, 1.5. Culture des Cellules Stromales Mésenchymateuses (CSM)

, 2.1. Tests de prolifération, de clonogénicité et de sécrétion

.. .. Modèles-fonctionnels-in-vitro,

.. .. Modèle-de-soutien-Épidermique,

. .. Modèles-fonctionnels-in-vivo, 146 6.4.1. Modèle de plaie excisionnelle et de greffe chez la souris

R. L. Sheridan and R. G. Tompkins, Skin substitutes in burns, Burns, vol.25, pp.97-103, 1999.

J. G. Rheinwald and H. Green, Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell, vol.6, pp.331-374, 1975.

D. L. Chester, D. S. Balderson, D. Phil, and R. Papini, A review of keratinocyte delivery to the wound bed, J Burn Care Rehabil, vol.25, pp.266-75, 2004.

C. Cuono, R. Langdon, and J. Mcguire, Use of cultured epidermal auto-grafts and dermal allografts as skin replacement after burn injury, Lancet, vol.1, pp.1123-1127, 1986.

F. Braye, L. Oddou, and M. Bertin-maghit, Widely meshed autograft associated with cultured autologous epithelium for the treatment of major burns in children: report of 12 cases, Eur J Pediatr Surg, vol.10, pp.35-40, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00313894

F. M. Wood, M. L. Kolybaba, and P. Allen, The use of cultured epithelial autografts in the treatment of major burn injuries: a critical review of the literature, Burns, vol.32, pp.395-401, 2006.

V. Ronfard, H. Broly, V. Mitchell, J. P. Galizia, D. Hochart et al., Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds, Burns, vol.3, pp.181-185, 1991.

S. R. Myers, J. Grady, C. Soranzo, R. Sanders, and C. Green, A hyaluronic acid membrane delivery system for cultured keratinocytes: clinical take rates in the porcine kerato-dermal model, J Burn Care Rehabil, vol.3, pp.214-236, 1997.

A. Chua, D. R. Ma, I. C. Song, T. T. Phan, S. T. Lee et al., In vitro evaluation of fibrin mat and Tegaderm ® wound dressing for the delivery of keratinocytesimplications of their use to treat burns, Burns, vol.34, pp.175-183, 2008.

S. E. James, S. Booth, B. Dheansa, D. J. Mann, M. J. Reid et al.,

G. Gravante, M. C. Di-fede, A. Araco, M. Grimaldi, D. Angelis et al., A randomized trial comparing Recell ® system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns, Burns, vol.33, pp.966-72, 2007.

C. Back, B. Dearman, A. Li, T. Neild, and J. E. Greenwood, Noncultured keratinocytes/melanocyte cosuspension: effects on reepithelialization and repigmentation-A randomized, placebo-controlled study, J Burn Care Res, 2009.

F. M. Wood, M. L. Kolybaba, and P. Allen, The use of cultured epithelial autograft in the treatment of major burn wounds: eleven years of clinical experience, Burns, vol.32, pp.538-582, 2006.

B. Hartman, A. Ekkernkamp, C. Johnen, J. C. Gerlach, C. Belfekroun et al., Sprayed cultured epithelial autografts for deep dermal burns of the face and neck, Ann Plast Surg, vol.58, pp.70-73, 2007.

G. Lawton and B. Dheansa, The management of major burns -A surgical perspective, Current anaesthesia and critical care, vol.19, pp.275-81, 2008.

D. M. Heimbach, G. D. Warden, A. Luterman, M. H. Jordan, N. Ozobia et al., Multicenter postapproval clinical trial of Intégra ® dermal regeneration template for burn treatment, J Burn Care Rehabil, vol.24, pp.42-50, 2003.

H. Ryssel, E. Gazyakan, G. Germann, and M. Ohlbauer, The use of Matriderm ® in early excision and simultaneous autologous skin grafting in burns-a pilot study, Burns, vol.34, pp.93-100, 2008.

F. Braye, A. Hautier, C. Bouez, and O. Damour, Les substituts cutanés reconstruits en laboratoire: application au traiteent des brûlés, Pathol Biol, vol.10, pp.613-620, 2005.

N. S. Moiemem, E. Vlachou, J. J. Staiano, Y. I. Thawy, and J. D. Frame, Reconstructive surgery with integra dermal regeneration template: histologic study, clinical evaluation and current practice, Plast reconstr Surg, vol.117, 2006.

H. Amani, W. R. Dougherty, and S. Blome-eberwein, Use of Transcyte and dermabrasion to treat burns reduces lenght of stay in burns of all size and etiology, Burns, vol.32, pp.828-860, 2006.

A. N. Pandya, B. Woodward, and N. D. Parkhouse, The use of cultured autologous keratinocytes with intergra in the resurfacing of acute burns, Plast Reconstr Surg, vol.3, pp.825-833, 1998.

D. Wisser and J. Steffes, Skin replacement with collagen based dermis substitute, autologous keratinocytes and fibroblasts in burn trauma, Burns, vol.29, pp.378-80, 2003.

R. L. Sheridan, J. R. Morgan, J. L. Cusick, L. M. Petras, M. M. Lydon et al., Initial experience with a composite autologous skin substitute, Burns, vol.27, pp.421-425, 2001.

S. T. Boyce, R. J. Kagan, N. A. Meyer, K. P. Yakuboff, and G. D. Warden, The 1999 clinical research award. Cultured skin substitutes combined with Integra artifical skin to replace native autograft and allograft for closure of excised fullthickness burns, J Burn Care Rehabil, vol.20, pp.453-61, 1999.

L. P. Kamolz, M. Luegmair, N. Wick, B. Eisenbock, S. Burjak et al., The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels, Burns, vol.31, pp.25-34, 2005.

S. T. Boyce, R. J. Kagan, D. G. Greenhalgh, P. Warner, K. P. Yakuboff et al., Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns, J Trauma, vol.60, pp.821-830, 2006.

S. T. Boyce, R. J. Kagan, K. P. Yakuboff, N. A. Meyer, M. T. Rieman et al., Cultured skin substitutes reduce donor skin harvesting for closure of excised full-thickness burns, Ann Surg, vol.2, pp.269-79, 2002.

E. Lagasse, H. Connors, A. Dhalimy, M. Reitsma, M. Dohse et al., Purified hematopoietic stem cells can differentiate into hepatocytes in vivo, Nat Med, vol.6, pp.1229-1263, 2000.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al., Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-150, 1999.

D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson et al., Bone marrow cells regenerate infarcted myocardium, Nature, vol.410, pp.701-706, 2001.
DOI : 10.1038/35070587

C. Doucet, I. Ernou, Y. Zhang, J. R. Llense, L. Begot et al., Platelet lysates promote mesenchymal stem cell expansion: a safety sub-stitute for animal serum in cell-based therapy applications, J Cell Physiol, vol.205, pp.228-264, 2005.

J. J. Lataillade, C. Doucet, E. Bey, H. Carsin, C. Huet et al., New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy, Regen Med, vol.2, pp.785-94, 2007.

L. Khodadadi, S. Shafieyan, N. Aghdami, and H. Baharvand, Cell Therapy in Burn Repair, Yakhteh Medical Journal, vol.10, issue.3, pp.167-178, 2008.

T. Yoshikawa, H. Mitsuno, I. Nonaka, Y. Sen, K. Kawanishi et al., Wound therapy by marrow mesenchymal cell transplantation, Plast Reconstr Surg, vol.121, pp.860-77, 2008.
DOI : 10.1097/01.prs.0000299922.96006.24

M. Sasaki, R. Abe, Y. Fujita, S. Ando, D. Inokuma et al., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple. skin cell type, J Immunol, vol.180, pp.2581-2588, 2008.
DOI : 10.4049/jimmunol.180.4.2581

URL : http://www.jimmunol.org/content/180/4/2581.full.pdf

D. Baksh, L. Song, and R. S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy, J Cell Mol Med, vol.8, pp.301-317, 2004.

L. A. Ortiz, F. Gambelli, C. Mcbride, D. Gaupp, M. Baddoo et al., Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects, Proc Natl Acad Sci, vol.100, pp.8407-8418, 2003.
DOI : 10.1073/pnas.1432929100

URL : http://www.pnas.org/content/100/14/8407.full.pdf

E. Mansilla, G. H. Marin, M. Sturla, H. E. Drago, M. A. Gil et al., Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injures, Transplant Proc, vol.37, pp.292-296, 2005.
DOI : 10.1016/j.transproceed.2005.01.070

H. Liu, D. M. Kemeny, B. C. Heng, H. W. Ouyang, A. J. Melendez et al., The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells, J Immunol, vol.176, pp.2864-71, 2006.

E. M. Horwitz, D. J. Prockop, L. A. Fitzpatrick, W. W. Koo, P. L. Gordon et al., Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta, Nat Med, vol.5, pp.309-322, 1999.

O. N. Koc, J. Day, M. Nieder, S. L. Gerson, H. M. Lazarus et al., Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH), Bone Marrow Transplant, vol.30, pp.215-237, 2002.

L. Blanc, K. Rasmusson, I. Sundberg, B. Gotherstrom, C. Hassan et al., Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells, Lancet, vol.363, pp.1439-1480, 2004.

M. F. Rasulov, A. V. Vasil'chenkov, N. A. Onishchenko, M. E. Krasheninnikov, V. I. Kravchenko et al., Potapov first experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns, Cell Tech Biol Med, vol.1, issue.1, pp.141-144, 2005.

P. Gottlober, G. Bezold, L. Weber, P. Gourmelon, J. M. Cosset et al., The radiation accident in Georgia: clinical appearance and diagnosis of cutaneous radiation syndrome, J Am Acad Dermatol, vol.42, pp.453-461, 2000.

R. U. Peter and P. Gottlober, Management of cutaneous radiation injuries: diagnostic and therapeutic principles of the cutaneous radiation syndrome, Mil Med, vol.167, pp.110-112, 2002.

R. U. Peter, Cutaneous radiation syndrome in multi-organ failure, BJR Suppl, vol.27, pp.180-184, 2005.
DOI : 10.1259/bjr/56925969

L. Chen, E. E. Tredget, P. Y. Wu, and Y. Wu, Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PLoS ONE, vol.3, p.1886, 2008.

S. Francois, M. Bensidhoum, M. Mouiseddine, C. Mazurier, B. Allenet et al., Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage, Stem Cells, vol.24, pp.1020-1029, 2006.

A. Chapel, J. M. Bertho, M. Bensidhoum, L. Fouillard, R. G. Young et al., Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome, J Gene Med, vol.5, pp.1028-1066, 2003.
DOI : 10.1002/jgm.452

M. D. Peck, Epidemiology of burns throughout the world. Part I: distribution and risk factors, Burns, vol.37, pp.1087-1100, 2011.
DOI : 10.1007/978-3-7091-0348-7_2

C. Smolle, . Cambiaso-daniel, . Forbes, G. Wurzer, . Hundeshagen et al., Recent trends in burn epidemiology worldwide: a systematic review, Burns, vol.43, pp.249-257, 2017.

S. E. Wolf, R. G. Tompkins, and D. N. Herndon, On the horizon: research priorities in burns for the next decade, Surg Clin North Am, vol.94, pp.917-930, 2014.

D. Girard, . Laverdet, ?. Buhe, M. Trouillas, . Ghazi et al., Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery, Tissue Eng Part B Rev, vol.23, pp.59-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01954915

K. J. Zuo, A. Medina, and E. E. Tredget, Important developments in burn care, Plast Reconstr Surg, vol.139, pp.120-138, 2017.

G. Arturson, Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans Lec-ture, Burns, vol.22, pp.255-274, 1995.

M. Keck, . Herndon, M. Lp-kamolz, M. G. Frey, and . Jeschke, Pathophysiology of burns, Wien Med Wochenschr, vol.159, pp.327-336, 2009.

D. M. Jackson, The diagnosis of the depth of burning, Br J Surg, vol.40, pp.588-596, 1953.

M. Allgower, G. A. Schoenenberger, and B. G. Sparkes, Pernicious effectors in burns, Burns, vol.34, issue.1, pp.1-55, 2008.

M. G. Jeschke, . Gauglitz, . Ga-kulp, . Finnerty, . Williams et al., Long-term persistance of the pathophysiologic re-sponse to severe burn injury, PLoS One, vol.6, p.21245, 2011.

J. Manson, C. Thiemermann, and K. Brohi, Trauma alarmins as activators of damage-induced inflammation, Br J Surg, vol.99, issue.1, pp.12-20, 2012.

M. N. Islam, B. A. Bradley, and R. Ceredig, Sterile post-traumatic immunosuppression, Clin Transl Immunol, vol.5, p.77, 2016.

A. W. Chua, Skin tissue engineering advances in severe burns: review and therapeutic applications, Burns Trauma, vol.4, p.3, 2016.

T. Horst and B. , Advances in keratinocyte delivery in burn wound care, Adv Drug Deliv Rev, vol.123, pp.18-32, 2018.

A. Cirodde, Cultured epithelial autografts in massive burns: a single-center retrospective study with 63 patients, Burns, vol.37, issue.6, pp.964-72, 2011.

C. Auxenfans, Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years, Burns, vol.41, issue.1, pp.71-80, 2015.

M. Gaur, M. Dobke, and V. V. Lunyak, Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging, Int J Mol Sci, vol.18, issue.1, 2015.

M. T. Cerqueira, R. P. Pirraco, and A. P. Marques, Stem Cells in Skin Wound Healing: Are We There Yet? Adv Wound Care, vol.5, pp.164-175, 2016.

W. M. Jackson, L. J. Nesti, and R. S. Tuan, Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells, Stem Cells Transl Med, vol.1, issue.1, pp.44-50, 2012.

S. Baldari, Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies, Int J Mol Sci, vol.18, issue.10, 2017.

G. D. Kusuma, Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect, Stem Cells Dev, vol.26, issue.9, pp.617-631, 2017.

M. Madrigal, K. S. Rao, and N. H. Riordan, A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods, J Transl Med, vol.12, p.260, 2014.

L. Chen, Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PLoS One, vol.3, issue.4, p.1886, 2008.

S. C. Heo, Tumor necrosis factor-alpha-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms, J Invest Dermatol, vol.131, issue.7, pp.1559-67, 2011.

B. Magne, J. J. Lataillade, and M. Trouillas, Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn, Stem Cells Dev, 2018.

C. A. Dinarello, Interleukin-1 in the pathogenesis and treatment of inflammatory diseases, Blood, vol.117, issue.14, pp.3720-3752, 2011.

P. Bortolotti, E. Faure, and E. Kipnis, Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol, vol.9, p.1900, 2018.

L. Szczesny, En effet, en raison d'une anatomie particulière (dos courbé), la brûlure par contact n'est pas envisageable, et on doit faire appel à des méthodes moins reproductibles, Le rôle des CSM et leurs produits de sécrétion dans la phase tardive des brûlures est également une piste intéressante qu'il reste à explorer. Aujourd'hui de nombreux modèles animaux de cicatrice hypertrophique après brûlure ont été développés, 1983.

A. Abdullahi, S. Amini-nik, and J. Mg, Animal models in burn research, Cellular and Molecular Life Sciences, vol.71, issue.17, pp.3241-3255, 2014.

W. Abo-elkheir, F. Hamza, and A. M. Elmofty, Role of cord blood and bonemarrow mesenchymal stem cells in recent deep burn: a case-control prospective study, American Journal of Stem Cells, vol.6, issue.3, pp.23-35, 2017.

A. Be, A. E. Fattah, and S. , Bone marrow-derived versus adipose-derived stem cells in wound healing: value and route of administration, Cell Tissue Res, vol.374, issue.2, pp.285-302, 2018.

K. B. Ackema and J. Charité, Mesenchymal Stem Cells from Different Organs are Characterized by Distinct Topographic Hox Codes, Stem cells and Development, vol.17, issue.5, pp.979-992, 2008.

S. Aggarwal and M. F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses, pp.1815-1822, 2005.

H. H. Ahmeda, L. A. Rashed, and S. Mahfouz, Can mesenchymal stem cells pretreated with platelet rich plasma modulate tissue remodeling in a rat burn, Biochemistry and Cell Biology, vol.95, issue.5, pp.537-548, 2017.

M. M. Alexaline, M. Trouillas, and M. Nivet, Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells, Stem Cells Translational Medicine, vol.4, issue.6, pp.643-654, 2015.

J. W. Alexander, B. G. Macmillan, and E. Law, Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay, Journal of Trauma, vol.21, issue.6, pp.433-438, 1981.

M. Alexander, T. Daniel, and I. H. Chaudry, Opiate analgesics contribute to the development of post-injury immunosuppression, Journal of Surgical Research, vol.129, issue.1, pp.161-168, 2005.

M. Allgower, G. A. Schoenenberger, and B. G. Sparkes, Pernicious effectors in burns, pp.1-55, 2008.

S. Amano, N. Akutsu, and Y. Ogura, Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids, British Journal of Dermatology, vol.151, issue.5, pp.961-970, 2004.

E. Andreeva, P. Bobyleva, and A. Gornostaeva, Interaction of multipotent mesenchymal stromal and immune cells: Bidirectional effects (2017a) from Cytotherapy

E. Andreeva, O. Udartseva, and O. Zhidkova, IFN-gamma priming of adipose-derived stromal cells at "physiological" hypoxia and under acute hypoxic stress, Journal of Cellular Physiology, 2017.

J. A. Ankrum, J. F. Ong, and J. M. Karp, Mesenchymal stem cells: immune evasive, Nat Biotechnol, vol.32, issue.3, pp.252-260, 2014.

F. Arslan, R. C. Lai, and M. B. Smeets, Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury, Stem Cell Res, vol.10, issue.3, pp.301-312, 2013.

M. Ashrafi, M. Baguneid, and A. Bayat, The Role of Neuromediators and Innervation in Cutaneous Wound Healing, Acta Dermato-Venereologica, vol.96, issue.5, pp.587-594, 2016.

P. Au, J. Tam, and D. Fukumura, Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature, Blood, vol.111, issue.9, pp.4551-4558, 2008.

C. Auger, O. Samadi, and M. G. Jeschke, The biochemical alterations underlying postburn hypermetabolism, Biochimica et Biophysica Acta, 2017.

C. Auxenfans, V. Menet, and Z. Catherine, Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years, Burns, issue.1, pp.71-79, 2015.

A. M. Bader, K. Klose, and K. Bieback, Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro, PLoS One, vol.10, issue.9, p.138477, 2015.

A. H. Baker, Metalloproteinase inhibitors: biological actions and therapeutic opportunities, vol.115, pp.3719-3727, 2002.
DOI : 10.1242/jcs.00063

URL : http://jcs.biologists.org/content/115/19/3719.full.pdf

C. Ballard-croft, D. Carlson, and D. L. Maass, Burn trauma alters calcium transporter protein expression in the heart, J Appl Physiol, vol.97, pp.1470-1476, 2004.
DOI : 10.1152/japplphysiol.01149.2003

L. Bargues, M. Prat, and T. Leclerc, Pathologie Biologie, vol.59, issue.3, pp.49-56, 2011.

D. J. Barillo, M. E. Nangle, and K. Farrell, Preliminary experience with cultured epidermal autograft in a community hospital burn unit (1992) from, Journal of Burn Care and Rehabilitation, vol.13, issue.1, pp.158-165

Y. Barrandon and H. Green, Three clonal types of keratinocyte with different capacities for multiplication, vol.84, pp.1203-1206, 1987.
DOI : 10.1073/pnas.84.8.2302

URL : http://europepmc.org/articles/pmc304638?pdf=render

A. Basu, S. Munir, and M. A. Mulaw, A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing, Scientific Reports, vol.8, issue.1, p.6205, 2018.

A. K. Batsali, C. Pontikoglou, and D. Koutroulakis, Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells, Stem Cell Research & Therapy, vol.8, issue.1, pp.1-17, 2017.

E. Bell, S. Sher, and B. Hull, Journal of Investigative Dermatology, vol.81, issue.1, pp.2-10, 1983.

G. Benichou, Y. Yamada, and S. H. Yun, Immune recognition and rejection of allogeneic skin grafts, Immunotherapy, vol.3, issue.6, pp.757-770, 2011.

M. M. Benjamin and R. A. Khalil, Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease, vol.103, pp.209-279, 2012.

G. Bergers, R. Brekken, and G. Mcmahon, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nature Cell Biology, vol.2, issue.10, pp.737-744, 2000.
DOI : 10.1038/35036374

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852586

M. E. Bernardo and W. E. Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation, Cell Stem Cell, vol.13, issue.4, pp.392-402, 2013.
DOI : 10.1016/j.stem.2013.09.006

URL : https://doi.org/10.1016/j.stem.2013.09.006

A. M. Betancourt, New Cell-Based Therapy Paradigm: Induction of Bone MarrowDerived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes, Advances in Biochemical Engineering / Biotechnology, vol.130, pp.163-197, 2013.

E. Bey, M. Prat, and P. Duhamel, Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations (2010) from Wound Repair and Regeneration, vol.18, pp.50-58

P. Bianco, X. Cao, and P. S. Frenette, The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine, Nat Med, vol.19, issue.1, pp.35-42, 2013.

J. R. Bickenbach, Identification and behavior of label-retaining cells in oral mucosa and skin, Journal of Dental Research, vol.60, pp.1611-1620, 1981.

E. Bijlard, L. Uiterwaal, and C. Kouwenberg, A Systematic Review on the Prevalence, Etiology, and Pathophysiology of Intrinsic Pain in Dermal Scar Tissue, Pain Physician, vol.20, pp.1-13, 2017.

C. Blanpain and E. Fuchs, Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration, Science, vol.344, issue.6189, p.1242281, 2014.

G. J. Block, S. Ohkouchi, and F. Fung, Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1 (2009) from Stem Cells, vol.27, pp.670-681

L. Boland, A. J. Burand, and A. J. Brown, IFN-g and TNF-a Pre-licensing Protects Mesenchymal Stromal Cells from the Pro-inflammatory Effects of Palmitate, Molecular Therapy, vol.26, issue.3, pp.860-873, 2018.

A. Botta, F. Delteil, and A. Mettouchi, Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes, Journal of Cell Science, vol.125, issue.18, pp.4241-4252, 2012.

B. St and G. D. Warden, Principles and practices for treatment of cutaneous wounds with cultured skin substitutes, The American Journal of Surgery, vol.183, pp.445-456, 2002.

S. Brandau, M. Jakob, and H. Hemeda, Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge, Journal of Leukocyte Biology, vol.88, pp.1-11, 2010.

F. Braye, R. Dumortier, and M. Bertin-maghit, Les cultures d'épiderme pour le traitement des grands brûlés. Étude sur deux ans, Annales de Chirurgie Plastique Esthétique, vol.46, pp.599-606, 2001.

F. Braye, L. Oddou, and M. Bertin-maghit, Widely Meshed Autograft Associated with Cultured Autologous Epithelium for the Treatment of Major Burns in Children, Report of 12 Cases, vol.10, pp.35-40, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00313894

D. Breitkreutz, I. Koxholt, and K. Thiemann, Skin basement membrane: the foundation of epidermal integrity, BM functions and diverse roles of bridging molecules nidogen and perlecan, p.179784, 2013.

D. Breitkreutz, N. Mirancea, and R. Nischt, Basement membranes in skin: unique matrix structures with diverse functions?, Histochem Cell Biol, vol.132, issue.1, pp.1-10, 2009.

I. Brockmann, J. Ehrenpfordt, and T. Sturmheit, Skin-Derived Stem Cells for Wound Treatment Using Cultured Epidermal Autografts: Clinical Applications and Challenges, Stem Cells Int, p.4623615, 2018.

M. Brouard and Y. Barrandon, Controlling skin morphogenesis: hope and despair, Current Opinion in Biotechnology, vol.14, issue.5, pp.520-525, 2003.

A. J. Brown and F. Mcdowell, Massive repairs of burns with thick split-skin graftsemergency "dressings" with homografts (1942) from Annals of Surgery, vol.115, pp.658-674

L. Bruckner-tuderman and A. S. Payne, (eds) Fitzpatrick's Dermatology in General medicine 8Ed, pp.569-585, 2012.

N. Brusselaers, S. Monstrey, and D. Vogelaers, Severe burn injury in Europe: a systematic review of the incidence, etiology, morbidity, and mortality, Critical Care, vol.14, issue.5, p.188, 2010.

D. Burdakov, O. H. Petersen, and A. Verkhratsky, Intraluminal calcium as a primary regulator of endoplasmic reticulum function, Cell Calcium, vol.38, pp.303-310, 2005.

R. E. Burgeson and A. M. Christiano, The dermal-epidermal junction (1997) from Current Opinion in Cell Biology, vol.9, pp.651-658

J. F. Burke, I. V. Yannas, and W. C. Quinby, Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury, Annals of Surgery, vol.194, issue.4, pp.413-428, 1981.

K. L. Butler, J. Goverman, and H. Ma, Stem cells and burns: review and therapeutic implications, Journal of Burn Care & Research, vol.31, issue.6, pp.874-881, 2010.

S. Cadenas, Mitochondrial uncoupling, ROS generation and cardioprotection, Biochim Biophys Acta, vol.1859, issue.9, pp.940-950, 2018.
DOI : 10.1016/j.bbabio.2018.05.019

B. Çakir and B. C. Yegen, Systemic Responses to Burn Injury, Turkish Journal of Medical Sciences, vol.34, pp.215-226, 2004.

C. Caliari-oliveira, J. Yaochite, and L. Ramalho, Xenogeneic Mesenchymal Stromal Cells Improve Wound Healing and Modulate the Immune Response in an, Extensive Burn Model, vol.25, pp.201-215, 2016.

A. I. Caplan, Journal of Orthopaedic Research, vol.9, pp.641-650, 1991.

A. I. Caplan, All MSCs are pericytes?, Cell Stem Cell, vol.3, issue.3, pp.229-230, 2008.

A. I. Caplan and D. Correa, The MSC: An Injury Drugstore, Cell Stem Cell, vol.9, issue.1, pp.11-15, 2011.

H. Carsin, P. Ainaud, and H. Lebever, Cultured epithelial autografts in exten-sive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients, Burns, vol.26, issue.4, pp.379-387, 2000.

M. A. Cassatella, F. Mosna, and A. Micheletti, Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils, Stem Cells, vol.29, issue.6, pp.1001-1011, 2011.

G. Chamberlain, J. Fox, and B. Ashton, Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing, Stem Cells, vol.25, pp.2739-2749, 2007.

I. Chan, The role of extracellular matrix protein 1 in human skin, Clinical and Experimental Dermatology, vol.29, pp.52-56, 2004.

L. Chen, E. E. Tredget, and P. Y. Wu, Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PLoS One, vol.3, issue.4, p.1886, 2008.

L. Chen, Y. Xu, and J. Zhao, Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice, PLoS One, vol.9, issue.4, p.96161, 2014.

M. S. Chen, C. Y. Lin, and Y. H. Chiu, IL-1beta-Induced Matrix Metalloprotease-1 Promotes Mesenchymal Stem Cell Migration via PAR1 and G-Protein-Coupled Signaling Pathway, Stem Cells Int, p.3524759, 2018.

P. Chen, R. Wu, and W. Zhu, Hypoxia Preconditioned Mesenchymal Stem Cells Prevent Cardiac Fibroblast Activation and Collagen Production via Leptin, PLoS One, vol.9, issue.8, p.103587, 2014.

E. Chermnykh, E. Kalabusheva, and E. Vorotelyak, Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate (2018) from, Int J Mol Sci, vol.19, issue.4

K. Cho, M. Park, and Y. Kim, RNA sequencing reveals a transcriptomic portrait of human mesenchymal stem cells from bone marrow, adipose tissue, and palatine tonsils, Scientific Reports, vol.7, issue.1, 2017.

K. A. Cho, M. Park, and Y. H. Kim, Conditioned media from human palatine tonsil mesenchymal stem cells regulates the interaction between myotubes and fibroblasts by IL-1Ra activity (2017b) from, J Cell Mol Med, vol.21, issue.1, pp.130-141

A. W. Chua, Y. C. Khoo, and B. K. Tan, Skin tissue engineering advances in severe burns: review and therapeutic applications, Burns Trauma, vol.4, p.3, 2016.

E. Chung, V. Y. Rybalko, and P. L. Hsieh, Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing, Wound Repair Regen, vol.24, issue.5, pp.810-819, 2016.

A. Cirodde, T. Leclerc, and P. Jault, Cultured epithelial autografts in massive burns: a single-center retrospective study with 63 patients, Burns, vol.37, issue.6, pp.964-972, 2011.

A. Cirodde, A. Salvadori, and F. Sarfati, Prise en charge du brûlé de guerre à l'avant (2015) from Médecine et Armées, vol.43, pp.139-148

A. Clark, J. Imran, and T. Madni, Nutrition and metabolism in burn patients, Burns Trauma, vol.5, p.11, 2017.

E. Clayton, D. P. Doupe, and A. M. Klein, A single type of progenitor cell maintains normal epidermis, Nature, issue.7132, pp.185-189, 2007.

A. J. Clover, A. H. Kumar, and M. Isakson, Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing, Burns, vol.41, issue.3, pp.548-557, 2015.

C. C. Compton, J. M. Gill, and D. A. Bradford, Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study (1989) from Laboratory Investigation, vol.60, pp.600-612

G. Cotsarelis, T. T. Sun, and R. M. Lavker, Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis (1990) from The Cell, vol.61, pp.1329-1337

B. Coulomb, L. Friteau, and J. Baruch, Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans, Plastic and Reconstructive Surgery, vol.101, issue.7, pp.1891-1903, 1998.

B. Coulomb, L. C. Dubertret, and L. , Influence of Human Dermal Fibroblasts on Epidermalization, vol.92, issue.1, pp.122-125, 1989.

P. R. Crisostomo, M. Wang, and C. M. Herring, Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55 kDa TNF receptor (TNFR1) (2007) from, Journal of Molecular and Cellular Cardiology, vol.42, issue.1, pp.142-149

A. G. Cuenca, M. J. Delano, and K. M. Kelly-scumpia, A paradoxical role for myeloidderived suppressor cells in sepsis and trauma, Molecular Medicine, vol.17, pp.281-292, 2011.

C. Cuono, R. Langdon, and J. Mcguire, Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury (1986) from The Lancet, vol.1, pp.1123-1124

P. R. Cury, F. Canavez, and V. C. De-araffljo, Substance P regulates the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in cultured human gingival fibroblasts, Journal of Periodontal Research, vol.43, pp.255-260, 2008.

P. D'arpa and K. P. Leung, Toll-Like Receptor Signaling in Burn Wound Healing and Scarring (2017) from Advances in Wound Care, vol.6, pp.330-343

D. El and C. S. Hultman, Patient Safety in Burn Care: Application of Evidence-based Medicine to Improve Outcomes, Clinics in Plastic Surgery, vol.44, issue.3, pp.611-618, 2017.

T. Daniel, B. M. Thobe, and I. H. Chaudry, Regulation of the postburn wound inflammatory response by gammadelta T-cells, Shock, vol.28, issue.3, pp.278-283, 2007.

D. Becker, A. Riet, and I. V. , Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy?, World Journal of Stem Cells, vol.8, issue.3, pp.73-87, 2016.

D. Sousa, A. P. Gurgela, C. A. Ramos, and E. A. , Infrared LED light therapy influences the expression of fibronectin and tenascin in skin wounds of malnourished rats-A preliminary study, Acta Histochemica, vol.116, pp.1185-1191, 2014.

E. A. Deitch, T. M. Wheelahan, and M. P. Rose, Hypertrophic burn scars: Analysis of variables, Journal of Trauma, vol.23, issue.10, pp.895-898, 1983.

M. Dezawa, Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases, Med Mol Morphol, vol.41, issue.1, pp.14-19, 2008.

C. M. Digirolamo, D. Stokes, and D. Colter, Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate, British Journal of Haematology, vol.107, pp.275-281, 1999.

F. Djouad, P. Plence, and C. Bony, Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals, Blood, vol.102, issue.10, pp.3837-3844, 2003.

S. Domergue, C. Bony, and M. Maumus, Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars, PLoS One, vol.11, issue.5, p.156161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01834377

S. Domergue, C. Jorgensen, and D. Noel, Advances in Research in Animal Models of Burn-Related Hypertrophic Scarring, vol.36, pp.259-266, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834588

M. Dominici, L. Blanc, K. Mueller, and I. , Minimal criteria for defining multipotent mesenchymal stromal cells, The International Society for Cellular Therapy position statement, vol.8, pp.315-317, 2006.

N. Donat, A. Cirodde, and J. Shaal, Médecine et Armées, vol.43, pp.149-156, 2015.

Z. Dong, P. Saikumar, and J. M. Weinberg, Annual Review of Pathology Mechanisms of Disease, vol.1, pp.405-434, 2006.

L. Du, R. Lv, and X. Yang, Hypoxia enhances the protective effects of placenta-derived mesenchymal stem cells against scar formation through hypoxia-inducible factor1alpha, Biotechnol Lett, vol.38, issue.6, pp.931-939, 2016.

P. R. Du, H. T. Lu, and X. X. Lin, Calpain inhibition ameliorates scald burn-induced acute lung injury in rats, Burns Trauma, vol.6, p.28, 2018.

X. Duan, D. Yarmush, and A. Leeder, Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma and nitric oxide-mediated pathways, Journal of Leukocyte Biology, vol.83, pp.305-313, 2008.

M. J. Dubon and K. Park, Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines (2015) from Experimental and Therapeutic Medicine, vol.9, pp.1185-1191

P. Duhamel, K. Rem, and M. Hounkpevi, La chirurgie aiguë des brûlés: état actuel, voies de recherche et perspectives] (2015) from Médecine et Armées, vol.43, pp.165-174

C. A. Dunnick, N. S. Gibran, and D. M. Heimbach, Substance P has a role in neurogenic mediation of human burn wound healing, Journal of Burn Care and Rehabilitation, vol.17, issue.5, pp.390-396, 1996.

A. Dupont, L. M. Paget, and A. Pasquereau, Les victimes de brûlures : hospitalisations selon le PMSI. France métropolitaine (2016) from Revue d'Épidémiologie et de Santé Publique, vol.64, p.215

E. Durand, B. Fournier, and L. Couty, Endoluminal gingival fibroblast transfer reduces the size of rabbit carotid aneurisms via elastin repair (2012) from Arterioscleris, Thrombosis and Vascular Biology, vol.32, issue.8, pp.1892-1901

R. Eady, J. A. Mcgrath, and J. R. Mcmillan, Ultrastructural Clues to Genetic Disorders of Skin: The Dermal-Epidermal Junction, Journal of Investigative Dermatology, vol.103, issue.5, pp.13-18, 1994.

J. T. Egana, F. A. Fierro, and S. Krüger, Use of Human Mesenchymal Cells to Improve Vascularization in a Mouse Model for Scaffold-Based Dermal Regeneration, Tissue Engineering: Part A, vol.15, issue.5, pp.1191-1200, 2009.

E. Vandervord and J. , Initial experience with cultured epithelial autografts in massively burnt patients, ANZ Journal of Surgery, vol.72, issue.12, pp.883-885, 2002.

S. A. Eming, M. P. Tomic-canic, and M. , Wound repair and regeneration: Mechanisms, signaling, and translation, vol.6, pp.265-266, 2014.

K. English, J. M. Ryan, and L. Tobin, Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25high forkhead box P3+ regulatory T cells, Clinical & Experimental Immunology, vol.156, pp.149-160, 2009.

L. H. Evers, D. Bhavsar, and P. Mailander, The biology of burn injury, Experimental Dermatology, vol.19, issue.9, pp.777-783, 2010.

V. Falanga, S. Iwamoto, and M. Chartier, Autologous Bone Marrow-Derived Cultured Mesenchymal Stem Cells Delivered in a Fibrin Spray Accelerate Healing in Murine and Human Cutaneous Wounds, Tissue Engineering, vol.13, issue.6, pp.1299-1312, 2007.

H. Fan, G. Zhao, and L. Liu, Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis (2012) from Cellular and Molecular Immunology, vol.9, pp.473-481

J. A. Farina, M. J. Rosique, and R. G. Rosique, Curbing inflammation in burn patients, International Journal of Inflammation, pp.1-9, 2013.
DOI : 10.1155/2013/715645

URL : https://doi.org/10.1155/2013/715645

M. Farriol, J. Rosselo, and S. Schwartz, Body surface area in Sprague-Dawley rats, Journal of Animal Physiology and Animal Nutrition, pp.61-65, 1997.

C. Fathke, L. Wilson, and J. Hutter, Contribution of Bone Marrow-Derived Cells to Skin: Collagen Deposition and Wound Repair, Stem Cells, vol.22, pp.812-822, 2004.

H. Fayyad-kazan, M. Fayyad-kazan, and B. Badran, Study of the microRNA expression profile of foreskin derived mesenchymal stromal cells following inflammation priming, Journal of Translational Medicine, vol.15, issue.1, p.10, 2017.

M. Fayyad-kazan, M. Najar, and H. Fayyad-kazan, Identification and Evaluation of New Immunoregulatory Genes in Mesenchymal Stromal Cells of Different Origins: Comparison of Normal and Inflammatory Conditions (2017b) from Medical Science Monitor Basic Research, vol.23, pp.87-96

J. D. Fine, L. Bruckner-tuderman, and R. A. Eady, Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification, J Am Acad Dermatol, vol.70, issue.6, pp.1103-1126, 2014.
DOI : 10.1016/j.jaad.2014.01.903

O. Flores, K. Stockton, and J. A. Roberts, The efficacy and safety of adrenergic blockade after burn injury: A systematic review and meta-analysis, Journal of Trauma and Acute Care Surgery, vol.80, issue.1, pp.146-155, 2016.

F. No and M. T. Martin, Cellular organization of the human epidermal basal layer: clues sustaining a hierarchical model, International Journal of Radiation Biology, vol.88, issue.10, pp.677-681, 2012.

G. G. Fouda, F. H. Jaeger, and J. D. Amos, Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk (2013) from, Proc Natl Acad Sci U S A, vol.110, issue.45, pp.18220-18225

B. P. Fournier, F. C. Ferre, and L. Couty, Multipotent Progenitor Cells in Gingival Connective Tissue, Tissue Engineering: Part A, vol.16, issue.9, pp.2891-2899, 2010.
DOI : 10.1089/ten.tea.2009.0796

S. M. Frank, M. S. Higgins, and M. J. Breslow, The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia, 1995.

, Anesthesiology, vol.82, pp.83-93

P. S. Frenette, S. Pinho, and D. Lucas, Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine, Annual Review of Immunology, vol.31, issue.1, pp.285-316, 2013.

A. J. Friedenstein, C. Rk, and K. S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells (1970) from, Cell Tissue Kinet, vol.3, issue.4, pp.393-403

A. J. Friedenstein, R. K. Chailakhyan, and N. V. Latsinik, Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo, Transplantation, vol.17, issue.4, pp.331-340, 1974.

S. Fu, J. D. Liu, and S. , Protective Effect of Neuropeptide Substance P on Bone Marrow Mesenchymal Stem Cells against, Apoptosis Induced by Serum Deprivation, p.270328, 2015.

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nature Reviews Immunology, vol.9, issue.3, pp.162-174, 2009.

J. Galipeau and L. Sensebe, Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities, vol.22, pp.824-833, 2018.

G. G. Gallico, N. E. O'connor, and C. C. Compton, Permanent Coverage of Large Burn Wounds with Autologous Cultured Human Epithelium, The New England Journal of Medicine, vol.311, pp.448-451, 1984.

K. L. Gardien, M. E. Ulrich, and M. M. , Progress towards cell-based burn wound treatments, Regenerative Medicine, vol.9, issue.2, pp.201-218, 2014.
DOI : 10.2217/rme.13.97

J. P. Garner and P. S. Heppell, Cerium nitrate in the management of burns, Burns, issue.5, pp.539-547, 2005.

G. G. Gauglitz, F. N. Williams, and D. N. Herndon, Burns: where are we standing with propranolol, oxandrolone, recombinant human growth hormone, and the new incretin analogs? (2011) from Current Opinion in, Clinical Nutrition and Metabolic Care, vol.14, issue.2, pp.176-181

L. Germain, D. Larouche, and B. Nedelec, Autologous bilayered self-assembled skin substitutes (sasss) as permanent grafts: a case series of 14 severely burned patients indicating clinical effectiveness, European Cells and Materials, vol.36, pp.128-144, 2018.

S. Ghazizadeh and L. B. Taichman, Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin, The EMBO Journal, vol.20, issue.6, pp.1215-1222, 2001.

C. Giacomelli, L. Natali, and M. Nisi, Negative effects of a high tumour necrosis factor-? concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents, Stem Cell Research & Therapy, vol.9, issue.135, pp.1-21, 2018.

G. Se and W. C. Parks, Metalloproteinases and their inhibitors: Regulators of wound healing, The International Journal of Biochemistry & Cell Biology, vol.40, pp.1334-1347, 2008.

D. A. Gilpin, Calculation of a new Meeh constant and experimental determination of burn size, Burns, vol.22, issue.8, pp.607-611, 1996.

D. Girard, B. Laverdet, and V. Buhe, Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery, Tissue Eng Part B Rev, vol.23, issue.1, pp.59-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01954915

J. E. Glim, M. Van-egmond, and F. B. Niessen, Detrimental dermal wound healing: what can we learn from the oral mucosa? (2013) from Wound Repair and Regeneration, vol.21, pp.648-660

M. Gnecchi, P. Danieli, and G. Malpasso, Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair, Methods Mol Biol, pp.123-146, 1416.

M. Gnecchi, H. He, and N. Noiseux, Evidence supporting paracrine hypothesis for Aktmodified mesenchymal stem cell-mediated cardiac protection and functional improvement, The FASEB Journal, vol.20, issue.6, pp.661-669, 2006.

R. Gobet, M. Raghunath, and S. Altermatt, Efficacy of cultured epithelial autografts in pediatric burns and reconstructive surgery (1997) from Surgery, 97, pp.654-661

B. Gogly, A. Naveau, and B. Fournier, Preservation of rabbit aorta elastin from degradation by gingival fibroblasts in an ex vivo model, Thrombosis and Vascular Biology, vol.27, issue.9, pp.1984-1990, 2007.

M. Goodwin, V. Sueblinvong, and P. Eisenhauer, Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice, Stem Cells, vol.29, issue.7, pp.1137-1148, 2011.

C. Gorin, G. Y. Rochefort, and R. Bascetin, Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion, Stem Cells Translational Medicine, vol.5, pp.1-13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01622175

A. Gorlach, K. Bertram, and S. Hudecova, Calcium and ROS: A mutual interplay, Redox Biology, vol.6, pp.260-271, 2015.

A. Gray, T. Maguire, and R. Schloss, Identification of IL-1beta and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods, Biotechnol Prog, vol.31, issue.4, pp.1058-1070, 2015.

A. S. Greenberg and M. S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism, American Journal of Clinical Nutrition, vol.83, pp.461-465, 2006.

M. A. Gubbiotti, T. Neill, and R. V. Iozzo, A current view of perlecan in physiology and pathology: A mosaic of functions (2017) from Matrix Biology, pp.285-298

M. A. Gubbiotti, S. D. Vallet, R. -. Blum, and S. , Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions, Matrix Biol, vol.55, pp.7-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406748

L. Guedez, W. G. Stetler-stevenson, and L. Wolff, In Vitro Suppression of Programmed Cell Death of B Cells by Tissue Inhibitor of Metalloproteinases-1 (1998) from, The Journal of Clinical Investigation, vol.102, issue.11, pp.2002-2010

H. Guenou, X. Nissan, and F. Larcher, Human embryonic stem cells derivatives enable full reconstruction of the pluristrati ed epidermis (2009) from The Lancet, vol.374, pp.1745-1753

L. Guerra, T. Odorisio, and G. Zambruno, Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development, Matrix Biol, vol.63, pp.1-10, 2017.

S. Hacein-bey-abina, J. Hauer, and A. Lim, Efficacy of gene therapy for X-linked severe combined immunodeficiency, N Engl J Med, vol.363, issue.4, pp.355-364, 2010.

L. Häkkinen, H. Larjava, and B. Fournier, Distinct phenotype and therapeutic potential of gingival fibroblasts, Cytotherapy, vol.16, pp.1171-1186, 2014.

Y. Han, Y. Bai, and X. Yan, Co-transplantation of exosomes derived from hypoxiapreconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting, 2018.

S. E. Hanson, K. R. Kleinbeck, and D. Cantu, Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model, Journal of Tissue Engineering and Regenerative Medicine, vol.10, issue.2, pp.90-100, 2016.

H. Hassanzadeh, M. M. Matin, and H. Naderi-meshkin, Using paracrine effects of AdMSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications (2018) from Cell Tissue Bank

M. L. Hauhouot-attoungbre, W. Mlan, and N. A. Edjeme, Annales de Biologie Clinique, vol.63, issue.4, pp.417-421, 2005.

M. Hayashi, H. Muramatsu, and M. Nakano, Experience of using cultured epithelial autografts for the extensive burn wounds in eight patients, Annals of Plastic Surgery, vol.73, issue.1, pp.25-29, 2014.

S. He, D. Pant, and A. Schiffmacher, Lymphoid Enhancer Factor 1-Mediated Wnt Signaling Promotes the Initiation of Trophoblast Lineage Differentiation in Mouse Embryonic Stem Cells, Stem Cells, vol.26, issue.4, pp.842-849, 2008.

M. J. Helmedag, S. Weinandy, and Y. Marquardt, The effects of constant flow bioreactor cultivation and keratinocyte seeding densities on prevascularized organotypic skin grafts based on a fibrin scaffold, Tissue Eng Part A, vol.21, issue.1-2, pp.343-352, 2015.

I. Hendaoui, R. P. Tucker, and D. Zingg, Tenascin-C is required for normal Wnt/betacatenin signaling in the whisker follicle stem cell niche, Matrix Biol, vol.40, pp.46-53, 2014.

N. E. Hengartner, J. Fiedler, and H. Schrezenmeier, Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to inflammatory mediators of polytrauma, PLoS One, vol.10, issue.1, p.116772, 2015.

B. Hermankova, A. Zajicova, and E. Javorkova, Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-gamma-treated mesenchymal stem cells, Immunobiology, vol.221, pp.129-136, 2016.

C. A. Hernon, R. A. Dawson, and E. Freedlander, Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient, Future Medicine, vol.1, issue.6, pp.809-821, 2006.

S. Hettiaratchy, P. Dziewulski, . Abc, and . Burns, Pathophysiology and types of burns, vol.328, pp.1427-1429, 2004.

W. L. Hickerson, C. C. Compton, and S. Fletchall, Cultured epidermal autografts and allodermis combination for permanent burn wound coverage, vol.20, pp.1-52, 1994.

P. Hilkens, Y. Fanton, and W. Martens, Pro-angiogenic impact of dental stem cells in vitro and in vivo, Stem Cell Research, vol.12, issue.3, pp.778-790, 2014.

J. A. Hill, J. M. Cassano, and M. B. Goodale, Antigenicity of mesenchymal stem cells in an inflamed joint environment, American Journal of Veterinary Research, vol.78, issue.7, pp.867-875, 2017.

T. Hirsch, T. Rothoeft, and N. Teig, Regeneration of the entire human epidermis using transgenic stem cells (2017) from, Nature, issue.7680, pp.327-332

M. S. Ho, K. Bose, and S. Mokkapati, Nidogens-Extracellular matrix linker molecules, Microsc Res Tech, vol.71, issue.5, pp.387-395, 2008.

H. S. Hong, J. Lee, and E. Lee, A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells, Nature Medicine, vol.15, issue.4, pp.425-435, 2009.

J. A. Horton, K. E. Hudak, and E. J. Chung, Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation, Stem Cells, vol.31, issue.10, pp.2231-2241, 2013.

A. Hovnanian, SERCA Pumps and human diseases, Calcium Signalling and Disease, pp.337-364, 2007.

H. S. Hreggvidsdottir, T. Ostberg, and A. Wahamaa, The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation, Journal of Leukocyte Biology, vol.86, pp.655-662, 2009.

S. Hsiao, A. Asgari, and Z. Lokmic, Comparative Analysis of Paracrine Factor Expression in Human Adult Mesenchymal Stem Cells Derived from Bone Marrow, Adipose, and Dermal Tissue (2012) from Stem cells and Development, vol.21, pp.2189-2203

Y. C. Hsu, L. L. Fuchs, and E. , Emerging interactions between skin stem cells and their niches, Nature Medicine, vol.20, issue.8, pp.847-856, 2014.

C. Hu and L. Li, Preconditioning influences mesenchymal stem cell properties in vitro and in vivo, Journal of Cellular and Molecular Medicine, vol.22, issue.3, pp.1428-1442, 2018.

R. E. Hynds, P. Bonfanti, and S. M. Janes, Regenerating human epithelia with cultured stem cells: feeder cells, EMBO Mol Med, vol.10, issue.2, pp.139-150, 2018.

R. O. Hynes, The extracellular matrix: not just pretty fibrils, Science, vol.326, issue.5957, pp.1216-1219, 2009.

S. S. Im, L. Yousef, and C. Blaschitz, Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a, Cell Metabolism, vol.13, issue.5, pp.540-549, 2011.

S. E. James, S. Booth, and P. Gilbert, Clinical Approaches to Skin Regeneration, pp.1-33, 2009.

Z. Jazekovic, A new concept in the early excision and immediate grafting of burns, The Journal of Trauma, vol.10, issue.12, pp.1103-1108, 1970.

U. B. Jensen, L. S. Watt, and F. M. , The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis, vol.126, pp.2409-2418, 1999.

M. G. Jeschke, D. L. Chinkes, and C. C. Finnerty, Annals of Surgery, vol.248, issue.3, pp.387-401, 2008.

M. G. Jeschke, G. G. Gauglitz, and G. A. Kulp, Long-Term Persistance of the Pathophysiologic Response to Severe Burn Injury, PLoS One, vol.6, issue.7, p.21245, 2011.

M. G. Jeschke, G. G. Gauglitz, and J. Song, Calcium and ER stress mediate hepatic apoptosis after burn injury, Journal of Cellular and Molecular Medicine, vol.13, issue.8b, pp.1857-1865, 2009.

C. M. Jiang, J. Liu, and J. Y. Zhao, Effects of Hypoxia on the Immunomodulatory Properties of Human Gingiva-Derived Mesenchymal Stem Cells, Journal of Dental Research, vol.94, issue.1, pp.69-77, 2015.

R. H. Jiang, C. J. Wu, and X. Q. Xu, Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats, Journal of Cellular Physiology, 2018.

Y. Jin, S. H. Hong, and Y. Son, Substance P enhances mesenchymal stem cells-mediated immune modulation (2015) from Cytokine, 71, pp.145-153

M. Jinnin, Mechanisms of skin fibrosis in systemic sclerosis, Journal of Dermatology, vol.37, issue.1, pp.11-25, 2010.

P. H. Jones and F. M. Watt, Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression (1993) from The Cell, vol.73, pp.713-724

I. Kaddoura, G. Abu-sittah, and A. Ibrahim, Burn Injury: Review of Pathophysiology and Therapeutic Modalities in Major Burns (2017) from Annals of Burns and Fire Disasters, pp.95-102

A. Kalinin, L. N. Marekov, and P. M. Steinert, Assembly of the epidermal cornified cell envelope, vol.114, pp.3069-3070, 2001.

R. Kalluri, Basement membranes: structure, assembly and role in tumour angiogenesis, Nature Reviews Cancer, vol.3, issue.6, pp.422-433, 2003.

T. Kalogeris, B. Y. Korthuis, and R. J. , Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning, Redox Biol, vol.2, pp.702-714, 2014.

T. Kawasaki, K. Nakamura, and M. G. Jeschke, Impaired ability of burn patient neutrophils to stimulate beta-defensin production by keratinocytes, Immunology and Cell Biology, vol.90, issue.8, pp.796-801, 2012.

N. Ketterl, G. Brachtl, and C. Schuh, A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance, Stem Cell Res Ther, vol.6, p.236, 2015.

L. Khodadadi, S. Shafieyan, and N. Aghdami, Cell Therapy in Burn Repair, vol.10, issue.3, 2008.

J. Khoshnoodi, V. Pedchenko, and B. G. Hudson, Mammalian collagen IV, 2008.

, Microscopy Research and Technique, vol.71, issue.5, pp.357-370

A. L. Kierszenbaum and . Téguments, Histologie et Biologie Cellulaire : une introduction à l'anatomie pathologique, pp.299-318, 2006.

M. H. Kim, F. Gorouhi, and S. Ramirez, Catecholamine stress alters neutrophil trafficking and impairs wound healing by beta2-adrenergic receptor-mediated upregulation of, Journal of Investigative Dermatology, vol.134, issue.6, pp.809-817, 2014.

T. Kinnaird, E. Stabile, and M. S. Burnett, Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms, Circulation, vol.109, issue.12, pp.1543-1549, 2004.

K. Mancini, O. Shum-tim, D. Stochaj, and U. , Age, atherosclerosis and type 2 diabetes reduce human mesenchymal stromal cell-mediated T-cell suppression, Stem Cell Res Ther, vol.6, p.140, 2015.

J. A. Knipper, S. Willenborg, and J. Brinckmann, Interleukin-4 Receptor a Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair, Immunity, vol.43, pp.803-816, 2015.

V. Konala, M. K. Mamidi, and R. Bhonde, The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration, Cytotherapy, vol.18, pp.13-24, 2016.

A. König and L. Bruckner-tuderman, Transforming Growth Factor-? stimulates collagen VII expression by cutaneous cells in vitro, The Journal of Cell Biology, vol.117, issue.3, pp.679-685, 1992.

M. Krampera, G. S. Dyson, and J. , Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide, Blood, vol.101, issue.9, pp.3722-3729, 2003.

A. Krasnodembskaya, Y. Song, and X. Fang, Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37, Stem Cells, vol.28, issue.12, pp.2229-2238, 2010.

R. W. Kreis, P. Md, and A. Vloemans, Widely expanded postage stamps skin grafts using a modified Meek technique in combination with an allograft overlay, Burns, vol.19, issue.2, pp.142-145, 1993.

N. Z. Kuhn and R. S. Tuan, Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis, Journal of Cellular Physiology, vol.222, issue.2, pp.268-277, 2010.

P. O. Kwan, J. Ding, and E. E. Tredget, Serum Decorin, Interleukin-1beta, and Transforming Growth Factor-beta Predict Hypertrophic Scarring Postburn, vol.37, pp.356-366, 2016.

A. Laberge, S. Arif, and V. J. Moulin, Microvesicles: Intercellular messengers in cutaneous wound healing, Journal of Cellular Physiology, vol.233, pp.5550-5563, 2018.

A. Lakhel, J. P. Pradier, and M. Brachet, Chirurgie des brûlures graves au stade aigu (2008) from EMC -Techniques chirurgicales -Chirurgie plastique reconstructrice et esthétique, vol.3, pp.1-36

E. Lambert, E. Dasse, and B. Haye, TIMPs as multifacial proteins, Critical Reviews in Oncology / Hematology, vol.49, issue.3, pp.187-198, 2004.

Y. W. Lan, K. B. Choo, and C. M. Chen, Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis, Stem Cell Research & Therapy, vol.6, issue.1, 2015.

A. G. Landau, D. A. Hudson, and K. Adams, Full-thickness skin grafts: maximizing graft take using negative pressure dressings to prepare the graft bed, Annals of Plastic Surgery, vol.60, issue.6, pp.661-666, 2008.

R. C. Langdon, C. B. Cuono, and N. Birchall, Reconstitution of Structure and Cell Function in Human Skin Grafts Derived from Cryopreserved Allogeneic Dermis and Autologous Cultured Keratinocytes, Journal of Investigative Dermatology, vol.91, issue.5, pp.478-485, 1988.

A. R. Lari and R. K. Gang, Expansion technique for skin grafts (Meek technique) in the treatment of severely burned patients, Burns, vol.27, pp.61-66, 2001.

J. J. Lataillade, C. Doucet, and E. Bey, New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy, Regenerative Medicine, vol.2, issue.5, pp.785-794, 2007.

B. Latha and M. Babu, The involvement of free radicals in burn injury: a review, vol.27, pp.309-317, 2001.

L. Blanc and K. , Immunomodulatory effects of fetal and adult mesenchymal stem cells, Cytotherapy, vol.5, issue.6, pp.485-489, 2003.

T. Leclerc, C. Hoffmann, and E. Forsans, Long distance air transport for severe burns: a review of the literature and practical application, Annals of Burns and Fire Disasters, vol.28, issue.1, pp.57-65, 2015.

T. Leclerc, C. Thepenier, and P. Jault, Cell therapy of burns, vol.44, pp.48-54, 2011.

J. W. Lee, A. Krasnodembskaya, and D. H. Mckenna, Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria, 2013.

, American Journal of Respiratory and Critical Care Medicine, vol.187, issue.7, pp.751-760

M. Y. Lee, G. Liu, and V. Kowlowitz, Causative factors affecting peripheral neuropathy in burn patients, Burns, vol.35, issue.3, pp.412-416, 2009.
DOI : 10.1016/j.burns.2008.08.009

C. J. Lewis, Stem cell application in acute burn care and reconstruction, Journal of Wound Care, issue.1, p.22, 2013.
DOI : 10.12968/jowc.2013.22.1.7

C. X. Li, N. P. Talele, and S. Boo, MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells (2016a) from Nature Materials, 16, pp.379-389

M. Li, Y. Zhao, and H. Hao, Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment, The International Journal of Lower Extremity Wounds, vol.14, issue.1, pp.73-86, 2015.

X. Li, L. Liu, and J. Yang, Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation, pp.72-82, 2016.
DOI : 10.1016/j.ebiom.2016.04.030

URL : https://doi.org/10.1016/j.ebiom.2016.04.030

X. Li, Y. Zhang, and S. C. Yeung, Mitochondrial transfer of induced pluripotent stem cellderived mesenchymal stem cells to airway epithelial cells attenuates cigarette smokeinduced damage (2014) from, Am J Respir Cell Mol Biol, vol.51, issue.3, pp.455-465

X. Liang, Y. Ding, and Y. Zhang, Paracrine mechanisms of mesenchymal stem cellbased therapy: current status and perspectives, Cell Transplant, vol.23, issue.9, pp.1045-1059, 2014.
DOI : 10.3727/096368913x667709

K. W. Liechty, H. B. Kim, and N. S. Adzick, Fetal Wound Repair Results in Scar Formation in Interleukin-10-Deficient Mice in a Syngeneic Murine Model of Scarless Fetal Wound Repair, Journal of Pediatric Surgery, vol.35, issue.6, pp.866-873, 2000.

C. Linard, F. Tissedre, and E. Busson, Therapeutic Potential of Gingival Fibroblasts for Cutaneous Radiation Syndrome: Comparison to Bone Marrow-Mesenchymal Stem Cell Grafts, Stem cells and Development, vol.24, issue.10, pp.1182-1193, 2015.

K. Liu, J. K. Guo, and L. , Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer (2014a) from Microvascular Research, vol.92, pp.10-18

L. Liu, H. Song, and H. Duan, TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling, Scientific Reports, vol.6, p.30121, 2016.
DOI : 10.1038/srep30121

URL : https://www.nature.com/articles/srep30121.pdf

L. Liu, Y. Yu, and Y. Hou, Human Umbilical Cord Mesenchymal Stem Cells Transplantation Promotes Cutaneous Wound Healing of Severe Burned Rats, PLoS One, vol.9, issue.2, p.88348, 2014.
DOI : 10.1371/journal.pone.0088348

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088348&type=printable

P. Liu, Z. Deng, and S. Han, Tissue-Engineered Skin Containing Mesenchymal Stem Cells Improves Burn Wounds, vol.32, issue.12, pp.925-931, 2008.

Y. Liu, Q. Zhou, and Y. Wang, Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection, PLoS One, vol.9, issue.2, p.90494, 2014.

H. N. Lovvorn, D. T. Cheung, and N. E. Nimni, Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair, Journal of Pediatric Surgery, vol.34, issue.1, pp.218-223, 1999.
DOI : 10.1016/s0022-3468(99)90261-0

L. Bb and B. M. Spiegelman, Towards a molecular understanding of adaptive thermogenesis (2000) from Nature, 404, pp.652-660

L. M. Lugo, P. Lei, and A. St, Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes, Tissue Engineering: Part A, vol.17, pp.665-675, 2011.

X. Luo, S. Huang, and N. He, Inflammatory Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Stem Cell-Like Characteristics of Cancer Cells in an IL-1beta-Dependent Manner, Biomed Res Int, p.7096707, 2018.

Y. Luo, Y. Wang, and J. A. Poynter, Pretreating mesenchymal stem cells with interleukin1b and transforming growth factor-b synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia, Surgery, vol.151, issue.3, pp.353-363, 2012.

L. Djouad, F. Toupet, and K. , Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation, Stem Cells, vol.34, issue.2, pp.483-492, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01834077

J. B. Lynch, I. T. Kelly, and J. L. , Release of anterior neck burn contracture using artificial dermis and vacuum-assisted closure (2008) from Plastic and Reconstructive Surgery, vol.121, pp.352-353

I. C. Mackenzie, Relationship Between the Mitosis and the Ordered Structure of the Stratum Corneum in Mouse Epidermis, vol.226, pp.653-655, 1970.

M. Madrigal, K. S. Rao, and N. H. Riordan, A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods, Journal of Translational Medicine, vol.12, p.260, 2014.

B. Magne, J. J. Lataillade, and M. Trouillas, Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn, Stem Cells Dev, vol.27, issue.20, pp.1385-1405, 2018.

R. J. Mailloux and M. Harper, Uncoupling proteins and the control of mitochondrial reactive oxygen species production, Free Radical Biology & Medicine, vol.51, pp.1106-1115, 2011.

E. Mansilla, G. H. Marin, and M. Berges, Cadaveric bone marrow mesenchymal stem cells: first experience treating a patient with large severe burns, Burns Trauma, vol.3, p.17, 2015.

J. Manson, C. Thiemermann, and K. Brohi, Trauma alarmins as activators of damageinduced inflammation, British Journal of Surgery, vol.99, pp.12-20, 2012.

S. Margraf, T. Logters, and J. Reipen, Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis, Shock, vol.30, issue.4, pp.352-358, 2008.

C. Marionnet, C. Pierrard, and C. Vioux-chagnoleau, Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin, J Invest Dermatol, vol.126, issue.5, pp.971-979, 2006.

G. Mascre, S. Dekoninck, and B. Drogat, Distinct contribution of stem and progenitor cells to epidermal maintenance (2012) from, Nature, issue.7415, pp.257-262

H. Matsumura, Y. Mohri, and N. T. Binh, Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis, Science, issue.6273, p.4395, 2016.

M. A. Matthay, Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome (2015) from AnnalsATS, 12 Supplement 1, pp.54-57

N. P. Matylevitch, S. T. Schuschereba, and J. R. Mata, Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury, vol.153, issue.2, pp.567-577, 1998.

M. Lda, S. Fontes, A. M. Covas, and D. T. , Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine Growth Factor Rev, vol.20, pp.419-427, 2009.

D. A. Melton and C. Cowen, Stemness": Definitions, Criteria, and Standards, pp.xxiii-xxix, 2009.

C. Menard, L. Pacelli, and G. Bassi, Clinical-Grade Mesenchymal Stromal Cells Produced Under Various Good Manufacturing Practice Processes Differ in Their Immunomodulatory Properties: Standardization of Immune Quality Controls, Stem cells and Development, vol.22, issue.12, pp.1789-1801, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00799812

T. Mets and G. Verdonk, In vitro aging of human bone marrow derived stromal cells, Mechanisms of Ageing and Development, vol.16, issue.1, pp.81-89, 1981.

K. S. Midwood, M. Chiquet, and R. P. Tucker, Tenascin-C at a glance, Journal of Cell Science, vol.129, issue.23, pp.4321-4327, 2016.

M. Mimoun, D. Boccara, and M. Chaouat, Expansion cutanée et réparation des séquelles de brûlure, Annales de Chirurgie Plastique Esthétique, vol.56, issue.5, pp.358-368, 2011.

S. Mizumoto, T. Kosho, and S. Yamada, Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders, Pharmaceuticals, issue.2, p.10, 2017.

A. M. Mommaas, R. Teepe, and I. M. Leigh, Ontogenesis of the Basement Membrane Zone After Grafting Cultured Human Epithelium: A Morphologic and Immunoelectron Microscopic Study (1992) from, Journal of Investigative Dermatology, vol.99, issue.1, pp.71-77

S. Monaco, V. Sparano, and M. Gioia, Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains, Protein Science, vol.15, pp.2805-2815, 2006.

J. Morgner, S. Ghatak, and T. Jakobi, Integrin-linked kinase regulates the niche of quiescent epidermal stem cells, Nat Commun, vol.6, p.8198, 2015.

S. I. Motegi and O. Ishikawa, Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth, Journal of Dermatological Science, vol.86, issue.2, pp.83-89, 2017.

G. Muhammad, J. Xu, and J. Bulte, Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study, Scientific Reports, vol.7, issue.1, p.4644, 2017.

Q. Muller, M. Beaudet, and S. Bellenfant, Developing A Tissue-Engineered Innervated, Vascularized and Immunocompetent Human Skin for the Study of Neuroinflammation, TERMIS World Conference, 2018.

M. Najar, G. Raicevic, and E. Crompot, The Immunomodulatory Potential of Mesenchymal Stromal Cells: A Story of a Regulatory Network, Journal of Immunotherapy, vol.39, issue.2, pp.45-59, 2016.

M. Nakamura and Y. Tokura, Epithelial-mesenchymal transition in the skin, Journal of Dermatological Science, vol.61, issue.1, pp.7-13, 2011.

T. Namdar, P. L. Stollwerck, and F. H. Stang, Hypernatremia on Burn Wound Healing: Results of an Exploratory, Retrospective Study, vol.57, pp.30-34, 2011.

M. Naso, J. Uitto, and J. F. Klement, Transcriptional Control of the Mouse Col7a1 Gene in Keratinocytes: Basal and Transforming Growth Factor-b Regulated Expression, Journal of Investigative Dermatology, vol.121, pp.1469-1478, 2003.

A. J. Nauta and W. E. Fibbe, Immunomodulatory properties of mesenchymal stromal cells, Blood, vol.110, issue.10, pp.3499-3506, 2007.

A. J. Nauta, A. B. Kruisselbrink, and E. Lurvink, Mesenchymal Stem Cells Inhibit Generation and Function of Both CD34+-Derived and Monocyte-Derived Dendritic Cells, The Journal of Immunology, vol.177, issue.4, pp.2080-2087, 2006.

A. Naveau, N. Reinald, and B. Fournier, Gingival Fibroblasts Inhibit MMP-1 and MMP

, Activities in an Ex-Vivo Artery Model, Connective Tissue Research, vol.48, pp.300-308, 2007.

K. Nemeth, A. Leelahavanichkul, and P. S. Yuen, Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production, Nature Medicine, vol.15, issue.1, pp.42-49, 2009.

K. Nemeth and E. Mezey, Bone marrow stromal cells as immunomodulators. A primer for dermatologists, Journal of Dermatological Science, vol.77, pp.11-20, 2015.

C. Neurohr, S. L. Nishimura, and D. Sheppard, Activation of transforming growth factorbeta by the integrin alphavbeta8 delays epithelial wound closure, American Journal of Respiratory Cell and Molecular Biology, vol.35, issue.2, pp.252-259, 2006.

J. Nie, X. Fu, and W. Han, Microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes and their clinical applications in skin repair, J Eur Acad Dermatol Venereol, vol.27, issue.5, pp.531-535, 2013.

X. Nissan, L. Larribere, and M. Saidani, Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis, Proceedings of the National Academy of Sciences, vol.108, issue.43, pp.17856-17856, 2011.
DOI : 10.1073/pnas.1019070108

URL : http://www.pnas.org/content/108/36/14861.full.pdf

G. Noel, Q. Wang, and A. Osterburg, A ribonucleotide reductase inhibitor reverses burninduced inflammatory defects (2010) from Shock, vol.34, pp.535-544

J. G. Noel, X. Guo, and D. Wells-byrum, Effect of Thermal Injury on Splenic Myelopoiesis, Shock, vol.23, issue.2, pp.115-122, 2005.

N. E. O'connor, J. E. Mulliken, and S. Banks-schlegel, Grafting of burns with cultured epithelium prepared from autologous epidermal cells (1981) from The Lancet, vol.317, pp.75-78

J. Y. Oh, J. H. Ko, and H. J. Lee, Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species, Stem Cells, vol.32, issue.6, pp.1553-1563, 2014.

S. Ohkouchi, G. J. Block, and A. M. Katsha, Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1, Molecular Therapy, vol.20, issue.2, pp.417-423, 2012.

S. Oksuz, E. Ulkur, and O. Oncul, The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model (2013) from Plastic and Reconstructive Surgery, vol.131, pp.463-471

M. Owen, Marrow Stromal Stem Cells, vol.10, pp.63-76, 1988.

J. E. Paddle-ledinek, D. G. Cruickshank, and J. P. Masterton, Skin replacement by cultured keratinocyte grafts: an Australian experience, Burns, vol.23, issue.3, pp.204-211, 1997.
DOI : 10.1016/s0305-4179(96)00123-4

F. V. Paladino, L. R. Sardinha, and C. A. Piccinato, Intrinsic Variability Present in Wharton's Jelly Mesenchymal Stem Cells and T Cell Responses May Impact Cell Therapy, Stem Cells Int, p.8492797, 2017.

R. Papini, Management of burn injuries of various depths, British Medical Journal, p.329, 2004.

A. Parihar, M. S. Parihar, and S. Milner, Oxidative stress and anti-oxidative mobilization in burn injury, Burns, vol.34, pp.6-17, 2008.

J. E. Park and A. Barbul, Understanding the role of immune regulation in wound healing, The American Journal of Surgery, vol.187, issue.5, pp.11-16, 2004.

J. H. Park, S. Kim, and H. S. Hong, Substance P promotes diabetic wound healing by modulating inflammation and restoring cellular activity of mesenchymal stem cells, Wound Repair and Regeneration, vol.24, issue.2, pp.337-348, 2016.

S. R. Park, J. W. Kim, and H. S. Jun, Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing, Mol Ther, vol.26, issue.2, pp.606-617, 2018.

B. Pasternak and P. Aspenberg, Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics, Acta Orthopaedica, vol.80, issue.6, pp.693-703, 2009.
DOI : 10.3109/17453670903448257

URL : https://doi.org/10.3109/17453670903448257

M. D. Peck, Epidemiology of burns throughout the world. Part I: Distribution and risk factors, Burns, vol.37, issue.7, pp.1087-1100, 2011.

G. Pellegrini, R. Ranno, and G. Stracuzzi, The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin, Transplantation, issue.6, pp.868-879, 1999.

J. Peltzer, F. Montespan, and C. Thepenier, Heterogeneous functions of perinatal mesenchymal stromal cells require a preselection before their banking for clinical use, Stem cells and Development, vol.24, issue.3, pp.329-344, 2015.

J. W. Penn, A. O. Grobbelaar, and R. Kj, The role of the TGF-? family in wound healing, burns and scarring: a review, International Journal of Burns and Trauma, vol.2, issue.1, pp.18-28, 2012.

R. Pépin, Q. Muller, and M. Beaudet, Development of a human innervated tissue engineered skin for the study of neuroinflammation, Cytotherapy, vol.20, issue.5, pp.83-84, 2018.

P. V. Peplow and M. P. Chatterjee, A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration, Cytokine, vol.62, issue.1, pp.1-21, 2013.

C. T. Pereira, R. E. Barrow, and A. M. Sterns, Age-dependent differences in survival after severe burns: a unicentric review of 1,674 patients and 179 autopsies over 15 years, Journal of the American College of Surgeon, vol.202, issue.3, pp.536-548, 2006.

D. Philipp, L. Suhr, and T. Wahlers, Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization, Stem Cell Res Ther, vol.9, issue.1, p.286, 2018.

D. G. Phinney, D. Giuseppe, M. Njah, and J. , Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs, Nat Commun, vol.6, p.8472, 2015.
DOI : 10.1038/ncomms9472

URL : https://www.nature.com/articles/ncomms9472.pdf

D. G. Phinney and L. Sensebe, Mesenchymal stromal cells: misconceptions and evolving concepts, Cytotherapy, vol.15, issue.2, pp.140-145, 2013.
DOI : 10.1016/j.jcyt.2012.11.005

D. Pietra, A. Borghini, and A. M. Bianucci, In vitro studies of antifibrotic and cytoprotective effects elicited by proto-berberine alkaloids in human dermal fibroblasts, Pharmacological Reports, vol.67, issue.6, pp.1081-1089, 2015.

A. O. Pires, B. Mendes-pinheiro, and F. G. Teixeira, Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose TissueDerived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis, Stem Cells Dev, vol.25, issue.14, pp.1073-1083, 2016.

M. F. Pittenger, A. M. Mackay, and S. C. Beck, Multilineage Potential of Adult Human Mesenchymal Stem Cells (1999) from Science, 284, pp.143-147

L. Pontiggia, T. Biedermann, and M. Meuli, Markers to evaluate the quality and selfrenewing potential of engineered human skin substitutes in vitro and after transplantation, Journal of Investigative Dermatology, vol.129, issue.2, pp.480-490, 2009.

D. J. Prockop, Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms, Molecular Therapy, vol.17, issue.6, pp.939-946, 2009.

C. E. Pullar, M. Zhao, and B. Song, Beta-adrenergic receptor agonists delay while antagonists accelerate epithelial wound healing: evidence of an endogenous adrenergic network within the corneal epithelium, Journal of Cellular Physiology, vol.211, issue.1, pp.261-272, 2007.

G. F. Purdue, A. Bd, and J. L. Hunt, Acute assessment and management of burn injuries, Phys Med Rehabil Clin N Am, vol.22, issue.2, pp.201-212, 2011.

Y. Qi, D. Jiang, and A. Sindrilaru, TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds, Journal of Investigative Dermatology, vol.134, issue.2, pp.526-537, 2014.

I. Rasmusson, O. Ringden, and B. Sundberg, Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells, Transplantation, issue.8, pp.1208-1213, 2003.

M. F. Rasulov, A. V. Vasil'chenkov, and N. A. Onishchenko, First Experience in the Use of Bone Marrow Mesenchymal Stem Cells for the Treatment of a Patient with, Cell Technologies in Biology and Medicine, vol.1, issue.1, pp.141-144, 2005.

M. F. Rasulov, V. T. Vasilenko, and V. A. Zaidenov, Cell Transplantation Inhibits Inflammatory Reaction and Stimulates Repair Processes in Burn Wound, Cell Technologies in Biology and Medicine, vol.2, issue.3, pp.112-115, 2006.

E. Redondo-castro, C. Cunningham, and J. Miller, Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro, Stem Cell Research & Therapy, vol.8, 2017.

F. Reno, M. Sabbatini, and M. Stella, Effect of in vitro mechanical compression on Epilysin (matrix metalloproteinase-28) expression in hypertrophic scars, Wound Repair and Regeneration, vol.13, issue.3, pp.255-261, 2005.

J. G. Rheinwald and H. Green, Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells (1975) from The Cell, vol.6, pp.331-343

A. Rochat and Y. Barrandon, Regeneration of Epidermis from Adult Keratinocyte Stem Cells, Essentials of Stem Cell Biology Second Edition, pp.551-560, 2009.

V. Ronfard, J. M. Rives, and Y. Neveux, Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix, Transplantation, vol.70, issue.11, pp.1588-1598, 2000.

R. Lf and C. Rk, The Burn Wound Microenvironment (2016) from Advances in Wound Care, vol.5, pp.106-118

I. Rosova, M. Dao, and B. Capoccia, Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells, vol.26, issue.8, pp.2173-2182, 2008.

M. G. Roubelakis, G. Tsaknakis, and K. I. Pappa, Spindle Shaped Human Mesenchymal Stem/Stromal Cells from Amniotic Fluid Promote Neovascularization, PLoS One, vol.8, issue.1, p.54747, 2013.

M. Ruiz-castilla, O. Roca, and J. R. Mascians, Advances in Biomarkers in Severe Burns, vol.45, pp.117-125, 2016.

J. M. Ryan, F. Barry, and J. M. Murphy, Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells, Clinical and Experimental Immunology, vol.149, issue.2, pp.353-363, 2007.

T. Sadowski, S. Dietrich, and F. Koschinsky, Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration, Cell Mol Life Sci, vol.62, issue.7-8, pp.870-880, 2005.

S. Sart, M. T. Li, and Y. , Preconditioning stem cells for in vivo delivery, Biores Open Access, vol.3, issue.4, pp.137-149, 2014.

K. Sato, K. Ozaki, and I. Oh, Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells, Blood, vol.109, issue.1, pp.228-234, 2007.

S. Schenk, E. Hintermann, and M. Bilban, Binding to EGF receptor of a laminin-5 EGFlike fragment liberated during MMP-dependent mammary gland involution, J Cell Biol, vol.161, issue.1, pp.197-209, 2003.

H. Schluter, S. Paquet-fifield, and P. Gangatirkar, Functional characterization of quiescent keratinocyte stem cells and their progeny reveals a hierarchical organization in human skin epidermis, Stem Cells, vol.29, issue.8, pp.1256-1268, 2011.

R. Schofield, The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, vol.4, issue.1-2, pp.7-25, 1978.

G. A. Schönenberger, U. R. Bauer, and L. B. Cueni, Isolation and characterization of a cutaneous lipoprotein with lethal effects produced by thermal energy in mouse skin (1971) from Biochemical and Biophysical Research Communications, vol.42, pp.975-982

J. R. Scott, P. Muangman, and N. S. Gibran, Making sense of hypertrophic scar: a role for nerves, Wound Repair and Regeneration, vol.15, pp.27-31, 2007.

M. A. Seeger and A. S. Paller, The Roles of Growth Factors in Keratinocyte Migration (2015) from Advances in Wound Care, vol.4, pp.213-224

J. A. Segre, Epidermal barrier formation and recovery in skin disorders, The Journal of Clinical Investigation, vol.116, issue.5, pp.1150-1158, 2006.

C. Serena, N. Keiran, and V. Ceperuelo-mallafre, Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells, Stem Cells, vol.34, issue.10, pp.2559-2573, 2016.

C. N. Serhan, Pro-resolving lipid mediators are leads for resolution physiology (2014) from Nature, 510, pp.92-101

A. Shabbir and E. V. Badiavas, Toward an 'off the shelf' technology for burn victims: healing wounds with mesenchymal stem cells, Regenerative Medicine, vol.10, issue.4, pp.381-384, 2015.

B. R. Shepherd, D. R. Enis, and F. Wang, Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells, The FASEB Journal, vol.20, pp.1124-1132, 2006.

V. I. Shumakov, N. A. Onishchenko, and M. F. Rasulov, Mesenchymal Bone Marrow Stem Cells More Effectively Stimulate Regeneration of Deep Burn Wounds than Embryonic Fibroblasts, Bulletin of Experimental Biology and Medicine, vol.136, issue.2, pp.192-195, 2003.

C. R. Singer, . Cutaneous-wound, and . Healing, The New England Journal of Medicine, vol.341, issue.10, pp.738-746, 1999.

J. J. Smith, A. D. Malyon, and G. V. Scerri, A comparison of serial halving and the rule of nines as a pre-hospital assessment tool in burns, Br J Plast Surg, vol.58, issue.7, pp.957-967, 2005.

C. Smolle, J. Cambiaso-daniel, and A. A. Forbes, Recent trends in burn epidemiology worldwide: A systematic review, Burns, vol.43, issue.2, pp.249-257, 2017.

J. Song, C. C. Finnerty, and D. N. Herndon, Thermal Injury Activates the eEF2K-Dependent eEF2 Pathway in Pediatric Patients, Journal of Parenteral and Enteral Nutrition, vol.36, issue.5, pp.596-602, 2012.

Y. Song, H. Dou, and X. Li, Exosomal miR-146a Contributes to the Enhanced Therapeutic Efficacy of Interleukin-1beta-Primed Mesenchymal Stem Cells Against Sepsis, Stem Cells, vol.35, issue.5, pp.1208-1221, 2017.

R. Sood, D. Roggy, and M. Zieger, Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience, Journal of Burn Care & Research, vol.31, issue.4, pp.559-568, 2010.

P. A. Sotiropoulou, S. A. Perez, and A. D. Gritzapis, Interactions between human mesenchymal stem cells and natural killer cells, Stem Cells, vol.24, issue.1, pp.74-85, 2006.

P. A. Sotiropoulou, S. A. Perez, and M. Salagianni, Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells, Stem Cells, vol.24, issue.2, pp.462-471, 2006.

G. M. Spaggiari, A. Capobianco, and S. Becchetti, Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation, Blood, vol.107, issue.4, pp.1484-1490, 2006.

B. G. Sparkes, Immunological responses to thermal injury, Burns, vol.23, issue.2, pp.106-113, 1997.
DOI : 10.1016/s0305-4179(96)00089-7

J. L. Spees, R. H. Lee, and C. A. Gregory, Mechanisms of mesenchymal stem/stromal cell function, Stem Cell Res Ther, vol.7, issue.1, p.125, 2016.

J. L. Spees, S. D. Olson, and M. J. Whitney, Mitochondrial transfer between cells can rescue aerobic respiration (2006) from, Proc Natl Acad Sci U S A, vol.101, issue.5, pp.1283-1288
DOI : 10.1073/pnas.0510511103

URL : http://www.pnas.org/content/103/5/1283.full.pdf

T. Squillaro, G. Peluso, and U. Galderisi, Clinical Trials With Mesenchymal Stem Cells: An Update, vol.25, pp.829-848, 2016.

P. Sriwiriyanont, K. A. Lynch, and K. L. Mcfarland, Characterization of hair follicle development in engineered skin substitutes, PLoS One, vol.8, issue.6, p.65664, 2013.

M. Stadtfeld, M. Nagaya, and J. Utikal, Induced pluripotent stem cells generated without viral integration, Science, vol.322, issue.5903, pp.945-949, 2008.

M. Stanojcic, A. Abdullahi, and S. Rehou, Pathophysiological Response to Burn Injury in Adults, vol.267, pp.576-584, 2018.

V. Sueblinvong, R. Loi, and P. L. Eisenhauer, Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells, Am J Respir Crit Care Med, vol.177, issue.7, pp.701-711, 2008.

K. Sugawara, D. Tsuruta, and M. Ishii, Laminin-332 and -511 in skin, Exp Dermatol, vol.17, issue.6, pp.473-480, 2008.

J. Sun, J. Chen, and J. Cao, IL-1?-stimulated ?-catenin up-regulation promotes angiogenesis in human lung-derived mesenchymal stromal cells through a NF-?B-dependent microRNA-433 induction, Oncotarget, vol.7, issue.37, pp.59429-59440, 2016.

J. Sun, Y. Zhang, and X. Song, The Healing Effects of Conditioned Medium Derived from Mesenchymal Stem Cells on Radiation-Induced Skin Wounds in Rats, Cell Transplant, p.963689718807410, 2018.

X. Sun, H. Hao, and Q. Han, Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats, Stem Cell Res Ther, vol.8, issue.1, p.241, 2017.

B. Szczesny, A. Brunyanszki, and A. Ahmad, Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury, vol.10, issue.12, p.143730, 2015.

T. Ueno, A. Nakashima, and S. Doi, Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-?1 signaling, Kidney International, vol.84, issue.2, pp.297-307, 2013.
DOI : 10.1038/ki.2013.81

URL : https://doi.org/10.1038/ki.2013.81

L. J. Van-den-broek, F. B. Niessen, and R. J. Scheper, Validation, and Testing of a Human Tissue Engineered Hypertrophic Scar Model, vol.29, pp.389-402, 2012.

S. Vardar-sengul, S. Arora, and H. Baylas, Expression profile of human gingival fibroblasts induced by interleukin-1beta reveals central role of nuclear factor-kappa B in stabilizing human gingival fibroblasts during inflammation, Journal of Periodontology, vol.80, issue.5, pp.833-849, 2009.

M. Varkey, J. Ding, and E. E. Tredget, Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders, Tissue Engineering : Part A, vol.20, issue.3-4, pp.540-552, 2014.

M. N. Walter, K. T. Wright, and H. R. Fuller, Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays, Experimental Cell Research, vol.316, issue.7, pp.1271-1281, 2010.

X. Wang, H. Gu, and D. Qin, Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis, from Sci Rep, vol.5, p.13721, 2015.

Y. Wang, J. Beekman, and J. Hew, Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring (2018) from Advanced Drug Delivery Reviews, vol.123, pp.3-17

F. M. Watt, Engineered Microenvironments to Direct Epidermal Stem Cell Behavior at Single-Cell Resolution, Dev Cell, vol.38, issue.6, pp.601-609, 2016.

F. M. Watt and K. B. Jensen, Epidermal stem cell diversity and quiescence, EMBO Mol Med, vol.1, issue.5, pp.260-267, 2009.
DOI : 10.1002/emmm.200900033

URL : http://embomolmed.embopress.org/content/embomm/1/5/260.full.pdf

A. Webb, A. Li, and P. Kaur, Location and phenotype of human adult keratinocyte stem cells of the skin (2004) from Differentiation, 72, pp.387-395

A. Wells, A. Nuschke, and C. C. Yates, Skin tissue repair: Matrix microenvironmental influences, Matrix Biology, vol.49, pp.25-36, 2016.
DOI : 10.1016/j.matbio.2015.08.001

URL : http://europepmc.org/articles/pmc4753148?pdf=render

R. Wesolowski, J. Markowitz, and C. We, Myeloid derived suppressor cells -a new therapeutic target in the treatment of cancer, Journal for Immunotherapy of Cancer, vol.1, pp.1-11, 2013.

A. D. Widgerow and S. Kalaria, Pain mediators and wound healing-Establishing the connection, Burns, vol.38, issue.7, pp.951-959, 2012.

T. A. Wilgus, A. M. Ferreira, and T. M. Oberyszyn, Regulation of scar formation by vascular endothelial growth factor, Laboratory Investigation, vol.88, issue.6, pp.579-590, 2008.

W. Fn and D. N. Herndon, Metabolic and Endocrine Considerations After Burn Injury, Clinics in Plastic Surgery, vol.44, issue.3, pp.541-553, 2017.

F. N. Williams, M. G. Jeschke, and D. L. Chinkes, Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs, Journal of the American College of Surgeon, vol.208, issue.4, pp.489-502, 2009.

J. S. Williamson, C. F. Snelling, and P. Clugston, Cultured epithelial autograft: five years of clinical experience with twenty-eight patients, Journal of Trauma, vol.39, issue.2, pp.3019-3319, 1995.

S. E. Wolf, R. G. Tompkins, and D. N. Herndon, On the horizon: research priorities in burns for the next decade, Surgical Clinics of North America, vol.94, issue.4, pp.917-930, 2014.

D. T. Woodley, H. D. Peterson, and S. R. Herzog, Burn Wounds Resurfaced by Cultured Epidermal Autografts Show Abnormal Reconstitution of Anchoring Fibrils, The Journal of the American Medical Association, vol.259, issue.17, pp.2566-2571, 1988.

M. Wu, D. S. Melichian, and E. Chang, Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferatoractivated receptor-gamma, American Journal of Pathology, vol.174, issue.2, pp.519-533, 2009.
DOI : 10.2353/ajpath.2009.080574

URL : http://europepmc.org/articles/pmc2630560?pdf=render

Y. Wu, L. Chen, and P. G. Scott, Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells, vol.25, issue.10, pp.2648-2659, 2007.
DOI : 10.1634/stemcells.2007-0226

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1634/stemcells.2007-0226

Y. Wu, S. Huang, and J. Enhe, Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice, International Wound Journal, vol.11, issue.6, pp.701-710, 2014.

Z. Xie, H. Hao, and C. Tong, Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats, Stem Cells, vol.34, issue.3, pp.627-639, 2016.

Y. Xu, S. Huang, and X. Fu, Autologous transplantation of bone marrow-derived mesenchymal stem cells: a promising therapeutic strategy for prevention of skin-graft contraction, Clinical and Experimental Dermatology, vol.37, issue.5, pp.497-500, 2012.

L. Xue, Y. Xu, and J. Xie, Effects of human bone marrow mesenchymal stem cells on burn injury healing in a mouse model, International Journal of Clinical and Experimental Pathology, vol.6, issue.7, pp.1327-1336, 2013.

M. Xue, L. Ntv, and C. J. Jackson, Targeting matrix metalloproteases to improve cutaneous wound healing, Expert Opin Ther Targets, vol.10, issue.1, pp.143-155, 2006.

H. Yagi, A. Soto-gutierrez, and Y. Kitagawa, Bone Marrow Mesenchymal Stromal Cells Attenuate Organ Injury Induced by LPS and Burn, Cell Transplantation, vol.19, issue.6, pp.823-830, 2010.

A. Yang, R. Schweitzer, and D. Sun, p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development (1999) from Nature, 398, pp.714-718

S. Yang, Y. Sun, and Z. Geng, Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype, International Journal of Molecular Medicine, vol.37, pp.1263-1273, 2016.

Y. Yang, W. Zhang, and Y. Li, Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal stem cells, Annals of Dermatology, vol.26, issue.3, pp.289-295, 2014.

Y. Iv and J. F. Burke, Design of an artificial skin. I. Basic design principles, Journal of Biomedical Materials Research, vol.14, pp.65-81, 1980.

C. C. Yates, R. Bodnar, and A. Wells, Cellular and Molecular Life Sciences, vol.68, issue.11, pp.1871-1881, 2011.

T. Yoshikawa, H. Mitsuno, and I. Nonaka, Wound therapy by marrow mesenchymal cell transplantation, Plastic and Reconstructive Surgery, vol.121, issue.3, pp.860-877, 2008.

H. Yuan, J. Guan, and J. Zhang, Exosomes secreted by human urine-derived stem cells accelerate skin wound healing by promoting angiogenesis in rat, Cell Biol International, 2016.

W. M. Yue, W. Liu, and Y. W. Bi, Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model, Stem Cells Dev, vol.17, issue.4, pp.785-793, 2008.

S. P. Yun, S. J. Lee, and Y. H. Jung, Galectin-1 upregulation of NF-kB-dependent fibronectin/laminin 5 expression, Cell Death and Disease, vol.5, p.1049, 2014.

L. Zanotti, R. Angioni, and B. Cali, Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1 (2016) from Leukemia, vol.30, pp.1143-1154

B. Zhang, Y. Shi, and A. Gong, HucMSC Exosome-Delivered 14-3-3zeta Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration, Stem Cells, vol.34, issue.10, pp.2485-2500, 2016.

F. Zhang, K. Y. Lv, and X. C. Qiu, Using negative pressure wound therapy on microskin autograft wounds, Journal of Surgical Research, vol.195, issue.1, pp.344-350, 2015.

H. Zhang, X. Liu, and S. Huang, Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Stimulated by Hypoxia Promote Angiogenesis Both In Vitro and In Vivo (2012) from Stem cells and Development, vol.21, pp.3289-3297

J. Zhang, L. X. Fan, and L. , Immunosuppressive effects of mesenchymal stem cell transplantation in rat burn models, International Journal of Clinical and Experimental Pathology, vol.8, issue.5, pp.5129-5136, 2015.

K. Zhang and R. J. Kaufman, From endoplasmic-reticulum stress to the inflammatory response, Nature, issue.7203, pp.455-462, 2008.

Q. Z. Zhang, W. R. Su, and S. H. Shi, Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing, Stem Cells, vol.28, issue.10, pp.1856-1868, 2010.

W. Zhang, W. Ge, and C. Li, Effects of Mesenchymal Stem Cells on Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells, Stem cells and Development, vol.13, issue.3, pp.263-271, 2004.

Z. Zhu, J. Ding, and Z. Ma, Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation, Journal: Journal of Tissue Engineering and Regenerative Medicine Manuscript ID Draft Wiley, vol.24, issue.4, pp.644-656, 2016.

, IRBA (French Armed-forces Biomedical Research Institute) ; INSERM U1197; Celogos Magne, Brice; IRBA (French Armed-forces Biomedical Research Institute), vol.1197

, Scarcell Therapeutics Zuleta Rodríguez , Amparo; IRBA (French Armed-forces, Biomedical Research Institute

. Inserm-u1197,

M. Nivet, IRBA (French Armed-forces, Biomedical Research Institute

. Inserm-u1197,

D. Bacqueville and . Lataillade,

, IRBA (French Armed-forces, Biomedical Research Institute

. Inserm-u1197,

M. Trouillas, IRBA (French Armed-forces, Biomedical Research Institute)

C. Inserm-u1197 and . Of, Epidermal Substitute from three different donors, cut to 1.2 cm² (Fibrin matrices) 70% of confluency, keratinocytes were trypsinized, counted, and replated at the same density until passage 10. For growth factor evaluation on colonyforming efficiency (CFE) assay, keratinocytes were plated at low densities (200 cells) in 60cm² petri dishes on growth-arrested murine 3T3 feeder layer (60000cells/cm²). Keratinocytes were grown during 12 days in culture medium alone or complemented with growth factors: Granulocyte MacrophageColony Stimulating Factor (GM-CSF) at 23.8 pg/mL (Peprotech), Granulocyte-Stimulating Growth Factor (G-CSF) at 58.97 pg/mL (R&D Systems), Hepatocyte Growth Factor (HGF) at 4.5 pg/ml (Peprotech), Insulin-like Growth Factor-1 (IGF-1) at 5750 pg/mL (Peprotech), InterLeukin-1? (IL-1?) at 2.25 pg/ml (Peprotech), 2016.

, PDGF-BB at 23.6 pg/ml (R&D Systems), RANTES at 624 pg/mL (Life Technologies) and Tissue Inhibitor of MetalloProteinases-1, 215 pg/mL (Life Technologies)

M. M. Alexaline, M. Trouillas, M. Nivet, E. Bourreau, T. Leclerc et al., Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells, Stem Cells Transl Med, vol.4, issue.6, pp.643-654, 2015.

S. Amano, N. Akutsu, Y. Ogura, and T. Nishiyama, Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids, British Journal of Dermatology, vol.151, issue.5, pp.961-970, 2004.

C. A. Bootle-wilbraham, S. Tazzyman, W. D. Thompson, C. M. Stirk, and C. E. Lewis, Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro, Angiogenesis, vol.4, issue.4, pp.269-275, 2001.

A. Burd and T. Chiu, Allogenic skin in the treatment of burns, Clin Dermatol, vol.23, issue.4, pp.136-137, 2005.

K. A. Bush, B. R. Downing, S. E. Walsh, and G. D. Pins, Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment, J Biomed Mater Res A, vol.80, issue.2, pp.444-452, 2007.

M. T. Cerqueira, A. M. Frias, R. L. Reis, and A. P. Marques, Boosting and rescuing epidermal superior population from fresh keratinocyte cultures, Stem Cells Dev, vol.23, issue.1, pp.34-43, 2013.
DOI : 10.1089/scd.2013.0038

URL : http://europepmc.org/articles/pmc3870488?pdf=render

A. W. Chua, Y. C. Khoo, B. K. Tan, K. C. Tan, C. L. Foo et al., Skin tissue engineering advances in severe burns: review and therapeutic applications, Burns Trauma, vol.4, p.3, 2016.

A. W. Chua, Y. C. Khoo, T. T. Truong, E. Woo, B. K. Tan et al., From skin allograft coverage to allograft-micrograft sandwich method: A retrospective review of severe burn patients who received conjunctive application of cultured epithelial autografts, Burns. doi, issue.18, pp.30061-30066, 2018.

C. Cuono, R. Langdon, and J. Mcguire, Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury, The Lancet, vol.1, issue.8490, pp.1123-1124, 1986.

S. A. Eming, D. A. Medalie, R. G. Tompkins, M. L. Yarmush, and J. R. Morgan, Genetically Modified Human Keratinocytes Overexpressing PDGF-A Enhance the Performance of a Composite Skin Graft, Human Gene Therapy, vol.9, pp.529-539, 1998.

N. O. Fortunel, L. Chadli, E. Bourreau, E. Cadio, P. Vaigot et al., Cellular adhesion on collagen: a simple method to select human basal keratinocytes which preserves their high growth capacity, Eur J Dermatol, vol.21, issue.2, pp.12-20, 2011.

D. E. Frank and W. G. Carter, Laminin 5 deposition regulates keratinocyte polarization and persistent migration, J Cell Sci, vol.117, pp.1351-1363, 2004.

D. J. Geer and S. T. Andreadis, A novel role of fibrin in epidermal healing: plasminogen-mediated migration and selective detachment of differentiated keratinocytes, J Invest Dermatol, vol.121, issue.5, pp.30492-30501, 2003.

C. Gomez, J. M. Galan, V. Torrero, I. Ferreiro, D. Perez et al., Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study, Burns, vol.37, issue.4, pp.276-283, 2011.

H. Green, O. Kehinde, and J. Thomas, Growth of cultured human epidermal cells into multiple epithelia suitable for grafting, Proc Natl Acad Sci, vol.76, issue.11, pp.5665-5668, 1979.

C. Gunschmann, H. Stachelscheid, M. D. Akyuz, A. Schmitz, C. Missero et al., Insulin/IGF-1 controls epidermal morphogenesis via regulation of FoxO-mediated p63 inhibition, Dev Cell, vol.26, issue.2, pp.176-187

S. R. Herzog, A. Meyer, D. Woodley, and H. D. Peterson, Wound coverage with cultured autologous keratinocytes: use after burn wound excision, including biopsy followup, J Trauma, vol.28, issue.2, pp.195-198, 1988.

R. E. Hynds, P. Bonfanti, and S. M. Janes, Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond, EMBO Mol Med, vol.10, issue.2, pp.139-150, 2018.

P. A. Janmey, J. P. Winer, and J. W. Weisel, Fibrin gels and their clinical and bioengineering applications, J R Soc Interface, vol.6, issue.30, pp.1-10, 2009.

S. Llames, E. Garcia, V. Garcia, M. Del-rio, F. Larcher et al., Clinical results of an autologous engineered skin, Cell Tissue Bank, vol.7, issue.1, pp.47-53, 2006.

S. G. Llames, M. Del-rio, F. Larcher, E. Garcia, M. Garcia et al., Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin, Transplantation, vol.77, issue.3, pp.350-355, 2004.

G. Mascre, S. Dekoninck, B. Drogat, K. K. Youssef, S. Brohee et al., Distinct contribution of stem and progenitor cells to epidermal maintenance, Nature, vol.489, issue.7415, pp.257-262, 2012.

H. Matsumura, M. Gondo, R. Imai, D. Shibata, and K. Watanabe, Chronological histological findings of cultured epidermal autograft over bilayer artificial dermis, Burns, vol.39, issue.4, pp.323-326, 2013.

A. Meana, J. Iglesias, M. Del-rio, F. Larcher, B. Madrigal et al., Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels, Burns, vol.24, issue.7, 1998.

R. Mittermayr, L. Branski, M. Moritz, M. G. Jeschke, D. N. Herndon et al., Fibrin biomatrix-conjugated platelet-derived growth factor AB accelerates wound healing in severe thermal injury, J Tissue Eng Regen Med, vol.10, issue.5, pp.275-285, 2016.

M. Haflah, N. H. Ng, M. H. Mohd-yunus, M. H. Naicker, A. S. Htwe et al., Massive Traumatic Skin Defect Successfully Treated with Autologous, Bilayered, TissueEngineered MyDerm Skin Substitute: A Case Report, JBJS Case Connect, vol.8, issue.2, 2018.

A. Monfort, M. Soriano-navarro, J. M. Garcia-verdugo, and A. Izeta, Production of human tissue-engineered skin trilayer on a plasma-based hypodermis, J Tissue Eng Regen Med, vol.7, issue.6, pp.479-490, 2013.

M. Nakamura and Y. Tokura, Epithelial-mesenchymal transition in the skin, Journal of Dermatological Science, vol.61, issue.1, pp.7-13, 2011.

R. Nakamura, F. Nakamura, and S. Fukunaga, Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types in vitro, Cells Tissues Organs, vol.200, issue.6, pp.374-393, 2015.

H. J. Nam, Y. Y. Park, G. Yoon, H. Cho, and J. H. Lee, Co-treatment with hepatocyte growth factor and TGF-beta1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation, Exp Mol Med, vol.42, issue.4, pp.270-279, 2010.

J. Nie, X. Fu, W. Han, N. E. O'connor, J. B. Mulliken et al., Microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes and their clinical applications in skin repair, J Eur Acad Dermatol Venereol, vol.27, issue.5, pp.90006-90010, 1981.

A. Osada, H. Sekine, K. Soejima, H. Sakurai, and T. Shimizu, Harvesting epithelial keratinocyte sheets from temperature-responsive dishes preserves basement membrane proteins and improves cell survival in a skin defect model, J Tissue Eng Regen Med, vol.11, issue.9, pp.2516-2524, 2016.

R. Papini, Management of burn injuries of various depths, BMJ, vol.329, issue.7458, 2004.

M. Paul, P. Kaur, M. Herson, P. Cheshire, H. Cleland et al., Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold, Tissue Eng Part C Methods, vol.21, issue.10, pp.1098-1104, 2015.

P. V. Peplow and M. P. Chatterjee, A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration, Cytokine, vol.62, issue.1, pp.68-77, 2013.

V. Ronfard, J. M. Rives, Y. Neveux, H. Carsin, and Y. Barrandon, Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix, Transplantation, vol.70, issue.11, pp.1588-1598, 2000.

Y. Sato, K. Harada, K. Itatsu, H. Ikeda, Y. Kakuda et al., Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma, Am J Pathol, vol.177, issue.1, pp.60071-60076, 2010.

N. Segal, F. Andriani, L. Pfeiffer, P. Kamath, N. Lin et al., The basement membrane microenvironment directs the normalization and survival of bioengineered human skin equivalents, Matrix Biol, vol.27, issue.3, pp.163-170, 2008.

N. Sese, M. Cole, and B. Tawil, Proliferation of human keratinocytes and cocultured human keratinocytes and fibroblasts in three-dimensional fibrin constructs, Tissue Eng Part A, vol.17, issue.3-4, pp.429-437, 2011.

Y. Shirakata, Regulation of epidermal keratinocytes by growth factors, J Dermatol Sci, vol.59, issue.2, pp.163-168, 2010.

A. J. Singer and R. A. Clark, Cutaneous wound healing, N Engl J Med, vol.341, issue.10, pp.738-746, 1999.

C. Smolle, J. Cambiaso-daniel, A. A. Forbes, P. Wurzer, G. Hundeshagen et al., Recent trends in burn epidemiology worldwide: A systematic review, Burns, vol.43, issue.2, pp.30292-30295, 2017.

R. Stone-ii, S. Natesan, C. J. Kowalczewski, L. H. Mangum, N. E. Clay et al., Advancements in Regenerative Strategies Through the Continuum of Burn Care, Front Pharmacol, vol.9, p.672, 2018.

T. Horst, B. Chouhan, G. Moiemen, N. S. Grover, and L. M. , Advances in keratinocyte delivery in burn wound care, Adv Drug Deliv Rev, vol.123, pp.18-32, 2018.

M. S. Tjin, A. W. Chua, D. R. Ma, S. T. Lee, and E. Fong, Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins, Macromol Biosci, vol.14, issue.8, pp.1125-1134, 2014.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190