIALS 3 - Fertility of men and women

1. Data

Data on both men and women age-speci�c fertility ratesare rarily avalaible in the case of pre- and not-
industrialized populations. Some of these data are represented in Fig.SM3.1 using the same color code than
[1].
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Figure 1: Scaled age-speci�c fertility rates for women (in red) and men (in blue) in the case of the
Dobe !Kung from [2], Ache from [3], Tsimane from [4] (extracted from �gure), population of rural Gambia
from [5] (extracted from �gure), Peul Bandé from [6] and pre-industrial population of French canadians
(1640-1779) from [7] (these estimates includes only married men and women). Red areas show that the
fertility of women is larger than that of men at young ages. Blue areas show that fertility of men overcome
that of women at older ages. Dashed blue area emphasizes the ages were men carry on reproduction while
women cease due to menopause.
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For all of these populations, females starts reproducing earlier than men. As a consequence, women fertility
is larger than that of men during the �rst part of their reprodutive life, up to a age comprised between 25
and 40. After this age, men fertility exceeds than that of women and men may continue to reproduce up
to older ages. In females, the decline of fertility prior to menopause is explained by decreasing fecundity
but also by the increasing proportion of widowed or divorced women who do not remary. Men fertility
peak and subsequent decline is shifted to the older ages compared to that of women due to later age at �rst
reproduction. Subsequent decline is however slower in men because of polygyny and because of the possibility
for widowed or divorced men to remarry. This allows men to reproduce with younger women at ages where
women have cessed reproduction. To convice the reader that this pattern is wide spread accross human
populations and therefore relevant for modeling of human evolution, we brie�y review the anthropological
demographic components that generate these male-female di�erences in fertility trajectory.

Age at �rst reproduction - Men are as average older than women at �rst birth. Holding the fact that
marriage encompassed a large range of social and economical aspects [8], it is nevertheless common to all
culture [9], and data on age at �rst marriage gives a good idea the extent to which this pattern is widespread
across societies. Figure SM3.2 shows di�erence in men and women age at �rst marriage in the case of 177
not-industrialized societies, 27 historical populations and 39 western contemporary nations. Except for one
population of British columbia, men are older that women at �rst marriage in all populations. This holds
even in societies were sexuality is not prohibited before marriage (eg in Hadza [10]), in matrilineal/matrilocal
societies (eg [11] in Malawi and [12] in Khasi where men are respectively �ve and three years older than
women), as well as in western developed population nowadays. Examining large amount of data in the case
of 157 not-industrialized populations, [13] estimates that the mean age at �rst marriage is 14 for females and
21 for males in the case of 157 not-industrialized populations.
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Figure 2: Di�erence between mean male and female age at �rst marriage as a function of female
age at �rst marriage for (i) 177 not-industralized populations (data for 170 populations from [14], and
[3] for the Ache, [10] for the Hazda of Tanzania [median], [15] for the Tsimane of Bolivia, [11] for population
of rural Malawi, [6] for the Peul Bandé of Senegal, [12] for Khasi of Magalaya [median], and [5] for rural
population of Gambia); (ii) 27 historical populations (data for England 1550-1599 from [16] and 1600-49,
1650-99, 1700-49, 1750-99 from [17], for XVIIIth Mexico [not nobility] from [18], for Saint-Hyacinthe, Quebec,
1852, 1861, 1871, 1881 and 1891 from [19], for Germany, 1700-49, 1750-99, 1800-24, 1825-49, 1850-74 and
1875-99 from [20], for Japan 1716-1759, 1760-1799, 1800-1839, 1840-1870 from [21], for chinese nobility of 1700
from [22], for Estonia 1835, 1840, 1845 and 1850 from [23]; for 39 contemporary western populations
from the seventies-eighties from [24].

Widowhood - Widowhood is little studied in anthropological demography and widow rates are rarely
available. Widowhood exists however in all human populations since its depends mainly on adults mortality
but in what extent? Supplementary material SM5 gives estimates of adult survival in the case one averaged
hunter-gatherer population and one historical western population (Sweden 1751). Assuming that 20 years
old men �rst marry 15 years old women and that divorce rate is negligible, the proportion of men surviving
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at age 50 years old and having lost their �rst wife is
(
1− l(45)

l(15)

)
l(50)
l(20) . These proportion are 22% and 19% for

the hunter-gatherer and the historical populations respectively: around one man over �ve loses its �rst wife
before she is reaching age 45 years old. In western historical population where divorce were prohibited by
religion, death of the husband or wife was the most important factor in marriage dissolution and remarriage.

Divorce -Ethnological studies showed that divorce is a common practice in human societies. Although mea-
sure of divorce rates is arduous because it depends on both the population age and nuptiality structures [25],
data show that divorce rates vary in a large amount between populations[26]. Western christian populations
where divorce were negligible (eg. in historical Germany [20], Quebec [27] or Finland [28]) have however
been an exception in human history and divorces are found, even at lower levels, in most non-European soci-
eties [29]. In some populations permissiveness is loose and divorce may results from any grounds of discord
between husband and wife. In most populations repeted in�delity, sterility, sexual unwillingness, laziness or
mistreatments are accepted reasons for divorce [29, 30]. Divorce rates also vary with social organisation and
level of exogmay [26]. In some populations, divorces are generating more remarriage than widowing. For
example, 25% of Aka and 35% of Paliyan marriages end up in divorce [31]. In Ache, the absolute divorce rate
is about 61% during the �rst year of a marriage and explains why ache men have an average of 10.8 mates
during a lifetime [32]. In matrilineal Khasis, up to 50% of women aged 40+ have divorced at least once [12].

Polygamy - Measuments and categorisation of polygamy has proved di�cult and has been largely discussed
since the precursor work of Murdock [33] (eg, by [34], [35] or [36]]; for instance according to the rates of
men and women married polygynously, which categories of men or women are polygynously married (as for
example according to rank or strati�cation amongs men and women), and how they are distributed within
families and with residence. Using an dataset on 190 populations, mainly from the Standard Cross-cultural
Sample [37], [38] showed that polygyny is found in 73.7% of societies, while it is reported as common in
21.5% and rare in 78.5% societies. Polyandry is also present and is reported in 12.1% of cases, always at
low levels. The use of a subsample of 54 societies equally distributed across geographical areas does not
modify substancially these results. Using written historical data on 16 civilisations from the past 5000 years,
[39]showed that polygyny was accepted in 57% and monogmay in 43% of cases. Categorisation of common and
rare polygyny have been associated with two main types of polygyny [34]. In 'wealth-increasing' polygyny,
women's labor generates wealth and most men are able to become polygynists with age (which is sustainable
in even slightly growing populations where young age classes are always found at larger proportions than
older age classes [40]). In `exceptional men' polygyny, most of the provisioning is generated by the husband
and polygyny is usually associated with the exceptional productivity and /or social status of particular men.
Balance between males and females provisioning appears being the main determinant of polygyny although
other factors, such as pathogen stress, mating decision, �liation and residence rules also have an in�uence on
level of polygyny (eg [36, 38, 40]). Polygyny is often associated with large di�erence of age between wife and
husband. For example, in 'wealth-increasing' polygyny, men queu for access to women and marry therefore
to older ages. In sororeal polygyny, the eldest girl in a family marries �rst and that as they come of age her
younger sisters join her as cowives. It must be stressed that polyandry may be largely underestimated and
may occur at a large rate over short period of time in case of desequilibrium in sex-ratio resulting for large
male adult mortality [41]. Finaly, phylogenetic reconstructions using both anthropological and mtDNA data
suggest that levels of polygyny was the most likely scenarios for most of ancestral human societies [8].

2. Model and parametrization

We aim at modelling average fertility functions that described di�erences between females and males fertility
described above. To do this we chose to model females fertility rates F (x) and Fm(x) by the Brass-Polynomial
function [42] known being �exible in �tting fertility data [43], as follows:

F (x) = (x− α) (β − x)
2 [
A+Bx+ Cx2 +Dx3

]
, (1)

where we set α and β (or αm and βm for males) are the �rst and last year of reproduction and are respectively
set to 15 and 49 for females and 20 and 70 for males. We then �t age-speci�c fertility rates from the six
populations presented in Fig.SM3.1 using a least-square methods (using 'nls' function in 'R' software). Results
are shown respectively in Fig.3.3A and Fig.3.3B.
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Figure 3: Scaled age-speci�c fertility rates for women (A) and men (B). Dashed lines are published estimates
for the Kung, Ache, Tsimane, Gambia, Peul Bandé and French canadians. Plain lines are the coresponding
the �tted brass polynomial. Parameters are respectively A = 4.64e−04, B = −4.26e−05, C = 1.34e−06 and
D = −1.37e−08 for females and Am = 4.80e−04, Bm = −2.47e−06, Cm = 5.05e−08 and Dm = −3.5e−10
for males.

We need to incorporate males and females age-speci�c fertility rates into a two-sex model where children are
born to mother and father at a speci�c age. Because males and females produce in mean the same number
of children over a lifetime, F (x) and Fm(x) must satisfy:

ˆ
x

l(x)F (x)dx =

ˆ
x

lm(x)Fm(x)dx, (2)

where l(x) and lm(x) are the survival of females and males into a given population. Because survival and
fertility are usually estimated with two disctinct datasets respectively for females and for males, and because
of statistical errors, this equation never holds with estimated data. This is why we �ne-tuned the parameter
Am of the Brass polynomial function for males in order to satisfy equation (2) such that:

Am =

∑
x L(x)F (x)−

∑
x L

m(x) (x− αm) (βm − x)
2 [
Bx+ Cx2 +Dx3

]
∑

x L
m(x) (x− αm) (βm − x)

2 (3)

Resulting age-speci�c men and women fertility rates are shown in Fig.2A of the main text.
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SUPLEMENTARY MATERIALS 4 - Child survival as a function

of (grand)parental care

1. Data

The importance of (grand)parental care for child survival (also a measure of child altriciality) is classicaly
estimated in demography as the increased risk of death of children whose parent is dead (or absent) compared
to those whose parent is alive (and present). Table SM4 gathers 31 articles having estimated this increase in
the case of the absence or death of the mother, the father and maternal or paternal grandmother; in various
pré- or not-industrialized populations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31]. Overall, we gathered 194 estimators of children relative risk of death in
response to the death of the mother (79), of the father (40), of the maternal grandmother (38) and paternal
grand mother (37). These data are also plotted in �gure SM4.1. Results are largely contrasted between
studies. Whether or not these variations re�ect di�erences in population behaviors with respect to child care
is however far from being clear.

Indeed these variations amy also be due to statistical problems in estimating intrafamilial correlation in
survival. This type of analysis is far from being statiscally easy because a child's death may clutser with its
parent's death, not only due to the subsequent lack of care, but also due to many other cofounding factors
[20]: 1) Between-family heterogeneity means that all families are not equal with respect to mortality levels
due to variance in socioeconomic conditions and behavioral characteristics of the parents [32], as well as
biological endogenous factors shared by the members of the same family (i.e., genetic and obstetric factors;
[33]). 2) Within-family heterogeneity means that children of the same family may have a di�erential risk of
death linked to maternal reproductive history. The most obvious ismaternal age at child birth. Children
born to old mother have a larger risk of death due to decrease in gametes quality and increased birth defects.
The risk of mortality varies also from one child to another with respect to birth interval, survival of the
preceding child, sibship size and/or birth order [e.g., 34, 35]. 3) Sporadic increase in familial mortality means
that deaths can suddenly cluster within a family due to accidents, epidemics, cross-infections or any familial
reversal of fortune [20, 36, 22].

Despite these statistical di�culties, it is clear from �gure SM1.1A that maternal death compromises children
survival in most studies (only 3 estimates out of 79 are lower or equal to one) and most of the time to a large
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extent (53 estimates out of 79 are larger than 2). The higher risk of dying of motherless children remains
signi�cant throughout childhood, although a decrease in dependency from maternal care as the child grows
older is clearly visible.

Results are largely contrasted in the case of fathers. Twelve estimates out of 40 are lower or equal than 1
meaning that the father's death makes no di�erence to child survival. When it does, it has a substantially
lesser impact than the mother's death [37] and only 7 estimates out of 40 are larger than 2. This may be due
to statistical di�culties but also to the fact that father's care may be more directed to providing ressources
and education o children than nursing at young age. As a consequence, paternal care may be more important
at a later child age, a period of ages little covered by these studies. This could also be due to the fact
that paternal care may vary with the sex of the child while most relative risk are estimated for both sexes.
For example, in a patrilineal Ethiopian community, father's absence doubles a son's risk of dying in infancy
but has a positive in�uence on daughter survival [12]. Paternal e�ect may also depends on whether mother
remarry or not in pre-industrial Québec [38].

A previous meta-analysis of grandmaternal care, showed that maternal rather than paternal grandmother
tend to have the larger e�ect on grand-child survival, even in patrilineal societies [39]. This is con�rmed by
our results over a larger sample of estimates. Maternal grandmother estimates are larger than 1 in 30 cases
out of 38 while in only 20 cases out of 37 for the paternal grandmother. The e�ect remains however of small
magnitude (all estimates but one are lower than 2). Finally, estimates favour the exhistence of a preferential
garndmother. Over the 12 studies analyzing the e�ect of both maternal and paternal grandmother, the mean
estimate of maximum value (whether this is the maternal or paternal grandmother) is 1.279 while the mean
estimate of minimum value is 0.91; both being signi�cantly di�erent (pWilcoxon = 1.86x10−8).

A more detailed meta-analysis of these data directed to kinship demographers is in preparation.

2. Model and parametrization

The aim is to �t functions for the relative risk of death RR(y) as a function of child's age at maternal,
grandmaternal and paternal death y using data pictured in �gure SM4.1. To do this, y is condidered as
the mid-point of the period of child's age at parental death upon which the mortality was analysed. Five
functions were then tested by least square methods (using the 'nls' function of the package 'stats' in 'R'):
ae−by + 1, ay−b + 1, ae−by + 1 + c, ay−b + 1 + c, a; where a, b and c the parameters of the �tted function.
the best model was selected according to F-statistics using ANOVA (function 'anova' of the package 'stats'
in 'R).

A composite weighing factor was also incorporated into the regression as the addition of three independent
weights. First, because standard error of relative risk were not provided in all articles, we used study sample
size (including all children, orphans and not) as a proxy of the study statistical power. Studies' estimates
were then ranked according to the quartiles of sample size by a categorial weight w1 = [0, 3].

Second, if the increased risk of child's death declines with the child's age at (grand)parental loss, the hy-
pothesis that the �tted function passes at the mid-point of the interval may not always be reasonable. If
the decline is fast enought, relative risk estimated over large periods of age means that the real risk is much
larger than the estimate at the beginning of the period, meets the estimate at an age younger than the mid-
point of the period and is lower than the estimate afterwards. We aim therefore to penalize study analyzing
young children risk of death over a long period of age (e.g., examining risk of death for children from birth
to 5 years old). However, we do not want to penalize estimates from periods of two kinds: if the period is
short enought at young ages (e.g., estimated over weeks after birth) or if the period is large but starting
when children are older and therefore during which the risk is declining at a lower pace (e.g., examining the
risk of death of children older than 5 years of age during 5 years).. To do this we de�ne a second weight
w2 = [0, 3]categorizing the quartile of the metric log (yi/(yf − yi)), where yi and yf are respectively the
children age at the beginning and the end of the period. Of course, this weight is especially relevant for
�tting RR(y) as a function of child's age at maternal death y1 because �gure SM4.1A exhibits a clear decline
in RR(y3) but is removed from analyses �tting a uniform relative risk of death as a function of child's age at
grandmaternal death y2 and paternal death y3.

Third, as discuss above, studies di�ers in their e�ciency in controlling for counfonding factors, i.e., within-
and between-family heterogeneity as well as sporadic increase of familial mortality. To account for this, a

2

Annexes

176



third weight w3 = [0, 3] is calculated adding respectively 0.5 or 1 points to study partially or satisfactorily
controling for these factors following entries of table SM4. It must be stressed that controlling for within-
family heterogeneity is relevant only for controlling for cluster of deaths between mother and chidren and is
not accounted for when analysing grandmothernal and paternal deaths. Similarily, controlling for cluster of
deaths between grandmothers and children due to sporadic increase of familial mortality makes less sense
because grandmothers may be dead long before the children birth.

Results are despecited in �gure SM4.1 and in �gure X of the main text. Children relative risk of death as a
function of child age at maternal death y1 were best �tted by function ay−b+1+c with a = 13.67, b = 0.7086
and c = 0.5678. Children relative risk of death as a function of child age at grandmaternal and paternal
death were best �tted by uniform distribution of respective parameters a = 1.098 and a = 1.763.

Assuming that these risks are multiplicatives, a child's age-speci�c relative risk of death RR(t) can be
calculated for any combination [y1, y2, y3] as:

RR (t|y1, y2, y3) = RR (t|y1)RR (t|y2)RR (t|y3)

Holding the fact that relative risk of death is 1 before the death of the parent and RR(t|y) after its death,
then:

RR (t|y1, y2, y3) =
(

RR (y1) for t >y1
1 for t <y1

)(
RR (y2) for t >y2
1 for t <y2

)(
RR (y3) for t >y3
1 for t <y3

)

3

Annexes

177



Study Data Kin Sample 
Size a 

Age 
period 

Children 
age at 

parental 
death 

Methods 

Dependent 
variable/ 
Reference 

group 

Within 
family 

heterogeneity 
b 

Betwen 
family 

heterogeneity 
c 

Sporadic 
increase in 
mortality 

d 
Anderson et 
al., 2007 

 Rural Haiti, 
1997-1999 

Mother 232 0-12 yrs Soon after 
birth 

Calculation 
of Odd 
Ratios 
 
 

Mortality/ 
Kin is alive. 
 

No Yes   Yes 

Becher et al., 
2004 

Burkina Faso,  
1993- 1999 

Mother 
 

10122  2 periods 
from birth 
to 2 yrs 

On period or 
before 
 

Proportional 
hazard model 
 

Mortality/ 
Kin is alive. 
 

Yes Partially  No 

Beise & 
Voland 2002 

Krümmhorn, 
Germany, 
1720-1870 

MGM, 
PGM 

3550  
 
 

6 periods 
from birth 
to age 60 
mo 

On period or 
before 
 

Proportional 
hazard 
 

Mortality/ 
Kin is alive. 
 

Partially  
 

Yes No 

Beise 2005 French Canada, 
1680-1750 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 

26449  6 periods 
from birth 
to age 60 
mo 

On period or 
before 
 

Proportional 
hazard 
 

Mortality/ 
Kin is alive. 
 

Yes No  No 

Beekink et al., 
1999 

Woerden, 
Netherlands, 
1850-1930 

Father 
Mother 

3936 2 periods 
from births 
to 12 yrs  
 

On period or 
before 

Proportional 
hazard 
 

Mortality/ 
Kin is alive. 
 

Partially Partially Partially 

Beekink et al., 
2002 

Woerden, 
Netherlands, 
1850-1930 

Father 
Mother 

3936  2 periods 
from births 
to 12 yrs  
 

On period or 
before, time 
since 
parental 
death 

Proportional 
hazard 
 

Mortality/ 
Kin is alive. 
 

Partially Partially Partially 

Bishai et al. 
2003 

Rural Uganda, 
1994-1999 

Mother  
Father 
 

2332  
 

0-5 yrs On Period Bivariate 
analysis 
 

Mortality/ 
Kin is alive. 
 

Partially Yes No 

Borgerhoff- 
Mulder 2007 

Kipsigis of 
Kenya, 
1945-1990 
 

MGM 
MGF 
PGM 
PGF 
 

785  0-60 mo Before fifth 
birthday 

Proportional 
hazard model 
 

Survival/ 
Kin is dead 

Yes Yes No 

Breschi and 
Manfredini 
2002 

Tuscany, Italia,  
1819-1959 

Mother 
Father 

~3744  0-12 yrs Within 
period 

Event-histoy 
analysis 
 

Mortality/ 
Kin is alive. 
 

Partially Partially Partially 

Brittain 1992 St Bathélemy 
island,  
1878-1976 

Mother 4286 0-1 yrs within a year 
of child’s 
birth 

Stepwise 
regression 
 

Mortality/ 
Kin is alive. 
 

Partially No  No 

Gibson & 
Mace 2005 

Oromo of 
Ethiopia, 
1999-2003 

MGM 
MGF 
PGM 
PGF 

2746  0-3 yrs On period or 
before 

Logistic 
Regression 
 
 

Mortality/ 
Kin is dead 

Partially Yes No 

Gibson 2008 Oromo of 
Ethiopia, 
1999-2003 

Father 3720 
 

0-1 yrs 
 

On period 
 

Proportional 
hazard 
 

Mortality/ 
Kin is dead 
or absent 

Partially Partially No 

Jamison et al., 
2002 

Nagano, Japan 
, 
1671-1871 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 
 

2381 0-15 yrs 
 

On period or 
before 

Logistic 
regression 
 

Mortality 
Kin is dead 

Partially  No  No 

Katz et al 2003 Sarlahi district, 
Nepal 
1994-1997 

Mother 15469  3 periods 
from birth 
to 24 wks 

On period or 
before 

Logistic 
regression 
 

Mortality/ 
Kin is alive. 
 

Yes Yes No 

Kemkes-
Grottenthaler 
2005 

Germany, 
1704-1899 

MGM 
MGF 
PGM 
PGF 

1590 
 

4 periods 
from birth 
to 2 yrs 

On period or 
before 

Binary 
logistic 
regression 

Survival/ 
Kin is dead 

Partially No  No 

Leonetti et al., 
2005 

Bengalis of 
Assam and 
Khasis of 
Megalaya, 
India, 
1980-2000 

MGM 
PGM 

2069 
and 
2545 

0-10 yrs On period or 
before 

Proportional 
hazard 
 

Mortality/ 
Kin is alive 

Yes Yes No 

Masmas et al 
2004 

Rural Guinea-
Bissau,  
1990-1996 

Mother 11447  6 periods 
from birth 
to 5yrs 
 
 

On period or 
before  
 

Proportional 
Hazard 
 
 

Mortality/ 
Kin is alive 

No Yes No 

Nakiyingi et 
al., 2003 

Uganda, 
1989-2000 

Mother 3727  0-5 yrs 
 

On period  Piecewise 
exponential 
hazards 
 

Mortality/ 
Kin is alive 

Partially No No 

Newell et al., 
2004 

West, South 
and East Africa 

Mother 
 
 

3468 
 

1mo-58mo 
 

Recently 
dead 

Proportional 
hazard 
 

Mortality/ 
Kin is alive 

No No No 

Pavard et al., 
2005 

French 
Canadia, 1625-
1759 

Mother 58365  4 periods 
from birth 
to 15 yrs 

On period 
and before 

Proportional 
hazard 

Mortality/ 
Kin is alive 

Yes  Yes 
 

 

Yes 

Reher et al 
2003 

Spain, 1870-
1910 and 
1911-1950 
 

Mother 8049 
and 
9796 
   

5 periods 
from birth 
to 2 yrs 

<24 mo after 
birth 

Ratio of 
mortality 
coefficient 

Mortality/ 
Kin is alive 

No No No 

Table SM4 - Demographic studies analyzing the effect of parental or grandparental death on infant and child 
increased risk of death
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Ronsmans et al 
2010 

Bangladesh, 
1982-2005 

Mother 
Father 

143473  7 periods 
from 
birth to 10 
yrs 

On period 
or before 

Poisson 
regression 
on person-
time 

Mortality/ 
Kin is alive 

No 
 

Yes Yes 

Sartorius et al., 
2012 

South Africa, 
1992-2007 

Mother 
Father 

46675  1-4 yrs On period or 
before 

Proportional 
hazard 

Mortality/ 
Kin is alive 

Yes Partially Partially 

Sear et al 2000 Rural Gambia, 
1950-1974 
 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 
 

1691 3 periods 
from birth 
to 3  

On period or 
before 

Event-history 
models 

Mortality/ 
Kin is alive  

Yes Yes No 

Sear et al 2002 Rural Gambia, 
1950-1974 
 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 
 

2294 3 periods 
from birth 
to 3 

On period or 
before 

Event-history 
models 

Mortality/ 
Kin is alive  

Yes Yes Partially 

Sear 2008 Malawi,  
1997 

Father 
MGM 
MGF 
PGM 
PGF 
 

1635 0-10 yrs. 
 

On period Logistic 
regression  
 

Mortality/ 
Kin is alive 

Yes No No  

Strassman 
2011 

Dogon of Mali 
1998-2011 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 
 

2933 0-5 yrs On period Proportional 
hazard model 
 

Mortality/  
Kin is dead 

Partially Yes No 

Tymicki 2009 Bejsce , Poland 
1737-1819 and 
1820-1917 
 

Mother 
Father 
MGM 
MGF 
PGM 
PGF 
 

6569 
and 
13680 

0-12 mo 
0-60 mo 

On period or 
before 

Parametric 
gompertz 
hazard model 
 

Mortality/ 
Kin is alive 

Partially No No 

Voland & 
Beise 2002 

Krümmhorn, 
Germany 
1720-1874 

MGM 
PGM 

3095  
 

6 periods 
from birth 
to 60 mo 
 

On period or 
before  

Piece-wise 
exponential 
hazard 

Mortality/ 
Kin is alive  

 Partially No No 

Winking et al., 
2011 

Tsimane of 
Bolivia 
2002-2005 

Mother 
Father 

6795 3 periods 
from birth 
to 10 yrs 

On period or 
before 

Logistic 
regression 
models 

Mortality/ 
Kin is alive  

Partially Yes No 

Zabba et al 
2005 

Tanzania,Ugan
da,Malawi, 
1980s-2000 
 

Mother 10849 2 periods 
from birth 
to 5 yrs 
 
 

Less than 
one year ago 
 
 

Piece-wise 
exponential 
hazards 
model  
 

Mortality/ 
Kin is alive 

Partially No No 

Table SM4 (suite)

a  Total number of children incorporated into the study. We distinguished sample sizes when different populations or time-period are considered. However, we did not 
incorporate the sizes of the sub-samples of children used in each age-period analysis.
  
b Considered as fully (or partially) controlled for when at least two (or one) of the following factors are accounted for into the analysis, either by the incorporation of 
the variable into multivariate analysis or by selection of cases: maternal age and/or birth order, interbirth interval and/or survival status of previous child, twinning. 

c Considered as fully accounted for when only children of  the same family are compared , when a random variable on the mother’s idi is incorporated into the analysis, 
when ego’s mortality is corrected for that of its siblings or when at least three fixed variables describing family socio-economic or geographical conditions are incorpo-
rated. Considered as partially if less than three of these variables are incorporated or when incorporated random variable stands for groups of larger granularity (e.g., 
at the village level). 

d Considered as controlled for when clusters of death between the considered kin and child have been controlled or removed. Considered as partially accounted for 
when variables describing fluctuation of temporal condition are incorporated (e.g., period effect, epidemics). Many studies are categorized as “no” while some of the 
estimates could be considered as “yes” when the kin is obviously dead before the considered children’s period of age. 
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Supplementary Figure 1 - Selection coefficients as a function of Mean Age at Disease 
Onset (MAO), First Age at Onset (FAO) being 20 years earlier, in the case of (i) an auto-
somal allele leading to disease in females only (circles), WC of male carriers being 
replaced by WNC in equation (7); (ii) an autosomal allele leading to disease in males 
only (triangles), WC of female carriers being relaced by WNC in equation (7); (iii) an 
allele carried by the mitochondrial chromosome (stars), canceling the male element of 
equation (7); and (iv) an allele carried by the Y-Chrom (crosses), canceling the male 
element of equation (7).

When variance in disease onset and all socio-cultural factors are accounted for there are 
no large difference in magnitude of selection on these alleles: the cross the s=2.5e-04 
lines between MAO of ages 75-85. A differential of selection may however be expected 
for small population (of Ne between 100 and 1000) between alleles in the Y-Chrom-
some or leading to disease in males only (more puryfied) and alleles in the Mt-Chrom-
some or leading to disease in females only (less puryfied). This is because coefficient 
ofs eection s is a  little less sensitive to (grand)maternal care than to male reproduction. 
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Supplementary Figure 2 - Selection coefficients as a function of Mean Age at Disease 
Onset (MAO), First Age at Onset (FAO) being 20 years earlier, in the case of an autoso-
mal allele leading to disease cumuative penetrance at age 100 of 100% (circles), 50% 
(triangles), 10% (squares) and 1% (stars). In this case FAO is defined as the age at which 
of the cumulative distribution respectively reaches 1, 0.5,  0.1 and 0.01; the risk of 
disease onset being zero before this age.
Selection coefficient is a linear function of penetrance (estimated here by the cumuative 
risk at age 100), making of this later an obvious fundemmental parameter for estimating 
levels of selection.
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