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Abstract

This thesis aims at improving the static positioning and trajectory tracking ac-
curacy of Cable-Driven Parallel Robots (CDPRs) while considering their overall

elasticity. Accordingly, two complementary control strategies that are valid for any
CDPR configuration are proposed.

First, a robustness analysis is performed to lead to a robust model-based control

of CDPRs. As a result, an appropriate CDPR model is defined as a function of the
targeted application and the main sources of CDPR moving-platforms pose errors
are identified.

A first control method is determined based on the results of the robustness ana-
lysis. This first method lies in the coupling of a model-based feed-forward control
scheme for CDPR with a PID feedback controller. An elasto-dynamic model of the
CDPR is expressed in order to compensate the oscillatory motions of its moving-

platform due to cable elongations and its dynamic behavior. The second control me-
thod uses input-shaping filters into the proposed model-based feed-forward control
in order to cancel the oscillatory motions the moving-platform. Thus, the input

signal is modified to make the CDPR self-cancel residual vibrations.

Experimental validations are performed while using a suspended and non-redundant
CDPR prototype. The proposed feed-forward model-based control schemes are im-

plemented and their effectiveness is discussed. Results show the relevance of the
proposed control strategies in terms of trajectory tracking accuracy improvement
and vibration reduction.





Résumé

Cette thèse vise à améliorer le positionnement statique et la précision de suivi
de trajectoire des Robots Parallèles à Câbles (RPC) tout en prenant en compte

leur élasticité globale. A cet effet, deux stratégies de commandes complémentaires
valables pour toute configuration de RPC sont proposées.

Tout d’abord, une analyse de robustesse est réalisée pour aboutir à une com-

mande robuste des RPC référencée modèle. Un modèle de RPC approprié est défini
en fonction de l’application visée et les principales sources d’erreurs de pose de la
plate-forme mobile sont identifiées.

Une première méthode de commande est proposée sur la base des résultats de
l’analyse de robustesse. Cette première méthode réside dans le couplage d’une
commande référencée modèle avec un contrôleur PID. Dans le cadre de cette thèse,
un modèle élasto-dynamique de RPC est exprimé afin de compenser le comporte-

ment oscillatoire de sa plate-forme mobile dû à l’élongation des câbles et de son
comportement dynamique. La deuxième méthode de commande utilise des filtres
"input-shaping" dans la commande référencée modèle proposée afin d’annuler les

mouvements oscillatoires de la plate-forme mobile. Ainsi, le signal d’entrée est mo-
difié pour que le RPC annule automatiquement les vibrations résiduelles.

Les résultats théoriques obtenus sont validés expérimentalement à l’aide d’un

prototype de RPC non redondant en actionnement et en configuration suspendue.
Les résultats expérimentaux montrent la pertinence des stratégies de commande
proposées en termes d’amélioration de la précision de suivi de trajectoire et de
réduction des vibrations.
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Notations

Table 1 – Abbreviations

Abbreviation Signification

CDPR Cable-Driven Parallel Robot

PM Parallel Manipulator

EE End-effector

DOF Degree-Of-Freedom

DOR Degree-Of-Redundancy

DGM Direct geometric model

IGM Inverse geometric model

DKM Direct kinematic model

IKM Inverse kinematic model

DESM Direct elasto-static model

IESM Inverse elasto-static model

Table 2 – Notations

Symbol Use

Fb The base frame

Fp The end-effector frame

Fi The ith cable frame

Ai ith anchor point

Bi ith exit point

ai Cartesian coordinate vector of Ai

bi Cartesian coordinate vector of Bi

x Vector defining the pose of the end-effector

p Vector defining the position of the end-effector

o Vector defining the orientation of the end-effector

q Vector defining the articular variables

ẋ Vector defining the twist of the end-effector

dp Vector defining the static deflection of the end-effector

χ Vector defining the winch winding ratios

w Vector defining the wrench applied to the end-effector
bRp Rotation matrix of the end-effector

M Mass matrix of the end-effector

C Centrifugal matrix

W Wrench matrix
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Table 3 – Notations

Symbol Use

m Total DOF of the end-effector

n Number of cables

u Number of translational degrees-of-freedom

v Number of rotational degrees-of-freedom

mee Mass of the end-effector

g acceleration due to gravity

S Cable cross sectional area

E Cable modulus of elasticit

li Length of the ith cable

δli Elongation of the ith cable

ρi Linear mass of the ith cable

τi Tension on the ith cable

ζi Torque on the ith motor

t Time

f Temporal frequency

Imotor Inertia of the motor with brakes in its entry

Ireducer Inertia of the reducer

r Transmission ratio of the reducer

Im Total inertia of the motor brought to its exit

̟ Resistance of the motor armature

ke Motor counter-electromotive force coefficient

kt Electromagnetic torque coefficient of the motor



General introduction

Cable-Driven Parallel Robots (CDPRs) are part of the large group of multi-body
systems. They are a special kind of parallel robots, where rigid links are replaced by

cables. A CDPR is decomposed into a moving-platform connected to a fixed base
frame through cables. The variation of cable lengths is provided by fixed motors
and winches, leading to the end-effector motion. In contrast to rigid links, cable
lengths can vary in a wide range, which increases the CDPR workspace. Thus, CD-

PRs may be used in some application fields where industrial robots cannot be used
due to limitation of their workspace, payload and the required cycle time. In the
past few decades, these specifications have attracted the interest of many resear-
chers [ABAV11, DGA+12, Mer14, NGP+14, MLB+16, YCGH17, Mer18, IDH+18].

Thanks to their low inertia, CDPRs can reach high velocities and accelerations
in large workspaces [LGCH13]. However, vibrations may occur and pose stabiliza-
tion and/or trajectory tracking of the end-effector can be degraded due to cable

elasticity. Considering the physical cable characteristics, the cable elasticity has
mainly two origins. The first one is the axial stiffness of the cables, which is as-
sociated with the elastic material modulus and the cable structure. The second is

the sag-introduced flexibility, which comes from the effect of cable weight onto the
static cable profile. The sag-introduced flexibility corresponds to the gravitational
potential energy stored in the cable. The improvement of the robot performances
can be done through the modification of the robot structure either by optimizing

the design [ADG+09, XCCJ10, GCG+14, YTWH10] or by adding other compo-
nents to the robot structure as in [VP15, WCG14]. Improving accuracy is still
possible once the robot is in operation through a suitable control scheme.

Several controllers have been proposed in the literature to improve CDPR ac-
curacy locally or on trajectory tracking [JFGK15, FFT+04, ZDDB08, dRRK18].
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The dynamic control for CDPRs depends on the stiffness consideration. Some re-
search works deal with CDPR control while considering cable elongations and their
effect onto the CDPR dynamic behavior [KT11, KT14, KT16]. However, those

approaches require cable length measurement and the knowledge of the moving-
platform pose in real-time through exteroceptive measurements for instance.

Other works [CLP18, BLS+13] propose model-based feed-forward control for

CDPRs. Despite cable stiffness is considered in these control schemes, a limitation
lies in the cable interactions with the overall system that are not considered. Be-
sides, cable elongations are estimated while isolating cables from the end-effector.
This control type named elasto-static control in this thesis manuscript. Note that

the latter does not pre-compensate the oscillatory motions of the CDPR moving-
platform. In real applications of CDPRs, cable elongations and their interaction
with the environment are not independent. This fact can result in unwanted oscil-
lations of the end-effector, which are not predicted through the elasto-static model.

Therefore, an elasto-dynamic model is proposed to deal with the prediction of
the dynamic behavior of the CDPR while taking into account the oscillatory and
dynamic behavior of the end-effector due to cable elongations. Here, cables are
no-longer isolated and are affected by the end-effector dynamic behavior.

As a consequence, a contribution of this thesis deals with a first control me-

thod, which lies in the coupling of a model-based feed-forward control scheme
for CDPR with a PID feedback controller. Here, the elasto-dynamic model of the

CDPR is used in order to compensate the oscillatory motions of its moving-platform
due to cable elongations and its dynamic behavior. The integration of cable ten-
sion calculation or tension distribution algorithms [GG11, Pot14, GLRB15, YCD16,
RLMGC18b] is proposed to be part of this control strategy to deal with the dif-

ferent configurations of CDPRs and to guarantee positive cable tensions along the
trajectory.

A second contribution of this thesis deals with a second control method, which

uses input-shaping filters into the proposed model-based feed-forward control
in order to cancel the oscillatory motions the moving-platform. Thus, the input
signal is modified for the CDPR to self-cancel residual vibrations. The ampli-
tudes and time locations of the impulses are based on the robot natural frequen-
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cies and damping ratios. The shaped command resulting from the convolution is
used to drive the robot and it will stimulate less residual vibrations than the un-
shaped one. Previous works integrated this method for under-constrained robots

[HBY+16, BFV16, LL16, MV17, PKP13]. Despite the fact that the research work
in [YHB+16] deals with over-constrained CDPRs, this control does not allow to
manage the actuation redundancy and positive cable tensions are not guaranteed.
Accordingly, Section IV.3 proposes input-shaping for model-based feed-forward

control to increase the CDPR performance by vanishing residual vibrations of the
manipulator. The novelty of this control scheme lies in the integration of input-
shaping filters to the closed-loop model-based control scheme, where the presence
of tension distribution makes it valid for any CDPR configuration.

The parameters used in the proposed CDPR control models are subjected to
uncertainties. The mathematical models do not perfectly reflect the robot beha-
vior because of uncertainties such as the assembly and manufacturing inaccuracies

of geometrical components like pulleys [MP10, Pot12]. Moreover, these models are
influenced by non-geometrical origin uncertainties. These latter are attributed to
the quality of mechanical components of the robot manipulator, such as cables and
their interactions with the complete system.

A robustness analysis is performed through sensitivity and uncertainty analy-
sis to lead to a robust model-based control of CDPRs. As a result, an appropriate
CDPR model is defined as a function of the targeted application and the main

sources of CDPR moving-platform pose errors are identified.

This manuscript is organized into five chapters :

In Chapter I, the state-of-art in CDPRs is studied. After emphasizing the
configurations, applications and importance of CDPRs, the problematic and cur-
rent research works on the CDPR static and dynamic accuracy are discussed.

In Chapter II, the dynamic modeling of CDPRs is introduced. Different dyna-
mic models of CDPRs used for feed-forward control are reviewed and the elasto-

dynamic model is presented. As the choice of cable models is a primary task for
CDPR modeling, the different levels of cable stiffness used for dynamic modeling
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are also discussed in Section II.3. Usually, the dynamic stiffness analysis of CDPRs
is made under the assumption that dynamic loads induce only small elongations of
the cables. The cable tension is usually considered proportional to the variations in

the cable length for a constant stiffness coefficient. Therefore, such a model is not
valid when cables are subjected to high strains due to large dynamic oscillations or
quick cable-length variations. As a consequence, a new non-linear cable tension

model is proposed in Section II.3.2 to express the dynamic and oscillatory motions

of CDPRs with cables subjected to fast varying lengths. This formulation reveals
a softening behavior when strains become large.

Chapter III lists the different mechanical and geometrical error sources and

investigates their effects onto the trajectory tracking accuracy. Sensitivity ana-

lysis is made through a comparison between the conventional dynamic models
and the proposed elasto-dynamic model of CDPR. A weakness of the conventional
models used for model-based control is that they neglect the dynamic effects due

to cable interactions with the whole system. The elasto-dynamic model tries to
remedy this weakness by anticipating the oscillatory behavior of CDPR while the
moving-platform tracks a trajectory. Such a model is useful for control purposes as
it predicts not only the cable elongations but also their dynamic interaction with

the moving-platform.

In addition, an uncertainty analysis is performed to test the robustness of
CDPR model to variations in parameters into a known range. It is useful for the

reduction of uncertainty, through the identification of model inputs that cause si-
gnificant uncertainty and should therefore be the focus of attention. It appears from
this analysis that the effect of the modulus of elasticity of cables is the highest onto
the dynamic and oscillatory motions of the moving-platform. For this purpose, the

experimental method named Dynamic Mechanical Analysis (DMA) is propo-
sed to identify carefully the dynamic elastic and damping moduli of some cables
to better compensate the stiffness effects leading to pose errors and trajectory tra-
cking degradation.

Chapter IV deals with the implementation of two complementary feed-forward
model-based control strategies, which aim to improve the end-effector trajectory
tracking and reduce vibrations due to overall elasticity.
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Section IV.2 deals with the introduction of the proposed elasto-dynamic feed-

forward control and the establishment of the corresponding control laws. To
check the effectiveness of this control, a numerical comparison of the end-effector

trajectory tracking with respect to the classical feed-forward control schemes is
made. Moreover, experimentations are performed on the CREATOR prototype
located at LS2N, Nantes, France ; a CDPR with three cables and three Degree-Of-
Freedom. The experimental tests confirm the numerical results.

In addition, Section IV.3 deals with the integration of input-shaping filters
into the proposed model-based feed-forward control. These filters are integrated
upstream of the pre-compensation block in order to increase the CDPR perfor-
mances by the improvement of residual vibrations attenuation. Experimental tests

are made on the CREATOR prototype to verify the ability of the control scheme
to vanish residual vibrations of the manipulator.

A general conclusion is written in Chapter V on the research work carried out

in the framework of this doctorate thesis. Additionally, an overview of topics for
future research works is given to enhance CDPRs controllability and accuracy.





Introduction geńeŕale

Les Robots Parallèles à Câbles (RPC) constituent un type particulier de robots
parallèles, dans lesquels les segments rigides sont remplacés par des câbles. Un RPC

est décomposé en une plate-forme mobile reliée à un bâti fixe par des câbles. La
variation de la longueur des câbles est assurée par des moteurs fixes et des treuils,
entraînant le mouvement de l’effecteur final. Contrairement aux segments rigides,
les longueurs de câble peuvent varier dans une large plage, ce qui augmente l’espace

de travail de RPC. Ainsi, les RPCs peuvent être utilisés dans certains domaines
d’application où les robots industriels ne peuvent pas être utilisés en raison de
la limitation de leur espace de travail, de leur charge utile et du temps de cycle
requis. Au cours des dernières décennies, ces spécifications ont suscité l’intérêt de

nombreux chercheurs [ABAV11, DGA+12, Mer14, NGP+14, MLB+16, YCGH17,
Mer18, IDH+18].

Grâce à leur faible inertie, les RPCs peuvent atteindre des vitesses et des ac-

célérations élevées dans les grands espaces de travail [LGCH13]. Cependant, des
vibrations peuvent se produire et la stabilisation de la pose et / ou le suivi de tra-
jectoire de l’effecteur peuvent être dégradés à cause de l’élasticité du câble. Compte

tenu des caractéristiques physiques du câble, son élasticité a principalement deux
origines. Le premier est la rigidité axiale des câbles, qui est associée au module
élastique de matériau et à la structure du câble. La seconde est la flexibilité in-
troduite par l’affaissement, qui provient de l’effet du poids du câble sur le profil

du câble statique. La flexibilité introduite par l’affaissement correspond à l’énergie
potentielle gravitationnelle stockée dans le câble. L’amélioration des performances
du robot peut être réalisée par la modification de la structure du robot, soit en op-
timisant la conception [ADG+09, XCCJ10, GCG+14, YTWH10], soit en ajoutant

d’autres composants à la structure du robot [VP15, WCG14]. Il est encore possible
d’améliorer la précision tant que le RPC est opérationnel par une commande ap-
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propriée.

Plusieurs contrôleurs ont été proposés dans la littérature pour améliorer la

précision des RPCs localement ou sur le suivi de trajectoire [JFGK15, FFT+04,
ZDDB08, dRRK18]. La commande dynamique des RPCs dépend de la rigidité à
prendre en compte. Certaines recherches traitent la commande de RPC en tenant
compte de l’élongation des câbles et de leurs effets sur le comportement dynamique

du robot [KT11, KT14, KT16]. Cependant, ces approches nécessitent une mesure
de la longueur de câble et la connaissance de la plate-forme mobile en temps réel
à travers des mesures extéroceptives.

D’autres travaux [CLP18, BLS+13] proposent une commande référencée modéle

pour les RPCs. Bien que la rigidité des câbles soit prise en compte dans ces schémas
de commande, une limitation réside dans les interactions des câbles avec le système
global qui ne sont pas prises en compte. En outre, les allongements de câble sont
estimés tout en isolant les câbles de la plate-forme mobile. Ce type de commande

est nommé commande élasto-statique dans ce manuscrit de thèse. Notez que ce
dernier ne pré-compense pas le comportement oscillatoire de la plate-forme mobile
de RPC. Dans les applications réelles des RPCs, les élongations de câbles et leurs
interactions avec l’environnement ne sont pas indépendantes. Cela peut entraîner

des oscillations non souhaitées de la plate-forme mobile, qui ne sont pas prédites
par le modèle élasto-statique. Par conséquent, un modèle elasto-dynamic est
proposé pour traiter la prédiction du comportement dynamique du RPC tout en
tenant compte du comportement oscillatoire et dynamique de l’effecteur final dû

aux allongements de câble. Ici, les câbles ne sont plus isolés et sont affectés par le
comportement dynamique de l’effecteur.

En conséquence, une contribution de cette thèse concerne une première méthode

de commande, qui consiste à coupler un schéma de commande référencée mo-

dèle pour RPC avec un contrôleur PID. Ici, le modèle élasto-dynamique du RPC
est utilisé afin de compenser les effets oscillatoires de sa plate-forme mobile en dûs
aux allongements de câble et de son comportement dynamique. L’intégration d’algo-

rithmes de distribution de tension de câble [Pot14, GLRB15, YCD16, RLMGC18b]
est proposée dans le cadre de cette stratégie de commande pour traiter les diffé-
rentes configurations de RPC et garantir des tensions positives dans les câble le
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long du parcours.

Une deuxième contribution de cette thèse concerne une deuxième méthode de

commande, qui utilise des filtres "input-shaping" dans la commande référencée mo-
dèle proposée afin d’annuler les mouvements oscillatoires de la plate-forme mobile.
Ainsi, le signal d’entrée est modifié pour que le RPC annule automatiquement
les vibrations résiduelles. Les amplitudes et les emplacements temporels des im-

pulsions sont basés sur les fréquences propres et les coefficients d’amortissement
du robot. Le signal de commande résultant de la convolution est utilisée pour en-
traîner le robot et stimule moins de vibrations résiduelles que celle non modifiée.
Des travaux antérieurs intégraient cette méthode pour les RPCs sous-contraints

[HBY+16, BFV16, LL16, MV17, PKP13]. Bien que les travaux de recherche dans
[YHB+16] portent sur des RPCs sur-contraints, cette commande ne permet pas
de gérer la redondance des actionnements et les tensions positives des câbles ne
sont pas garanties. En conséquence, la Section IV.3 propose de mettre en forme les

entrées pour une commande référencée modéle afin d’améliorer les performances
du RPC en supprimant les vibrations résiduelles du manipulateur. La nouveauté
de ce schéma de commande réside dans l’intégration de filtres "input-shaping" au
schéma de commande référencée modéle en boucle fermée, où la présence d’une

distribution de tension le rend valide pour toute configuration de RPC.

Les paramètres utilisés dans les modèles de commande de RPC proposés sont
soumis à des incertitudes. Les modèles mathématiques ne reflètent pas parfaite-

ment le comportement du robot en raison d’incertitudes telles que l’assemblage et
l’imprécision de composants géométriques tels que les poulies [MP10, Pot12]. De
plus, ces modèles sont influencés par des incertitudes d’origine non géométriques.
Ces derniers sont attribués à la qualité des composants mécaniques du robot, tels

que les câbles et leurs interactions avec le système complet.

Une analyse de robustesse est réalisée au moyen d’une analyse de sensibilité
et d’incertitude afin de permettre une commande référencée modéle robuste des

RPC. En conséquence, un modèle de RPC approprié est défini en fonction de
l’application visée et les principales sources d’erreurs de pose de la plate-forme
mobile sont identifiées.
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Ce manuscrit est organisé en cinq chapitres :

Dans Chapitre I, l’état de l’art des RPC est étudié. Après avoir mis l’accent

sur les configurations, les applications et l’importance des RPC, les travaux de re-
cherche en cours sur la précision statique et dynamique du RPC sont abordés.

Dans Chapitre II, la modélisation dynamique des RPC est introduite. Diffé-

rents modèles dynamiques de RPC utilisés pour la commande référencée modéle
sont revue et le modèle élasto-dynamique est présenté. Le choix des modèles
de câbles étant une tâche primordiale pour la modélisation RPC, les différents
niveaux de rigidité de câble utilisés pour la modélisation dynamique sont égale-

ment abordés à la Section II.3. Habituellement, l’analyse de la rigidité dynamique
des RPC est faite en supposant que les charges dynamiques n’induisent que de
faibles allongements des câbles. La tension du câble est généralement considérée
comme proportionnelle aux variations de la longueur du câble avec un coefficient

de rigidité constant. Par conséquent, un tel modèle n’est pas valable lorsque les
câbles sont soumis à des contraintes élevées dues à des oscillations dynamiques
importantes ou à des variations rapides de la longueur des câbles. En conséquence,
un nouveau modèle de tension de câble non linéaire est proposé dans la Sec-

tion II.3.2 pour exprimer les mouvements dynamiques et oscillatoires des RPC avec
des câbles soumis à des longueurs variables rapidement. Cette formulation révèle
une rigidification lorsque les contraintes deviennent grandes.

Chapitre III liste les différentes sources d’erreur mécaniques et géométriques
et étudie leurs effets sur la précision du suivi de trajectoire. L’analyse de sensi-

bilité est réalisée par comparaison entre les modèles dynamiques conventionnels
et le modèle élasto-dynamique proposé. Une faiblesse des modèles conventionnels

utilisés pour la commande référencée modéle est qu’ils négligent les effets dyna-
miques dus aux interactions des câbles avec l’ensemble du système. Le modèle
élasto-dynamique tente de remédier à cette faiblesse en anticipant le comporte-
ment oscillatoire du RPC lorsque la plate-forme suit une trajectoire. Un tel modèle

est utile à des fins de commande car il prédit non seulement les allongements de
câbles, mais également leur interaction dynamique avec la plate-forme mobile.

En outre, une analyse d’incertitude est réalisée pour tester la robustesse du
modèle de RPC aux variations de paramètres. Il est utile pour réduire l’incertitude
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en identifiant les entrées de modèle qui entraînent une incertitude significative et
devrait donc être au centre de l’attention. Il ressort de cette analyse que l’effet du
module d’élasticité des câbles est le plus élevé sur les mouvements dynamiques et

oscillatoires de la plate-forme mobile. À cette fin, la méthode expérimentale nom-
mée Analyse Mécanique Dynamique (AMD) est proposée pour identifier avec
soin les modules d’élasticité et d’amortissement dynamiques de certains câbles afin
de mieux compenser les effets de rigidité conduisant à des erreurs de pose et à la

dégradation du suivi de trajectoire.

Chapitre IV traite deux stratégies de commandes complémentaires valables
pour toute configuration de RPC sont proposées. Ils visent à améliorer le posi-

tionnement statique et la précision de suivi de trajectoire des Robots Parallèles à
Câbles (RPC) tout en prenant en compte leur élasticité globale.

La Section IV.2 traite l’introduction de la commande élasto-dynamique et de
l’établissement des lois de commande correspondantes. Pour vérifier l’efficacité de

cette commande, on effectue une comparaison numérique du suivi de la trajectoire
de l’effecteur par rapport aux schémas de commande référencée modéle classiques.
De plus, des expérimentations sont effectuées sur le prototype CREATOR situé
à LS2N, Nantes, France ; un RPC avec trois câbles et trois degrés de liberté. Les

tests expérimentaux confirment les résultats numériques.
De plus, la Section IV.3 traite l’intégration des filtres input-shaping dans la

commande référencée modéle proposé. Ces filtres sont intégrés en amont du bloc
de pré-compensation afin d’augmenter les performances du RPC par l’amélioration

de l’atténuation des vibrations résiduelles. Des tests expérimentaux sont effectués
sur le prototype CREATOR pour vérifier la capacité du schéma de commande à
éliminer les vibrations résiduelles du manipulateur.

Une conclusion générale est écrite dans Chapitre V sur les travaux de recherche
menés dans le cadre de cette thèse de doctorat. De plus, un aperçu des futurs sujets
des travaux de recherche est donné pour améliorer la contrôlabilité et la précision
des RPC.
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I.1 Cable-Driven Parallel Robots

Robots are classified into serial and parallel manipulators based on their topo-
logy. Serial robots are opened kinematic chains with joints and bodies mounted in
series. Parallel robots are defined by Merlet [Mer06] as follows :
"A generalized parallel manipulator is a closed-loop kinematic chain mechanism

whose end-effector is linked to the base by several independent kinematic chains".

Parallel Manipulators (PMs) have attracted the attention of academic and in-
dustrial communities. As compared with serial manipulators, properly designed

PMs have higher stiffness and higher accuracy, although their workspace is smaller.
Since the design of the Delta robot [PRF90], lower-mobility PMs have replaced
their six Degree-Of-Freedom (DOF) counterparts in some particular applications
such as surgery or industrial applications such as packaging. Later on, Cable-Driven

Parallel Robots (CDPRs) appeared. They are a particular class of parallel robots,
where the rigid links are replaced by cables.

A CDPR consists of a moving-platform 1 connected to a base 2 through cables 3.

The size and shape of the moving-platform of the CDPR depend on the target
1. The moving-platform can be also called end-effector or mobile platform.
2. The base can be also called fixed machine frame, fixed platform or simply fixed frame.
3. The cables can be also called wires, ropes, tendons.
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(a) (b)

Figure I.1 – (a) SurgiScope in action at the Surgical Robotics Lab, Humboldt-
University at Berlin (b) Demaurex’s Line-Placer installation for the packaging of
pretzels in an industrial bakery

Exit point
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Fixed frame
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Figure I.2 – CDPR composition : CREATOR prototype (Courtesy of LS2N,
Nantes, France)

application. Some CDPRs present light-weight end-effectors and others carried out
large and heavy platforms like the Arecibo telescope [Alt02] whose end-effector
weighs 900 tons. The moving-platform is characterized by the anchor points loca-
tion with respect to its gravity center. The fixed-platform is a mechanical structure

that sustains the winches or the exit points. Regarding the cables, different mate-
rials can be used. The cables are usually made up of steel and synthetic fibers. The
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cable lengths are controlled thanks to actuation systems usually composed of a
motor, a gear-head and a winch. Usually, the cable length variations are measured
through proprioceptive sensors such as motor encoders.

The main advantages of CDPRs are the following :

— Large workspace : Thanks to the high cable lengths, the end-effector of
CDPRs can reach larger range of motions comparing to parallel robot with
rigid links.

— High dynamics : CDPRs are able to generate trajectories with high velocities
and high accelerations, thanks to the low mass in motion. For example, the
FALCON manipulator [K+95] attains a peak speed of about 13 m/s, and a

peak acceleration of 43G.

— Large payload capacity : CDPRs are able to carry heavy payloads. As
shown by the CoGiRo prototype [LG13], the payload capability of the cable

robot can reach up to 500 kg, while the total mass of the moving components
of the prototype is about 100 kg .

— High energy efficiency : CDPRs have higher energy efficiency than serial

and conventional parallel robots.

For serial robots, an actuator bears the weight of the ulterior links and actua-

tors in addition to the payload. These facts result in high energy consumption.
For conventional parallel robots, the fact that the actuator payloads can be sha-
red by links makes their energy efficiency higher than serial robots [LB01]. The
energy consumption of CDPRs is concentrated on the motion of the moving-

platform and the payload. It is shared by the number of the lightweight cables,
leading to very low energy consumption and high payload-to-weight ratio

— Low cost : A CDPR has usually a simple architecture, mainly composed

of cheap and simple mechanical components. These components are usually
standard, having a low production cost. Let’s take the example of the low
cost FASTKIT 4 prototype, which manifests in a mobile CDPR providing fast
picking and kitting operations [RLMGC18a].

— Simple structure : CDPRs are known by their simple structure. The assem-
bly and disassembly of these manipulators are easy. Moreover, some CDPRs
are reconfigurable, so that they can easily modify the position of the attach-

4. www.fastkit-project.eu
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ment points. Reconfiguration planning is proposed to provide the reconfigura-
tion of some cable manipulators, e.g. the CAROCA prototype [GCGG15].

— Good safety : Safety fulfillments are taken into consideration for most of

CDPR applications, so that these manipulators can be used in delicate fields.
For example, the robot String-Man was used at Fraunhofer IPK (Berlin, Ger-
many) for gait-rehabilitation with focus on safety considerations [SB04]. The
robot family Marionet, at INRIA in France, is used for rescue and person as-

sistance [Mer08]. In addition, CDPRs are used for some entertainments while
integrating safety mechanisms [CN12, TSPE15].

Nevertheless, existing CDPRs have some drawbacks such as low static accuracy

due to static deflection and bad dynamic accuracy due to trajectory tracking errors,
settling time and vibrations.

I.1.1 Redundant and non-redundant CDPRs

According to [Pot18b], CDPRs can be classified with respect to the number
of cables n and the controllable DOF of the end-effector m. This classification is
based on the Degree-Of-Redundancy (DOR) r = n − m, allowing to distinguish

between redundant and non-redundant cable robots.

(a) (b)

Figure I.3 – Schematics of (a) Redundant, (b) Non-redundant CDPR

I.1.1.1 Non-redundant CDPR

A CDPR is non-redundant when its DOR r = 0. Here, the number of cables

is equal to the number of the controlled DOF, leading to a square wrench ma-
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trix 5. As a result, the cable tension vector is obtained as a function of the external
wrench exerted on the moving-platform as long as the wrench matrix is not sin-
gular. Figure I.3(a) presents an example of a 3-DOF CDPR with 3 cables, where
the end-effector is considered as a point-mass. It is a non-redundant CDPR. Dif-

ferent applications are proposed based on non-redundant configurations of CDPRs.
For instance, the first RoboCrane demonstrator Nist [BAD+94], which is a non-
redundant CDPR with 6 cables. In [XCCJ10], a 6-DOF CDPR with 6 cables was

also discussed.

I.1.1.2 Redundant CDPR

A CDPR is redundant when n > m, i.e. r > 0. The redundancy, or the
use of more actuated cables than DOF, presents many interests for CDPRs. It

makes it possible to increase the ratio between the CDPR workspace and the to-
tal structure volume [Mer12, VvdWH12]. The use of a number of cables higher
than the minimum one makes it possible to customize the shape and the size of
the workspace. This permits the robot acquire more robustness against failure in

single drive-trains, which is highly required for applications with high demands of
safety such as rescue operations [Pot18b]. Also, the use of more cables than DOF
increases the capability of the CDPR to carry heavier payloads.

Figure I.3(b) presents an example of a 6-DOF CDPR with 8 cables. It is a
redundant CDPR with 2-DOR. Numerous redundant CDPRs are discussed in lite-
rature such as the 1-DOR CDPR with 7 cables Segesta-7 [HFM+05]. The Falcon
was proposed by Kawamura [K+95]. It is a redundant CDPR with 7 cables and 6

DOF, dedicated to pick-and-place applications. It should be noted that the wrench
matrix of a redundantly actuated CDPR is not square and, as a consequence,
cannot be inverted. Therefore, some tension distribution algorithms have been pro-

posed in the literature in order to determine the cable tension vector for a given
moving-platform pose as a function of the external wrench applied to the latter
[FFT+04, PBM09, Pot14, GG11, BJS+09, YCD16].

5. The wrench matrix is a function of the end-effector pose and maps the cable tension vector into the wrench applied

by the cables to moving-platform.
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I.1.2 Suspended and fully-constrained CDPRs

CDPRs can be also classified according to the cable arrangement and spatial
layout into fully-constrained and suspended robots.

(a) (b)

Figure I.4 – Schematics of (a) Suspended, (b) Fully-constrained CDPR

I.1.2.1 Fully-constrained configuration

According to the arrangement of the cables, a necessary condition for a CDPR
to be in a fully-constrained configuration is when at least one driven cable is below

the end-effector. For horizontally planar applications, the CDPR is considered fully-
constrained as the gravity has no effect on the end-effector. Here, the support of
the plane balances the weight of the end-effector. Fully-constrained CDPRs were
discussed several times in literature [BKT15, Dia15]. We have the example of the

Falcon [K+95], the IPAnema [PMV10], the Segesta [HFM+05, FFT+04], etc.

I.1.2.2 Suspended configuration

The driving cables of a suspended CDPR are all present above the moving-
platform. In this configuration, the gravity is considered as a virtual cable to
maintain the equilibrium. This configuration was discussed in different research

works [AC15, AA02, XCCJ10]. Some famous applications adopt the suspended
configuration such as the CoGiRo [LG13], the FAST [DQZZ09, Hui15], the CableV
[HW06], etc. The arrangement of cables of a suspended CDPR leads to less risks
of interference of the cables with each other or with the environment than for the

fully-constrained configuration. Moreover, as the cables are above the end-effector,
the payload is shared by each cable. This allows the suspended CDPR to have
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a better payload capacity. A weakness of suspended CDPRs is that they present
weak stiffness along horizontal directions. This may lead to instability and vibra-
tions under the effect of external disturbances, especially while using a light-weight

end-effector.

I.1.3 Applications

CDPRs are used in different fields of applications. They can be appropriate
to tasks where traditional robots are not able to provide because of their low
ability to carry loads and the limitation of their workspace. Some relevant fields of
applications for CDPRs are presented thereafter.

I.1.3.1 Production engineering

CDPRs succeeded in the field of production especially for painting, sand blas-
ting [GCGG16] and assembly operations. Some production processes require the

positioning of specific equipments through a large workspace or products like buil-
dings, ships or airplanes. Therefore, the use of CDPRs for painting aircrafts was
suggested by the research project CableBOT [cab]. The assembly of collectors in
solar-thermal power plants was provided by the IPAnema CDPR (Fig. I.5(a)). This

was studied and evaluated in [PMV10] based on the international standard ISO-
9283. This project was shown at Automatica 2010 trade fair, Munich, Germany
(Fig. I.5(b)). In [ABVA09], the large cable delta robot (LCDR) is introduced. It
manifests in a CDPR dedicated to automated machining of large workpieces and

material handling.

I.1.3.2 Logistics

The advantage of having a large workspace and high dynamics makes the CD-
PRs suitable for handling, sorting, and palletizing. The idea of building ultra-high

speed pick-and-place CDPRs was addressed by Kawamura in 90s through the FAL-
CON robot [K+95]. Besides, a cable robot system was addressed in [COR14] for
the transport of persons across a river. The CoGiRo prototype [LG13] ensures

handling of boxes in automatic operations. It can carry up to 500 kg. Besides, the
FASTKIT project [RLMGC18b] dealt with a low cost and versatile robotic solu-
tion for logistics using a unique combination of mobile robots and CDPR. This
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(a) (b)

Figure I.5 – Cable robot IPAnema 2 : (a) Vision of assembly of parabolic re-
flector panels [PMV10] (b) Large-scale handling of collector modules shown at
Automatica 2010 trade fair, Munich, Germany [Pot18a]

prototype addresses an industrial need for fast picking and kitting operations in
existing storage facilities.

I.1.3.3 Rescue and Rehabilitation

Thanks to cable flexibility and their low mass on motion, CDPRs are suitable
for some rescue tasks. In [TVHT99], a CDPR dedicated to rescue operations after
natural disasters as earthquakes was proposed. Later on, the robot family Marionet,

at INRIA in France, is proposed for rescue and person assistance requirements
[MD10, Mer08]. Practical tests were performed with these manipulators for lifting
elderly and disabled humans in an ambient assisted living environment.

CDPRs are also used for rehabilitation [RABG07]. The force control of these

manipulators allows to reduce the effective mass and then to comfort the pa-
tient from the weight of some parts of his body during the exercise. A gait-
rehabilitation CDPR, implemented at Fraunhofer IPK (Berlin, Germany), was pro-
posed in [SB04]. CDPRs are also used for arms [ADG+09, RGM07, GCRS15] and

legs [MD10, HFN02, GCRS15] rehabilitation.
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Figure I.6 – The cable robots of the Marionet family : Courtesy of INRIA Sophia-
Antipolis, France

Figure I.7 – The cable robot String-Man : Courtesy of Fraunhofer IPK, Berlin

I.1.3.4 Acquisition

Numerous CDPRs, whose end-effector is dedicated for measurements by equip-
ping it with camera or any other sensor, are proposed. In [JKKS98, JKK99], a
CDPR is proposed for measuring the end-effector pose along a trajectory. Some
projects such as FAST [DQZZ09, Hui15] and Carlina [LCDA+04] use CDPRs to

guide huge telescopes. Some CDPRs are employed as aerial cameras at sport or en-
tertainment events like Skycam [Con85] and CableCam [RB93], whose end-effectors
are cameras. Thanks to their large workspace, these robots are usually used in sta-
diums or for movie shooting.
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I.1.3.5 Construction

The flexibility of cables allows CDPRs to be used in building construction
through suitable geometrical configurations. The project MEDIA-TIC [Bes16] was
proposed to establish an intelligent building. For this purpose, a CDPR whose end-

effector is equipped with atmospheric sensors is integrated in the building facades
[IGB+13]. In [IDH+18], a CDPR dedicated to construction by means of additive
manufacturing is discussed. This manifests in the mount of the extruder of the Py-
los project [Pyl] on the Cogiro robot [GCRB15] to obtain a large scale 3D printing

machine for construction tasks.

Figure I.8 – Cogiro, Pylos and the high print being processed [IDH+18]

I.1.3.6 Entertainment

CDPRs are also used for entertainment. They can be implemented in amusement
parks such as Disney [CN12], which has thrill rides based on suspended CDPRs.
The principle of these attractions is the following : People sit inside a vehicle, which

presents the CDPR moving-platform. This latter is connected to the base through
moving winches along roller coaster rails (Fig. I.9(a)). At the German Pavilion, at
the EXPO 2015 in Milan, two large-scale CDPRs [TSPE15] were installed whose
end-effectors were flying above the heads of the visitors (Fig. I.9(b)). Each robot

consists of a mobile platform suspended by eight cables and following a prescribed
trajectory. In all those activities, safety requirements are guaranteed.
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(a) (b)

Figure I.9 – (a) Concept for a thrill ride with winches moving along a track (b)
Two large-scale cable robots are core elements of the show at the German pavilion
on the Expo 2015 fair in Milan, 2015 [TSPE15, Pot18b].

I.2 Pose accuracy

The improvement of the robot performances can be done through the modifi-
cation of the robot structure either by optimizing the design [ADG+09, XCCJ10,
GCG+14, YTWH10] or by adding other components to the robot structure as
in [VP15, WCG14]. Improving accuracy is still possible once the robot is ope-

rational through a suitable control scheme. Numerous control schemes were pro-
posed to enhance the CDPRs precision on static tasks or on a trajectory tra-
cking [JFGK15, FFT+04, ZDDB08, dRRK18]. See that the response of a cable
robot depends strongly on its overall stiffness, including the stiffness of its cables.

The effectiveness of a control strategy depends strongly on the choice of the robot
model, including the modeling of cables stiffness.

I.2.1 Modeling

The development and the design of controllers for CDPRs require the establish-
ment of accurate models of the cable manipulators. This depends on the considered
properties of the robot cables with respect to the overall CDPR size. CDPRs mo-

dels can be classified based on the considered cables stiffness. Two classes of cables
stiffness are defined : (i) The axial stiffness of the cables associated with the elastic
material modulus and the cable structure ; and (ii) the sag-introduced flexibility
coming from the effect of cable weight onto the static cable profile.

In case the cable mass is important with respect to the overall size of the CDPR,
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the consideration of the sag-introduced stiffness is important. In statics, numerous
works describe the sag effect through the catenary model of cables [Irv92, YLZ13].
The modeling of CDPRs with long cables whose stiffness depends on the sagging

effect and on cable tension is treated in [Li15]. More recently, [Ars13a] and [YCD15]
studied the effect of the elasto-sagging of cables on the CDPR stiffness. A good
correlation between experimental results and theoretical ones was highlighted in
[YCD15], validating the elasto-sagging model for static stiffness modeling. CDPR

modeling can be also provided by finite-element models. An accurate representation
of the oscillatory behavior of the CDPR was shown in [DDB13] through finite-
element analysis. The limitation of this method is that repeated mesh generations
and calculations for numerous payload directions are time-consuming, which is not

convenient for dynamic tasks.
The lumped-mass model can also be used as a method of modeling flexible

CDPRs. A spatial CDPR with sagging cables was modeled in [LNC07]. As an
alternative, a similar lumped-mass model, considering the actuator dynamics and

the wrap around the winch, is proposed in [CF14, CFM15]. However, these models
are valid only when working in a reduced workspace, in which there is no contact
between lumped masses and the winches. Besides, to accurately achieve the true
cable natural frequencies, many lumped masses are needed.

The Rayleigh-Ritz method can also be used to develop an accurate model of
cable manipulator. The work of [GCF18] uses this method to describe the longi-
tudinal vibrations of cables, a way to make this model useful for controller design.
It highlights the importance of using this method rather than the lumped-mass

methods.
A simpler way to model CDPRs is to consider cables as linear springs, whose

stiffness is inversely proportional to the cable lengths [KT14, WCG15]. When the
moving-platform of a CDPR with a relatively small overall size is suspended by

tensed cables and balanced by the gravity, the full stiffness of the cables may
be generalized to only axial flexibility [BCCD17]. This latter manifests in cable
elongations.

I.2.2 Error sources affecting accuracy

All models are approximations and the parameters used into a CDPR given
model are subjected to uncertainties. The mathematical models do not perfectly
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reflect the robot behavior because of uncertainties such as the assembly and manu-
facturing inaccuracies of geometrical components like pulleys [MP10, Pot12]. Also,
these models are influenced by non-geometrical origin uncertainties. These latter

are attributed to the quality of mechanical components of the robot manipulator
as the deformation of mechanical components due to efforts, their interactions, etc.

Some models propose and investigate the influence of temperature variation into
the CDPR accuracy. The work of [Sch17] mentions that an increase of temperature

from 23◦ to 70◦ generates a variation of cables stiffness from 113500 kN/mm to
90119 kN/mm, representing a decay of 20.6 % for the 2.5 mm Dyneema cable used
in the IPAnema robots. Such a variation may strongly affect the moving-platform
positioning accuracy. Generally, the thermal expansion is considered to have negli-

gible effects on components, like the end-effector, frame and links as CDPRs are
mostly operated at ambient temperature.

Cables themselves are physical components whose behavior affects the CDPR

response. The CDPR mechanical behavior depends on cable properties such as
the cable mass [KZW06, RGPB10, OC10] and elongation [SP17]. In the simplest
form, such a stress-strain relationship is translated by the Young’s modulus of the
material. Large range of materials are used to make CDPR cables. Besides, the

properties of a given material can vary a lot. It was shown that some ropes used in
robots have a considerable hysteresis in elongation under force. For example, the
cable robot IPAnema at Fraunhofer IPA uses Dyneema cables instead of conventio-
nal steel cables, which brings the advantage of the lower weight. At the same time,

this cable introduces a more complex elastic behavior in the most relevant force
transition element of the cable robot. It showed that the Dyneema polyethylene
cables have a changing elastic behavior over time, are subject to settling effects,
are sensitive to overload, and show hysteresis effects [MKLP15].

The cable material is not the only factor having a significant effect on the CDPR
mechanical behavior. Other research works are looking into the properties affecting
the CDPR accuracy such as the abrasive wear [dSF02] or cable fretting [ZGQ03],

which depend on the UV rays and temperature.
Other production parameters are also relevant like coating materials and the

meshing of individual strands [SP18]. Additional sources of error affecting by the
cable manipulator include bending cycles and forces applied to the cables. This
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leads to abrasion in the cable when individual strands are rubbing against each
other to cause friction.

It is clear that the lifetime depends greatly on the cable tension, whether it is

continuous or not, depending of the bending diameters and on the cable velocity
[VW04]. The cable force is highly dependent on the cable properties. An efficient
force distribution method taking into account the effect of cable sag is presented
in [YCD16]. An example of a 6-DOF CDPR with 8 cables was analyzed. This

mentions that the relative difference of cable force between the ideal model and
the non-ideal sagging model becomes larger as the level of cable sag increases.
Here, the force error is as small as 0.35 % when the weight/length ratio is 0.3 N/m.
However, this force error can even reach 10.5 % when the weight/length ratio is

2.4 N/m. Furthermore, the cable force is highly dependent of the moving-platform
pose and cannot be maintained in the same manner. If we consider the movement
of the end-effector along a trajectory, the cables density of different driving cables
are usually not the same, and the cable weight of a certain driving cable is also

changing with the pose of the end-effector along the trajectory. In [YCD16], an
original method is proposed to determine pose-dependent force boundary used as
constraint in the force distribution for better accuracy.

Some errors in the control signals lead to undesired wrench exerted on and twist

of the moving-platform. The effect of variations in parameters and data on the ac-
tuator torque vector of CDPRs is examined utilizing interval arithmetics in [Not15].

Because of manufacturing and assembling errors, the variations in material pro-

perties and the uncertainty in actuator inputs and operating conditions make the ro-
bot data and exact parameters unknown. Using nominal values, the cable-actuated
system characteristics may differ from the real performance. Calibration enhances
their operation to a certain extent, but does not result in the exact parameters

values [Not16]. As a result, their action may be degraded due to calculations made
with inaccurate parameters, which make them unsuitable. According to the CDPR
operation, the variance in its parameters can be permitted within a defined varia-
tion range. It may be preferred to study the performance of CDPRs for a range of

parameter values, to identify all designs that meet the requirements, and to choose
the suitable designs for a given application of the studied CDPR [Mer09]. One
must be careful to neglect uncertainty in some factors having negligible effects on
the CDPR mechanical behavior in order to obtain reliable control. The uncertainty
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analysis of the CDPR allows us to identify the uncertainties in parameters that
mainly affect the moving-platform pose.

Controller Robot 
MeasurementsControl 

signal 

Control 

input

Figure I.10 – General control scheme for CDPR

I.2.3 Control for accuracy improvement

Two main issues related to CDPRs are discussed : pose stabilization and trajec-
tory tracking. While the pose stabilization aims to stabilize the robot in a reference
pose, the trajectory tracking aims to have the moving-platform following a reference
trajectory.

Several controllers have been proposed in the literature to improve CDPR ac-
curacy locally or on trajectory tracking. They can be divided into two main cate-
gories : The first one is based on iterative algorithms, so that efficient constrained
optimization methods can be used such as Linear Programming Methods (LPMs)

[OA05, YLK09]. For example, in [JFGK15], an adaptive controller is presented
based on the linear techniques of pole placement control (PPC) and also linear
quadratic regulation (LQR) method. It aims to minimize the CDPR vibrations
through maximizing its stiffness in the presence of end-effector mass and inertia

uncertainties.
Other optimization methods are Non-Linear Programming Methods (NLPMs)

in the particular case of Quadratic Programming Methods (QPMs) [OA05, VAT10],
and the general NLPM with the gradient descent method to resolve the problem

in a quadratic formulation. In [JKFK18], LPV - H∞ control strategy is proposed
to suppress the unwanted effect of external disturbances. This method is based on
modeling the vibration dynamics as an linear parametric variable (LPV) system,
while decoupling the unwanted vibrations from motion equations. A non-iterative

algorithm with a non-evolutionary criterion, inspired from [Laf04], is proposed in
[CCL15] for the control of a 6-DOF INCA Robot [CLCG13].



44 Cable-Driven Parallel Robots

A control strategy of a fully-constrained CDPR is proposed in [AY17]. It consists
in determining the motor torque allowing to minimize the errors between the mea-
sured cable tensions and the desired ones. The latter are defined by the outer-loop

controller, which manifests in an adaptive robust feedback controller with bounded
feed-forward compensation terms. Bounded positive cable tensions are generated
by the outer-loop controller, utilizing the integral of the sign of the error (RISE)
approach.

In [CLP18], the control of CDPR in the operational space is presented, where
the CDPR model is derived using Lagrange equations of motion for constrained
systems, while considering non elastic but sagging cables through the Assumed
Mode Method.

A discrete-time control strategy is proposed in [Mer17] to estimate the positio-
ning accuracy of the end-effector by taking into account the actuator model, the
kinematics and static behavior of the CDPR, but dynamic effects are neglected.

Multiple papers have dealt with the CDPR control while considering cable elon-
gations and their effect on the dynamic behavior. In [KTH17], an approach of
wave based control (WBC) is proposed for large scale robots whose cables sag-
ging effect cannot be neglected. It combines the position control and the active

vibration damping simultaneously. This control strategy assumes actuator motion
as launching a mechanical wave into the flexible system, which is absorbed on
its return to the actuator. The assumption of modeling cables as elastic straight
massless links is valid for robots with relatively small size [BCCD17]. Here, the

cable mass is ignored with respect to the end-effector mass [DM09, KMP13]. On
these grounds, a robust H∞ control scheme for CDPR is described in [LCCG13]
while considering the cable elongations into the dynamic model of the end-effector
and cable tension limits. Besides, H∞ control scheme for position control of 6-DOF

CDPRs is proposed in [CLC14]. Compared to [LCCG13] position control scheme
is done in the operational space and the tension management is made separately
in a more efficient way. Assuming flexibility in the longitudinal direction of cable,
a control strategy is proposed for CDPRs in [KT14], [KT16], [KT11]. It consists

in adding an elongation compensation term to the control law of a CDPR with
rigid cables, using singular perturbation theory to prevent undesirable vibrations.
Here, cables are modeled by linear axial springs but with constant stiffness. This
control method is improved in [KT15] by integrating variable stiffness for cable. In
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this context, authors of [BKT15] have also proposed a robust adaptive controller
to attenuate vibrations in presence of kinematic and dynamic uncertainties. This
method of control requires the measurement of cables length and the knowledge of

the real-time end-effector pose through exteroceptive measurements. However, the
external-measurement-based control methods add complexity to the cable-driven
manipulators and restrict the application conditions due to the need of additional
devices [CCYJ13].

The importance of the feed-forward effect on non-linear systems control is high-
lighted in [SL+91]. It leads to stable systems with enhanced trajectory tracking
performances. Feed-forward model-based controllers are used to fulfill accuracy im-

provement by using a CDPR reference model [ZSC17]. This latter predicts the
mechanical behavior of the robot ; and then generates an adequate reference signal
to be followed by the CDPR. This type of control provides the compensation of
the desirable effects without exteroceptive measurements. A model-based control

scheme for CDPR used as a high rack storage is presented in [BLS+13]. This re-
search work takes into account the mechanical properties of cables, namely their
elasticity. This strategy, integrating the mechanical behavior of cables in the refe-
rence signal, enhances the CDPR performances.

To improve the robot accuracy, a frequency dependent control method was pro-
posed for different types of robotic manipulators. This method is named as input-
shaping. Input-shaping filters consist in convolving the desired command signal

with a sequence of impulses. The result of the convolution is then used as the new
reference control signal for the controlled robot. Input-shaping is used for manipu-
lators with flexible joints to remedy the resulting oscillations. It was used for serial
robots [PCPL06, AYTK10, ZCTT16] such as the industrial SCARA manipulator

[HK15]. Oscillation control by shaping the input signal was also applied for conven-
tional parallel robots [KEUS04, LZM+09, ÖKO16]. The non-rigid behavior of hu-
manoid robots causes unwanted vibrations. To deal with this issue, input-shaping
was used for the control of such robotic systems [KSHA16, YZXW16, RHK15].

This control strategy has already been implemented in some CDPRs. For ins-
tance, it was implemented for under-constrained CDPRs, which suffer from control
problems as their end-effector pose is partially mastered and negative cable tension
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Figure I.11 – The input shaping process

may occur whatever is the operating conditions of the robot [HBY+16, BFV16,
LL16, MV17, PKP13]. As conventional control methods are limited and not all
DOF of the moving-platform can be controlled, such filters could be used to exhibit
significant reduction in oscillations of the payload. In [YHB+16], input-shaping was

proposed for redundantly actuated CDPRs. However, for the control of non-linear
systems, the corrector deals with the compensation of the internal and external
efforts of the manipulator, which are considered as perturbations. In this case, the

control signal is subjected to strong variations in amplitudes and tries to make
some cables pull the end-effector. It was verified that when the robot natural fre-
quency is well known, the implementation of input-shaping control could effectively
improve the performances of the robot.

I.3 Objectives and contributions

The main objective of this thesis is the improvement of CDPRs accuracy and the
reduction of their vibrations. Feed-forward model-based control taking advantage
of an elasto-dynamic model of CDPRs is proposed. In addition, a closed-loop input-
shaping control strategy is proposed for CDPRs in order to attenuate the maximum

of residual vibrations. These two methods aim to improve the static positioning
accuracy and trajectory tracking of CDPRs dedicated to high dynamic applications.
To achieve this objective, this thesis was decomposed into the following three tasks.
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I.3.1 Contribution on CDPR modeling

As the choice of cable models is a primary task for CDPR modeling, the dif-
ferent levels of cable stiffness are reviewed in Section II.3. In Section II.3.2, a new
non-linear cable tension model, valid when cables are subjected to large strains, is
proposed to better describe CDPRs with fast varying cable lengths. As the iden-

tification of cable parameters is useful for the improvement of CDPR modeling,
the experimental method named Dynamic Mechanical Analysis (DMA) is presen-
ted in Section A. It enables to identify carefully the dynamic elastic and damping
moduli of some cables to better compensate the stiffness effects. Different dyna-

mic models of CDPRs used for feed-forward control are reviewed. CDPR control
based on these conventional dynamic models pre-compensate the unwanted effects
due to cable elasticity by compensating only for the end-effector positioning errors
due to its rigid body behavior. In other words, the compensation does not take

into account the interaction between cables and the whole system. Then, an elasto-
dynamic model for CDPRs is proposed in Section II.4 to predict the full dynamic
and oscillatory behavior of the CDPR. This model is proposed to generate the ade-
quate reference signal for the control loop, pre-compensating the unwanted effects

due to the overall stiffness.

I.3.2 Static and dynamic robustness analysis

The robustness analysis in this thesis deals with both sensitivity and uncertainty
analysis. A sensitivity analysis is made in Section III.3 to study how the robot res-
ponse is sensitive to modeling and make decisions on the choice of CDPR model
with respect to the target application. In order to overcome the effects of uncer-

tainties, uncertainty analysis is performed to deal with CDPR design such that
the CDPR is robust to variations in parameters and disturbances while perfor-
ming a prescribed task. An uncertainty analysis is made in Section III.4 to analyze
the influence of uncertain parameters on the dynamic behavior of CDPRs. For

this study, the CAROCA prototype (at the courtesy of IRT Jules Verne, Nantes,
France) is used as a case of study. The uncertain model of CDPR used for the
static uncertainty analysis treats not only the axial compliance of cables but also
the sag-introduced compliance. As static deflection is a projection of the static

compliant displacement and as it evaluates the static stiffness performance, it is
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used as an index to analyze the effect of uncertainties on different mechanical and
geometrical parameters.

Figure I.12 – CAROCA prototype : a reconfigurable CDPR (Courtesy of IRT
Jules Verne, Nantes)

A dynamic analysis is made in Section III.4.1. It aims to analyze the dynamic and
oscillatory motions of CDPRs with different levels of cables modeling. This study
is based on experimental data of the dynamic modulus of cables obtained through

Dynamic Mechanical Analysis. It depicts the effect of cable stiffening and damping
onto the dynamic behavior of the moving-platform. It supports the idea to adjust
each cable model and parameters to the appropriate CDPR natural frequency for a
good trajectory tracking. Another uncertainty analysis is made to check the effect

of the CDPR model choice onto its dynamic and oscillatory response. This is done
through comparing the open-loop conventional rigid, elasto-static models [BLS+13]
of CDPR with the proposed elasto-dynamic model [BCC19]. It should be noted
that uncertainties do not affect all CDPRs the same way. However, conclusions are

valid for every CDPR whatever its size.
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I.3.3 Control for CDPR accuracy improvement

Another contribution of this thesis deals with the synthesis of two control strate-
gies for CDPRs. The first control strategy, presented in Section IV.2, consists
in a closed-loop feed-forward model-based control. It deals with the coupling of a
model-based feed-forward torque control scheme for CDPRs with a PID feedback

controller. This control type pre-compensates much as possible the cable elasticity
while isolating them. Knowing the cable tensions and adopting a tension model, the
cable elongations are determined. In this thesis, the elasto-dynamic model of the
CDPR is used as a feed-forward unit to pre-compensate not only cable elongations

but also the effect of their interaction with the complete robotic system.

Closed-loop control methods are not allowing all DOF of the moving-platform
of an under-constrained CDPR (n < m) to be controlled. The extra DOFs in mo-

tion of the moving-platform makes it easy to sway [YYM01]. This leads to low
operational efficiency and then the lost of controllability. Input-shaping method
for under-constrained CDPRs was proposed as an alternative to attenuate residual
vibrations [HBY+16, BFV16, LL16, MV17, PKP13]. Despite the fact that the re-

search work in [YHB+16] deals with over-constrained CDPRs, this control does
not allow to manage the actuation redundancy and positive cable tensions are not
guaranteed. Accordingly, a second control method is proposed in Section IV.3
to increase the CDPR performances by vanishing residual vibrations of the mani-

pulator. The novelty of this control scheme lies in the integration of input-shaping
filters to the closed-loop model-based control scheme. Cable tension distribution is
considered in addition to the input-shaping filter to satisfy positive tensions along
the prescribed trajectory of the moving-platform. As a result, this control method

uses an input-shaping filter in conjunction with a feedback control for disturbance
rejection.

Experimental tests are made on the CREATOR prototype (See Fig. I.2) located

at LS2N, Nantes, France, in order to validate the theoretical results.
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II.1 Introduction

The positioning accuracy of CDPRs can be significantly degraded because of

cable elasticity. The stiffness analysis thus becomes a vital concern to improve the
static and dynamic behavior of CDPRs. Section II.2 presents the dynamic model
of CDPRs where cables are supposed to be straight. As cables are flexible, their
elongation should be considered in CDPR modeling. Section II.3.1 presents the

different levels of cable stiffness for CDPR modeling. Section II.3.2 discusses the
cables tension models for the control of CDPRs. The contributions of this chapter
are the following :

— A new non-linear cable tension model [BCCD17] relevant for cables subjected

to fast length variations is introduced and studied.

— Elasto-dynamic modeling of CDPRs allowing to simulate their dynamic be-
havior while considering the cable elongations and their interaction with the

whole system.
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II.2 Rigid dynamic model

Dynamic modeling consists in establishing the relationship between the actua-

tors efforts and the moving-platform velocity and acceleration. In this manuscript,
the CDPR is supposed to be torque controlled. This method allows to satisfy the
redundancy by applying a set of torques leading to positive cable tensions. The
inverse dynamic model of CDPRs expresses the motor torques as a function of the

moving-platform velocity and acceleration in a given pose.
The input joint coordinate vector is denoted as q = [q1, ..., qn]T ∈ R

n, n being
the number of cables. As shown in Fig. II.1, the Cartesian coordinate vectors of

B1

Bn

A1

An

Bi

Ai
xp

ypzp

P End-effector

Fixed-base

xb

zb
yb

O

yi

zi

p

ai

bi

li

xi

di

Figure II.1 – The ith closed-loop of a CDPR

anchor points Ai and exit points Bi, i = [1..n], are denoted ai and bi. These vectors

are expressed in the moving-platform frame Fp = {P, xp, yp, zp} and in the base
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frame Fb = {O, xb, yb, zb}, respectively. Fi = {Bi, xi, yi, zi} is the ith cable
frame, where axes zi and zb are parallel.

The pose x = [pT oT ]T ∈ R
m of the moving-platform center P in the base

frame Fb is described by the position vector p = [x, y, z]T ∈ R
u and the orienta-

tion vector o = [φ, θ, ψ]T ∈ R
v. The orientation of the moving-platform is para-

meterized by Euler angles φ, θ and ψ. u being the number of translational Degree-
Of-Freedom (DOFs), v being the number of rotational DOF and m being the total

DOF of the end-effector. The ith cable connecting exit point Bi and anchor point
Ai, i = [1..n], exerts a force from Ai to Bi of magnitude τi, τi being positive. The
unit vector di ∈ R

u of this force is denoted as :

di =
bi − p − bRpai

‖bi − p − bRpai‖
. (II.1)

The wrench matrix W ∈ R
m×n generated on the moving-platform center for a

given pose is expressed as follows :

W =





d1 ... dn
bRpa1 × d1 ... bRpan × dn



 . (II.2)

According to Euler formalism (See App. C), the orientation of the mobile frame
Fp with respect to the fixed frame Fb is defined by the rotation matrix bRp as

follows :

bRp(φ, θ, ψ) =











cθcψ −cθcψ sθ

cφsψ + sφsθcψ cφsψ − sφsθcψ −sφcθ
sφsψ − cφsθcψ sφcψ + cφsθcψ cφcθ











(II.3)

where cθ = cos(θ), cφ = cos(φ), cψ = cos(ψ), sθ = sin(θ), sφ = sin(φ) and

sψ = sin(ψ). More details about the Euler angles convention are presented in
Appendix C.

Knowing the position p and the orientation o of the moving-platform, the geo-
metric closed-loop equation of the ith cable is expressed in Fb as follows :

li = p − bi + bRpai, (II.4)

where li is the ith cable length vector connecting point Bi to point Ai along the
ith cable. The Euclidean norm of Eq. (II.4) leads to the simplest geometric model,

so that the ith cable length is expressed as :

li = ‖p − bi + bRpai‖2. (II.5)
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The relationship between the cable length vector l = [l1, ..., ln]T ∈ R
n and the

motor angular displacement vector q is supposed to be linear :

l = χ q, (II.6)

where χ = diag[χ1, ..., χn] ∈ R
n×n is a diagonal matrix presenting the winches

winding ratio. From Eq. (II.5) and Eq. (II.6), the articular coordinate qi of the ith

joint is expressed as a function of the moving-platform pose x as follows :

qi =
1
χi

‖p − bi + bRpai‖. (II.7)

The kinematics of a CDPR is presented by the relationships between the moving-
platform twist vector ẋ = [ṗT ωT ]T ∈ R

m and the input velocity vector q̇ ∈ R
n.

The vector ṗ is the linear velocity vector of the moving-platform. ω = [ω1 ω2 ω3]T

is its angular velocity vector, which is expressed in Fb as :

ω =











ω1

ω2

ω3











= Uȯ, (II.8)

where

U =











1 0 sθ

0 cφ −cθsφ
0 sφ cθcφ











, ȯ =











φ̇

θ̇

ψ̇











. (II.9)

The end-effector velocities are mapped to the cable velocities by the Jacobian
matrix J as follows :

l̇ = Jẋ, (II.10)

where W = −JT [K+95] and l̇ ∈ R
n is the cable velocity vector. This latter is

obtained upon time differentiation of Eq. (II.6) :

l̇ = χ q̇. (II.11)

Inversing Eq. (II.11) and substituting Eq. (II.10), the relationship between the
moving-platform velocity and the input velocity is written as follows :

q̇ = χ−1 J x, (II.12)

The equations of motions are derived from the equations of Newton-Euler while
considering the center of mass of the moving-platform coincident with its geometric
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center. The Newton-Euler equations are expressed in matrix form as follows :

M(x) ẍ + C(x, ẋ) ẋ = Wτ + wex, (II.13)

with

M(x) =





meeIu 0u×v

0v×u S



 , C(x, ẋ) =





0u×u 0u×v

0v×p Ṡ



 , (II.14a)

wex = wg + we. (II.14b)

where :

— M ∈ R
m×m is the mass matrix of the moving platform.

— mee is the mass of the moving-platform.

— C ∈ R
m×m is the matrix of Coriolis and centrifugal forces.

— ẍ ∈ R
m is the acceleration vector of the moving-platform.

— S = bRpIc
bRp

T
is the inertia matrix of the moving-platform expressed in Fb.

— Ic is the inertia tensor of the moving-platform relative to point P expressed
in Fp.

— wex ∈ R
m is the external wrench applied on the moving-platform.

— wg ∈ R
m is the wrench due to gravity acceleration.

— we ∈ R
m is any other wrench, except wg, applied to the mobile platform.

According to [SSVO09], the product C(x, ẋ) ẋ can be simplified to c ∈ R
m :

c = C(x, ẋ) ẋ =





0u×1

ω × Sω



 (II.15)

II.2.1 Dynamics of actuators

The dynamics of actuators links the vector of motor torques ζm to the vector
of actuator accelerations q̈. In this manuscript, it is assumed that all components
(motor, reducer and winch) of an actuator are coaxial. Classically, the actuators
dynamics can be expressed in the following form :

ζm = Imq̈ + ζf(q̇) + ζrg, (II.16)

where
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— ζm ∈ R
n is the motor torque vector.

— Im ∈ R
n×n is a diagonal matrix containing the winch moment of inertia.

— q̈ ∈ R
n is the angular acceleration vector.

— ζrg = χτ ∈ R
n is the torque vector induced by the cable tensions onto the

drums.

— ζf ∈ R
n is the friction torque vector.

According to the static model of friction [KD04], the vector of friction torques
can be expressed as follows :

ζf(q̇) = ζd sgn(q̇) + ζv q̇, (II.17)

where

— ζd ∈ R
n×n : a diagonal matrix containing the dry friction coefficients.

— ζv ∈ R
n×n : a diagonal matrix containing the viscous friction coefficients.

Since Eq. (II.17) contains the sign function, its integration in direct application
of CDPR control laws may result in amplified vibrations caused by the signal
discontinuity. To overcome this problem, the friction torque expression is modified

to get a soft variation when the sign function is zero thanks to the hyperbolic
tangent function as illustrated in Eq. (II.18) and Fig. II.2.

ζf(q̇) = ζd tanh(c q̇) + ζv q̇, (II.18)

c being the slope of the tanh function.

Therefore, the extended dynamics of actuators is described by the following
matrix expression :

ζm = Imq̈ + ζd tanh(c q̇) + ζv q̇ + χτ . (II.19)

II.2.2 Complete dynamic model

From Eq. (II.19) and Eq. (II.13), the equation of motion of the moving-platform

takes the form :

M(x) ẍ + C(x, ẋ) ẋ = Wχ−1(ζm − Imq̈ − ζf(q̇)) + wex, (II.20)

q̈ is obtained upon time differentiation of Eq. (II.12) :

q̈ = χ−1(Jẍ + J̇ẋ) (II.21)
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Figure II.2 – Graphical representation of sign versus hyperbolic tangent

Substituting Eq. (II.12) and Eq. (II.21) in Eq. (II.20), the dynamic constraints
become :

M∗ ẍ + C∗ ẋ + Wχ−1ζf(q̇) = Wχ−1ζm + wex, (II.22)

where M∗ ∈ R
m×m and C∗ ∈ R

m×m are the equivalent mass and Coriolis matrices
respectively and they are expressed as follows :

M∗ = M + Wχ−1Imχ−1J, (II.23a)

C∗ = C + Wχ−1Imχ−1J̇. (II.23b)

II.2.3 Determination of the cable tensions

The determination of the cable tension vector τ ∈ R
n is a function of the

moving-platform pose and the wrench that the latter should support. It is about
solving an equilibrium for a given pose x of the end-effector. This equilibrium can
be described in a matrix form as follows :

Wτ + wex = 0. (II.24)



58 CDPR models and properties

Two cases are discussed to solve Eq. (II.24). The first case is when the external
wrench wex gathers only the wrench due to gravity wg and to other wrench we

applied on the moving-platform. The second case is when the inertial effects due

to the twist ẋ and acceleration ẍ of the moving-platform are considered into the
external wrench wex. In this case, the system of equations to solve comes from the
re-organization of Eq. (II.13) :

Wτ + wex = 0, (II.25a)

wex = wg + we − M∗ ẍ − C∗ ẋ. (II.25b)

The cables can only pull and not push the moving-platform. If the number of
cables n is equal to the DOF m, the inversion of Eq. (II.24) is possible, as long as
the wrench matrix W is not singular, and the cable tension vector can be calculated

as :

τ = −W−1wex. (II.26)

In this case, the determination of cable tensions leads to only one solution. Ho-
wever, this tension set can present negative values. That means that one or more
cable(s) may push the moving-platform, which is unfeasible.

When m < n, Eq. (II.24) may have an infinite number of solutions. Therefore,
the redundancy allows to select a solution amongst the infinite set cable tension
vectors satisfying some criteria. The problem of force distribution presents one im-
portant design issue for redundant actuated CDPRs, which is the determination of

feasible cable force distribution 1. The problem in the calculation of force distribu-
tion has been addressed in many scientific papers [PBM09, Pot14, GG11, BJS+09,
MBHS08]. Optimization methods with user-defined cost function are usually em-
ployed to obtain a unique solution.

When the cables tension vector is equal to the calculated τ , the moving-platform
of the CDPR is supposed to follow exactly the desired trajectory xrg. The cable
length vector lrg corresponds to the unstrained cable length vector coming from the

closed-loop constraints with respect to Eq. (II.4). No deviations or cable elongations

1. A cable force distribution is said to be feasible in a particular configuration and for a specified set of wrenches, if the

tension forces in the cables can counteract any external wrench of the specified set applied to the end-effector [EUV04].
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Figure II.3 – Schematic of the CDPR rigid model : Planar example

are depicted. Some previous studies model the cables as massless rigid bodies. This
assumption is usually valid for robots of reasonable size carrying light payloads.
However, this assumption may not be valid for big cable-driven robots or for heavy

payloads [RGK+09].

II.3 Dynamic modeling considering cable stiffness :

Elasto-static model

Section II.2 dealt with a dynamic model where no elongation of cables was

considered. For that model, when the cables tension vector is equal to the calculated
τ , the moving-platform of the CDPR presents no deviation with respect to the
desired pose xrg. However, as cables are a flexible, cable elongations occur once
an external wrench is exerted onto the moving platform. The cable elongation is a

function of its stiffness and the cable tension. As a consequence, some cable stiffness
modeling are reviewed in Section II.3.1. A new non linear cable tension model is
proposed in Section II.3.2. Indeed, Sec. II.3.2, deals with a dynamic model of CDPR
where cable elongations are taken into consideration. The corresponding model

is named elasto-static model. Once the cables are isolated, their elongation is
determined to come up with this elasto-static model. Knowing the effort applied on
each cable, we can estimate its elongation based on the chosen cable tension model.

When the elongation δles is determined, the deviation of the moving platform δxes

with respect to the desired pose xrg can be calculated through the geometrical
model expressed by Eq. (II.4).
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Figure II.4 – Schematic of the CDPR elasto-geometric model with straight cables :
Planar example

II.3.1 Cable stiffness modeling

Considering the physical cable characteristics, the compliance of cables has
mainly two origins. The first one is the axial stiffness of the cables, which is asso-
ciated with the elastic material modulus and the cable structure. The other one is

the sag-introduced flexibility, which comes from the effect of cable weight onto the
static cable profile. The sag-introduced flexibility corresponds to the gravitational
potential energy stored in the cable.

II.3.1.1 Sag-introduced stiffness

Both axial and sag-introduced stiffness are discussed in the static and dyna-
mic modeling of CDPRs. The elasto-sagging cable model resulting from the cable
model [Irv92] takes into consideration both sag-introduced and axial stiffness of

cables. It has been considered in several previous studies on large-dimension CD-
PRs [KZW06, DQZZ09, ZDDB08, DBDC10]. For instance, such a cable model was
used for a 6-DOF cable-suspended parallel manipulator, while considering the dyna-
mic stiffness of elastic sagging cables and experimental validations were performed

in [YCD15, YCD14]. The elasto-sagging cable model describes the relationships
between the force iτi =

[

iτxi, 0, iτzi
]

applied at the anchor point Ai of the ith
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cable and the coordinates vector iai =
[

ixi, 0, izi
]

of the same point resulting

from the elasto-sagging cable model [Irv92] in Fi as follows :

ixi =
iτxilusi
ES

+
|iτxi|
ρg

[

sinh−1

(

iτzi
iτxi

)

− sinh−1

(

iτzi − ρglusi
iτxi

)]

, (II.27a)

izi =
iτxilusi
ES

− ρgl2usi
2ES

+
1
ρg

[√

iτxi
2 + iτzi

2 −
√

iτxi
2 + (iτzi − ρglusi)2

]

, (II.27b)

where lusi is the unstrained length of ith cable, g is the acceleration due to gravity,
S is the cable cross sectional area, ρ denotes the cable linear mass and E the cable

modulus of elasticity.

xi

zi

Bi

Ailusi
δl

fxi

f③✒

Figure II.5 – Schematic of elasto-sagging cable

As discussed in [KZW06], a CDPR can be described through the elasto-geometric

model, which is based on geometric loop closure equations (Eq. (II.4)), cable sag-
ging relationships (Eq. (II.27)) and static equilibrium equations (Eq. (II.24)). This
leads to a system of non-linear equations. The Inverse Elasto-Geometric Modeling
(IESM) of a CDPR aims at calculating the unstrained cable length for a given

pose of its moving-platform. If both cable mass and elasticity are considered, the
inverse kinematics of the CDPR and its static equilibrium equations will be solved
simultaneously.

The Direct Elasto-Static Model (DESM) aims to determine the pose of the

mobile platform for a given set of unstrained cable lengths. The constraints of the
DESM are the same as those used to solve the IESM, i.e, Eq. (II.4), Eq. (II.24) and
Eq. (II.27). If the effect of cable weight on the static cable profile is non-negligible,
the direct geometric model of CDPRs will be coupled with the static equilibrium of

the moving-platform. For a m DOF CDPR with n driving cables, there are 2n + m
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equations and 2n + m unknowns. In this manuscript, the non-linear MATLAB®

function lsqnonlin is used to solve the DESM.
Other works in the literature consider inextensible cables with non-negligible

mass [KZW06, Ars13b, RGK+09] based on the well-known catenary cable model
established by Irvine [Irv92], but neglecting the cables elasticity [GCRB12].

II.3.1.2 Axial stiffness

For the dynamic and workspace analysis of CDPRs, the cables are often conside-
red either rigid or elastic, namely, with an axial stiffness [KT15]. Simplified cable
models are usually used because they lead to lower computing-time [BG05]. Howe-
ver, those simplified models may lead to modeling errors. These errors should be

analyzed and corrected to satisfy the positioning accuracy of the robot. To better
understand the dynamic behavior of CDPRs with long cables, a dynamic model
where each cable is considered with distributed mass and time-varying length is
addressed in [DA15]. The dynamic equations are derived using Hamilton principle.

The resulting infinite dimensional problem is transformed into a finite dimensional
one using the assumed-mode method. Vibration analysis in both directions were
made and it turns out that the transversal vibrations remain negligible with respect
to the axial vibrations for several configurations [DM09].

There are few studies in the literature about the dynamic analysis of CDPRs
with long sagging cables, and to the best of our knowledge only cable linear axial
stiffness formulation is considered. The dynamic stiffness analysis of CDPRs is
made under the assumption that dynamic loads induce only small elongations of

the cables. The cable tension is usually considered proportional to the variations in
the cable length for a constant stiffness coefficient. Therefore, such a model is not
valid when cables are subjected to high strains due to large dynamic oscillations or
quick cable-length variations. As a consequence, Section II.3.2 aims at expressing

a non-linear cable tension model [BJLP16] to be used for dynamic and oscillatory
motions of CDPRs with cables subjected to fast varying lengths. This cable tension
model reveals a softening behavior when strains become large.

II.3.2 Linear and non-linear cable tension models

It is obvious that the consideration of sag has an important impact on the
CDPR modeling. However, the assumption of a negligible sag is validated along
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the trajectory mapped by the moving-platform, either when the sag to span ratio
of the cable remains lower than 1/20 [Sta91], or by a simple performance criterion
ensuring that the effect of gravity on a cable can be neglected [OPND+09]. Under

these assumptions, the CDPR cables are assumed to keep linear shape along a
trajectory and their stiffness is equivalent to stiffness related to the elasticity effects.

Classically, when the cables of a CDPR are tensed along a prescribed trajectory
and their tension remains in an elastic range, the total time-depending tension in

a cable is expressed as follows :

τ(t) = k(t) δli(t) + τ0, (II.28)

where :

— τ(t) is the cable tension,

— δli(t) is its elongation,

— k(t) is its stiffness,

— E is its modulus of elasticity,

— S is its cross sectional area,

— l(t) is its length,

— τ0 is its tension at the initial time (t = 0 s).

Here, the length li of the ith cable at each time t can be expressed as follows :

li(t) = li,0 + δli(t) −
∫ t

0
Vi(t) dt, i = 1, .., n (II.29)

where Vi is the linear velocity at the entrance of the ith pulley, li,0 is the ith cable
length at time t = 0 s under the effect of the initial tension τi,0 defined with

respect to the static equilibrium and δli is the elongation of the ith cable.
This linear formulation of the cable tension is commonly used and it shows a

behavior similar to a linear spring with constant stiffness k. The classical linear ten-
sion formulation expressed in Eq. (II.28) can not satisfy non-linear cable elasticity

or viscosity resulting from dynamic phenomena with high cable-length variations.
As a result, it cannot be used for the dynamic modeling of CDPR achieving high
velocities and accelerations. Therefore, a non-linear tension formulation is requi-
red in such a case. The work presented in [BJLP16] is adopted regarding that it

provides a total non-linear tension formulation valid for high dynamic applications.
Accordingly, this paper aims to integrate this new tension formulation in CDPR
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dynamic modeling and to analyze its effect on the dynamic responses of the CDPR
end-effector.

According to [BJLP16], the non-linear formulation for cable tension is defined as

follows. Applying the general Hooke’s law σ(t) = Eε(t), where dε(t) =
dl(t)
l(t)

, and

assuming that cable tension, with constant cross sectional area S, can be written
as τ(t) = Sσ(t), the time derivative of the cable tension can be expressed as :

τ̇(t) =
ES

l(t)
l̇(t). (II.30)

Equation (II.30) shows that the time derivative of cable tension depends on the
cable instantaneous length. The non-linear tension formulation of the cable tension
is obtained by integrating Eq. (II.30) :

τ(t) = ES ln
(

l(t)
l0

)

+ τ0. (II.31)

This non-linear tension expression is valid for high dynamic systems and does not
restrict the applications with small strains. As the cable is considered without iner-
tia, the longitudinal wave propagation is possible and a non-linear cable behavior

exists. This non-linear tension formulation is valid when the rate of strain is much
smaller than the longitudinal wave velocity into the cable, which is usually true for
flexible wires used in high dynamic cable systems such as high-speed CDPRs.

II.3.2.1 Non-linear tension of cables with linear damper

Cables used in CDPR have a frequency-dependent dynamic modulus of elasti-
city as shown in Fig. II.6, which plots the Hysteresis loops for a 4 mm steel wire
cable preloaded at 1500 N with force controlled sine waves applied at 0.1, 1, 2,

5, 10, and 20 Hz. More details in the determination of cable dynamic modulus of
elasticity and damping parameters are presented in Appendix A.1.2.

To better predict the dynamic behavior of cables and the CDPR response, we

can account for the Maxwell model to integrate a viscous damper to the elastic
cable model [RR06]. For an elastic cable with a linear viscous damper, the cable
stress is written as follows :

σ(t) = E′ ε(t) + c ε̇(t), (II.32)
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Figure II.6 – Hysteresis loops for a 4 mm steel wire cable preloaded at 1500 N
with force controlled sine waves applied at 0.1, 1, 2, 5, 10, and 20 Hz

where E′ is the real part of the dynamic modulus of elasticity and c is the corres-
ponding damping coefficient.

As τ(t) = Sσ(t) for a constant cross sectional area cable and as the differen-

tiation of deformation ε̇(t) is expressed as
l̇(t)
l(t)

, we can write :

τ̇(t) =
E′S

l(t)
l̇(t) +

cS

l(t)



l̈(t) − l̇2(t)
l(t)



 . (II.33)

By integrating Eq. (II.33), the new tension formulation considering the cable
damping is defined as follows :

τ(t) = E′S ln
(

l(t)
l0

)

+ cS
l̇(t)
l(t)

+ τ0 . (II.34)

This formulation considers the non-linear elastic behavior of the cable and its
damping. It will be valid even if the system presents high dynamics and large
strains in the cables.

The cable tension vector is determined as explained in Section II.2.3 basing
on the rigid model. When the cable is supposed to keep linear shape along the
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prescribed trajectory, either the linear or the non-linear cable tension model should
be taken to determine the cable elongations depending on the CDPR application.

Note that the choice of the suitable model with regard to the targeted application

and CDPR configuration is discussed in Chapter III. Despite that cable elongations
are considered in this section, a limitation of this modeling is that the interaction
of cables with the complete system is not considered and then no oscillation is
considered.

II.4 Elasto-dynamic modeling

In real applications of CDPRs, the elongation of cables and their interaction
with the environment do not occur separately. This fact can result in unwanted
oscillations of the end-effector, which are not predicted through the elasto-static
model. The proposed elasto-dynamic model aims to predict the dynamic behavior

of the CDPR, while being open-loop torque controlled.

Figure II.7 – Schematic of the CDPR elasto-dynamic model : Planar example

The CDPR elasto-dynamic model takes into account the oscillatory and dynamic
behavior of the end-effector due to cable elongations. Here, the cables are no-longer
isolated and are affected by the end-effector dynamic behavior. As illustrated in
Fig. II.7, the cables of the elasto-static model of CDPRs present a deviation with

respect to the rigid model as cable elasticity is considered. In addition to this
deviation, the elasto-dynamic model presents another part (red part) of deviation
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which corresponds to the dynamic effects. The length of the ith cable in the elasto-
dynamic model can be expressed as follows :

lied = lirg + δlied, (II.35a)

δlied = δlies + δlivib. (II.35b)

δlied being the ith cable elongation assessed by considering cable elasticity and

oscillations, δlivib being the cable elongation due to the vibratory effects only.
Cable elongations make the end-effector deviate from its desired pose xrg. As a

result, the real end-effector pose is expressed as :

xed = xrg + δxed. (II.36)

The end-effector displacement leads to some variations in both cable lengths and

cable tensions. Indeed, the ith cable tension τ i
ed obtained from the elasto-dynamic

model differs from τ i, namely :

τ ied = τ i + δτ ied. (II.37)

The expression of τ ied as a function of the ith cable stiffness and depends on the cho-

sen cable tension model. For example, when the linear cable tension is considered,
the elasto-dynamic tension of the ith cable is expressed as :

τ ied = τ i + δτ ied = ES
δlied

δlied + lirg
. (II.38)

When the winches are fixed below the pulleys, cable length is divided into two
parts as shows Fig. II.8. The first length lied is variable and corresponds to the
distance between Ai and Bi. It is influenced by cable elongations. The second is
not variable and is called a dead length linking between the ith drum and Bi. In

this case, the linear stiffness of a cable becomes :

ki(t) =
ES

lied + lidead
, (II.39)

where lidead is the dead length of ith cable. In this case, the cable tension expression
becomes :

τ ied = ES
δlied

lied + lidead
= ES

δlied
δlied + lirg + lidead

. (II.40)
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Figure II.8 – Cable parametrization while considering dead length

The CDPR elasto-dynamic model takes the form :

M ẍed + C ẋed = Wed (τ + δτed) + wex, (II.41)

where Wed = W(xed) is the CDPR wrench matrix expressed at the end-effector
pose xed. Once the pose xed and the cable tension vector τed are calculated, the

cable elongation vector δled of the elasto-dynamic CDPR model can be determined.
Details about the elasto-dynamic model resolution are presented in Appendix C.2.

The measured joint coordinates of the actuators depict neither the vibratory
effects nor the cable elongations. The use of the elasto-dynamic model for closed-

loop control should be useful to compensate the unwanted effects that cannot be
measured by the encoders. The proposed pre-compensation methodology will be
discussed in Chapter IV.

II.5 Summary of the chapter

This chapter presented the dynamic modeling of a CDPR with n cables and
m DOF, which is fundamental for trajectory tracking. Some CDPR stiffness mode-
ling were discussed. A new non-linear cable tension model for CDPRs was proposed

to deal with axial cable vibrations. This non-linear cable tension model expresses
the relationship between cable tension and the resulted elongation. It is valid for
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fast time-varying cable tensions with large strains. An elasto-dynamic model of
CDPRs was proposed. It anticipates the full dynamic behavior of the mechanism.
Accordingly, one contribution of this chapter deals with a simulation model of CD-

PRs, including the vibratory effects, cable elongations and their interaction with
the whole system. Despite the elasto-static model takes into account cables elasti-
city, a weakness of this model lies in the absence of the dynamic effects due to the
interaction of the cables with the whole system. The elasto-dynamic model aims to

remedy this weakness and it depicts the oscillatory behavior of the moving-platform
when the latter follows a prescribed trajectory.

Verifying the validity and identifiability of such predictive models is mandatory
for control purposes. Accordingly, the next chapter is about the static and dynamic

sensitivity analysis of CDPRs in order to end up with a robust control scheme.
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III.1 Introduction

To deal with a robust control model for CDPR, robustness analysis should be

performed through a sensitivity analysis and an uncertainty analysis. While sensi-
tivity analysis is done to make decisions on the choice of CDPR model with respect
to the target application, uncertainty analysis of the chosen model is performed
to highlight crucial parameters that should be the focus of attention. The input

parameters used to describe the robot model for the control loop are uncertain, i.e.,
only known within certain probability distribution of variable. To overcome the ef-
fects of uncertainties, uncertainty analysis should be done to determine the design
hypothesis allowing the CDPR to be robust to changes in system parameters or

disturbances while performing prescribed tasks. On these grounds, the objectives
of this chapter are :

— Sensitivity analysis of CDPR accuracy to modeling type.

— Uncertainty analysis of CDPR accuracy.
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III.2 Error sources affecting CDPR accuracy

CDPR accuracy can be degraded due to error sources coming either from mode-

ling or uncertainties on input parameters. It should be noted that not all properties
effect every CDPR prototype in the same way. Many physical properties determine
how much influence an uncertain parameter has on the CDPR response. However,
some generalizations can be made, and some predefined assessments help recognize

which parameters have the highest effect on the CDPR accuracy.

III.2.1 Modeling

The choice of CDPR model for control purposes is not obvious. It depends
strongly on the CDPR configuration and the target task. Different are the levels
of CDPR modeling for control purposes. They can be classified with respect to
the level of cable stiffness modeling where we consider either the axial stiffness,

either the the sag-introduced stiffness or both of them (Sec. II.3.1). Note that
linear and non-linear cable tension models were proposed for non-sagging cables
(Sec. II.3.2). Besides, the prediction of CDPR accuracy not the same when using
the rigid (Sec. II.2), elasto-static (Sec. II.3) or the elasto-dynamic (Sec. II.4) models

as a reference model for CDPR control.

III.2.2 Parameters

It is not obvious to investigate all error sources to the same level of detail. The
error modeling includes all the error sources which have been covered in literature
[ZDWK14, KZW06] and some additional ones which are expected to be equally
significant. For the uncertainty analysis, geometrical and mechanical error sources

are considered to investigate their effect onto the static deflection of the moving-
platform under an external load.

III.2.2.1 Geometrical parameters

The geometrical errors can be divided into base frame geometrical errors and

moving-platform geometrical errors and mainly due to manufacturing errors.
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Figure III.1 – Error sources affecting CDPR accuracy

III.2.2.1.1 Base frame geometrical errors

The base frame geometrical errors are described by vectors δbi, the variation in
vector bi, i=[1..n]. As the point Bi is considered as part of its corresponding pulley,

it is influenced by the elasticity of the pulley mounting and its assembly tolerance.
bi is particularly influenced by pulleys tolerances and reconfigurability impact.

III.2.2.1.2 Moving-platform geometrical errors

The moving-platform geometrical errors are described by vectors δai, the va-
riation in vector ai, i=[1..n], and δg, the uncertainty vector of the gravity center
position G of the moving-platform. This latter is often supposed to coincide with
its geometrical center P . This hypothesis means that the moments generated by an

inaccurate knowledge of the gravity center position or by its potential displacement
are neglected. This is never perfectly realized since the exact position of the mass
center is often uncertain. The Cartesian coordinate vector of the geometric cen-
ter P does not change in frame Fp, but strongly depends on the real coordinates of

exit points Ai that are related to uncertainties in mechanical welding of the hooks
and in moving-platform assembly.
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III.2.2.2 Mechanical parameters

The mechanical errors of the CDPR are described by the uncertainty in the
moving-platform mass (δmee) and the uncertainty on the cables mechanical para-
meters (δρ and δE). Besides, uncertainties in the cables tension δτ affect the error

model. As a result, (3 + n) mechanical error sources are taken into account.

III.2.2.2.1 End-effector mass

As the moving-platform is a mechanically welded structure, there may be some
differences between the moving-platform mass and inertia matrix given by the CAD
software and the real ones. The moving-platform mass and inertia may also vary in
operation which requires the involvement of these changes while modeling. In this

manuscript, moving-platform mass uncertainty δmee is about ± 10% the nominal
mass.

III.2.2.2.2 Cables parameters
III.2.2.2.2.1 Linear mass

The uncertainty of this parameter can be calculated from the measurement
procedure as :

δρ =
mc δl + l δmc

l2
, (III.1)

wheremc is the measured cable mass for a cable length l. δl and δmc are respectively

the measurement errors of the cable length and mass.

III.2.2.2.2.2 Modulus of elasticity

The error modeling of the modulus of elasticity of cables is based on experimen-

tal data. The identification method of the modulus of elasticity of a steel wire cable
is specified in section (A.1.1). The elasticity modulus or Young’s modulus is the
ratio of stress along an axis to strain along that axis within a specified load range
and strain rate range. It amounts to an elastic material stiffness. The modulus

of elasticity of a wire cable does not depend solely on the properties of the wire
material, but on the wires layout and the load history too.

A 4 mm diameter steel cable consisting of 18 strands twisted around a steel

core used for the CAROCA prototype is taken as an illustrative example. Each
strand of this cable is made up of 7 steel wires (Fig. A.2). The breaking force of
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Figure III.2 – Load-elongation diagram of a steel wire cable measured in steady
state conditions at the rate of 0.05 mm/s

this cable is equal to 10.29 kN. Based on experimental data presented in Fig. III.2,

Table III.1 presents the modulus of elasticity of a steel wire cable for different
operating margins, when the cable is in loading or unloading phase. This modulus
is calculated as follows :

Ep−q = lc
Fq% − Fp%
S(xq − xp)

, (III.2)

where S is the metallic cross-sectional area, i.e. the value obtained from the sum
of the metallic cross-sectional areas of the individual wires in the rope based on
their nominal diameters. xp and xq are the elongations at forces equivalent to
p% and q% (Fp% and Fq%), respectively, of the nominal breaking force of the cable

measured during the loading path (Fig. A.3). lc is the measured initial cable length.

Table III.1 – Modulus of elasticity while loading or unloading phase

Ep−q (GPa) E1−5 E5−10 E5−20 E5−30 E10−15 E10−20 E10−30 E20−30

Loading 72.5 83.2 92.7 97.2 94.8 98.3 102.2 104.9

Unloading 59.1 82.3 96.2 106.5 100.1 105.1 115 126.8

For a given range of loads (Tab. (III.1)), the uncertainty on the modulus of elas-
ticity depends only on the corresponding elongations and tensions measurements.
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In this case, the absolute uncertainty associated with applied force and resulting
elongation measurements from the test bench outputs is estimated to be ± 1 N
and ± 0.03 mm, respectively ; so, an uncertainty of ± 2 GPa can be applied to the

calculation of the modulus of elasticity.

According to the International Standard ISO 12076, the modulus of elasticity
of a steel wire cable is E10−30. However, the CDPR cables do not work always bet-

ween F10% and F30% in real life and the cables can be in loading or unloading phase.
The mechanical behavior of cables depends on moving-platform dynamics, which
affects the variations in cable elongations and tensions. From Table (III.1), it is ap-
parent that the elasticity moduli of cables change with the operating point changes.

For the same applied force, the modulus of elasticity for loaded and unloaded
cables are not the same. While the range of the moving-platform loading is unk-
nown, a large range of uncertainties on the modulus of elasticity should be defined

as a function of the cable tensions.

III.2.2.2.3 Tension distribution

Two cases of uncertainties of force determination can be defined depending on
the control scheme :

— The first case is when the control scheme gives a tension set-point to the ac-
tuators resulting from the force distribution algorithm. If there is no feedback
about the tension measurements, the range of uncertainty is relatively high

because of the difference between cable tensions and motor set-point coming
from tension distribution algorithms. Generally, the effort of compensation
does not consider dry and viscous friction in cable drum and pulleys. This
non-compensation leads to errors and delay [DWS90] that degrade the CDPR

control performance. That leads to a large range of uncertainties in tensions.

— The second case is when the tensions are measured and used in the feedback

controller. If measurement signals are very noisy, amplitude peaks of the cor-
rection signal may lead to a failure of the force distribution. Such a failure may
also occur due to variations in the moving-platform and pulleys parameters.



III.3 Sensitivity analysis of CDPR accuracy to modeling 77

Here, the deviation is defined based on the measurement tool precision.

Cable tension uncertainty is a function of cable parameter uncertainties, mainly

the uncertainty on the modulus of elasticity. There is no need to add tension
uncertainties to the analysis as the variation of tensions is translated by a variation
of the modulus of elasticity.

III.3 Sensitivity analysis of CDPR accuracy to modeling

Sensitivity analysis while considering the sag-introduced stiffness has been al-

ready done [KZW06]. It is obvious that the consideration of sag has an important
impact on the CDPR modeling. However, this work interests in the influence of the
cables elasticity and the effects generated by the cable elongations. For this fact,
we work under the assumptions that cables keep linear shape along a trajectory

and their stiffness is equivalent to stiffness related to the elasticity effects. Here,
the assumption of a negligible sag is validated along the trajectory mapped by
the moving-platform, either when the sag to span ratio of the cable remains lower
than 1/20 [Sta91], or by a simple performance criteria ensuring that the effect of

gravity on a cable can be neglected [OPND+09].

III.3.1 Linear and non-linear cable tension models

To check the sensitivity of the CDPR to cables modeling, a comparison between
the CDPR responses while using the linear and the non-linear tension formulation
of cables is made. For this fact, the cable tension τi appearing in Eq. (II.24) is
replaced by either the linear tension expression (Eq. (II.28)) or the non-linear one

(Eq. (II.31)). This section aims to compare the dynamic responses of three proto-
types with different configuration and size, while using linear or non-linear cable
tension formulations. For this purpose, a smooth helical trajectory is defined to be
followed by the end-effector.

The nominal lengths of the cables are calculated while solving the ideal inverse
kinematics model expressed by Eq. (II.5) without considering cable mass and elas-

ticity. These cable lengths are then used to determine the velocities at the pulleys
entrances Vi, i = [1..n], that allow the end-effector to follow the desired trajec-
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tory using Eq. (II.29). MATLAB® routine ode45 is then employed for numerical
integration to calculate the resulted tensions and elongations while solving the
system of non-linear equations respecting the Fundamental Principle of Dynamics

(Eq. (II.13)).

III.3.1.1 Illustrative example

This section aims to present numerical results associated to the dynamic beha-

vior of the 3-DOF CDPR, where three long cables make the end-effector move. The
position vector of the exit points in the global frame are :
b1 = [0, 50, 50]T m, b2 = [0, −50, 50]T m and b3 = [86.60, 0, 50]T m. The mass
of the end-effector is mee = 300 kg.

An example of a circular helical trajectory from static equilibrium to steady state
is proposed to evaluate the difference between the linear and non-linear tension
formulations. The end-effector of the CDPR under study is moved from point

P1 of Cartesian coordinate vector p1 = [28.86, 0, 5]T m to point P2 of Cartesian
coordinate vector p2 = [28.86, 0, 20]T m tracking a circular helix, which is defined
by the following Cartesian equations (Fig. IV.5(b)) :

x(t) = R cos(tα) + β0, (III.3a)

y(t) = R sin(tα) + β1, (III.3b)

z(t) = pt tα + β2, (III.3c)

where

tα = a5

(

t

tsim
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)

+ a0.

(III.4)

The coefficients of the five-order polynomial tα are chosen in such a way that

the Cartesian velocities are null at the beginning and at the end of the simulation
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(Fig. III.3(b)). R is the radius of the helix, pt is its pitch, β0, β1 and β2 are constants.
The resulting Cartesian velocities of the end-effector are expressed as follows :

ẋ(t) = −R ṫα sin(tα), (III.5a)

ẏ(t) = R ṫα cos(tα), (III.5b)

ż(t) = pt ṫα. (III.5c)
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Figure III.3 – Circular helical trajectory : (a) Trajectory and (b) velocities of the
end-effector
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For this case study, the chosen parameters are : a5 = 36π, a4 = −90π, a3 = 60π,
a2 = a1 = a0 = 0, p = 0.5 m, β0 = 23.86 m, β1 = 0 m, β2 = 5 m, R = 5 m and
tsim = 50 s. The initial cables lengths are l1,0 = l2,0 = l3,0 = 73.2 m. The simula-

tion starts from the static equilibrium defined with the following initial conditions :
T1,0 = T2,0 = T3,0 = 1594.1 N, δl̇1,0 = δl̇2,0 = δl̇3,0 = 0 m/s and
δl̈1,0 = δl̈2,0 = δl̈3,0 = 0 m/s2.
The cross sectional area of cables is S = 7.1675 × 10−6 m2 and the quasi-static

equivalent modulus of elasticity is E = 102.2 GPa.

Figure III.4 illustrates the cable linear velocities as a function of time for the end-
effector to follow the desired trajectory shown in Fig. III.3(a). The time histories

of the tension, the elongation and the strain (defined as si =
δli(t)
li(t)

) of each cable

when the end-effector moves from point P1 to point P2 following the circular helical
trajectory are plotted in Fig. III.5.

The comparison between the simulation results obtained with the linear tension
(Dash-dot lines) and the non-linear tension formulation (continuous lines) is made.
In both cases, the cable tensions remain positive which is a necessary condition for
CDPR control. It can also be noticed that the generated trajectory has sufficient

smoothness properties to avoid the excitation of the mechanical resonances of the
end-effector suspended on the global cables stiffness. The loading frequency is only
defined by the time variation of the cable linear velocity (Fig. III.4).

These simulation results show that the difference in terms of cable elongation res-
ponse can reach up to 2.4 mm at 27.5 s for the first cable, representing 14 % of the
global instantaneous elongation. The difference in terms of strain achieves 0.003 %,

representing 12 % of the global instantaneous strain in cable 1. The maximum diffe-
rence is about 2.9 mm for the second cable at 39 s. Note that the cable tensions are
the same whichever tension formulation is used. Tension curves are superimposed
(Figures III.5(a), III.5(d) and III.5(g)). The non-linear tension formulation reveals

a softening behavior when strains become large. In this particular example of large-
dimensions CDPR, the consequences on the evaluation of the end-effector position
tracking error can be quite important as depicted in Fig. III.6. The positioning er-
ror, which is the difference between the desired position of the end-effector and the

real one, is assessed along each axis of the base frame. The end-effector trajectory
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Figure III.5 – Comparison between linear and non-linear tension formulations :
Tension, elongation and strain for three cables. Time history of (a) τ1 , (b) δl1, (c)
s1, (d) τ2, (e) δl2, (f) s2, (g) τ3, (h) δl3, and (i) s3

can differ up to 1.5 mm along the x-axis, 1.4 mm along the y-axis and 2.9 mm
along the z-axis depending on the formulation. Even if the end-effector position

tracking errors are relatively small compared to the overall size of the robot in
this particular example, this represents a maximum relative difference of 22 % in
the computation of the end-effector tracking errors. This emphasizes the value of
the proposed approach for some applications with large dimensions, which improve

the tracking accuracy by a model-based compensation [WCG14]. The relevance of
the proposed method formulation should be also verified for a CDPR with smaller
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dimensions. For this purpose, a comparison between the dynamic responses of two
existing CDPRs with different sizes is presented thereafter.
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Figure III.6 – Comparison between linear and non-linear tension formulations :
Positioning error of the end-effector along (a) x-axis, (b) y-axis and (c) z-axis

III.3.1.2 Semi-industrial examples

The previous example aims to highlight the difference between linear and non

linear cable tension formulations. For a better understanding of the effect of the
cable tension model onto the moving-plateform pose estimation, two semi-industrial
CDPR prototypes are considered in this section :

The 6-DOF FAST robot [Hui15, LTS+13] composed of 6 cables (App. B.2) and

the CAROCA prototype developed at IRT Jules Verne [GCGG16] in a configu-
ration such that it contains 3 cables and performs 3-DOF translational motions
(App. B.1.2). Both CDPRs are described in Tab. (B.4). This latter presents the
height, width, the unstrained cables length when the end-effector is in a home po-

sition, the end-effector mass and the maximum cable tension.

• CAROCA

The CAROCA end-effector, described in App. B.1.2, follows an helical trajectory

whose parameters are : a5 = 3.6π, a4 = −9π, a3 = 6π, a2 = a1 = a0 = 0,
pt = 0.2 m, β0 = 0 m, β1 = 0 m, β2 = 0.1 m, R = 1 m and tsim = 4 s. For purpose
of visibility, only the second cable behavior is plotted (Fig. III.8).

The tension, elongation and strain profiles for cable 2 obtained with both the

linear and non-linear cable tension models, when the end-effector tracks the helical
trajectory going from point P1 of Cartesian coordinate vector p1 = [1, 0, 1]T m
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Figure III.7 – Schematics of the (a) CAROCA and (b) FAST CDPR
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Figure III.8 – Comparison between linear and non-linear tension formulations
with respect to CDPR overall size. Time history of (a) τ2 : CAROCA, (b) δl2 :
CAROCA, (c) s2 : CAROCA (d) τ2 : FAST, (e) δl2 : FAST and (f) s2 : FAST

to point P2 of Cartesian coordinate vector p2 = [−0.4, 1, 1.37]T m, are plotted in
Fig. III.8.

These simulation results show that the maximum difference in terms of strain is

about 0.0014 %.The difference in terms of cable elongation reaches up to 0.034 mm
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for the second cable, representing 25.27 % of the global elongation at 4 s. As
shown in Fig. III.9, there is a small difference between the positioning error of
the end-effector calculated while considering a linear cable tension model and the

one estimated by considering a non-linear cable tension model. This difference is
about 0.06 mm and amounts to 6.26 % of the global positioning error of the end-
effector. Note that it is difficult to validate those theoretical results experimentally
due to the small variations in positioning errors that cannot be measured accura-

tely with a absolute measuring position system such as a laser tracker.
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Figure III.9 – Positioning errors of the CDPR end-effector calculated with a linear
and a non-linear cable tension model, respectively : (a) CAROCA (b) FAST

• FAST

Figure III.7(b) represents a schematic of the 6-DOF FAST CDPR [KZW06]. Its

end-effector moves along an helical path from point P1 of Cartesian coordinate
vector p1 = [0, 0, −150]T m to point P2 of Cartesian coordinate vector
p2 = [−19.64, 14.27, −138.7]T m within tsim = 40 s. The trajectory parameters a0,
a1, a2, a3, a4 and a5 are the same as those used to define the trajectory followed by

CAROCAi.e. pt = 6 m, R = 15 m, β0 = -15 m, β1 = 0 m and β2 = − 150 m.

Figure III.8 represents the time history of the tension, the elongation and the
strain profiles for the second cable of the FAST robot by considering a linear and

non-linear cable-tension models, respectively. The simulation results show that the
difference between the elongations assessed with linear or non-linear cable tension
formulations is equal to 8.7 mm at 38 s, which amounts to 7.2 % of the global
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instantaneous cable elongation. This difference is due to variation in cable stiffness
and leads to a sudden cable tension change (about 71.35 N). The maximum diffe-
rence in terms of cable strain is about 0.0031 %.Finally, as shown in Fig. III.9, the

difference in terms of end-effector positioning error is up to 21.52 mm at 40 s.

As a conclusion, for very large CDPRs such as the FAST robot, the cable tension
model that is considered to estimate the pose error of the end-effector do affect

the results. Although the variations in pose error estimation obtained from one
cable tension model to the other one remain small with respect to the CDPR size,
the non-linear cable tension had better be considered to improve the end-effector
trajectory tracking.

III.3.2 Sensitivity of CDPR dynamic behavior to the modeling

type

This section aims to check the effects of the choice of the CDPR model onto
its dynamic and oscillatory response. This is done through comparing the rigid
(Sec. II.2), elasto-static (Sec. II.3) and elasto-dynamic (Sec. II.4) models of CDPR.
Here, the nominal values of the input parameters are considered.

An example of a straight line trajectory is proposed to evaluate the difference
between the CDPR models. The end-effector of the CDPR under study is moved
from point P1 of Cartesian coordinate vector p1 = [0, 0, 0.5]T m to point P2 of

Cartesian coordinate vector p2 = [0, 0, 1.2]T m tracking a vertical straight line.
This trajectory is defined by Eq. (III.3) with the following parameters : a5 = 18π,
a4 = −45π, a3 = 30π, a2 = a1 = a0 = 0, pt = 0.15 m, β0 = β1 = β2 = 0 m,
R = 0 m and tsim = 5 s.

Only the half of this trajectory is simulated as mentions Fig III.10. In this simu-
lation, the quasi-static equivalent modulus of elasticity is used E = 102.2 GPa. As
this modulus is identified while respecting the norm ISO 12076, the cross sectional

are S should be assimilated to Ac and not as a whole, S = 7.1675 × 10−6 m2, with
S = Ac 6= Sc. MATLAB® routine ode45 is employed for numerical integration to
calculate the resulted tensions and elongations while solving Eq. (II.41) respecting
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Figure III.10 – (a) Desired position (b) velocity and (c) acceleration of the moving-
platform

the Fundamental Principle of Dynamics.

The time histories of the tensions τ1 and τ3 and the elongations δl1 and δl3 of

cables 1 and 3 when the end-effector moves from point P1 to point P2 following
the straight line trajectory are plotted in Fig. III.11. Same results are obtained for
other cables.

The comparison between the simulation results obtained with the rigid model

(blue lines), elasto-static model (green dashed lines) and elasto-dynamic model
(red lines) is made. In this example, the consequences on the evaluation of the end-
effector position tracking can be quite important as depicted in Fig. III.12(a). The
deviation of the end-effector position along z-axis δz with respect to the desired

one, which is the difference between the desired position of the end-effector and
the one generated by the used model, is plotted in Fig. III.12. The deviations along
x-axis and y-axis are not plotted as they are null. Fig. III.12(b) plots a zoom in
of Fig. III.12(a) to show how the elasto-dynamic response is with respect to the

elasto-static one.

At the static equilibrium, a difference between the elasto-static and elasto-
dynamic models in terms of cable tensions and elongations is depicted. The first

and third cable tensions for the elasto-static model are equal to the tensions genera-
ted by the force distribution algorithm, i.e they are equal to 398.01 N and 423.19 N,
which correspond to the cable elongations 0.69 mm and 0.73 mm, respectively. In
what concern the elasto-dynamic model, the static equilibrium tensions are equal

to 391.23 N and 429.37 N, which correspond to 0.68 mm and 0.75 mm, respectively.
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Figure III.11 – Comparison between the cable responses while using different
CDPR models : Time history of (a) τ1, (b) τ3, (c) δl1 and (d) δl3

This depicts that for this example, the first cable of the elasto-static model is more

tensed than the first cable of the elasto-dynamic model, and then more elongated.
It is the opposite case for the third cable, where the third cable of the elasto-dynmic
model is more elongated than the third cable of the elasto-static model. Despite
this difference, both elasto-static and elasto-dynamic models generates the same

static equilibrium for the moving-platform. The deviation with respect to the de-
sired position of the moving-platform along z-axis is equal to 1.2 mm at the start
time for both models.

When the moving-platform starts its trajectory, the order of cables tensing
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Figure III.12 – Comparison between the different dynamic CDPR models : Time
history of (a) the deviation δz of the end-effector position along z-axis and (f)
Zoom in δz

and elongating stays the same. As one can see, the rigid and elasto-static pro-
vide smooth curves of cable tensions. This is due to the non consideration of the
cables interaction with the whole system. The elasto-static model of CDPR de-

viates with respect to the rigid model to establish the static equilibrium at each
iteration when cables elongations occur. When cables are no longer isolated in the
CDPR model, the oscillatory behavior of the moving-platform becomes visible in
the elasto-dynamic model. The moving-platform of the elasto-dynamic model oscil-

late around the dynamic equilibrium, provided by the elasto-static model, with the
fundamental natural frequency of the CDPR, which is around 16 Hz. Despite that
the elasto-static model integrates the elasticity of cables, a weakness of this model
is that it neglects the dynamic effects due to cables interaction with the whole

system. The elasto-dynamic model tries to remedy this weakness and it depicts
the oscillatory behavior of CDPR while the moving-platform tracks a trajectory.
The elasto-dynamic model of CDPR may be useful for control purposes as it pre-
dicts not only the cable elongations but also their dynamic interaction with the

moving-platform.
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III.4 Uncertainty analysis of CDPR to parameters

As the uncertainty analysis focuses on determining how uncertain the CDPR

response is if the input parameters are uncertain, this analysis is done in Sec. III.4.1,
while considering CDPR with fast-varying cable lengths. Experimental data coming
from the identification of cables (See App. A) are used to better analyze the effect
of uncertainties on the CDPR dynamic response. As the static behavior of the

CDPR is dominated by the stiffness, an uncertainty analysis considering the whole
stiffness of the CDPR is done in Sec. III.4.2.

III.4.1 Dynamic uncertainty analysis

III.4.1.1 Dynamic stiffening

A smooth and continuous motion as in section (III.3.1) limits the oscillations

of the moving-platform. Therefore, a trapezoidal-velocity trajectory of the moving-
platform is chosen to analyze the influence of the cable modulus of elasticity on the
CDPR dynamic behavior. The lack of smoothness of the trajectory is chosen here
to excite the end-effector on its fundamental rigid-body mode frequencies [YCD15].

The shape of the cable linear velocities at the pulley entrance is defined such as the
motion is uniformly accelerated until the linear cable velocities achieve the limit
value Vmax (Fig. III.13(a)). Linear cable accelerations are defined by the coefficients
a1, a2 and a3 expressed in m/s2.
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Figure III.13 – Trapezoidal-velocity trajectory : (a) Trapezoidal actuation veloci-
ties (b) Trajectory of the end-effector

This section aims to present numerical results associated to the dynamic be-
havior of the 3-DOF CDPR, where three long cables make the end-effector move.
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The position vector of the exit points in the global frame are : b1 = [0, 50, 50]T m,
b2 = [0, −50, 50]T m and b3 = [86.60, 0, 50]T m. The mass of the end-effector is
mee = 300 kg.

For the example under study, the coefficients of the cable trapezoidal-velocity
profiles are a1 = 0.3 m/s2, a2 = 0.25 m/s2, a3 = −0.25 m/s2 and Vmax = 1 m/s.
As a result, the manipulator tracks a straight line from point P1 of Cartesian co-

ordinate vector p1 = [28.86, 0, 5]T m to point P3 of Cartesian coordinate vector
p3 = [20.30, 0.23, 8.5]T m in 7 s (Fig. III.13(b)).

To better visualize the effect of the dynamic stiffness on the dynamic and oscil-

latory motions of the CDPR, the natural frequencies of the cable manipulator are
determined by solving the generalized eigenvalue problem associated with the appa-
rent stiffness of the CDPR [DM09]. Let f1 denote the first natural frequency, f2 the
second natural frequency and f3 the third natural frequency. Both the numerical

example and the CAROCA prototype are analyzed to check the effect of the fre-
quency dependency of the dynamic stiffness with respect to the CDPR dimensions.

As mentioned in Appendix (A.1.2), DMA allows us to identify the cable’s mo-

dulus of elasticity under forced oscillatory motions in the frequency range of the
intended application. The time histories plotted in Fig. III.14 show a resulting
forced elongation at a frequency between 1 and 2 Hz, which correspond to the

frequency of the fundamental rigid-body mode of the end-effector suspended on
the global cable stiffness. Based on the experimental data presented in Tab. A.1,
the corresponding value of the dynamic modulus of elasticity is about 30% higher
than the value identified in quasi-static. E′= 134.8 GPa ± 3.1 GPa at 2 Hz instead

of E= 102 GPa ± 2.2 GPa in quasi-static.

Figure (III.14) shows the tension, the elongation and the strain of the first cable
when the value identified in quasi-static at E= 102 GPa (continuous line) or in

dynamic at E′= 134.8 GPa at 2 Hz (dashed lines) is used. These curves are com-
puted for the non-linear tension formulation without damping. Since the value of
the modulus of elasticity is different, a difference in terms of the oscillation fre-
quency appears in the cable responses. The oscillation frequency increases due to
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Figure III.14 – Comparison between cables responses while using static or dyna-
mic modulus : Time history of (a) τ1, (b) δl1, (c) s1, (d) τ2, (e) δl2, (f) s2, (g) τ3,
(h) δl3 and (j) s3

the dynamic stiffening phenomena. This dynamic cable stiffening leads to reduce
the elongation amplitude over the trajectory. The differences on the end-effector
position tracking error are significant both on the shape of the curves and on their

level (Fig. III.15). The end-effector trajectory can differ up to 8 mm along the x-
axis, 4.5 mm along the y-axis and 9 mm along the z-axis depending on the chosen
stiffness. The magnitude of the end-effector positioning errors is significant. Even if
these values are relatively small compared to the overall dimensions of the CDPR

under study, this represents a maximum relative difference of 24 % in the compu-
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Figure III.15 – Comparison between the CDPR responses while using static or
dynamic modulus : Time history of positioning error along (a) x-axis, (b) y-axis
and (c) z-axis

tation of the end-effector tracking errors.

Figure III.16 represents the time variation of the three natural frequencies for
different cable stiffnesses. The fundamental natural frequency when the dynamic
stiffness is considered is around 1.9 Hz. However, when the quasi-static stiffness is

considered, the fundamental natural frequency of the CDPR is around 1.67 Hz. As
the dynamic modulus of elasticity is higher than the quasi-static one, a difference
in terms of the oscillation frequency appears in the cable responses. The increase
of the oscillation frequency comes from the dynamic stiffening phenomenon, which

leads to a reduction in the cable elongation magnitude along the trajectory. It is
noteworthy that the dynamic modulus of elasticity tends to increase the natural
frequencies.

The CAROCA prototype is also analyzed to check whether the dynamic stiffness
has an effect onto the natural frequencies of a smaller CDPR. The coefficients of
the considered cable trapezoidal-velocity profile are a1 = a2 = a3 = 0.2 m/s2 and
Vmax = 0.5 m/s. The end-effector of the CDPR moves from point P1 of Cartesian

coordinate vector p1 = [1, 0, 0.1]T m to point P3 of Cartesian coordinate vector
p3 = [0.74, −0.4, 2.6]T m within 4 s.

From Fig. III.17, a resulting forced elongation is observed at a frequency bet-
ween 10 and 11 Hz, which corresponds to the frequency of the fundamental rigid-

body mode of the end-effector suspended onto the global cable stiffness. Based
on the experimental data given in Table A.1, the corresponding value of the dy-
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Figure III.16 – Comparison between the CDPR natural frequencies while using
static or dynamic modulus (2 Hz) : Time history of natural frequencies (a) f1, (b)
f2 and (c) f3

namic modulus of elasticity is E′= 130.1 GPa ± 3.0 GPa at 10 Hz instead of
E= 102 GPa ± 2.2 GPa in quasi-static.

The end-effector trajectory can differ up to 1.26 mm along the z-axis, 0.1 mm

along the x-axis and 0.05 mm along the y-axis depending on the chosen stiffness.
This represents a maximum relative difference of 16.2 % in terms of end-effector
tracking errors. The frequency dependency of the dynamic stiffness has the same ef-
fects onto the CAROCA as the previous example. Therefore, one can claim that the

dynamic and oscillatory responses of the end-effector and cables depend strongly
on the dynamic stiffness no matter the size of the CDPR.

III.4.1.2 Axial cable damping

To show the influence of axial cable damping on the CDPR dynamic beha-
vior, the results of the simulations with the non-linear tension formulation without
(continuous line) and with (pointed line) damping are plotted in Figures III.18 and
III.19. As the oscillation frequency of the CDPR under study is between 1 and

2 Hz, the corresponding dynamic parameters are selected in Table A.1. At 2 Hz,
the cables damping coefficient is c = 2.08 × 109 N.m−1.s and its corresponding
dynamic modulus of elasticity is E′ = 134.8 GPa. Using these dynamic parame-
ters, the time histories of cable tension, elongation and strain are presented in

Fig. III.18. These curves show that the cable response is obviously highly sensitive
to cable damping. The oscillations of the damped model decay during the tran-
sient phases between 0 to 3.4 s and between 3.4 to 8 s whereas the conservative
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Figure III.17 – Comparison between dynamic responses of the CAROCA while
using quasi-static or dynamic modulus (10 Hz) : Time history of (a) τ2, (b) δl2,
(c) s2, Positioning error (d) along x-axis, (e) along y-axis, (f) along z-axis, natural
frequencies (g) f1, (h) f2 and (i) f3

model exhibits no energy loss as expected. The influence of the damping is also
significant on the evaluation of the end-effector position tracking error (Fig. III.19).

The contribution of these simulations is to show how the cable modulus of
elasticity substantially affects the dynamic behavior of CDPR. The results stress
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Figure III.18 – Comparison between cables responses with and without damping :
Time history of (a) τ1, (b) δl1, (c) s1, (d) τ2, (e) δl2, (f) s2, (g) τ3, (h) δl3 and (j)
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the importance of choosing the appropriate method of identification in relation to
the frequency range of the CDPR response.

III.4.2 Static uncertainty analysis

The static behavior of the CDPR is dominated by its overall stiffness. If the
compliant displacement of the moving-platform under the external load is small,
the uncertainty analysis of the CDPR can be done through linearized static Car-
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Figure III.19 – Comparison the CDPR responses while using tension model with
or without damping : Time history of positioning error along (a) x-axis, (b) y-axis
and (c) z-axis

tesian stiffness matrix [Car11]. As in statics it is the stiffness which dominates the
static behavior of the CDPR, the static uncertainty analysis in this manuscript
considers both sag-introduces stiffness and large compliant displacements. For this
fact, the elasto-static model of CDPR while considering elasto-sagging cables is

used. As our model is non-linear and complex, the calculation of uncertainty ma-
trix is not evident. For this fact, a new uncertainty index is defined, which is the
static deflection of the moving-platform.

III.4.2.1 Static deflection

The static stiffness of CDPR can be analyzed through the static deflection of its
moving-platform [BCC18]. If the compliant displacement of the moving-platform
under the external load is small, the static deflection of the moving-platform can be
calculated by its static Cartesian stiffness matrix [Car11]. However, once the cable

mass is considered, the sag-introduced stiffness should be taken into account. Here,
the small compliant displacement assumption is no longer valid, mainly for heavy
or/and long cables with light mobile platform. Consequently, the static deflection
can not be calculated through the Cartesian stiffness matrix. In this manuscript,

the IESM and DESM are used to define and calculate the static deflection of the
moving-platform under an external load.

This problem is solved by deriving the static deflection of the CDPR obtained

by the subtraction of the poses calculated with and without an external payload.
For a desired pose of the moving-platform, the IESM gives a set of unstrained cable
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lengths lus. This set is used by the DESM to calculate first, the pose of the moving-
platform under its own weight. Then, the pose of the moving-platform is calculated
when an external load (mass addition) is applied. Note that the positioning and

angular static deflection of the moving-platform should be treated separately in
order to avoid the homogenization problem [NG14]. Therefore, the positioning
and angular static deflection of the moving-platform, dp and do∗ respectively, are
expressed as :

dpj,k = pj,k − pj,1, (III.6a)

do∗
j,k = o∗

j,k − o∗
j,1, (III.6b)

where

— pj,1 is the position of the moving-platform considering only its own weight for

the jth pose configuration,

— pj,k is the position of the moving-platform for the set of the jth pose and kth

load configuration,

— o∗
j,1 is the orientation of the moving-platform with respect to x-axis, y-axis

and z-axis, considering only its own weight for the jth pose configuration,

— o∗
j,k is the orientation of the moving-platform with respect to x-axis, y-axis

and z-axis, for the set of the jth pose and kth load configuration.

III.4.2.2 Uncertainty range of parameters

The influence of uncertainties on CDPR parameters is analyzed through the

evaluation of the static deflection of the moving platform as it corresponds to the
CDPR stiffness. The experience to make is to apply an external load on the moving-
platform by adding an additional mass. As an illustrative example, a suspended
configuration of the reconfigurable CAROCA prototype (See App. B.1.1) with 8

cables and 6 DOF is studied. The Cartesian coordinates of Ai (Bi, resp.) expressed
in Fp (in Fb, resp.) of the considered prototype are given in Tab. (B.1). The nomi-
nal mass of the moving-platform and the additional mass are equal to 180 kg and
50 kg, respectively. The moving-platform is supposed to be placed in a symmetric

position (0 m, 0 m, 1.75 m), see Fig. B.2(a).
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Table III.2 shows the nominal value, the range of uncertainty and the analysis
step of each uncertain parameter. Based on the knowledge of the tension set-point 1,
two levels of uncertainties are defined.

— Level 1 : The tension set-point is unknown. A large range of uncertainty on
the modulus of elasticity is defined. It is to be determined based on the tension
variation on the cables and its correspondence in the experimental hysteresis
loop shown in the Fig. A.4.

— Level 2 : The tension set-point is known. Here, we consider only the measu-
rement uncertainties.

Table III.2 – Nominal values, uncertainty ranges and discretization step of uncer-
tain parameters

Parameter Nominal value Step
Range of uncertainty

Level 1 Level 2

E (GPa) 102 0.05 [- 18 2] ± 2

mee (kg) 180 0.05 ± 18

ρ (kg/m) 0.1015 3*10−5 ± 0.01015

ai (m) ai 0.0006 ± 0.015

bi (m) bi 0.0012 ± 0.03

As one can see, the uncertainty on the exit points coordinates is two times the
uncertainty on the anchor point coordinates. The reason lies in the fact that the
exit point coordinates depend not only on assembly but also on the uncertainty on

the gravity center coordinates. Since the moving-platform is a mechanically welded
structure, an error range of 10 % is defined. The linear mass ρ of CAROCA cables
is equal to 0.1015 kg/m leading to an uncertainty of ± 0.01015 kg/m.

In what concern the modulus of elasticity, it is defined with respect to the tension
set-point. If this set-point is known (level 2), we consider only the measurement
uncertainty. If not, a larger range of uncertainty is defined. It is to be determined
based on the tension variation on the cables and its correspondence in the experi-

mental hysteresis. The additional mass corresponds to a variation in cable tensions
from 574 N to 730 N, which corresponds to a modulus of elasticity of 84.64 GPa,
which leads to an error of 18 GPa. The nominal modulus of elasticity E= 102 GPa

1. A tension set-point is a tension distribution that balances the wrench applied on the platform, that the tension

controllers attempt to maintain.
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is determined with respect to ISO norm 12076.

Due to the non-linearities of the elasto-static model, explicit uncertainty ma-

trix and coefficients [ZDWK14, MKLP15] cannot be computed. Therefore, the
uncertainty of the elasto-static model of the CDPR to geometrical and mecha-
nical errors is evaluated statistically. Here, MATLAB® has been coupled with
modeFRONTIER®, a process integration and optimization software platform [Est14]

for the analysis. The analysis process is viewed as a stochastic estimation problem
in which the level of uncertainty in the design parameters and quantities of interest
is characterized probabilistically, and updated through successive iterations as new
information becomes available. The RMS (Root Mean Square) of the static deflec-

tion of CAROCA moving-platform is studied. All the uncertain parameters of the
elasto-static CAROCA model are defined with uniformly distributed deviations.

III.4.2.3 Uncertainty analysis with unknown tension set-point

Figure III.20(a) displays the distribution fitting of the static deflection RMS.
It shows that the RMS distribution follows a quasi-uniform law whose mean µ1

is equal to 1.34 mm. The RMS of the static deflection of the moving-platform is
bounded between a minimum value RMSmin equal to 1.12 mm and a maximum

value RMSmax equal to 1.63 mm ; a variation of 0.51 mm under all uncertainties,
which presents 38 % of the nominal value of the static deflection.

Figure III.20(b) depicts the RMS of the moving-platform static deflection as a

function of variations in E and ρ simultaneously, whose values vary respectively
from 0.09135 to 0.11165 kg/m and from 84.2 to 120.2 GPa. The static deflection
is very sensitive to cables mechanical behavior. The RMS varies from 0.42 mm to
0.67 mm due to the uncertainties of these two parameters only. As a matter of

fact, the higher the cable modulus of elasticity, the smaller the RMS of the moving-
platform static deflection. Conversely, the smaller the linear mass of the cable, the
smaller the RMS of the moving-platform static deflection. Accordingly, the higher
the sag-introduced stiffness, the higher the moving-platform static deflection. Be-

sides, the higher the axial stiffness of the cable, the lower the moving-platform
static deflection.
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Figure III.20 – (a) Distribution of the RMS of the moving-platform static deflec-
tion, Evolution of the RMS under a simultaneous variations of (b) E and ρ (c) m
and ρ

Figure III.20(c) illustrates the RMS of the moving-platform static deflection as
a function of variations in ρ and m, whose value varies from 162 kg to 198 kg.
The RMS varies from 0.52 mm to 0.53 mm due to the uncertainties of these two
parameters only. The moving-platform mass affects the mechanical behavior of

cables : the heavier the moving-platform, the larger the axial stiffness, the smaller
the moving-platform static deflection. Therefore, a fine identification of m and ρ is
very important to establish a good CDPR model. Comparing to the results plotted
in Fig. III.20(b), it is clear that E affects the RMS of the moving-platform static

deflection more than m and ρ.
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For the analyzed pose of the moving-platform, it is shown that the uncertainty
on the elasticity modulus affects the most the static deflection of the moving-
platform and then the static stiffness of the CDPR. Next, an analysis is made

in the CAROCA workspace to check the effect of cables elasticity into the static
deflection for different poses of the moving-platform.

III.4.2.3.1 Analysis of the elasticity modulus over the workspace

Figure III.21 presents the variation of the static deflection norm in the sub-

workspace of the CAROCA prototype defined with −1.5 < x < 1.5 m,
−1.5 < y < 1.5 m and z = 1 m. Here, only the uncertainty on the modu-
lus of elasticity is considered, so it varies from 84.90 GPa to 120.2 GPa. A sliced
presentation of the static deflection variation is adopted to be able to visualize it

for a given modulus of elasticity. The volume slices are spaced by 4 GPa.
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Figure III.21 – Variation of the static deflection norm considering uncertainty
on the modulus of elasticity over the sub-workspace (−1.5 < x < 1.5 m,
−1.5 < y < 1.5 m and z = 1 m)

The static deflection is very sensitive to the cables elasticity. It varies from
0.28 mm to 0.58 mm in the defined sub-workspace, a variation of 0.3 mm. When
the modulus of elasticity is at its higher bound, the static deflection varies from

0.28 mm to 0.41 mm, a variation of 0.13 mm presenting 43 % of the whole variation.
When the modulus of elasticity is at its lower bound, the static deflection varies
from 0.40 mm to 0.58 mm, a variation of 0.18 mm presenting 60 % of the whole
variation. Also, for the same plane (xy) the effect of the modulus of elasticity
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decreases with the increase of its value. Accordingly, the smaller the modulus of
elasticity, the higher its influence on the static deflection.

III.4.2.4 Uncertainty analysis with known tension set-point

In this section, the cable tension set-points during moving-platform operation
are supposed to be known. so, the modulus of elasticity can be calculated around
the operating point and the confidence interval is reduced to ± 2 GPa. The uncer-

tainty range and the discretization step are provided in Tab. III.2 for the second
level.

Figure III.22(a) displays the distribution fitting of the moving-platform static

deflection RMS. It shows that the RMS distribution follows a normal law whose
mean µ2 is equal to 1.32 mm and its standard deviation σ2 is equal to 0.01 mm.
This deviation is relatively small with respect to the CAROCA prototype size. The
RMS of the static deflection of the moving-platform is bounded between a minimum

value RMSmin equal to 1.28 mm and a maximum value RMSmax equal to 1.39 mm ;
a variation of 0.11 mm under all uncertainties. The modulus of elasticity affects
the static compliant of the moving-platform, which imposes to always consider E
error while designing a CDPR model.

The bar charts plotted in Fig. III.22(b) and Fig. III.22(c) present, respectively,
the effects of the uncertainties in ai and bi, i=[1..8], to the static deflection of the
CAROCA for symmetric (0 m, 0 m, 1.75 m) and non-symmetric (3.2 m, 1.7 m, 3 m)
robot configurations (Fig. B.2(a) and Fig. B.2(b), respectively).

These effects are determined based on t-student index st of each uncertain para-
meter. This index is a statistical tool that can estimate the relationships between
outputs and uncertain inputs. The t-Student test compares the difference between

the means of two samples of designs taken randomly in the design space :
• M+ is the mean of the n+ values for an objective S in the upper part of domain
of the input variable,
• M− is the mean of the n− values for an objective S in the lower part of domain

of the input variable.
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Figure III.22 – (a) Distribution of the RMS of the moving-platform static deflec-
tion (b) Effect of uncertainties in ai (c) Effect of uncertainties in bi

The t-Student [Est14] is defined as :

st =
|M− −M+|
√

√

√

√

V 2
g

n−
+
V 2
g

n+

, (III.7)

where Vg is the general variance.

When the moving-platform is in a symmetric configuration, all attachment
points have nearly the same effect amplitudes. However, when it is located close to
points B2 and B4, the effect size of their uncertainties becomes high. Moreover, the

effects of the corresponding mobile points (A2 and A4) increase. It means that the
closer the moving-platform to a given point, the higher the effect of the variations
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in the Cartesian coordinates of the corresponding exit point of the moving-platform
onto its static deflection. That can be explained by the fact that when some cables
are longer than others and become slack for a non-symmetric position, the sag

effect increases. Consequently, a good identification of geometrical parameters is
highly required. In order to minimize these uncertainties, a good calibration leads
to a better error model.

III.4.2.4.1 Analysis of the natural frequency over the workspace

Multidimensional stiffness can make the appropriate analysis complicated, es-
sentially when both rotational and transitional stiffness elements are considered
in the same stiffness matrix. An easier way to analyze the CDPR stiffness is the
analysis of its natural frequencies. Here, the natural frequencies are calculated with

respect to the linearized stiffness matrix around a set-point [KZW06], which deals
with elastic cables with non-negligible mass. The first, second and third natural
frequencies of the moving-platform are noted f1, f2 and f3, respectively. They are
shown in Fig. III.23 over the sub-workspace of the CAROCA prototype defined as

−1.5 < x < 1.5 m, −1.5 < y < 1.5 m and z = 1 m, when the rotations are
neglected and the nominal values of the input parameters are considered.
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Figure III.23 – Variation in the end-effector natural frequencies f1, f2 and f3 over
a sub-workspace (−1.5 < x < 1.5 m, −1.5 < y < 1.5 m and z = 1 m)

As mentions Fig. III.23, the natural frequency increases when the moving-platform
is closer to the workspace center and it decreases when it is closer to the workspace

edges. Thus, the CDPR is more stiff when its moving-platform is in the workspace
center, leading to lower static deflection. It should be noticed that the stiffness of
the CDPR depends strongly on the moving-platform position.
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III.5 Summary of the chapter

This section dealt with the sensitivity analysis of the CDPR to its modeling, par-

ticularly to the level of cables modeling. Once identified experimentally, the cable
dynamic parameters were integrated into the non-linear cable tension formulation,
which allowed us to study the dynamic behavior of a three DOF CDPR while
considering both linear and non-linear cable tension formulations. The comparison

between the dynamic responses of the two semi-industrial CDPRs of different sizes
shows that substantial differences between the proposed non-linear approach and
the classical linear one are more meaningful for large-size CDPRs. Accordingly,
the first contribution of this chapter deals with a good choice of the cable tension

model with regard to the CDPR size and dynamics.

A sensitivity analysis of CDPR to its level of modeling was also performed
through a comparison between the rigid, elasto-static and elasto-dynamic models

of CDPR while the linear model of cable tension is adopted. The choice of CDPR
model should be made based on the control scheme used and the task. When using
the elasto-static static model for high dynamics articular correction, the controller
will not see the oscillatory effects due to interactions of the cables with the complete

system. As the encoder feedback is not influenced by vibrations, the elasto-dynamic
model can help predict the unseen oscillations.

An uncertainty analysis of the static and dynamic responses of CDPRs to un-

certainties on the model parameters was made in this chapter. It appears that
the effect of the elasticity and the dynamic stiffening of cables is the highest onto
the dynamic and oscillatory motions of the moving-platform. This emphasizes the
importance of the integration of the cables hysteresis into error modeling, which

requires an upstream identification of the cable elasticity parameters in relation to
the frequency range of the CDPR response. It appears that the effect of geometrical
errors onto the static deflection of the moving-platform is significant too. However,
geometrical effects are negligible with respect to the elasticity contributions on the

moving-platform static deflection variation. They can be identified using some ca-
libration [dSTDC14, JS03] or self-calibration [MPV, BJB+09] techniques, allowing
us to fix them at a nominal value. This finding supports the idea to adjust each
cable model and parameters to the CDPR dynamic model for a good trajectory
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tracking.

With respect to the uncertainty analysis, the uncertain parameters can be sor-

ted to be identified as shown in Fig. III.24. Here, the static deflection of the
moving-platform to error sources was evaluated in terms of test of student st. If
stcritical < st, where stcritical is the critical t-student, the uncertain parameter has
a significant effect on the static deflection. The critical parameters are listed below

from the most influential to the least influential starting from the modulus of elas-
ticity on the top priority, the geometrical parameters, arriving to mass parameters.

Figure III.24 – Increasing priority of identification of uncertain parameters

These conclusions are established based on the analysis of some CDPRs and
they are valid for every CDPR whatever is its overall size. It is still important

to compensate for all the CDPR error sources through a good control. This uses
a priori knowledge of the robot dynamics to improve the trajectory tracking by
generating an additional feed-forward reference. As a consequence, next chapter
presents two complementary control strategies. The first one deals with the feed-

forward model-based control allowing to compensate not only the elasticity, but
the oscillatory effects too. The second control strategy manifests in the integration
of the input-shaping into the proposed model-based control.
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IV.1 Introduction

The main objective of this thesis is to improve the trajectory tracking of the
end-effector and to reduce its vibrations due to the CDPR overall elasticity. For
this purpose, this chapter proposes two complementary control strategies dealing
with the stiffness analysis presented in Chapter II while considering the results

on sensitivity and uncertainty analysis of CDPRs obtained in Chapter III. These
control strategies manifest in :

— Elasto-dynamic model-based control.

— Input-shaping for model-based control.

The elasto-dynamic model-based control is the coupling of a PID feedback
controller with a model-based feed-forward torque control scheme for CDPR. The
feed-forward controller is based on the elasto-dynamic model of CDPR (Sec. II.4),
which compensates the joint errors due to the dynamic and oscillatory behavior

of the CDPR. The predicted errors are corrected "off-line" to generate a pre-
compensated input signal, which remedies the deflection of the end-effector due
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to cable elasticity and its vibrations due to the dynamic interactions. The propo-
sed control strategy based on the elasto-dynamic model leads to a feed-forward
controller for moving-platform oscillatory motion compensation in addition to the

conventional rigid body feedback. The integration of cable tension distribution is
part of this control strategy in order to guarantee positive cable tensions along the
trajectory.

The second contribution of this chapter deals with the integration of input-
shaping filters to the previously proposed model-based feed-forward control. These
filters are integrated upstream of the pre-compensation block in order to increase
the CDPR performances by the improvement of residual vibrations attenuation.

Input-shaping filters consist in convolving the desired command signal with a se-
quence of impulses. The resulting convolution is used as a new reference control
signal.

Experimentations are performed to validate the two feed-forward control strate-
gies and check their performances on the CDPR positioning accuracy and trajectory
tracking.

IV.2 Feed-forward model-based control

The feed-forward model-based control uses a priori knowledge of the CDPR

dynamics to improve the end-effector trajectory tracking by generating a pre-
compensated control input. The pre-compensation unit is seen as an off-line com-
pensation of the actuated joint displacement in such way that after execution the
end-effector follows the desired position trajectory with a better accuracy.

The feed-forward model-based control scheme is shown in Fig. IV.1. It is com-
posed of a feed-forward block in which the inverse kinematic model is determined
based on a CDPR reference model (Red block in Fig. IV.1). This latter is a pre-

dictive model of the dynamic behavior of the mechanism. Its input is the torque
set-point ζrg ∈ R

n generated by the inverse rigid dynamic model, and its output
is the reference winch angular displacement qref ∈ R

n and velocity q̇ref ∈ R
n ; n

being the number of actuators. These reference vectors pre-compensate the joint

errors estimated by the used reference model.
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Figure IV.1 – Feed-forward model-based PID control

ζrg is calculated using the inverse rigid model of CDPR, which depends on the
desired moving-platform pose xrg and acceleration ẍrg. The angular displacement
vector qrg, velocity vector q̇rg and acceleration vector q̈rg of joints are calculated

based on the rigid model of CDPR depending on the desired motion of the end-
effector (pose xrg, velocity ẋrg and acceleration ẋrg).

Considering the dynamic model of the motors described in Eq. (II.16), the set-
point is assigned to the motors :

ζm = ζcorr + ζf(q̇rg) + ζrg, (IV.1)

where ζm corresponds to the torque set-point applied to the motor and ζf(q̇rg) is
the joint friction torque vector (Eq. (II.17)). ζcorr = Imh(t) corresponds to the

torque of correction, where Im is a diagonal matrix containing the winch moment
of inertia. h(t) is defined by :

h(t) = q̈rg + Kp (qref − q) + Kd (q̇ref − q̇) + Ki

∫ t+i

ti
(qref − q) dt, (IV.2)

where Kp ∈ R
n×n is the proportional gain matrix, Kd ∈ R

n×n is the derivative
gain matrix, Ki ∈ R

n×n is the integrator gain matrix. q̈rg, q̇ref , qref represent
the desired angular acceleration coming from the rigid model, the desired angular

velocity and the desired angular displacement of the motors coming from the chosen
reference model, respectively. q̇ and q represent the measured angular velocity and
the measured angular displacement of motors, respectively.

Through the identification between Eq. (II.16) and Eq. (IV.1) describing the
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dynamic model of the motors, we obtain :

q̈ = q̈rg + Kp (qref − q) + Kd (q̇ref − q̇) + Ki

∫ t+i

ti
(qref − q) dt. (IV.3)

If the difference between measured and desired joint angular positions and velocities
is null, the end-effector will track exactly the desired trajectory and q̈ = q̈rg.

The closed-loop dynamics corresponds to the following tracking error equation :

ë + Kp e + Kd ė + Ki

∫ t+i

ti
e dt = 0. (IV.4a)

e = qref − q. (IV.4b)

e being the tracking error, which is the difference between qref and q.

The feed-back control is a real-time operation. By calculating off-line an ap-

propriate trajectory pre-compensation, the effects of the oscillatory dynamics are
compensated. However, this may lead to non-robustness of the control with respect
to model uncertainties and a delay between the reference and the real CDPR beha-
vior may occur. To handle this issue, the off-line feed-forward part should respect

the findings of Chapter III to deal with robust model for control. This leads to
the attenuation of errors coming from modeling and parameters uncertainties as
shown for different industrial robots [ODB+12, VS02].

IV.2.1 Discrete-time control of CDPR

The equivalence between a CDPR and its control unit is described in Fig. IV.2.
It is composed of 3 units : (i) Actuation systems, (ii) Feedback controller and

(iii) Feed-forward controller.
Each unit of the equivalent control scheme is characterized by its own discretiza-

tion time. Let ∆ta be the sampling time of the actuation model, which is a function
of the feed-back controller frequency. ∆tb is the sampling time of the feed-forward

unit. It is chosen greater or equal to ∆ta to avoid delays and divergence.

IV.2.1.1 Actuation system

This model presents the actuators of the CDPR. Its input is the motor torque

vector ζm and its output is the measured angular coordinates q and velocities q̇ of
the actuators. This measurement is obtained at each time t = β∆ta.
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Figure IV.2 – Equivalent control scheme : Discrete-time control

IV.2.1.2 Feedback control loop

This control loop permits the application of the control law mentioned in Eq. (IV.1).
The feedback control loop has a sampling time ∆ta. At each time t = β∆ta, the

loop calculates a new value for ζm, which is sent to the actuation model at time
t = (β + jβ)∆ta, β ∈ N

+, at which a new measurement of q and q̇ is made.
jβ ∈ N

+ presents the delay between the generation of the control set-point by the
feed-back controller and the reception of the encoder information.The value of ζm

is kept constant in the time interval [(β + jβ)∆ta (β + jβ + 1)∆ta].

IV.2.1.3 Feed-forward control loop

This control loop aims to generate the modified trajectory. The input of this

loop is the desired motion of the moving-platform, which manifests in the desired
pose xrg, velocity ẋrg and acceleration ẍrg of the moving platform. The output is
the reference angular displacement qref and velocity q̇ref . The sampling time of
the feed-forward control loop is ∆tb.

At each time α∆tb, a set of torques ζrg is calculated, coming from a cable tension
distribution algorithm, with respect to the desired motion of the moving-platform
(pose x, velocity ẋ and acceleration ẍ). The pre-compensation of the trajectory is
obtained by generating the joint angular displacement qref and velocity q̇ref with

respect to the chosen reference model of the CDPR. ζrg and qref are sent to the
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feedback control loop at each time α∆tb, α ∈ N
+. These vectors are kept constant

in the time interval [α∆tb (α + 1)∆tb].

IV.2.2 Pre-compensation

The reference angular displacement of joints is obtained by using a reference
model of CDPR. Therefore, the kinematic constraints are implicitly considered de-
pending on the chosen model. The reference model of the proposed control strategy

manifests in an off-line pre-compensation of the desired trajectory.
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Figure IV.3 – Model-based pre-compensation

The off-line pre-compensation strategy is applied to eliminate the trajectory tra-
cking errors due to the robot compliance. This strategy is based on the anticipation
of the joint errors and correcting them by modifying the reference actuated joint
position qref as follows :

q
j
ref = qrg − δqjmod, (IV.5a)

δqjmod = q
j
mod − qrg, (IV.5b)

where j refers to the reference model control. It can be either "rg", "es" or "ed"
to mention the rigid, elasto-static and elasto-dynamic models, resp. δqjmod ∈ R

n

is a vector of angular displacements errors, leading to trajectory tracking errors.
This vector is calculated by using a CDPR model of simulation depending on the
sources of errors that are considered. It anticipates the correction of the actuated
joint angles q

j
mod with respect to the displacement vector qrg, which is calculated
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through the rigid model of CDPR and corresponds to the unstrained cable length.
The subtraction of δqjmod from qrg generates a new reference input signal q

j
ref al-

lowing the end-effector to track more accurately the desired trajectory.
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Figure IV.4 – Pre-compensation : illustrative example

Fig. IV.4 presents an illustrative example of the proposed pre-compensation in
the articular space. When the rigid joint angles qrg are constant and the anticipa-

ted actuated joint angles q
j
mod oscillate around qrg, the control input signal q

j
ref is

the "mirror image" of q
j
mod with respect to qrg.

It is noteworthy that δqjmod depends on the CDPR reference model used to

calculate the vector q
j
ref . To the best of our knowledge, two CDPR models have

been used in the literature for the feed-forward model-based control of CDPRs with
non-sagging cables : (i) rigid model (see Sec. II.2) and (ii) elasto-static model (see
Sec. II.3) [BLS+13, Ars13b]. As a consequence, one contribution of this chapter

deals with the use of the (iii) elasto-dynamic model (Sec. II.4) of CDPRs for feed-
forward control.

IV.2.2.1 Rigid pre-compensation

When using the rigid model of simulation, the reference signal qref anticipates

neither the cable elongation nor the oscillatory motions of the moving-platform.
So, the rigid reference signal q

rg
ref is expressed as :

q
rg
ref = qrg. (IV.6)

The PID feedback controller uses the motor encoders response q, which is related

to the unstrained cable length lrg. This latter corresponds to the winch angular dis-
placement qrg. It should be noted that the cable elongations and moving-platform
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oscillatory motions are not considered here, and as a consequence, cannot be rejec-
ted.

IV.2.2.2 Elasto-static pre-compensation

The CDPR elasto-static model integrates a feed-forward cable elongation com-
pensation [BLS+13]. Here, at each sampling time t = α∆tb, each cable of the
CDPR is isolated and its elongation is determined with respect to the discretized

end-effector pose. Knowing the force applied on each cable, we estimate its elon-
gation based on the chosen cable tension model. This is done while considering
both axial and sag-introduced stiffness or while neglecting sag through linear or
non-linear cable tension model (Section II.3).

When q
rg
ref is used as a reference signal in the feedback control scheme, the

moving-platform displacement δxes is obtained from cable elongation vector δles.
To compensate for the cable elongation effects, δles is converted into winch displa-
cement δqesmod, which estimates the joint error with respect to the rigid angular

position qrg. Thus, the elasto-static reference angular displacement qesref becomes :

qesref = qrg − δqesmod. (IV.7)

As the CDPR cable tensions are always positive, δles > 0 corresponding to δqesmod < 0.
The reference signal qesref corresponds to a fake position of the moving-platform for

the cable elongation compensation. Here, under the effect of cable elongations, the
reference moving-platform pose is estimated to achieve the desired pose. Although
the elasto-static reference model takes into account the cable elongations, the non-
compensation for the moving-platform pose errors due to the cable interaction with

the whole system and elasto-dynamic behavior is not considered.

IV.2.2.3 Elasto-dynamic pre-compensation

The CDPR elasto-dynamic model of simulation takes into account the oscillatory

and dynamic behavior of the moving-platform due to cable elongations. Here, the
cables are no-longer isolated and are affected by the moving-platform dynamic
behavior.

Once the moving-platform pose xed is calculated through the direct elasto-

dynamic model employing MATLAB® routine ode45, the cable elongation vector
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δled can be determined. This latter is converted into δqedmod, which corrects the an-

gular position vector qrg. The elasto-dynamic reference angular displacement qedref

becomes :

qedref = qrg − δqedmod. (IV.8)

The proposed control strategy based on the elasto-dynamic model leads to a feed-

forward controller for moving-platform oscillatory motion compensation in addition
to the conventional rigid body feedback while considering the measurements from
motor encoders.

IV.2.3 Controller tuning

Whatever the used reference model for control, the controller tuning metho-
dology remains the same. Applying the Laplace transform to the tracking error

differential Eq. (IV.4a), and assuming zero initial conditions, we obtain for each
drive :

e(s)(s3 +Kp s+Kd s
2 +Ki) = 0. (IV.9)

While assigning :

Kp = (2υ + 1)Υ2
n, (IV.10a)

Kd = (2υ + 1)Υn, (IV.10b)

Ki = υ3
n, (IV.10c)

Eq. (IV.9) can be expressed as folows :

e(s)(s+ Υn)(s2 + 2υΥn s+ Υn
2) = 0. (IV.11)

This differential equation expresses the dynamic behavior of the closed-loop tra-
cking error in response to a perturbation. This corresponds to a first-order system

followed by a second-order system. Since the parameters υ and Υn are strictly po-
sitive real numbers, the system is always stable.
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To obtain the fastest answer without oscillation, υ = 1 is chosen. Thus, a third
order system with a triple real pole is obtained. In this case, the PID gains become :

Kp = 3Υ2
n, (IV.12a)

Kd = 3Υn, (IV.12b)

Ki = Υ3
n, (IV.12c)

It is therefore the choice of Υn that will determine the value of the coefficients

Note that Kp, Kd and Ki are all a function of Υn. A simple and effective method
is to select Υn twice the breaking pulse Υc of the motors, which is expressed as :

Υc =
kt ke
̟ Im

, (IV.13)

where ̟ is the resistance of the motor armature, ke is the counter-electromotive
force coefficient and kt represents the electromagnetic torque coefficient of the
motor. These parameters are available in the user manual of winches.

IV.2.4 Numerical results

A spatial CDPR with three cables and three translational-DOF is considered.
This CDPR is composed of a point-mass end-effector, which is connected to three

massless but elastic linear cables. A suspended configuration of the CREATOR
prototype (Fig. IV.5(a)), being developed at LS2N, is chosen such that the cables
are tensed along a prescribed trajectory. This configuration is taken as an illus-
trative example. However, the proposed model-based feed-forward control can be

applied not only to suspended CDPRs but also to fully-constrained ones.
The Cartesian coordinate vectors of the cable exit points expressed in the global

frame Fb are described in Tab. B.5. The end-effector mass mee is equal to 1 kg.
The identified polyethylene cables presented in App.A.2 are used for the simula-

tions. Their modulus of elasticity is equal to 70 GPa and their volumetric density
is equal 0.901 g/cm3. Here, the hysteresis effects are not taken into consideration
as the tension set-point is known.
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Figure IV.5 – (a) CREATOR prototype CAD diagram (b) End-effector desired
path in Fb

Table IV.1 – Characteristics of the CREATOR actuators

Parameter (Unit) Value

Imotor (kg.m2) 42.5e-6

Ireducer (kg.m2) 6.5e-6

r 8

Im (kg.m2) 0.0031

ke (Vrms.s/rad) 0.48

̟ (ohm) 12.8

To determine the coefficients Kp, Kd and Ki of the PID controller, the parame-

ters presented in the motor 1 and reducer 2 catalogs are used and they are presented
in Tab. IV.1. Imotor is the inertia of the motor with brakes in its entry. Ireducer is
the inertia of the reducer. r is the transmission ratio of the reducer. Im is the total
inertia of the motor seen at its exit and is calculated as follows :

Im = r2(Imotor + Ireducer). (IV.14)

These parameters lead to the PID controller coefficients displayed in Tab. IV.2.

Table IV.2 – Kp, Kd and Ki gains of the PID controller

Kp Kd Ki

1125.8 58.12 7269.60

1. Parker™ SMB/SME Brushless servo motor series. Ref : SMEA 60601- 489IZ64S54.

http ://www.parkermotion.com/dmxreadyv2/faqsmanager/faqsmanager.asp ?category=75&question=1391

2. Parker™ Economical Planetary Gearheads - PE. Ref : PE3-008-10M040/063/09/20.

http ://ph.parker.com/us/17607/en/standard-precision-inline-planetary-gearboxes-pe-series
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It is noteworthy that for accuracy purposes, the cable dead length between the
drum and the pulley is considered while calculating the cable elongation.

IV.2.4.1 Trajectory generation

Before running trajectory tracking, a pre-compensation of the end-effector sta-
tic deflection is performed when adopting the control of the CDPR based on its
elasto-static and the elasto-dynamic models, respectively. It is to compensate the

static deflection due to the end-effector weight by correcting the joint angular dis-
placement leading to trajectory tracking error.

A linear path along the vertical axis with a 5-th degree polynomial motion profile

is considered. It goes from the initial pose p1 = [x1, y1, z1]
T to the final pose

p2 = [x2, y2, z2]
T , 1 m high along z-axis, during tf = 3 s. A pause equal to tf at

the final pose is considered. The effects of the end-effector residual oscillations are
easily detected during the steady-state phase. Therefore, the end-effector trajectory

is parametrized as follows :

p(t) = p1 + α(t) (p2 − p1); t ∈ [0 tf ], (IV.15a)

p(t) = p2; t > tf . (IV.15b)

The fifth degree polynomial for the linear path is expressed as :

α(t) = β5 t
5 + β4 t

4 + β3 t
3 + β2 t

2 + β1 t+ β0, (IV.16)

where β5 =
6
t5f

, β4 =
−15
t4f

, β3 =
10
t3f

, β2 = 0, β1 = 0 and β0 = 0. These va-

lues are chosen such that the velocity and acceleration of the end-effector are null at

the beginning and the end of the trajectory as shown in Figs. IV.6(b) and IV.6(c).

IV.2.4.2 Trajectory tracking

The end-effector trajectory error δp is defined as the difference between its
desired position prg and its real one p. This latter should be normally determined
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Figure IV.6 – Desired (a) Position (b) Velocity and (c) Acceleration profiles of
the end-effector

experimentally. To assess the performances of different control laws, a good CDPR
predictive model should be used to estimate the end-effector real position. The
CDPR elasto-dynamic model is the closest one to the real CDPR with non sagging

cables. Therefore, it is used to predict the real behavior of the CDPR. The input
of this model is ζm, which leads to the Cartesian coordinate vector pmed of the
end-effector position. The trajectory error is defined as δp(t) = pmed(t) − prg(t).

To analyze the relevance of the proposed control strategy, the three control

schemes under study were simulated through Matlab-Simulink®.
The sampling times ∆ta and ∆tb are supposed to be equal in the simulations, i.e.,
∆ta = ∆tb = 1 ms.

Figure IV.7(b) shows the norm ‖δp‖ of the end-effector trajectory tracking er-
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ror when the proposed model-based feed-forward control law is applied. The three
CDPR models are successively used to generate the reference signal. Figure IV.7(a)
illustrates the end-effector trajectory tracking error δz along the z-axis, which is

the main one as the CDPR under study is assembled in a suspended configuration
and its end-effector tracks a vertical trajectory. The red (green, blue, resp.) curve
depicts the end-effector trajectory tracking error when the elasto-dynamic (elasto-
static, rigid, resp.) model is used as a reference model.
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Figure IV.7 – (a) Position error of the end-effector along the z-axis (b) 2-norm
of the end-effector Cartesian trajectory tracking error vector

The CDPR end-effector should oscillate around a final pose during the steady
state phase. We can notice in Fig. IV.10 that the simulated responses obtained
through the elasto-static and elasto-dynamic controls lead to varying position er-

ror of the end-effector. This is due to PID effects as the input e of the PID controller
is never null.

IV.2.4.2.1 Transitional phase

As shown in Fig. IV.8, the position error norm ‖δp‖ while using the rigid model
as a reference for the feed-forward at time t = 3 s is equal to 13.14 mm. This value
is equal to 2.18 mm when the elasto-static model is used as a reference for the feed-
forward, which represents a relative difference of 83 % with respect to the rigid
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Figure IV.8 – Position error norm during the transitional phase

control 3. The position error norm ‖δp‖ while using the elasto-dynamic model as a
reference for the feed-forward at time t = 3 s is equal to 0.58 mm, which represents
a relative difference of 95 % with respect to the rigid control.

This shows a good improvement of the moving-platform positioning accuracy at
the end of the trajectory through the elasto-dynamic compensation comparing to
classical feed-forwards. The trajectory tracking error is also reduced significantly
with the CDPR elasto-dynamic control 4 compared to the classical feed-forward

model-based control schemes. This is due to the fact that the elasto-dynamic control
compensates not only the static errors due to cable elongations but also the oscil-
latory behavior of the moving-platform.

IV.2.4.2.2 Steady-state phase

To define the performance indexes of control laws with respect to residual vibra-
tion reduction, an illustrative example of an oscillatory time function f is given in
Fig. IV.9. It firstly illustrates the definition of the first and the fifth Peak-to-Peak
amplitudes of the time response. The corresponding function damping can also be

described by the decrement of residual vibrations. Here, this decrement is defined
as the ratio between the first and the fifth Peak-to-Peak amplitudes.

3. "rigid control" refers to "rigid model-based control of CDPR"
4. "elasto-dynamic control" refers to "elasto-dynamic model-based control of CDPR"
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Figure IV.9 – Illustrative example : Peak-to-Peak amplitudes
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Figure IV.10 – Position error norm during the steady-state phase

As shown in Fig. IV.10, at time t = 3 s, the end-effector achieves its final position
and then oscillates.

Figure IV.11 shows the first and fifth Peak-to-Peak amplitudes of the residual
vibrations of the end-effector during the steady state phase while using the rigid,

elasto-static and elasto-dynamic feed-forwards.
When the rigid model is used as a reference for the feed-forward, the first Peak-
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Figure IV.11 – Histogram of the first and fifth Peak-to-Peak amplitude of ‖δp‖
during the steady-state phase

to-Peak amplitude of residual vibrations is equal to 0.28 mm. This value is equal to
0.25 mm when the elasto-static model is used as a reference for the feed-forward,
which represents a relative difference of 10 % with respect to the rigid control.

When the elasto-dynamic model is used as a reference for the feed-forward, the
first Peak-to-Peak amplitude of residual vibrations is equal to 0.18 mm, which
represents a relative improvement of 35 % with respect to the rigid control.

The fifth Peak-to-Peak amplitude of residual vibrations is equal to 0.15 mm when

the rigid model is used as a reference for the feed-forward. This value is equal to
0.17 mm when the elasto-static model is used as a reference for the feed-forward.
The fifth Peak-to-Peak amplitude of residual vibrations is equal to 0.11 mm when
the elasto-dynamic model is used as a reference for the feed-forward, which re-

presents a relative improvement of 26 % with respect to the rigid control. The
advantage of the elasto-dynamic control stays the best with respect to the classical
feed-forwards for the fifth Peak-to-Peak.

It is clear that the elasto-dynamic control leads to better attenuation of residual

vibrations of the moving-platform than the conventional elasto-static and rigid
controls.
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Figure IV.12 – Histogram of Decrement of the Peak-to-Peak amplitudes of ‖δp‖
during the steady-state phase

Figure IV.12 shows the decrement of the Peak-to-Peak amplitudes of ‖δp‖ du-
ring the steady-state phase. This decrement is equal to 1.64 (1.47, 1.86, resp.) when
the elasto-dynamic (elasto-static, rigid, resp.) model is used as a reference for the

feed-forward. The decrement of the Peak-to-Peak amplitudes of ‖δp‖ during the
steady-state phase is quasi identical for the different control schemes as the cable
damping is the same in the different reference models used and the PID gains of
the feedback controller are also the same.

These interesting results are supported in [BCC19] by the analysis of the pro-
posed model-based control scheme, when the end-effector tracks a circular helical
trajectory.

IV.2.5 Experimental results

The objective of the experiments is to check the relevance of the elasto-dynamic

feed-forward control with respect to the classical rigid and elasto-static ones. In
this section, the variation of the pose error of the end-effector along a trajectory
is experimentally studied on the CREATOR prototype arranged with three cables
and a point-mass end-effector (see App. B.3). The end-effector is requested to track
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the linear path defined in Section IV.2.4.1. The transitional phase allows us to de-
pict the trajectory tracking of the end-effector. The steady-state phase is useful to
analyze the residual vibrations.

For experimentations, the CREATOR prototype is set up to match with the
robot configuration used in numerical simulations. The test bench is prepared un-
der the assumption that cables are elastic and keep linear shape along a trajectory.

The end-effector and pulleys are considered as points. To provide this configuration,
some precautions are taken into account on the test bench to provide the parti-
cular configuration of the CREATOR prototype. The experimental test bench is
described in Section IV.2.5.1.

IV.2.5.1 Test bench

The equivalent architecture of the CREATOR prototype is described in Fig. IV.13.

— The CREATOR prototype is actuated by three Parker™ motors with redu-

cers connected to 3D printed winches. The motors characteristics are given in
Tab. IV.1. Each motor is connected to a Parker™ motor drive, which commu-
nicates with the dSpace™ controller through bi-directional real-time links.

The friction torques of the actuators are identified with respect to the static
friction model [KD04] by incrementing the joint angular velocity, as shown

in Fig. IV.14. The first move of the actuator corresponds to the dry friction
torque ζd. As we do not have an accurate measurement of the motor torques,
we suppose that the viscous friction torque is zero. Here, the dry friction value
is ζd = 0.14 N.m.

— The winch is 3D printed and it is mounted to the reducer axis. Its pitch is
equal to 2 mm and its radius is equal to 50 mm.

— 3D printed pieces are used as pulleys of the CREATOR protype (See Fig. IV.15).
They were designed in such a way that their exit amount to a point. The en-

trance of the pulley is conical and their exit is a hole of 3 mm of diameter.
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Figure IV.13 – Equivalent architecture of the CREATOR protype
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Figure IV.14 – Determination of the static friction

Grease is added inside the pulley to reduce friction between the cable and the
pulley.
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Figure IV.15 – 3D-printed pulleys used for the CREATOR protype

— As the sensitivity analysis in Chapter III highlighted the high effect of the
cables elasticity onto the dynamic and oscillatory motions of the moving-
platform, the CREATOR cables were experimentally upstream identified (See
Appendix A.2). These cables are made up of eight threads of polyethylene

fiber with a diameter of 0.5 mm.

The following trajectory tracking experiments will confirm a good identifica-
tion of the modulus of elasticity. This is shown through the measurement of a
natural frequency ≈ 3.5 Hz, which corresponds to the calculated natural fre-
quency (3.67 Hz) while using the identified modulus of elasticity. As mentioned

in [BCCD17], the absolute uncertainties in the applied force and resulting elon-
gation measurements from the test bench outputs are estimated to be ± 1 N
and ± 0.03 mm, respectively. The resulting modulus of elasticity of the cable
is equal to 70 ± 1.51 GPa.

— The end-effector was designed such that it is close to a point-mass. It is a steel
machined cylinder with a hole that crosses vertically and a conical hole on its

top surface (Fig. IV.17). This makes the cables to intersect at the same point.

The magnetic support of the laser tracker target is connected to end-effector

at its bottom part. The laser tracker target is then connected to this magne-
tic support, Fig. IV.16. The acquired information from the laser tracker is
obtained with respect to the target center. An offset with respect to the end-
effector gravity center is considered to get the appropriate trajectory tracking

measurements.

The total mass of the end-effector used for the control gathers its own mass



128 CDPR control for accuracy improvement

Cables 

End-effector

❫❴❵❵❜❝❞ ❜❡ ❞❢❣ ❤✐❥❣❝ ❞❝✐❦❧❣❝
target

Tar♠❣❞ ❜❡ ❞❢❣ ♥✐❥❣r tracker

Figure IV.16 – End-effector and laser tracker target

Figure IV.17 – CAD modeling and manufacturing drawings of the end-effector

plus the mass of the laser tracker target and its magnetic support. The total
mass of the end-effector is equal to 0.780 kg.

— The command of the CREATOR prototype is implemented in a host PC
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through a software interface generated by ControlDesk® 5. This latter enables
the real-time simulation of the control schemes, created with Matlab-Simulink®,
in the dSpace™ control unit. The control sampling times ∆ta and ∆tb are consi-
dered equal : ∆ta = ∆tb = 1 ms.
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Figure IV.18 – Base frame Fb of the CREATOR prototype

— An API Radian laser tracker is used to define the base frame Fb = {O, xb, yb, zb}.
A circle plane passing through points B1, B2 and B3 is created and is projected
on the floor to create the base frame, whose origin is the circle center as shown
in Fig. IV.18. All the measurements are expressed in that frame.

Moreover, the laser tracker is used to measure the pose of the end-effector along
the tracked trajectory in the global base frame Fb. The static measurement
accuracy of the used laser tracker is ± 10 µm The measurement start signal
is synchronized with the control signal through the dSpace controller.

5. ControlDesk is the dSPACE experiment software for seamless electronic control unit development. It performs all the

necessary tasks and gives a single working environment, from the start of experimentation right to the end.
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IV.2.5.2 Experimental setup

The experimental setup of the trajectory tracking of the CREATOR prototype
is shown in Sec. IV.2.5.1. Experimental procedure, made for the verification of
numerical results, is as following :

(a) (b)

Figure IV.19 – Experimental setup : (a) Non-suspended, (b) Suspended initial
pose of the end-effector

— A support for the end-effector, shown in Fig. IV.19(a), is placed on its desired

initial position. The base plate of this support is 3D printed and is connected
to a steel block through steel square tubes. This base is a negative form of the
end-effector. The support is useful to define the relationship between actuated
angles and the corresponding unstrained cable lengths. Besides, it provides the

same initial pose for the end-effector for the different experiments.

As shown in Fig. IV.19(a), the end-effector is first located on the support. In

this way, it is in the non-suspended initial pose and it undergoes neither the
external effects nor its stiffness. The non-suspended absolute position of the
end-effector is measured.
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— Modify cable lengths to get a minimize cables tension the maximum possible
while keeping cables without sag. Then, lock the motors.

— The support is removed and the end-effector becomes suspended under the
effect of its own weight subjected to cable elasticity (Fig. IV.19(b)). Then, the
suspended position of the end-effector is measured.

— A command is generated through ControlDesk® in combination with Matlab-
Simulink®. It makes the end-effector move along a straight line, the same tra-
jectory as the numerical example described in Sec. IV.2.4.1.

— When the elasto-static or elasto-dynamic models are used as references for the
control, a compensation of the static deflection is performed before starting

the trajectory. This is done through smooth angular displacements of joints
corresponding to the correction of the static deflection.

IV.2.5.3 Static analysis

The ideal initial position of the end-effector corresponds to the initial rigid po-
sition prg(t = 0− s). This latter is measured when the end-effector is located on
the support in the absence of the stiffness effect ;

prg(t = 0− s) = [0.299, −0.047, 0.623] m.

Three tests are performed to check the positioning repeatability. This is done by
suspending the end-effector and measuring its elasto-static position and the corres-

ponding static deflection. The suspended position pes(t = 0− s) of the end-effector
is measured when the support is removed and the end-effector is suspended under
the effect of its own weight. Table IV.3 displays the static deflection ‖dp‖ with
respect to the same non-suspended rigid position prg(t = 0− s) for different tests.

The end-effector presents a different static deflection for each test. This depends
on the initial tensions on the cables when the end-effector is in its ideal initial po-
sition. The absence of tension sensors make it hard to start the experiments with
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Table IV.3 – Experimental data : Static deflection of the end-effector before
compensation

Experience Static deflection ‖dp‖ (mm)

Test 1 9.00

Test 2 6.32

Test 3 8.30

zero cable tensions without sag, leading to different static deflections.

The position repeatability is not good enough that for each test we obtain a
different position for the end-effector. Indeed, the trajectory does not start with
the same position for the different tests. Comparing the control laws by comparing

the absolute trajectory errors will not project the true improvement of the accuracy
as the different trajectories do not start with the same static error.

For this fact, we propose to define a new reference p∗ to be used for the deter-
mination of the trajectory error. p∗ is defined as described in Sec. IV.2.4.1 starting

from the compensated position, where p∗(t = 0 s) = pes(t = 0+ s). This
allows to compensate the static error for the different tests at the start time of the
trajectory. This static error should be seen at the end of the trajectory.

IV.2.5.4 Trajectory tracking

The trajectory error δp is defined as the difference between the measured trajec-
tory p and the reference one p∗ : δp(t) = p(t) − p∗(t). Figure IV.21(b) shows
the norm of the end-effector trajectory tracking error ‖δp‖ when the proposed feed-

forward control law is applied while using successively the three CDPR models to
generate the reference signal. Figure IV.21(a) illustrates the end-effector trajectory
tracking error along the z-axis δz, which is the main one as the CDPR under study
is assembled in a suspended configuration and the trajectory is vertical. The red

(gree, blue, resp.) curve depicts the end-effector trajectory tracking error when the
elasto-dynamic (elasto-static, rigid, resp.) model is used as a reference.

Figure IV.20 shows the set-point of current im = [i1m, i
2
m, i

3
m]T sent to the ac-

tuators, which is an image of torque set-point ζm. It is noteworthy that the
elasto-dynamic current set-point takes into account the oscillatory behavior on
the contrary to classical feed-forwards.
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Figure IV.20 – Experimental results : Current set-points (a) i1m, (b) i2m and (c) i3m

As one can see, the set-point of current is not constant during the steady-state
phase. This reflects the integrator effect of the PID controller as its input is never
zero. In addition, the torques ζrg and ζf do not compensate totally the gravity
and friction effects as they are obtained by identification, which is influenced by

uncertainties.

While applying im, the resulting trajectory error of the end-effector is plotted
in Fig. IV.21. The first thing worth noting in these plots is that the end-effector

oscillations are of a frequency of 3.5 Hz, which is close to the calculated first na-
tural frequency f1 = 3.67 Hz. A good identification of the modulus of elasticity,
respecting the uncertainty analysis conclusions, is confirmed.
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From Figs. IV.20 and IV.21, the delay jβ can be determined. When the rigid
model of the CDPR is used, a current discontinuity at time 2.53 s is depicted. This
leads to a discontinuity in ‖δp‖ at time 2.68 s, which corresponds to jrgβ = 0.15 s.

When the elaso-static model of the CDPR is used, a current discontinuity at time
2.73 s is depicted. This leads to a discontinuity in ‖δp‖ at time 2.87 s, which
corresponds to jesβ = 0.14 s. When the elasto-dynamic model of the CDPR is used,
a current discontinuity at time 2.57 s is depicted. This leads to a discontinuity in

‖δp‖ at time 2.70 s, which corresponds to jedβ = 0.13 s.
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Figure IV.21 – Experimental results : (a) Position error along z-axis of the end-
effector (b) Position error norm

IV.2.5.4.1 Transitional phase

At time t = 0 s, the trajectory error is set to be zero. In fact, the static error
is reported artificially to the end of the trajectory as the real trajectory of the

end-effector is compared to the modified rigid one p∗.

As shown in Fig. IV.22, the trajectory tracking error norm ‖δp‖ while using the
rigid model as a reference for the feed-forward at time t = 3 s is equal to 12.05 mm.

This value is equal to 3.45 mm when the elasto-static model is used as a reference
for the feed-forward, which represents a relative difference of 71 % with respect
to the rigid control. The position error norm ‖δp‖ while using the elasto-dynamic

model as a reference for the feed-forward at time t = 3 s is equal to 2.01 mm, which
represents a relative improvement of 83 % with respect to the rigid control.
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Figure IV.22 – Experimental results : Trajectory tracking error norm during the
transitional phase
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Figure IV.23 – Experimental results : Positioning improvement with respect to
rigid control at time t = 3 s.

Fig. IV.23 shows that experimental results present the same tendency as simu-
lations. This confirms a better improvement of the moving-platform positioning er-
rors through the elasto-dynamic compensation comparing to classical feed-forwards.

This is due to the correction of static errors through the compensation of cable elon-
gations and the compensation of the oscillatory effects of the moving-platform.
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IV.2.5.4.2 Steady-state phase
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Figure IV.24 – Experimental results : Position error norm during the steady-state
phase
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Figure IV.25 – Experimental results : Histogram of the first and fifth Peak-to-
Peak amplitudes of ‖δp‖ during the steady-state phase

As shown in Fig. IV.24, at time t = 3 s, the end-effector achieves its final position
and then oscillates. Fig. IV.25 depicts that when the rigid control is used, the first

Peak-to-Peak amplitude of residual vibrations is equal to 2.64 mm. This value
is equal to 2.48 mm when the elasto-static model is used as a reference for the
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feed-forward, which represents a relative difference of 6 % with respect to the rigid
control. When the elasto-dynamic model is used as a reference for the feed-forward,
the first Peak-to-Peak amplitude of residual vibrations is equal to 1.32 mm, which

represents a relative improvement of 50 % with respect to the rigid control.
The fifth Peak-to-Peak amplitude of residual vibrations is equal to 0.31 mm when

the rigid model is used as a reference for the feed-forward. This value is equal to
0.82 mm when the elasto-static model is used as a reference for the feed-forward.

The fifth Peak-to-Peak amplitude of residual vibrations is equal to 0.21 mm when
the elasto-dynamic control is used, which represents a relative improvement of 32 %
with respect to the rigid control.
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Figure IV.26 – First Peak-to-Peak amplitudes of ‖δp‖ : Comparison of numerical
and experimental results

Note that the experimental first Peak-to-Peak amplitude of residual vibrations
is ≈ 10 times higher than the numerical one as shown in Fig. IV.26. This is due to
the oscillatory behavior of the end-effector, which is a non-perfect point-mass that

may swing out along the trajectory.

Figure IV.27 shows the decrement of the Peak-to-Peak amplitudes of ‖δp‖ du-
ring the steady-state phase. This decrement is equal to 6.28 (2.94, 8.51, resp.) when
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Figure IV.27 – Experimental results : Decrement of the Peak-to-Peak amplitudes
of ‖δp‖ during the steady-state phase

the elasto-dynamic (elasto-static, rigid, resp.) model is used as a reference for the
feed-forward. The decrement of the Peak-to-Peak amplitudes of ‖δp‖ obtained
through experiments presents the same tendency than the numerical one. However,

this experimental decrement is lower than the simulated ones. This means that
some damping effects were not taken into consideration in simulations. A part of
the damping may occur in the pulley system as the different control laws take into
account neither the pulley friction nor the cable sliding into the pulley grooves.

Furthermore, the winch friction torques are not well identified as the drums are 3D
printed, leading to uncertainties. However, there is a clear improvement of trajec-
tory tracking and vibration attenuation.

The different experimental results confirm the numerical ones stating that the
elasto-dynamic control leads to better attenuation of residual vibrations of the
moving-platform than the conventional elasto-static and rigid controls. Numeri-
cal results mention that elasto-dynamic control leads to an improvement of 35 %

for the first Peak-to-Peak amplitude and an improvement of 26 % for the fifth
one with respect to the rigid control. Accordingly, experimentations confirm this
improvement as shown in Fig. IV.28. In fact, elasto-dynamic control leads to an
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Figure IV.28 – Vibration improvement of the elasto-dynamic control with respect
to rigid control during the steady-state phase

improvement of 50 % for the first Peak-to-Peak amplitude and an improvement of
32 % for the fifth one with respect to the rigid control. This confirms a good ability

of residual vibrations attenuation through the elasto-dynamic control.

Next section presents a frequency dependent control strategy, which deals with
the input-shaping for the feed-forward control.The following section aims to verify

if is worth to establishing an elasto-dynamic model for feed-forward model-based
control or it is worth to use a the simple integration of input-shaping filters to re-
design the original control signals for better positioning accuracy and disturbance
rejection.

IV.3 Input-shaping for feed-forward control

When the input of the controlled robot is an impulse, it leads to vibrations.
When a second impulse is applied, the vibrations induced by the first impulse
can be canceled if the relative phase is well chosen. Input-shaping control is ba-
sed on this logic. Input shaping is a technique used to eliminate inertia excited

vibrations in dynamic systems. It attenuates the residual vibrations by creating a
modified control signal, which is self-canceling. The convolution of the original in-
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put signal and a sequence of impulses forms the shaped input signal, which permits
to suppress unwanted vibrations [SS02]. In addition to the process of convolution,
input-shaping can be completed by time-delay blocks, depending on the natural

frequency of the robot.
Here, the original input signal is the desired motion (pose xrg, velocity ẋrg, ac-

celeration ẍrg) of the moving-platform. Based on the natural frequencies of the
system, the sequence of impulses, or mathematically the time-domain impulse res-

ponse of the input-shaping filter, to be convolved with the original input signal are
generated to create a modified input motion (pose xshrg , velocity ẋshrg , acceleration
ẍshrg) of the moving-platform.

xrg, xrg, xrg
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Figure IV.29 – Block diagram for closed-loop input-shaping control scheme

Figure IV.29 presents the main idea of the proposed closed-loop input-shaping
control for CDPRs. The input-shaping filter convolves the reference input with
a sequence of impulses having appropriate magnitudes Di, and time location ti,
i = [1..k], k being the number of impulses. Let’s note that :

qshref = qref(xshrg), (IV.17a)

q̇shref = qref(xshrg , ẋshrg), (IV.17b)

ζshrg = ζrg(xshrg , ẋ
sh
rg , ẍ

sh
rg). (IV.17c)

The shaped vector of the actuator displacement qshref and the shaped vector of
the actuator angular velocity q̇shref become the reference of the feedback controller,



IV.3 Input-shaping for feed-forward control 141

which generates a correction torque ζcorr. The applied closed-loop command for
motors is expressed as follows :

ζm = Imh(t) + ζf(q̇sh
rg) + ζshrg , (IV.18)

where ζm corresponds to the torque command applied to the motor, ζcorr = Imh

corresponds to the torque of correction and h(t) is defined by :

h(t) = q̈shrg + Kp (qshref − q) + Kd (q̇shref − q̇) + Ki

∫ t+i

ti
(qshref − q) dt, (IV.19)

where q̈shrg , q̇shref , qshref represent the desired angular acceleration coming from the
rigid model, the desired angular velocity and the desired angular displacement of

the motors generated by the shaped input signal, respectively. q̇ and q represent
the measured angular velocity and the measured angular displacement of motors,
respectively.

The closed-loop command corresponds to the following tracking error equation :

ë + Kp e + Kd ė + Ki

∫ t+i

ti
e dt = 0. (IV.20)

e being the tracking error, which is the difference between qshref and q.

The time-domain sequence of impulses of the input-shaping filter is generally
expressed as :

s(t) =
k
∑

1

Diδ(t− ti), (IV.21)

where k is the number of impulses, Di and ti are the magnitude and the time
location of the ith impulse, respectively.

The unwanted residual vibrations resulting from a sequence of impulses can be
expressed as a function of the estimated natural frequency Ω and the damping

ratio Γ, as follows :

V (Ω,Γ) = eΓΩtk
√

C(Ω,Γ)2 + S(Ω,Γ)2, (IV.22)

where

C(Ω,Γ) =
k
∑

i=1

Die
ΓΩti cos(Ωd ti) (IV.23a)

S(Ω,Γ) =
k
∑

i=1

Die
ΓΩti sin(Ωd ti) (IV.23b)
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The damped frequency is expressed as following :

Ωd = Ω
√

1 − Γ2. (IV.24)

Eq. (IV.22) gives tips on the vibrations generated by a sequence of impulses.

When this equation is null, the impulse amplitudes Di and their time locations ti,
i = [1..k], inducing zero residual vibration can be calculated. As Eq. (IV.23a)
and Eq. (IV.23b) are squared in Eq. (IV.22), this latter is equal to zero when both
Eq. (IV.23a) and Eq. (IV.23b) are null independently.

Some constraints should be taken into account for the time-delay impulses to
avoid having zero or an infinity of solutions. The first restriction permits avoiding
all zero-valued impulses. Therefore, it makes the shaped command results in the
same final set point as the original command. This restriction manifests in the fact

that the sum of the impulse amplitudes has to be equal to one :

k
∑

i=1

Di = 1. (IV.25)

Satisfying only Eq. (IV.25) may lead to very large positive values of impulses

and some negative ones. However, a bounded solution is required. This can be done
by restricting the impulse amplitudes to finite values or to strictly positive values :

Di > 0, i = [1..k] (IV.26)

The first impulse of the input-shaping filter must be set at time zero, to reduce the

time delay introduced by the input modification process :

t1 = 0. (IV.27)

Consequently, the problem to be solved is to find a time-domain sequence of
impulses s(t), whose first impulse is defined at time t = 0. This sequence should

make Eq. (IV.22) true and satisfy Eq. (IV.25) and Eq. (IV.26).

IV.3.1 Single mode Input-shaping control

Single mode Input-shaping filters are easy to implement. Numerous single mode
input-shaping methods have been proposed in the last decades. The Zero-Vibration
(ZV) and the Zero-Vibration-Derivative (ZVD) input-shaping filters are the most
common input-shapers in the literature [VYS08].
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IV.3.1.1 Zero-Vibration input-shaper

Zero-Vibration input-shaper manifests in the convolution of the original input
signal with a sequence of two impulses. The response to second impulse suppresses
the vibrations resulting from the first impulse. This two-impulse sequence is de-

termined while satisfying Eq. (IV.25) and Eq. (IV.26) and vanishing Eq. (IV.22)
and Eq. (IV.23). The impulses are separated by the half of the robot’s natural per-
iod. Hence, the ZV input-shaping filter is expressed by the following matrix form
[MNA16] :

ZV =





Di

ti



 =











1
1 +K

K

1 +K

0
tid
2











, (IV.28)

where Di and ti are the ith impulse amplitude and impulse time vectors, respecti-

vely. tid =
2π
Ωi
d

is the damped period of the system corresponding to the ith natural

frequency Ωi
d. The constant K is expressed as following :

K = e

−Γπ√
1 − Γ2

. (IV.29)

IV.3.1.2 Zero-Vibration-Derivative input-shaper

In addition to the satisfaction of ZV-shaper conditions, a ZVD-shaper should

satisfy a zero derivative of Eq. (IV.22). The ZVD input-shaping filter consists in the
convolution of the original input signal with a sequence of three impulses separated
by half the period of the robot’s vibration [SS90]. It is expressed in a matrix form
as follows :

ZVD =





Di

ti



 =











1
1 + 2K +K2

2K
1 + 2K +K2

K2

1 + 2K +K2

0
tid
2

tid











, (IV.30)

where K is expressed by Eq. (IV.29).

IV.3.1.3 Robustness to modeling errors

The difference between Ω (a variable), which is the actual value of the undam-
ped natural frequency of the system, and Ωm (a constant), which is the "mode-
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led" value of the undamped natural frequency Ω, was pointed in [Kan11]. The
latter proves that vibration approaches zero when Ω tends to Ωm. This research
work shows that for a vibratory system, a modeling frequency is chosen such that
d C(Ω,Γ)

d Ω
=

d S(Ω,Γ)
d Ω

= 0 at the modeling frequency Ω = Ωm.

Figure IV.30 displays the sensitivity curves for ZV and ZVD shapers. It shows
the amplitude of residual vibrations as a function of the normalized frequency

Ω/Ωm. This allows us to compare the performance of the robust and non-robust
approaches. Here, the modeling frequency Ωm is set to 2π rad/s and the damping
ratio Γ to zero. The percentage vibration is the ratio between the amplitude of vi-
brations when using input shaping and the amplitude of residual vibrations when

shaping is not used.
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Figure IV.30 – Sensitivity curves of ZV and ZVD input-shapers

The sensitivity curve of the ZV-shaper shows that the higher the modeling er-
rors, the faster the residual vibration increase when using a ZV-shaper. Besides, the
vibrations generated when using a ZVD shaper remain at a lower level. The robust-

ness can be measured quantitatively by measuring the width of the curve at some
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low level of vibrations. This non-dimensional robustness measurement is called the
shaper insensitivity I. The 5 % insensitivity has been labeled in Fig. IV.30.

For the ZV shaper, the 5 % insensitivity I is equal to 0.06 before the residual

exceeds 5 % of the unshaped vibration. The ZVD shaper presents an insensitivity
I = 0.28. By comparing the 5 % insensitivities shown in Fig. IV.30, it can be
concluded that the ZVD shaper is significantly more robust to modeling errors
than the ZV shaper.

IV.3.2 Multi-mode input-shaping control

For CDPRs, there are two or more natural modes to be addressed by the input-

shaping process. A simple way to obtain a two-mode shaper is to convolve two
single-mode shapers together [SCS97]. When describing a two-mode shaper, the
constraints used to eliminate each mode will be stated explicitly. For example, if
ZV constraints are used for the first mode and ZVD is used for the second mode,

then the result will be a ZV-ZVD shaper. In real systems, the residual vibrations
can never be null because of the modeling errors and disturbances. The integration
of the input-shaping filter leads to oscillation attenuation, but not to cancellation
even if a multi-mode shaper is used.

IV.3.3 Experimental results

Experimentations are addressed here to check the effect of the integration of

input-shaping filters into the closed-loop control scheme. In this section, the rigid
model of simulation is used to establish the reference signal. The suspended confi-
guration of the CREATOR prototype described in App. B.3 is studied. The gains
Kp, Kd and Ki of the PID controller are given in Tab. IV.2.

IV.3.3.1 Trajectory generation

A non-smooth velocity trajectory is chosen to stimulate the natural modes of the
CDPR. The motion is uniformly accelerated until the end-effector achieves a desired

position along x-axis, y-axis and z-axis. The accelerations of the end-effector along
x-axis, y-axis and z-axis are defined by a bang-bang profile (Fig. IV.31(c)). The
nominal trajectory of the moving-platform is a vertical straight line from point P1 of
Cartesian coordinate vector p1 to point P2 of Cartesian coordinate vector p2 during
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tf = 3 s. Therefore, the trajectory followed by the end-effector is parametrized as
follows :

p(t) = β1t
2 + β2t+ β3, t ∈ [0

tf
2

], (IV.31a)

p(t) = β4(t− tf )2 + β5(t− tf) + β6, t ∈ [
tf
2

tf ], (IV.31b)

p(t) = p2, t > tf , (IV.31c)

where

β1 = β4 =
2 (p1 − p2)

t2f
, (IV.32a)

β3 = p1, (IV.32b)

β6 = p2, (IV.32c)

β2 = β5 = 0, (IV.32d)

The manipulator tracks a straight line (Fig IV.31(a)) from point P1 of Cartesian
coordinate vector p1 = [0.29,−0.047, 0.62]T m to point P2 of Cartesian coordinate
vector p2 = [0.29,−0.047, 1.62]T m. The nominal velocity (Fig. IV.31(b)) and
acceleration (Fig. IV.31(c)) profiles of the moving-platform are the time derivatives

of the nominal trajectory.

IV.3.3.2 Input-shaping

Figure IV.32 shows the determinant of the global stiffness matrix of the CREA-

TOR prototype along the trajectory represented in Fig. IV.31(a). This index is
used to evaluate the CDPR natural modes because it contains all the dynamic
information of the robot. It is clear that the stiffness of the robot varies a little
bit around the initial value defined at the start point. Here, the assumption of low

variations in CDPR natural frequencies is valid. Those natural frequencies are cal-
culated around the initial pose of the end-effector. It was verified in Section IV.2.5.4
that the identified natural frequencies correspond to those determined by solving
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Figure IV.31 – Nominal (a) position (b) velocity (c) acceleration profiles of the
moving-platform

the generalized eigenvalue problem associated with the apparent stiffness of the
CDPR [DM09].

The first two modes correspond to the natural frequencies f1 = 3.67 Hz and
f2 = 6.34 Hz, which correspond to impulse times 0.27 s and 0.15 s. For the first

mode, f1 = 3.67 Hz, the ZV and ZVD input-shapers are defined by Eq. (IV.33)
and Eq. (IV.34), respectively :

ZV3.67 Hz =





0.5000 0.5000
0 0.1360



 , (IV.33)

ZVD3.67 Hz ==





0.2500 0.5000 0.2500
0 0.1360 0.2720



 . (IV.34)
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Figure IV.32 – Determinant of the global stiffness matrix along the nominal
trajectory of the moving-platform

For the second mode, f2 = 6.34 Hz, the ZV and ZVD input-shapers are presented

by Eq. (IV.35) and Eq. (IV.36), respectively :

ZV6.34 Hz =





0.5000 0.5000
0 0.0788



 , (IV.35)

ZVD6.34 Hz =





0.2500 0.5000 0.2500
0 0.0788 0.1576



 . (IV.36)

The convolution of the ZV-shapers given in Eq. (IV.33) and Eq. (IV.35) gene-
rates a ZV-ZV input-shaping filter described by the following matrix form :

ZV − ZV =





0.2500 0.2500 0.2500 0.2500
0 0.0788 0.1360 0.2148



 . (IV.37)

The convolution of the ZVD-shapers given in Eq. (IV.34) and Eq. (IV.36) ge-
nerates a ZVD-ZVD input-shaping filter described by the following matrix form :

ZVD-ZVD =
[

0.0625 0.1250 0.0625 0.1250 0.2500 0.1250 0.0625 0.1250 0.0625

0 0.0788 0.1576 0.1360 0.2148 0.2936 0.2720 0.3508 0.4296

]

. (IV.38)

Figure IV.33 plots the velocity error δż of the moving-platform along z-axis,

which is defined as the difference between the nominal velocity of the moving-
platform and the measured one. The black (red, blue, green, cyan, resp.) curve
depicts δż when the unshaped (ZV-shaped, ZVD-shaped, ZV-ZV-shaped, ZVD-
ZVD-shaped, resp.) motion is used as a reference. To compare the different input-

shaping filters, we focus on the oscillations generated by discontinuities. Accordin-
gly, a zoom is made at time range t ∈ [3 5] s, as the moving-platform is supposed
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to become motionless at time t = 3 s and then residual vibrations appear. From
Fig. IV.33, it appears that the ZVD-ZVD shaper is the fastest one in terms of
residual vibration attenuation.
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Figure IV.33 – (a) Moving-platform Velocity error with and without input-
shaping (b) Zoom on the moving-platform velocity error with and without input-
shaping

To better compare the performances of the different input-shapers, Fig. IV.34
represents a bar chart showing the first Peak-to-Peak amplitude of δż. This per-
iod starts when the δż curve intersects with the line presenting the mean value
of oscillations. When no input-shaper is used, the Peak-to-Peak amplitude of δż

is equal to 0.0097 m/s. It is equal to 0.0061 m/s, 0.0045 m/s, 0.0056 m/s and
to 0.0028 m/s when the ZV, ZVD, ZV-ZV and the ZVD-ZVD shapers are used,
respectively. These results confirm that the ZVD and the ZVD-ZVD shaper lead
to the most stable behavior of the end-effector.

On the contrary to the ZV-shaper, the ZVD-shaper is robust to modeling errors.
The convolution of two one-mode robust shapers results in a two-mode robust
shaper treating two natural modes of the robot under study. That explains the
fact that the ZVD-ZVD filter leads to better oscillation attenuations. The two-

mode ZVD-ZVD input-shaping filter leads to the most robust control scheme and
the best one in terms of vibration rejection. Nevertheless, this robustness incurs in
a time penalty so that the non-robust ZV-shapers are faster (Fig. IV.33) than the
robust ZVD-shapers.



150 CDPR control for accuracy improvement

without IS ZV ZV-ZV ZVD ZVD-ZVD
0

0.002

0.004

0.006

0.008

0.01

P
ea

k
-t

o
-p

ea
k

 a
m

p
li

tu
d

e 
(m

/s
)

Figure IV.34 – Bar chart of the first period Peak-to-Peak amplitude of δż

IV.4 Summary of the chapter

This chapter proposed a model-based feed-forward control strategy for CDPRs.

The elasto-dynamic model of CDPRs was proposed to anticipate the full dynamic
behavior of the mechanism including the vibratory effects, cable elongations and
their interaction with the whole system to compensate them. The integration of
tension calculation makes the proposed control scheme valid for every configuration

of CDPRs. The comparison between the trajectory tracking errors obtained when
using the proposed elasto-dynamic model or the classical rigid and elasto-static
ones as control references shows meaningful differences. These differences reveal
that the proposed control strategy guarantees a better trajectory tracking when

adopting the proposed elasto-dynamic model to generate the reference control si-
gnal for CDPRs. Experimental results confirm that this accuracy improvement in
terms of trajectory error norm achieves ≈ 83 % with respect to the rigid control.
Additionally, the robustness and the disturbance rejection of the proposed control

strategy was confirmed for the non-redundant and suspended CREATOR proto-
type.

A second contribution of this chapter is to propose a frequency-dependent me-
thod to attenuate the unwanted vibrations of the CDPR. This method manifests in
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the integration of input-shaping filters to the proposed model-based feed-forward
control. In other words, in addition to the improvement of accuracy through model-
based control, the proposed control scheme tries to cancel residual vibrations due to

inertia and flexibility thanks to input-shaping filters. Two classes of input-shapers
were proposed : single-mode and multi-mode input-shapers. These filters re-design
the input signal to make it self-canceling of residual vibrations. The comparison
between the velocity errors obtained through experimentations when using unsha-

ped input signal or shaped ones as control references shows meaningful differences.
Accuracy improvement with respect to the unshaped control in terms of Peak-to-
Peak amplitude of velocity error achieves 53 % while using the ZVD input-shaper
and 72 % while using the ZVD-ZVD input-shaper. However, this percentage is

equal to 36 % while using the ZV input-shaper and 42 % while using the ZV-ZV
input-shaper. This confirms vibration rejection by robust input-shapers [SCS97].

Experimental results confirm that the integration of input-shaping filters into the

model-based feed-forward control scheme, when adopting the rigid model of CDPR
as a reference, is useful to attenuate residual vibrations and increase the trajectory
tracking of a non-redundant CDPR. Further experiments should be performed to
confirm or not this statement while using elasto-static or elasto-dynamic models

to pre-compensate cable stiffness.





V
Conclusions and Future Work

Contents

V.1 Conclusions· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 153

V.2 Future Work · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 156

V.1 Conclusions

Being a special type of parallel robots, Cable-Driven Parallel Robots (CDPRs)
are characterized by their large workspace. Thanks to their low inertia, CDPRs can
reach high velocities and accelerations in large workspaces. However, vibrations

may occur and pose stabilization and/or trajectory tracking of the end-effector
can be degraded due to the compliance of cables. To deal with this problem, this
thesis focused on the improvement of static and dynamic accuracy of CDPRs. It
proposed two complementary control strategies valid for any CDPR configuration

(suspended, fully-constrained, redundant, non-redundant).

The first control method lies in the coupling of a model-based feed-forward
control scheme for CDPR with a PID feedback controller. Here, an elasto-dynamic

model of the CDPR was expressed in order to compensate the oscillatory motions
of its moving-platform due to cable elongations and its dynamic behavior.

The second control method uses input-shaping filters into the proposed model-

based feed-forward control in order to cancel the oscillatory motions the moving-
platform. Thus, the input signal is modified for the CDPR to self-cancel residual
vibrations.
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The integration of cable tension distribution algorithms into these control schemes
make them deal with the different CDPR configurations and guarantee positive
cable tensions along the trajectory.

The integration of cable tension calculation or tension distribution algorithms
into these control schemes make them deal with the different CDPR configurations
and to guarantee positive cable tensions along the trajectory.

The parameters used in the proposed CDPR control models are subjected to un-
certainties. The mathematical models do not perfectly reflect the robot behavior
because of uncertainties such as the assembly and manufacturing inaccuracies of
geometrical components. Moreover, these models are influenced by non-geometrical

origin uncertainties. A robustness analysis was performed through sensitivity and
uncertainty analysis to lead to a robust model-based control of CDPRs. As a result,
an appropriate CDPR model was defined as a function of the targeted application
and the main sources of CDPR moving-platform pose errors were identified.

The main contributions of this thesis are listed as following :

V.1.1 Contribution on CDPR dynamic modeling

In Chapter II, the dynamic modeling of CDPRs was introduced. Different
dynamic models of CDPRs used for feed-forward control were reviewed and the
elasto-dynamic model was presented. As the choice of cable models is a primary

task for CDPR modeling, the different levels of cable stiffness used for dynamic
modeling were also discussed in Section II.3. Usually, the dynamic stiffness analysis
of CDPRs is made under the assumption that dynamic loads induce only small
elongations of the cables. The cable tension is usually considered proportional to

the variations in the cable length for a constant stiffness coefficient. Therefore, such
a model is not valid when cables are subjected to high strains due to large dynamic
oscillations or quick cable-length variations. As a consequence, a new non-linear

cable tension model was proposed in Section II.3.2 to express the dynamic and

oscillatory motions of CDPRs with cables subjected to fast varying lengths. This
formulation revealed a softening behavior when strains become large.
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V.1.2 Robustness analysis

Chapter III listed the different mechanical and geometrical error sources and
investigated their effects onto the trajectory tracking accuracy.

Sensitivity analysis was performed through a comparison between the conven-

tional dynamic models and the proposed elasto-dynamic model of CDPR. A weak-
ness of the conventional models used for model-based control is that they neglect
the dynamic effects due to cable interactions with the whole system. The elasto-
dynamic model tries to remedy this weakness by anticipating the oscillatory be-

havior of CDPR while the moving-platform tracks a trajectory. Such a model is
useful for control purposes as it predicts not only the cable elongations but also
their dynamic interaction with the moving-platform.

Moreover, sensitivity analysis of CDPR accuracy to cable tension modeling was
made through a comparison between the CDPR responses while using the linear
and the non-linear tension formulation of cables. This analysis mentioned that the
cable tension model does affect the trajectory errors for CDPRs with large overall

size, such as the FAST robot. It was demonstrated that variations in trajectory
tracking errors obtained from one cable tension model to the other one remains
small with respect to the CDPR size.

Uncertainty analysis was performed to test the robustness of CDPR model to
variations in parameters into a known range. It is useful for the reduction of uncer-
tainty, through the identification of model inputs that cause significant uncertainty
and should therefore be the focus of attention. The critical parameters were then

listed from the most influential to the least. It appeared from this analysis that the
effect of the modulus of elasticity of cables is the highest onto the dynamic and oscil-
latory motions of the moving-platform. For this purpose, the experimental method
named Dynamic Mechanical Analysis (DMA) was proposed to identify care-

fully the dynamic elastic and damping moduli of some cables to better compensate
the stiffness effects leading to pose errors and trajectory tracking degradation.
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V.1.3 Control for CDPR accuracy improvement

Chapter IV dealt with the implementation of two complementary feed-forward
model-based control strategies, which aim to improve the end-effector trajectory
tracking and reduce vibrations due to overall elasticity.

Section IV.2 dealt with the introduction of the proposed elasto-dynamic feed-

forward control and the establishment of the corresponding control laws. To check
the effectiveness of this control, a numerical comparison of the end-effector trajec-
tory tracking with respect to the classical feed-forward control schemes was made.

Moreover, experimentations were performed on the CREATOR prototype located
at LS2N, Nantes, France ; a CDPR with three cables and three Degree-Of-Freedom.
The experimental tests confirmed the numerical results, revealing that the elasto-
dynamic control scheme leads to better moving-platform trajectory tracking.

In addition, Section IV.3 deals with the integration of input-shaping filters
into the proposed model-based feed-forward control. These filters are integrated
upstream of the pre-compensation block in order to increase the CDPR perfor-

mances by the improvement of residual vibrations attenuation. Experimental tests
are made on the CREATOR prototype to verify the ability of the control scheme
to vanish residual vibrations of the manipulator. Experimentations were made on
the CREATOR prototype to verify the ability of the proposed control scheme inte-

grating input-shapers to vanish residual vibrations of the manipulator. These tests
were made while adopting the rigid model of CDPR for the feed-forward. The com-
parison between the velocity errors obtained through experimentations when using
unshaped input signal or shaped ones as control references showed meaningful dif-

ferences. Accordingly, accuracy improvement in terms of Peak-to-Peak amplitude
of velocity error with respect to the unshaped control can achieve up to 72 % while
using the ZVD-ZVD input-shaper. This confirmed the vibration rejection by ro-
bust input-shapers integrated into feed-forward control schemes for non-redundant

suspended CDPR.

V.2 Future Work

This thesis focused on the improvement of the dynamic accuracy of CDPRs.
A significant feature of this research work is the introduction of the oscillatory
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and dynamic behavior of the end-effector due to cable elongations into the feed-
forward control and its implementation in real applications. The integration of
input-shapers into the proposed feed-forward model-based control schemes is also

an important contribution of this thesis. Both control methods were taking into
account the conclusions drawn from the robustness analysis of CDPRs.

Basing on the above conclusions, some future works are proposed thereafter :

Feed-forward model-based control schemes with and without input-shaping were
validated experimentally for a suspended and non-redundant CDPR. Further ex-
periments should be performed to check the results obtained with other CDPR

configurations (fully-constrained, redundant). Besides, experimental results confir-
med that the integration of input-shaping filters into the model-based feed-forward
control scheme when adopting the rigid model of CDPR as a reference is useful to at-
tenuate residual vibrations and increase the trajectory tracking of a non-redundant

CDPR. This statement should be verified as well while using elasto-static or elasto-
dynamic models to pre-compensate cable elasticity.

Several parameters, such as the positions of the cable exit points on the drums,

were taken into account to establish the relationship between the uncoiled cable
lengths by the winches and the angular coordinates of the actuators. For better
repeatability of the proposed control schemes, the cable tensions should be measu-
red to estimate the elongations contained in the winches to compensate the static

offset more accurately.

The above conclusions are presented and verified experimentally for CDPR pro-
totypes where cable elasticity arises. Future research work should focus on the

cable dynamic sagging modeling, which may be more relevant for other CDPR
configurations. Such a case will occur when cable sagging becomes more influential
than cable elasticity. The interaction between cables and pulleys and cable sliding
into the pulley grooves should be studied and taken into consideration for a better

accuracy of the model. The integration of all these information and their coupling
into the proposed feed-forward control laws leads to non-linearities and high time-
consumption. A good real-time model of cable elongation while considering its
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overall stiffness may be promising for the improvement of control performances.

The proposed control strategies consider the CDPR parameters unchangeable.

This assumption is valid when infinitesimal variations occur. In order to compen-
sate for the uncertainties and variations in the parameters of dynamic models, an
adaptive control should be implemented [LGCH13, BKT15, JFGK15]. This control
makes it possible to estimate the moving-platform mass, its load, its gravity cen-

ter position with respect to its center of reference, its moments of inertia, the
dry and viscous friction coefficients as well as the inertia of winches. The on-line
adjustment of these parameters may considerably reduce trajectory tracking errors.

As discussed previously, trajectory tracking errors are mainly due to cable elasti-
city, which is compensated in the control laws presented in this thesis. This reveals
the importance of integrating cable hysteresis effect into the error modeling to
enhance the cable mechanical behavior model. This is important especially when

cable tensions are not measured. Integrating this model into adaptive control should
further improve the overall CDPR performance.

In order to improve the performances of multi-mode input-shaping control schemes,

an on-line estimation of CDPR natural frequencies, with respect to CDPR geo-
metry, cable tensions and the end-effector trajectory, will allow the user to tune
input-shaping filters as a function of those estimated natural along a prescribed
trajectory of the moving-platform and to reduce the moving-platform pose stabili-

zation time.

Last but not least, future research work should focus on the consideration of
environmental factors such as wind, humidity,... which may degrade CDPR perfor-

mance through cable wear for example.
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The identification of the mechanical parameters of the cable remains a practical
issue. A procedure to identify experimentally the quasi-static and dynamic modu-
lus of cable elasticity is presented. Dynamic Mechanical Analysis (DMA) is used

to study the effect of loading frequency on the elastic and damping mechanical
properties of cables.

For this purpose, Tema Concept cyclic loading test bench is used to identify the
quasi-static and dynamic modulus of elasticity of cables. The loading frequency of

this machine can achieve 10 Hz at the rate of 1 mm/s. To get higher frequencies,
the displacement rate should be reduced. The maximal charge of this test bench is
about 250 kN.

A.1 Steel Cable

A.1.1 Modulus of elasticity

An identification method of the modulus of elasticity of a steel wire cable is spe-

cified in the International Standard ISO 12076. The elasticity modulus or Young’s
modulus is defined as the ratio of stress along an axis to strain along that axis wi-
thin a specified load range and strain rate range. It amounts to an elastic material
stiffness. The modulus of elasticity of a wire cable does not depend solely on the

properties of the wire material, but on the wires layout and the load history too.
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Figure A.1 – Tema Concept cyclic loading test bench

The determination of the modulus of elasticity of a steel wire cable is described in

the International Standard ISO 12076.

s t ra n

s te e  core

ire

Figure A.2 – Cross section of a rotation-resistant steel wire cable ; Carl Stahl
Technocables Ref 1692
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A steel cable consisting of 18 strands twisted around a steel core used for the
CAROCA prototype is taken as an illustrative example for the identification. Each
strand of this cable is made up of 7 steel wires (Fig. A.2). The breaking force

of this cable is 10.29 kN. Force controlled cycles from 0 to 3087 N (30% of the
breaking force as specified in the International Standard ISO 12076) were applied
50 times at the rate of 0.05 mm/s. The free length of cable between the grips of
the tensile machine (Tema Concept cyclic loading test bench, see Fig. A.1) is 350

mm (15 times higher than the nominal cable diameter). A wire cable should always
be loaded and relieved multiple times for identifying the modulus of elasticity. A
relative steady state is reached when repeated extension readings are consistent at
both ends of the force range.
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Figure A.3 – Load-elongation diagram of a steel wire cable measured in steady
state conditions at the rate of 0.05 mm/s

Figure A.3 shows the load-elongation diagram of a rotation-resistant steel wire
cable of 4 mm diameter obtained after 50 cycles. It depicts that the unloading path

does not correspond to the loading path. The area in the center of the hysteresis
loop is the energy dissipated due to internal friction in the cable. Figure A.3 depicts
a non-linear correlation in the lower area between load and cable elongation. The
load-elongation diagram only gets linear when all the wires in each strand and all

the strands in the cable share the load together.
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According to the International Standard ISO 12076, the modulus of elasticity of
a steel wire cable has to be calculated using the tests reading as follows :

E10−30 = lc
F30% − F10%

Ac(x30 − x10)
, (A.1)

where Ac is the metallic cross-sectional area, i.e. the value obtained from the sum
of the metallic cross-sectional areas of the individual wires in the rope based on
their nominal diameters. x10 and x30 are the elongations at forces equivalent to

10% and 30% (F10% and F30%), respectively, of the nominal breaking force of the
cable (10.29 kN) measured during the loading path (Fig. A.3). lc is the measured
initial cable length.

It is noteworthy that this value differs from the one classically calculated using

the cross-sectional area of the cable as a whole, i.e. Sc = π
(

φc

2

)2
. φc being the

apparent diameter of the cable. In that case the modulus of elasticity is equal to
58.2 ± 1.3 GPa. This value differs from the one obtained following the International
Standard ISO 12076. The consequences will be limited in the presented application

if the definition of the cross-sectional area is the same in the identification procedure
of the cable behavior. However, vagueness in data exchange may lead to major
modeling errors.

A.1.2 Dynamic modulus of elasticity

The DMA supplies a sinusoidal load to be applied to the cable used for the
CAROCA prototype, which generates a sinusoidal elongation. By measuring both

the amplitude of the resulting elongation and the lag between the force and the
elongation, the modulus of elasticity and also the damping of the cable can be
identified. One advantage of DMA is that we can obtain a dynamic modulus for
different frequencies of the sine wave applied, allowing us to sweep across the

frequency range of the intended application. Six tests were performed on the cable
at frequencies f of 0.1, 1, 2, 5, 10, and 20 Hz (Fig. A.4). A preload was applied to
the cable before the sinusoidal force controlled waves, at 1500 N corresponding to
an operating point in the linear area of the load-elongation diagram.

The DMA allows us to calculate from the cable response to the sine wave a
dynamic modulus E∗, which is a complex value. The real part of the dynamic
modulus E′ represents the ability of the cable to return energy and can be assimi-
lated to the elastic modulus. The imaginary part E′′ provides the capacity of the
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Figure A.4 – Hysteresis loops for a 4 mm steel wire cable preloaded at 1500 N
with force controlled sine waves applied at 0.1, 1, 2, 5, 10, and 20 Hz

cable to dissipate energy. The applied sinusoidal force and resulting elongation are
used to calculate the absolute value of the dynamic modulus |E∗|, i.e. the ratio
of the maximum amplitude of the applied idealized stress σmax to the maximum
amplitude of the resulting strain ǫmax, as well as the phase angle ϕ between the

force and elongation. In this paper, the definition of the strain assumes an idealized
stress-strain response with a constant metallic cross-sectional area of the individual
wires in the cable, based on their nominal diameters. The corresponding elastic, E′,
and loss, E′′, moduli are obtained from the dynamic modulus and phase angle as

E′ = |E∗|.cosϕ and E′′ = |E∗|.sinϕ [Had95]. The intrinsic damping of the cable
can be described by the loss factor [CLP98] :

η =
E′′

E′
= tan(ϕ), (A.2)

which is the ratio between the imaginary and real parts of the complex modulus.
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The dynamic and elastic modulus, the phase angle ϕ and the loss factor η are given
for each DMA test in Table (A.1).

Table A.1 – Frequency dependency of the modulus of elasticity of the steel wire
cable at loading frequencies between 0.1 and 20 Hz

f (Hz) σmax (MPa) ǫmax |E∗| (GPa) E′ (GPa) ϕ (o) η c (N.m−1.s)

0.1 69.731 5.7439 10−4 121.4 ± 2.8 120.5 ± 2.8 6.8 ± 2.3 0.12 ± 0.04 22.8 109

1 67.136 4.8474 10−4 138.5 ± 3.3 137.3 ± 3.3 7.5 ± 2.8 0.13 ± 0.05 2.87 109

2 62.379 4.5499 10−4 137.1 ± 3.3 134.8 ± 3.1 11.0 ± 2.8 0.19 ± 0.05 2.08 109

5 58.654 4.3159 10−4 135.9 ± 3.1 131.0 ± 3.0 14.1 ± 2.8 0.25 ± 0.05 1.04 109

10 41.618 3.0490 10−4 136.5 ± 3.2 130.1 ± 3.0 17.6 ± 2.8 0.31 ± 0.05 0.65 109

20 24.025 1.7447 10−4 137.7 ± 3.3 126.2 ± 2.8 23.5 ± 2.8 0.43 ± 0.05 0.44 109

We can see that the stiffness and damping are highly dependent on frequency

for a given preload, over a representative frequency range of the CDPR behavior
[YCD15]. The elastic modulus increases significantly at very low frequencies, from
120.5 ± 2.8 GPa at 0.1 Hz to 137.3 ± 3.3 GPa at 1 Hz (Table (A.1)). This is
compared to the quasi-static modulus of elasticity calculated following the Inter-

national Standard whose value is equal to 102.2 ± 2.2 GPa. The elastic modulus
is secondly found to decrease slowly with higher frequency. At higher frequencies,
the dynamic modulus is approximately constant, with values within the confidence
interval referring to the reliability of the test procedure. Large changes in the phase

angle occur over the frequency range. The frequency-dependent loss factor appears
consistent with increased hysteresis and thus loading velocity.

The cable damping is modeled by using a linearly viscoelastic definition. Indeed,
an equivalent viscous coefficient can be defined as :

c =
E′ η

2πf
, (A.3)

f being the loading frequency.
These dynamic characteristics indicate how well the cable works in oscillatory

motions around a static equilibrium or along a dynamic trajectory since we can
get this value for a range of frequencies. Our results show that the apparent cable
stiffness can change significantly under dynamic loading and may lead to large
displacements of the CDPR end-effector.
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Figure A.5 – Polyethylene Cable used for the CREATOR prototype

A.2 Polyethylene Cable

The modulus of elasticity of cables is identified experimentally through a cyclic
traction test. The cable used in this application consists of textile cable. Force
controlled cycles from 0 to 200 N were applied 50 times to 4 cables at the rate of

50 mm/min. The different cables should not be twisted, but run in parallel. The free
length of cable between the grips of the tensile machine is 356 mm. Fig. A.6 shows
the charge-deformation diagram of the polyethylene cable of 0.5 mm diameter
obtained after 50 cycles.

The slope of the yield curve presents the cable stiffness. This slope corresponds
to a modulus of elasticity of 70 GPa, which corresponds to a flexible cable resistant
to a maximum charge of 250 N. The end-effector mass and trajectory should be
chosen the way that the cable tension set stays in the secure range (between 0 and

250 N).
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Figure A.6 – Elongation-load diagram of a polyethylene cable
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B.1 CAROCA

The CAROCA prototype developed at IRT Jules Verne [GCGG16] uses a 4 mm

diameter steel cable consisting of 18 strands twisted around a steel core, where
each strand of this cable is made up of 7 steel wires (Fig. A.2). The experimental
identification of this cable is presented in Section (A.1) and experimental data is
used for the uncertainty analysis.

B.1.1 Redundant configuration

The redundant configuration of the reconfigurable CAROCA prototype (Fig. I.12)

presents 8 cables and 6 DOF. The Cartesian coordinates of Ai (Bi, resp.) expressed
in Fp (in Fb, resp.) of the considered prototype are given in Tab. B.1.

B.1.2 Non-redundant configuration

The non-redundant configuration of the reconfigurable CAROCA prototype pre-
sents 3 cables and 3 DOF. The Cartesian coordinates of Ai (Bi, resp.) expressed
in Fp (in Fb, resp.) of the considered prototype are given in Tab. B.2.
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Figure B.1 – CAROCA prototype, Courtesy of IRT Jules Verne, Nantes

Table B.1 – Redundant CAROCA prototype : Cartesian coordinates of anchor
points Ai (exit points Bi, resp.) expressed in Fp (in Fb, resp.)

x (m) y (m) z (m) x (m) y (m) z (m)

B1 -3.5 2 3.5 A1 0.2 0.15 0.125

B2 3.5 2 3.5 A2 -0.2 0.15 -0.125

B3 -3.5 2 3.5 A3 -0.2 -0.15 -0.125

B4 3.5 2 3.5 A4 0.2 -0.15 0.125

B5 -3.5 -2 3.5 A5 -0.2 0.15 0.125

B6 3.5 -2 3.5 A6 0.2 0.15 -0.125

B7 -3.5 -2 3.5 A7 0.2 -0.15 -0.125

B8 3.5 -2 3.5 A8 -0.2 -0.15 0.125

B.2 FAST

The 6-dof FAST robot [Hui15, LTS+13] composed of 6 cables is considered. The

Cartesian coordinates of Ai (Bi, resp.) expressed in Fp (in Fb, resp.) of the consi-
dered prototype are given in Tab. B.1.
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Figure B.2 – CAROCA schematic (a) in a symmetric position (b) in a non-
symmetric position

Table B.2 – Non-redundant CAROCA : Cartesian coordinates of anchor points Ai

(exit points Bi, resp.) expressed in Fp (in Fb, resp.)

x (m) y (m) z (m)

B1 3.5 -2 3.5

B2 0 2 3.5

B3 -3.5 -2 3.5

Table B.3 – Non-redundant FAST : Cartesian coordinates of anchor points Ai

(exit points Bi, resp.) expressed in Fp (in Fb, resp.)

x (m) y (m) z (m) x (m) y (m) z (m)

B1 250 0 0 A1 8 0 0

B2 125 216.50 0 A2 4 7 0

B3 -125 216.50 0 A3 -4 7 0

B4 -250 0 0 A4 -8 0 0

B5 -125 -216.50 0 A5 -4 -7 0

B6 125 -216.50 0 A6 4 -7 0

Both CAROCA prototype and FAST CDPRs are compared in Tab. B.4. This
latter presents the height, width, the unstrained cables length when the end-effector
is in a home position, the end-effector mass and the maximum cable tension.

B.3 CREATOR prototype

CREATOR prototype is a CDPR dedicated for pedagogical applications and

then to be improved for specific industrial applications.
A suspended configuration of the reconfigurable CREATOR prototype with 3
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Table B.4 – Characteristics of CAROCA and FAST CDPRs

Height (m) Width (m) Unloaded cable End-effector Maximal design allowable

length (m) mass (kg) cable tension (kN)

CAROCA 3.5 7 4.6 100 10

FAST 376 500 284.7 10000 500

cables and 3 DOF is studied. The dimensions of this prototype are about 4.5 m
long, 4 m wide and 3 m high. The nominal mass of the moving-platform is equal

to 0.650 kg. It is supposed to be a point-mass.The cables used for the CREA-
TOR prototype are composed of 8 threads of polyethylene fiber. Their diameter is
equal to 0.5 mm and their modulus of elasticity is equal to 70 GPa as identified
experimentally (See Appendix A.2).

Figure B.3 – CREATOR prototype : Courtesy of LS2N, Nantes, France

The Cartesian coordinates of Bi expressed in Fb of the considered prototype are

given in Tab. (B.5). They are determined experimentally by means of a RADIAN
Laser tracker.

The tracker weighs 9 kg and it is 177 mm × 177 mm × 355 mm. The static
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Table B.5 – Measured Cartesian coordinates of exit points Bi in Fb

x (m) y (m) z (m)

B1 -2.085 0.651 2.726

B2 2.085 0.651 2.735

B3 -1.079 -1.898 2.733

Figure B.4 – RADIAN Laser tracker

measurement accuracy of the used laser tracker is ± 10 µm. Its range of working
is between 0 and 25 m.
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Complement for modeling

C.1 Euler angles convention

To represent the orientation the orientation of the mobile frame Fp with respect
to the fixed frame Fb , the convention X-Y -Z of the Euler angles is used. This

convention makes it possible to generate the three angles representing the rotations
around the three reference axes of the platform. The description of the Euler angles
consists of three successive elementary rotations, corresponding to the angles φ, θ
and ψ (see Fig. C.1) in the following order :

— a rotation about the x axis of an angle φ, passes from the reference (x, y, z) to
landmark (x, u, v).

— a rotation around the axis u of an angle θ, moves from the reference (x, u, v)

to the mark (w, u, z1).

— a rotation around the axis z1of an angle ψ, finally brings the reference (w, u, z1)
on the reference mark (x1, y1, z1).

Finally, the rotation matrix is calculated as bRp(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ),
where

Rx(φ) =











1 0 0

0 cφ −sφ
0 sφ cφ











, Ry(θ) =











cθ 0 sθ

0 1 0
−sθ 0 cθ











, Rz(ψ) =











cψ −sψ 0

sψ cψ 0
0 0 1











. (C.1)

Then,

bRp(φ, θ, ψ) =











cθcψ −cθcψ sθ

cφsψ + sφsθcψ cφsψ − sφsθcψ −sφcθ
sφsψ − cφsθcψ sφcψ + cφsθcψ cφcθ











. (C.2)
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Figure C.1 – Representation of the successive rotations of the Euler X-Y-Z conven-
tion

C.1.1 Angular velocity

The vector ω = [ω1 ω2 ω3]T describes the end-effector angular velocity in Fb.

With respect to the Euler angles convention, three successive angular velocities
occur :

— φ̇ around x-axis.

— θ̇ around u-axis, which is expressed as u = [0 cφ sφ]T in Fb.

— ψ̇ around z1-axis, which is expressed as z1 = [sθ − cθsφ cθcφ]T in Fb.

Accordingly, the angular velocity vector ω of the moving-platform can be ex-
pressed as following :

ω = φ̇











1
0

0











+ θ̇











0
cφ

sφ











+ ψ̇











sθ

−cθsφ
cθcφ











, (C.3)

which permits to rewrite it as :

ω =











φ̇+ ψ̇sθ

θ̇cφ − ψ̇cθsφ

θ̇sφ + ψ̇cθcφ











. (C.4)
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Therefore, the angular velocity vector ω of the moving-platform can be writing
in matrix form as following :

ω =











ω1

ω2

ω3











= Uȯ, (C.5)

where

U =











1 0 sθ

0 cφ −cθsφ
0 sφ cθcφ











, ȯ =











φ̇

θ̇

ψ̇











. (C.6)

C.2 Elasto-dynamic model resolution

Figure C.2 presents the resolution method of the CDPR elasto-dynamic model.
The applied motor torque ζm and the cable length vector les considering static de-
flection are the input. The output is the moving-platform pose estimated by solving
the CDPR elasto-dynamic model and integrating two times the MP acceleration.

MATLAB® routine ode45 is used in this thesis to solve the elasto-dynamic model.

Figure C.2 – Elasto-dynamic model resolution method

The elasto-dynamic cable length vector led is determined through the DGM
presented by Eq. (II.5). The elasto-static cable length vector les is subtracted from
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led to obtain δlvib, where δlivib being the ith cable elongation due to the vibratory
effects only. This cable elongation is used to calculate the deviation δτed of the
cable tension τed with respect to τ . Let’s recall Eq. (II.37) where :

τ ied = τ i + δτ ied. (C.7)

The expression of δτ ied is a function of the ith cable stiffness and depends on the
chosen cable tension model either linear or non-linear (See Section II.3.2).

The moving-platform acceleration vector ẍed is obtained upon multiplication of

Eq. (II.13) by the inverse mass matrix M−1 :

ẍed = M−1 (Wed (τ + δτed) − C ẋed + wex) , (C.8)

while considering the dynamics of actuators :

τ = χ−1 (ζm − Imq̈ − ζd tanh(c q̇) + ζv q̇) . (C.9)

where

— Im ∈ R
n×n is a diagonal matrix containing the winch moment of inertia.

— ζd ∈ R
n×n : a diagonal matrix containing the dry friction coefficients.

— ζv ∈ R
n×n : a diagonal matrix containing the viscous friction coefficients.
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