.. .. Objectifs, 90 3.2 Caractérisation électrique de la résistance thermique de composants GaN reportés

, 90 3.2.2 Mesure de résistance thermique du canal de composants GaN reportés, p.92

, Caractérisation par caméra infra-rouge de l'échauffement de composants GaN reportés

, 94 3.3.2 Caractérisation par caméra infra-rouge de composants GaN reportés sur cuivre

.. .. Conclusion,

, Une approche substrat possible pour gérer ces contraintes d'épitaxie est d'utiliser un substrat multicouches composé d'une couche de germe à l'épitaxie, d'une couche de collage et d'un substrat (cf. figure 93). La couche de germe à l'épitaxie permet d'être en accord de maille avec le GaN. Le substrat doit être choisi de manière à être adapté en termes de coefficient de dilatation thermique avec le GaN. La couche de collage permet de réaliser le collage entre les deux matériaux. Plusieurs approches ont déjà été réalisées avec de tels substrats, A.1 Approche adoptée Nous avons présenté dans le chapitre 1 de cette thèse deux problématiques pour lesquelles l'utilisation de substrats adaptés peut apporter des solutions : les contraintes d'épitaxie du GaN et l'auto-échauffement des composants de puissance

, Figure 93 -Vue schématisée en coupe d'un substrat multicouches

, On peut citer par exemple le fait qu'ils présentent une meilleure dissipation thermique [76], que le pic de champ électrique est éloigné de la surface ce qui améliore leur fiabilité [77] ou encore que leur tenue en tension est liée à l'épaisseur des composants contrairement aux composants latéraux, Ces substrats utilisent des matériaux avantageux pour l'épitaxie du GaN mais qui ont la propriété d'être isolants électriquement

, Nous allons donc nous intéresser ici à deux autres matériaux conducteurs pour la fabrication de composants verticaux et pour l'épitaxie du GaN : le molybdène

, Ces deux matériaux sont intéres-sants car ils présentent un coefficient de dilatation thermique proche de celui du GaN. Néanmoins, l'épitaxie du GaN n'est pas possible directement sur ces métaux : il faut passer par l'utilisation d'une couche de germe à l'épitaxie et donc à l

A. Nakagawa, Y. Kawaguchi, and K. Nakamura, Silicon limit electrical characteristics of power devices and Ics, 2018.

B. Allard, Electronique de puissance -Bases, perspectives, guide de lecture, 2016.

T. Skotnicki, Transistor MOS et sa technologie de fabrication, 2000.

M. Wang and K. J. Chen, Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate Pumping, IEEE Electron Device Letters, vol.32, issue.4, pp.482-484, 2011.

N. Baron, Optimisation de l'épitaxie sous jets moléculaires d'hétérostructures à base de GaN : application aux transistors à haute mobilité d'électrons sur substrat silicium, 2009.

J. Piprek, Nitride semiconductor devices principles and simulation, 2007.

O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann et al., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, Journal of Applied Physics, vol.87, issue.1, p.334, 2000.

L. Yang, Y. Hao, X. Ma, J. Zhang, C. Pan et al., High temperature characteristics of AlGaN/GaN high electron mobility transistors, Chinese Physics B, vol.20, issue.11, p.117302, 2011.

A. Nigam, T. N. Bhat, S. Rajamani, S. Bin-dolmanan, S. Tripathy et al., Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si (111) substrate, AIP Advances, vol.7, issue.8, p.85015, 2017.

M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto et al., Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substratetransfer technology using h-BN, Applied Physics Letters, vol.105, issue.19, p.193509, 2014.

K. M. Wong, Transfer of GaN-based Devices Grown on Silicon Substrate to Other Substrates, 2011.

T. Liu, Y. Kong, L. Wu, H. Guo, J. Zhou et al., 3-inch GaN-on-Diamond HEMTs With Device-First Transfer Technology, IEEE Electron Device Letters, vol.38, issue.10, pp.1417-1420, 2017.
DOI : 10.1109/led.2017.2737526

N. Zhang, High voltage GaN HEMTs with low on-resistance for switching applications, 2002.

F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P. Rolland, Effects of AlGaN Back Barrier on AlN/GaN-on-Silicon High-Electron-Mobility Transistors, vol.4, p.124101, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00783378

I. B. Rowena, S. L. Selvaraj, and T. Egawa, Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si, IEEE Electron Device Letters, vol.32, issue.11, pp.1534-1536, 2011.
DOI : 10.1109/led.2011.2166052

N. Herbecq, I. Roch-jeune, N. Rolland, D. Visalli, J. Derluyn et al.,

/. Aln and . Gan, Si power devices realized by local substrate removal, vol.7, p.34103, 2014.

T. Nguyen, Réalisation et caractérisation de HEMTs AlGaN/GaN sur silicium pour applications à haute tension, vol.11, 2013.

G. Civrac-de-fabian, Vers la réalisation de composants haute tension, forte puissance sur diamant CVD. Développement des technologies associées, 2009.

O. Menard, Développement de briques technologiques pour la réalisation de diodes schottky sur nitrure de gallium, 2010.

H. Isselé, Caractérisation et modélisation mécaniques de couches minces pour la fabrication de dispositifs microélectronoiques-application au domaine de l'intégration 3D, 2014.

V. H. Nguyen, Antennes miniatures et reconfigurables utilisant des matériaux diélectriques et ferroélectriques oxydes et oxynitrures en couches minces, 2013.

P. Norton, T. Braggins, and H. Levinstein, Impurity and lattice scattering parameters as determined from Hall and mobility analysis in n-type silicon, Physical Review B, vol.8, issue.12, p.5632, 1973.

M. Roschke and F. Schwierz, Electron Mobility Models for 4H, 6H, and 3C SiC, IEEE Transactions on Electron Devices, vol.48, issue.7, 2001.
DOI : 10.1109/16.930664

D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones et al., Defect donor and acceptor in GaN, Physical Review Letters, vol.79, issue.12, p.2273, 1997.
DOI : 10.1103/physrevlett.79.2273

URL : https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1259&context=physics

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu et al., Twodimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures, Journal of Applied Physics, vol.85, issue.6, p.3222, 1999.

P. Muret, P. Volpe, T. Tran-thi, J. Pernot, C. Hoarau et al., Schottky diode architectures on p-type diamond for fast switching, high forward current density and high breakdown field rectifiers, Diamond and Related Materials, vol.20, issue.3, pp.285-289, 2011.
DOI : 10.1016/j.diamond.2011.01.008

URL : https://hal.archives-ouvertes.fr/hal-00739714

H. Umezawa, Y. Kato, and S. Shikata, 1 ? On-Resistance Diamond Vertical-Schottky Barrier Diode, p.250
DOI : 10.7567/apex.6.011302

?. , Applied Physics Express, vol.6, issue.1, p.11302, 2013.

A. Chakroun, A. Jaouad, M. Bouchilaoun, O. Arenas, A. Soltani et al., Normallyoff AlGaN/GaN MOS-HEMT using ultra-thin Al 0.45 Ga 0.55 N barrier layer : Normally-off AlGaN/GaN MOS-HEMT". physica status solidi (a), vol.214, p.1600836, 2017.
DOI : 10.1002/pssa.201600836

URL : https://hal.archives-ouvertes.fr/hal-01914374

Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida et al., Gate injection transistor (git) â a normally-off algan/gan power transistor using conductivity modulation, IEEE Transactions on Electron Devices, vol.54, issue.12, pp.3393-3399, 2007.
DOI : 10.1109/ted.2007.908601

L. Su, F. Lee, and J. J. Huang, Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer, IEEE Transactions on Electron Devices, vol.61, issue.2, pp.460-465, 2014.

W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications, IEEE Transactions on Electron Devices, vol.53, issue.2, pp.356-362, 2006.
DOI : 10.1109/ted.2005.862708

W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, Recessed-gate enhancement-mode GaN HEMT with high threshold voltage, Electronics Letters, vol.41, issue.7, pp.449-450, 2005.
DOI : 10.1049/el:20050161

P. B. Klein, S. C. Binari, K. Ikossi, A. E. Wickenden, D. D. Koleske et al., Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy, Applied Physics Letters, vol.79, issue.21, pp.3527-3529, 2001.

M. , A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias, Electronics Letters, vol.30, issue.25, pp.2175-2176, 1994.
DOI : 10.1049/el:19941461

J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Applied Physics Letters, vol.77, issue.2, p.250, 2000.

H. P. Maruska and J. J. Tietjen, The preparation and properties of vapor-deposited singlecrystal-line GaN, Applied Physics Letters, vol.15, issue.10, pp.327-329, 1969.

E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, Buffer optimization for crackfree GaN epitaxial layers grown on Si(111) substrate by MOCVD, Journal of Physics D : Applied Physics, vol.41, issue.15, p.155317, 2008.

Y. Cordier, N. Baron, F. Semond, J. Massies, M. Binetti et al., In situ measurements of wafer bending curvature during growth of group-IIInitride layers on silicon by molecular beam epitaxy, Journal of Crystal Growth, vol.301, pp.71-74, 2007.

E. Feltin, B. Beaumont, M. Laügt, P. De-mierry, P. Vennéguès et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.79, issue.20, p.3230, 2001.
DOI : 10.1063/1.1415043

Y. Cordier, N. Baron, F. Semond, J. Massies, M. Binetti et al., In situ measurements of wafer bending curvature during growth of group-III-nitride layers on silicon by molecular beam epitaxy, Journal of Crystal Growth, pp.71-74, 2007.

V. Hoel, S. Boulay, H. Gerard, V. Rabaland, E. Delos et al., AlGaN/GaN HEMTs on epitaxies grown on composite substrate, Microwave Integrated Circuit Conference, pp.100-103, 2007.
DOI : 10.1109/emicc.2007.4412657

URL : https://hal.archives-ouvertes.fr/hal-00284402

V. Hoel, N. Defrance, J. C. Jaeger, H. Gerard, C. Gaquiere et al., First microwave power performance of AlGaN/GaN HEMTs on SopSiC composite substrate, Electronics Letters, vol.44, issue.3, pp.238-239, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357797

Q. Jiang, M. J. Edwards, P. A. Shields, D. W. Allsopp, C. R. Bowen et al., Growth of crack-free GaN epitaxial thin films on composite Si(111)/polycrystalline diamond substrates by MOVPE, physica status solidi (c), vol.9, pp.650-653, 2012.

M. Fieger, Y. Dikme, F. Jessen, H. Kalisch, A. Noculak et al., Growth and characterization of AlGaN/GaN HEMT on SiCOI substrates, physica status solidi (c), vol.2, issue.7, pp.2607-2610, 2005.

T. Pinnington, D. D. Koleske, J. M. Zahler, C. Ladous, Y. Park et al., InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol.310, issue.10, pp.2514-2519, 2008.

Y. Cordier, S. Chenot, M. Laügt, O. Tottereau, S. Joblot et al., Growth by molecular beam epitaxy of AlGaN/GaN high electron mobility transistors on Si-on-polySiC, Superlattices and Microstructures, vol.40, issue.4-6, pp.359-362, 2006.

J. Lemettinen, M. Kauppinen, . Rudzinski, T. Haapalinna, S. Tuomi et al., MOVPE growth of GaN on 6-inch SOI-substrates : effect of substrate parameters on layer quality and strain, Semiconductor Science and Technology, vol.32, issue.4, p.45003, 2017.

S. Rajasingam, J. W. Pomeroy, M. Kuball, M. J. Uren, T. Martin et al., Micro-Raman Temperature Measurements for Electric Field Assessment in Active AlGaN-GaN HFETs, IEEE Electron Device Letters, vol.25, issue.7, pp.456-458, 2004.
DOI : 10.1109/led.2004.830267

L. Li, J. Joh, J. A. Del-alamo, and C. V. Thompson, Spatial distribution of structural degradation under high-power stress in AlGaN/GaN high electron mobility transistors, Applied Physics Letters, vol.100, issue.17, p.172109, 2012.

M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto et al., Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substratetransfer technology using h-BN, Applied Physics Letters, vol.105, issue.19, 2014.

J. A. Del-alamo and J. Joh, GaN HEMT reliability". Microelectronics Reliability, vol.49, issue.9, pp.1200-1206, 2009.

Y. Dora, Understanding material and process limits for high breakdown voltage AlGaN/GaN HEMTs, 2006.

W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill et al., Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors, Applied Physics Letters, vol.80, issue.17, p.3207, 2002.

D. Marcon, G. Meneghesso, T. Wu, S. Stoffels, M. Meneghini et al., Reliability Analysis of Permanent Degradations on AlGaN/GaN HEMTs, IEEE Transactions on Electron Devices, vol.60, issue.10, pp.3132-3141, 2013.

S. Karmalkar and U. K. Mishra, Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate, IEEE transactions on electron devices, vol.48, issue.8, pp.1515-1521, 2001.

I. B. Rowena, S. L. Selvaraj, and T. Egawa, Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si, IEEE Electron Device Letters, vol.32, issue.11, pp.1534-1536, 2011.
DOI : 10.1109/led.2011.2166052

D. Visalli, M. Van-hove, J. Derluyn, S. Degroote, M. Leys et al., AlGaN/GaN/AlGaN Double Heterostructures on Silicon Substrates for High Breakdown Voltage Field-Effect Transistors with low On-Resistance, Japanese Journal of Applied Physics, vol.48, issue.4, pp.4-101, 2009.
DOI : 10.1143/jjap.48.04c101

S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE, Journal of Crystal Growth, vol.298, pp.831-834, 2007.

H. Yacoub, D. Fahle, M. Finken, H. Hahn, C. Blumberg et al., The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices, Semiconductor Science and Technology, vol.29, p.115012, 2014.

A. Pérez-tomás, A. Fontserè, J. Llobet, M. Placidi, S. Rennesson et al., Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates, Journal of Applied Physics, vol.113, issue.17, p.174501, 2013.

N. Herbecq, I. Roch-jeune, A. Linge, B. Grimbert, M. Zegaoui et al., GaN-onsilicon high electron mobility transistors with blocking voltage of 3 kV, Electronics Letters, vol.51, issue.19, pp.1532-1534, 2015.

P. Srivastava, J. Das, D. Visalli, M. Van-hove, P. E. Malinowski et al., Record Breakdown Voltage (2200 V) of GaN DHFETs on Si with 2 -µm buffer thickness by local substrate removal, IEEE Electron Device Letters, vol.32, issue.1, pp.30-32, 2011.

B. Lu and T. Palacios, High Breakdown (> 1500 V) AlGaN/GaN HEMTs by SubstrateTransfer Technology, IEEE Electron Device Letters, vol.31, issue.9, pp.951-953, 2010.

V. Semiconductor, General Properties of Si, Ge, SiGe, SiO2 and Si3N4, vol.10, 2002.

W. Liu and A. A. Balandin, Thermal conduction in Al(x)Ga(1-x)N alloys and thin films, Journal of Applied Physics, vol.97, issue.7, p.73710, 2005.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov et al., Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, Journal of Applied Physics, vol.76, issue.3, p.1363, 1994.

S. V. Mikhailovich, R. R. Galiev, A. V. Zuev, A. Yu, D. S. Pavlov et al., The influence of gate length on the electron injection of velocity in an AlGaN/AlN/GaN ÐÐÐÐ channel, Technical Physics Letters, vol.43, issue.8, pp.733-735, 2017.

D. Schroder, Semiconductor material and device characterization
DOI : 10.1002/0471749095

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471749095.fmatter

N. J. Hoboken, , 2006.

L. J. Van-der-pauw, A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape, 1958.

X. Li, M. Van-hove, M. Zhao, B. Bakeroot, S. You et al., Investigation on Carrier Transport Through AlN Nucleation Layer From Differently Doped Si(111) Substrates, IEEE Transactions on Electron Devices, vol.65, issue.5, pp.1721-1727, 2018.
DOI : 10.1109/ted.2018.2810886

, Fiche technique AREMCO CERAMABOND, vol.865

P. Gondcharton, Intégration du collage direct : Couches minces métalliques et évolutions morphologiques, 2015.

A. Kranti, S. Haldar, and R. S. Gupta, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs, Solid-State Electronics, vol.46, issue.5, pp.621-630, 2002.

G. D. Via, C. Bozada, G. Desalvo, C. Cerny, R. Dettmer et al., On-Wafer Therlak Resistance Measurement Technique for FETs and HEMTs, GaAs MANTECH, 1998.

E. Fiche-technique and . H20e,

Y. Zhang, M. Sun, Z. Liu, D. Piedra, H. Lee et al., Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors, IEEE Transactions on Electron Devices, vol.60, issue.7, pp.2224-2230, 2013.
DOI : 10.1109/ted.2013.2261072

R. Yeluri, J. Lu, C. A. Hurni, D. A. Browne, S. Chowdhury et al., Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction, Applied Physics Letters, vol.106, issue.18, p.183502, 2015.

S. Chowdhury and U. K. Mishra, Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure, IEEE Transactions on Electron Devices, vol.60, issue.10, pp.3060-3066, 2013.
DOI : 10.1109/ted.2013.2277893

Y. H. Lo, New approach to grow pseudomorphic structures over the critical thickness, Applied Physics Letters, vol.59, issue.18, pp.2311-2313, 1991.
DOI : 10.1063/1.106053

F. E. Ejeckam, Y. H. Lo, S. Subramanian, H. Q. Hou, and B. E. Hammons, Lattice engineered compliant substrate for defect-free heteroepitaxial growth, Applied Physics Letters, vol.70, issue.13, pp.1685-1687, 1997.
DOI : 10.1063/1.118669

H. Ishikawa, K. Shimanaka, M. Azfar-bin, M. Amir, Y. Hara et al., Improved MOCVD growth of GaN on Si-on-porous-silicon substrates". physica status solidi (c), vol.7, pp.2049-2051, 2010.

J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, Improved quality GaN by growth on compliant silicon-on-insulator substrates using metalorganic chemical vapor deposition, Journal of applied physics, vol.83, issue.7, pp.3829-3834, 1998.
DOI : 10.1063/1.366613

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/70972/2/JAPIAU-83-7-3829-1.pdf

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, What is the Young's Modulus of Silicon ?, Journal of Microelectromechanical Systems, vol.19, issue.2, pp.229-238, 2010.

K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, Linear thermal expansion measurements on silicon from 6 to 340 K", Journal of Applied Physics, vol.48, issue.3, pp.865-868, 1977.
DOI : 10.1063/1.323747

R. Nowak, M. Pessa, M. Suganuma, M. Leszczynski, I. Grzegory et al., Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal, Applied Physics Letters, vol.75, issue.14, pp.2070-2072, 1999.

H. Qin, X. Luan, C. Feng, D. Yang, and G. Zhang, Thermodynamic and Electronic Properties of Wurtzite and Zinc, Blende GaN Crystals. Materials, vol.10, issue.12, p.1419, 2017.

H. Iwai, Semiconductor substrate and method for manufacturing semiconductor device using the same". US patent, 1986.