Condensation de Bose-Einstein et simulation d’une méthode de piégeage d’atomes froids dans des potentiels sublongueur d’onde en champ proche d’une surface nanostructurée

Abstract : An interest for hybrid quantum systems (HSQs) has been growing up for the last decades. This object combines two quantum systems in order to take advantage of both systems’ qualities, not available withonly one. Among these quantum systems, ultracold atoms distinguish themselves by their strong decoupling from environment which enables an excellent control of their intrinsic properties. Optical lattice quantum simulators with tunable properties (energy scale, geometry,...) allows one to investigate new regimes incondensed matter physics. In this quest for exotic quantum phases (e.g., antiferromagnetism), the reduction of thermal entropy is a crucial challenge. The price to pay for such low temperature and entropy is a longthermalization time that will ultimately limit the experimental realization. Miniaturization of lattice spacingis a promising solution to speed up the dynamics. Engineering cold atom hybrids offers promising perspectives but requires us to interface quantum systems in different states of matter at very short distances, which still remains an experimental challenge.This thesis is part of the AUFRONS project, which aims at cooling down an atomic gas until the quantum degeneracy regime then transport and trap this cloud in the near field of a nanostructure. The idea is to trapcold atoms in a two-dimensional subwavelength lattice, at a few tenth of nm away from the surface. One goal is to study atom-atom interactions within the lattice but also atom-surface modes coupling.The work realized during this thesis splits into an experimental part and a theoretical part. In the firstone, we present the cooling of 87Rb atoms until the quantum degeneracy regime. The second part is dedicated to theoretical simulations of a new trapping method we have implemented to trap and manipulate cold atoms below 100 nm from structures. This method takes advantage of plasmonic resonance and vacuum forces (Casimir-Polder effect). It allows one to create subwavelength potentials with controllable parameters.We detail the calculations of optical and vacuum forces to apply them to an atom of 87Rb in the vicinity of a 1D nanostructure.
Complete list of metadatas

Cited literature [221 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02163314
Contributor : Abes Star <>
Submitted on : Monday, June 24, 2019 - 11:17:12 AM
Last modification on : Wednesday, June 26, 2019 - 1:24:36 AM

File

BELLOUVET_MAXIME_2018.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02163314, version 1

Citation

Maxime Bellouvet. Condensation de Bose-Einstein et simulation d’une méthode de piégeage d’atomes froids dans des potentiels sublongueur d’onde en champ proche d’une surface nanostructurée. Autre [cond-mat.other]. Université de Bordeaux, 2018. Français. ⟨NNT : 2018BORD0265⟩. ⟨tel-02163314⟩

Share

Metrics

Record views

87

Files downloads

37