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Secteur de Recherche : INFORMATIQUE ET APPLICATIONS

Présentée par :
FATMA EZZAHRA BOUSNINA

————————————————————————————————
Modeling and Querying Evidential Databases

————————————————————————————————
Directeurs de thèse :
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Résumé

La théorie des fonctions des croyances offre des outils puissants pour modéliser et traiter

les informations imparfaites. En effet, cette théorie peut représenter l’incertitude,

l’imprécision et l’ignorance. Dans ce contexte, les données sont stockées dans des

bases de données spécifiques qu’on appelle les bases de données crédibilistes. Une

base de donnée crédibiliste a deux niveaux d’incertitudes: (i) l’incertitude au niveau

des attributs qui se manifeste à travers des degrés de véracité sur les hypothèses des

attributs; (ii) l’incertitude au niveau des tuples représentée par des intervalles de con-

fiance sur l’existence des tuples au sein de la table en question. D’autre part, la base

de donnée crédibiliste peut être modélisée sous deux formes: (i) la forme compacte car-

actérisée par un ensemble d’attributs et un ensemble de tuples; (ii) la forme des mondes

possibles représentée par un ensemble de base de données candidates où chaque base

candidate est une représentation possible de la base de donnée compacte. Interroger

la représentation des mondes possibles est une étape fondamentale pour valider les

méthodes d’interrogation sur la base compacte crédibiliste. En effet, un modèle de

base de donnée est dit système fort si le résultat de l’interrogation de sa représentaion

compacte est équivalent au résultat de l’interrogation de sa représentation des mondes

possibles.

Cette thèse est une étude sur les fondements des bases de données crédibilistes. Les

contributions sont résumées comme suit:

(i) La modélisation et l’interrogation de la base crédibiliste (EDB): Nous mettons

en pratique le modèle compacte de la base de données (EDB) en proposant une

implémentation objet-relationnelle, ce qui permet d’introduire l’interrogation de

ce modèle avec les opérateurs relationnels. D’autres part, nous présentons le

formalisme, les algorithmes et les expérimentations d’autres types de rêquetes:

les top-k évidentiel et le skyline évidentiel que nous appliquons sur des données

réelles extraites de la plateforme Tripadvisor.

(ii) La modélisation de la base de données sous sa forme des mondes possibles: Nous

modélisons la forme de mondes possibles de la base de données (EDB) en traitant

les deux niveaux d’incertitudes (niveau attributs et niveau tuples).

(iii) La modélisation et l’interrogation de la base de données crédibiliste (ECD): Après

avoir prouvé que le modèle des bases de données (EDB) n’est pas un système de

représentation fort, nous développons le modèle de la base de données crédibiliste

conditionnelle nommée (ECD). Nous présentons le formalisme de l’interrogation

sur les deux formes (compacte et mondes possibles) de la base de données (ECD).

Finalement, nous discutons les résultats de ces méthodes d’interrogation et les

spécificités du modèle (ECD).
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Cette thèse inclut cinq chapitres:

Chapitre 1: Les Bases de données imparfaites: Le contexte général

Ce chapitre englobe quelques notions générales reliées au contexte général de notre

thèse, à savoir les théories d’imperfection et les bases de données imparfaites. Premièrement,

nous présentons les différents types d’imperfection (incertitude, imprécision et inconsis-

tance). Ces types d’imperfection sont illustrés avec des exemples bien détaillés. Après,

nous présentons quelques théories d’imperfection, introduites historiquement pour gérer

l’imperfection selon ces types. Nous avons choisi la théorie des probabilités, la théorie

des possibilités et la théorie des fonctions de croyances. Finalement, nous présentons

quelques modèles de bases de données imparfaites basés sur ces théories, qui sont les

bases de données probabilistes, les bases de données possibilistes et les bases de données

crédibilistes.

Chapitre 2: La théorie des fonctions de croyances

Dans ce chapitre, nous présentons quelques concepts de bases reliés à la théorie des

fonctions de croyances. Des notions comme les règles de combinaison, l’extension à

vide, l’indépendance cognitive et évidentielle sont illustrées avec des exemples détaillés

afin de gérer les données modélisées à travers cette théorie.

Chapitre 3: Les bases de données crédibilistes: La forme compacte

Ce Chapitre est à propos la forme compacte des bases de données évidentielles

(EDB) et il est divisé en trois parties: Dans la première, nous présentons l’unique

modèle existant sur les bases de données évidentielles (Bell et al., 1996; Lee, 1992b;

Lee, 1992a). Dans la deuxième partie, nous définissons le méta-modèle, ainsi que

l’implémentation du modèle des base de données (EDB) (Bousnina et al., 2016). Dans

la dernière partie, nous nous focalisons sur l’interrogation de la forme compacte de

(EDB). En effet, nous rappelons les opérateurs relationnels évidentiels étendus (Bell

et al., 1996) et nous appliquons l’opérateur de sélection-projection étendu on se basant

sur l’algorithme présenté. Finalement, nous discutons deux opérateurs préférentiels;

(i) le top-k évidentiel (Bousnina et al., 2017a) qui permet de donner les k meilleurs

résultats avec leurs intervalles de confiance et (ii) le skyline évidentiel (Elmi et al.,

2014; Bousnina et al., 2017b) qui permet de donner les meilleurs résultats qui ne sont

pas dominés par aucun autre résultat dans la base de données. Pour appliquer le skyline

évidentiel, nous avons collecté des données réelles de la plateforme TripAdvisor. Ces

données ont été traitées et modélisées à travers les outils de la théorie des fonctions des

croyances.
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Chapitre 4: Les bases de données crédibilistes: La forme des mondes

possibles

Ce chapitre est à propos la modélisation et l’interrogation des bases de données

évidentielles sous la forme des mondes possibles. Premièrement, nous définissons les

systèmes de représentation et leurs propriétés. Après, nous présentons le modèle

des bases de données évidentielles (EDB) sous sa forme non compacte, c’est à dire,

les mondes possibles. La génération des mondes possibles nécessite le traitement

de l’incertitude niveau attributs et niveau tuples. En effet, elle se déroule sur trois

étapes intermédiaires: (1) la génération des mondes imprécis à partir de la base com-

pacte; (2) la génération des mondes incertains à partir des mondes imprécis; (3) la

génération des mondes possibles à partir des mondes incertains. Une fois nous avons

les deux représentations équivalentes de la base de données (EDB), nous définissons

le processus d’interrogation. Interroger les deux formes permet d’évaluer les méthodes

d’interrogation appliquées sur ce modèle afin de déterminer la nature de son système de

représentation. Nous avons prouvé, à la dernière partie de ce chapitre, que le modèle

(EDB) ne représente pas un système fort.

Chapitre 5: Les bases de données crédibilistes Conditionnelles

Ce chapitre est à propos la modélisation et l’interrogation des bases de données

évidentielles conditionnelles, appelées ec-tables. En effet, nous utilisons les points forts

des bases de données conditionnelles classiques et ceux de la théorie des fonctions

des croyances pour introduire un nouveau modèle de bases de données évidentielles

appelé les bases de données évidentielles conditionnelles (ECD). Tout d’abord, nous

présentons ce modèle sous ces deux formes: la forme compacte et la forme des mon-

des possibles. La génération des mondes possibles pour le modèle (ECD) se déroule

sur deux étapes intermédiaires: (1) la génération des mondes incertains à partir de la

base compacte; (2) la génération des mondes possibles à partir des mondes incertains.

A travers ces étapes nous traitons l’incertitude niveau tuple. Une fois nous avons les

deux représentations nous présentons le processus d’interrogation et nous appliquons

l’opérateur de sélection-projection. En effet, les méthodes d’interrogation sont utilisées

pour vérifier l’équivalence entre les réponses issues de chacune des deux représentations.

En plus, nous montrons que chaque base de données crédibiliste (EDB) peut être trans-

formée en base de données crédibiliste (ECD). Cette transformation peut être un moyen

de rendre le modèle (EDB) un système de représentation fort. Finalement, nous dis-

cutons les spécificités des bases de données conditionnelles qui présente une base solide

pour la définition d’un système de représentation fort dans le cadre crédibiliste.
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Abstract

The theory of belief functions (a.k.a, the Evidence Theory) offers powerful tools

to model and handle imperfect pieces of information. Thus, it provides an adequate

framework able to represent conjointly uncertainty, imprecision and ignorance. In this

context, data are stored in a specific database model called evidential databases. An

evidential database includes two levels of uncertainty: (i) the attribute level uncertainty

expressed via some degrees of truthfulness about the hypotheses in attributes; (ii) the

tuple level uncertainty expressed through an interval of confidence about the existence

of the tuple in the table. An evidential database itself can be modeled in two forms:

(i) the compact form represented as a set of attributes and a set of tuples; (ii) the

possible worlds’ form represented as a set of candidate databases where each candidate

is a possible representation of the imperfect compact database. Querying the possible

worlds’ form is a fundamental step in order to check the querying methods over the

compact one. In fact, a model is said to be a strong representation system when results

of querying its compact form are equivalent to results of querying its non compact form.

This thesis focuses on foundations of evidential databases in both modeling and query-

ing. The main contributions are summarized as follows:

(i) Modeling and querying the compact evidential database (EDB): We implement

the compact evidential database (EDB) using the object-relational design which

allows to introduce the querying of the database model under relational operators.

We also propose the formalism, the algorithms and the experiments of other types

of queries: the evidential top-k and the evidential skyline that we apply over a

real dataset extracted from TripAdvisor.

(ii) Modeling the possible worlds’ form of (EDB): We model the possible worlds’ form

of the evidential database (EDB) by treating both levels of uncertainty (the tuple

level and the attribute level).

(iii) Modeling and querying the evidential conditional database (ECD): After proving

that the evidential database (EDB) is not a strong representation system, we

develop a new evidential conditional database model named (ECD). Thus, we

present the formalism of querying the compact and the possible worlds’ forms of

the (ECD) to evaluate the querying methods under relational operators. Finally,

we discuss the results of these querying methods and the specificities of the (ECD)

model.
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Introduction

Imperfect information is prevalent in real life fields. For example in the medical do-

main doctors can provide more than one hypothesis about a patient’s diagnosis. In

weather forecasting also, experts often give approximations about the weather, etc.

In fact, several types of imperfection can be encountered, depending on the domain,

like imprecision, uncertainty, ignorance, ambiguity, inconsistency, etc. Therefore, lots

of theories were introduced to handle some types of these imperfection. One of the

most known and used is the probability theory (Laplace, 1812). Other theories were

later introduced to offer different models like the possibility theory (Zadeh, 1978), the

fuzzy sets theory (Zadeh, 1965), the rough sets theory (Pawlak, 1982) and the belief

functions theory (Shafer, 1976; Dempster, 1967). The latter, called also the evidence

theory, models and combines imperfect information through an explicit representation

of uncertainty, imprecision and ignorance. It offers several powerful tools to aggregate

information coming form one or more sources in order to improve the decision making.

Managing imperfect information requires storing them under specified database

models. Therefore, based on the mentioned theories above, different database models

were introduced: such as the probabilistic databases (Cavallo and Pittarelli, 1987), the

possibilistic databases (Bosc and Pivert, 2005) and the evidential databases (Bell et al.,

1996; Lee, 1992b; Lee, 1992a), etc. In the case of an evidential database, two equivalent

forms can be modeled: (i) the compact form (Lee, 1992b; Lee, 1992a; Bell et al., 1996)

where attributes’ values are distributions (ii) the possible worlds’ form, also named the

non compact form (Bousnina et al., 2015; Bousnina et al., 2018a) where the database

is a distribution of candidate databases.

(i) In the compact form, the uncertainty is expressed in two levels:

1. The attribute level uncertainty where an evidential distribution is assigned

to each hypothesis in the imperfect attribute. This assignment is called a

mass.

2. The tuple level uncertainty where an interval is assigned to each tuple that

reflects the confidence on the existence of the tuple in the database. This

interval is named the confidence level.

1



2 Introduction

(ii) The possible worlds, is the other representation where the evidential database is

modeled through a distribution of candidate databases.

The compact representation is the only feasible model in practice because the num-

ber of the generated possible worlds can increase exponentially. Added to that it is

quasi-impossible to store and query all of them. However, defining possible worlds is

fundamental to evaluate and validate representation systems. According to (Imielinski

and Lipski, 1984) and (Abiteboul et al., 1995b), a model is said to be a strong repre-

sentation system when querying the compact form is equivalent to querying its possible

worlds.

Many researchers have been interested in modeling and querying the compact model

of an evidential database (Lee, 1992b; Lee, 1992a; Bell et al., 1996; Bousnina et al.,

2016). Indeed, this model was used in real evidential databases like the amphiphilic

chemical database (Samet and Dao, 2015) and the TripAdvisor reviews’ database (Bous-

nina et al., 2017b). However, to the best of our knowledge, no model was proved to be

a strong representation system for evidential databases.

The main purpose of this thesis is to study the evidential databases from a model-

ing and querying point of view. Thus, we address the following research questions: Is

the most used evidential database (Lee, 1992b; Lee, 1992a; Bell et al., 1996) a strong

representation system? How to model its possible worlds’ form? How to treat the dou-

ble uncertainty levels? How to query evidential databases? Is there another database

model that represents and queries efficiently the evidential data?

Our main contributions to respond to these research issues are the following:

(i) Modeling and querying the compact Evidential DataBase (EDB):

– Object-Relational Evidential Implementation (Bousnina et al., 2016): We

give an object relational model for the evidential database on its compact

form (Lee, 1992b; Lee, 1992a; Bell et al., 1996). Then we present the object

relational implementation using SQL3 and Java. In fact, we take advantage

of Oracle Database Management characteristics to evaluate two evidential

relational operators: the select and the project.

– Evidential Top-K query (Bousnina et al., 2017a; Bousnina et al., 2018b):

We introduce a new ranking query under the evidential framework. Thus,

we present a formalism to select the best k responses when querying the

evidential database on its compact form. Then, the semantic aspect and the

experimental study are detailed. The evidential Top-k query evaluation is
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based on the object-relational evidential implementation.

– Evidential skyline query (Bousnina et al., 2017b): We face the problem

of aggregating information coming from different sources to construct an

evidential database where information are coming from a real application

platform (the TripAdvisor platform). Then, the evidential skyline query, as

introduced in (Elmi et al., 2014), is applied.

(ii) Modeling and querying the possible worlds of the Evidential DataBase (EDB):

Modeling evidential databases as Possible worlds (Bousnina et al., 2018a):

We model the evidential database (Bell et al., 1996) on its non compact

form, i.e, the possible worlds’ form. This contribution is based on a previous

work (Bousnina et al., 2015). When modeling the evidential database into

possible worlds we manage the two levels of uncertainties (the tuple level

uncertainty and the attribute level uncertainty). This work allows the eval-

uation of querying methods in order to check if the EDB (Lee, 1992b; Lee,

1992a; Bell et al., 1996) is a strong representation system or not.

(iii) Modeling and querying the Evidential Conditional Database (ECD):

Evidential Conditional Tables: We prove that the most used evidential

database EDB (Lee, 1992b; Lee, 1992a; Bell et al., 1996) is not a strong rep-

resentation system. Indeed, we introduce a new evidential database model,

named ec-tables, ECD for short. In fact, we present the mathematical for-

mulation of this database model on its compact form and then on its possible

worlds’ form. This model, i.e, the ec-tables, represents a further step towards

strong representation systems under relational operators. We use several de-

tailed examples to illustrate the presented formalism.

The context of this thesis and our contributions are graphically detailed in Figure

1 and Figure 2.
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Figure 2: Modeling and Querying ec-tables: Context and contributions



6 Introduction

The remainder of this thesis is organized as follows:

• In chapter 1, we present a survey about imperfection. First, we recall the different

types of imperfect information and we give several illustrative examples. Then, we

present the most used and known theories of imperfection: the probability theory,

the possibility theory and the evidence theory. Finally, we present the imperfect

database models, based on these theories, into their both representations (the

compact and the possible worlds’ forms).

• In chapter 2, we provide the background material related to the belief functions

theory. This theory provides strong mathematical assets to model, manage and

combine imperfect data coming from multiple sources. Thus, it models uncertain

and imprecise information. Added to that, it handles partial and total ignorance.

The evidence theory provides the appropriate tools for the decision making, when

data are imperfect.

• In chapter 3, we recall the definition of an evidential database EDB on its com-

pact form. Then, we present the object-relational implementation of this database

model. Querying data comes as a natural step after the storage. Thus, we first of

all present the evidential relational queries; the evidential select and the eviden-

tial project are evaluated using the object-relational implementation. After that,

we introduce the evidential top-k query that we apply over the compact form.

Finally, we use the evidential skyline query to evaluate the real data extracted

from the TripAdvisor platform.

• In chapter 4, we define representation systems as the way of modeling imperfect

databases from the compact form to the possible worlds’ form. In fact, we in-

troduce the formalism of generating possible worlds from an evidential database

EDB. We consider the tuple level uncertainty and the attribute level uncertainty

which imply several intermediate forms: the imprecise possible worlds, the uncer-

tain possible worlds and finally the possible worlds. We discuss the similarities

between the probabilistic and the evidential models. The last part is an investi-

gation about the nature of the evidential database model EDB. Indeed, we prove

that this model is not a strong representation system.

• Chapter 5 is dedicated to modeling and querying evidential conditional databases.

This model comes to rectify the issues discussed in the previous chapter. Indeed,

the evidential conditional database ECD, named also ec-tables is a new model

that handles evidential data by conditioning the tuples. The model handles also
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the two levels of uncertainty and can transform any evidential database modeled

as an EDB to an ECD. We prove that this model is very promising to be a strong

representation system under relational operators.
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Summary

This chapter encompasses notions about the general context related to the subject of

this thesis. It presents theories of imperfection and imperfect databases. First, we

present the types of data imperfection associated with illustrative examples. Then,

we present some imperfect theories, historically introduced to manage imperfect data

according to their types. Finally, we give a brief review about the database models

that store and query the imperfect data based on the presented theories.
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12 Chapter1. Imperfect Databases: General Context

1.1 Introduction

Imperfect information can be detected in various domains like meteorology, medicine,

industry, aeronautics, etc. Having imperfect data in such domains may generate defec-

tive and unreliable results that may lead to the wrong decisions. This is why imperfect

information should be efficiently treated. Indeed, theories of imperfection like the the-

ory of probability (Laplace, 1812), the theory of possibility (Zadeh, 1978), the fuzzy

sets theory (Zadeh, 1965), the rough sets theory (Pawlak, 1982) and the belief functions

theory (Shafer, 1976; Dempster, 1967) were introduced. Based on the typology and

the domain of the imperfect information, these theories offer several tools to model and

manage such data (Dubois et al., 2004; Hong and May, 2004; Willink, 2006; Pfeiffer,

2013; Yang and Kim, 2006; Yang et al., 2011; Zhang et al., 2001). Hence, the emer-

gence of several database models like probabilistic, possibilistic, fuzzy and evidential

databases. These database models can store and query the imperfect data in order to

provide reliable results. Any imperfect database model can be modeled in two equiv-

alent representations: the first is compact and the second is a distribution of possible

worlds.

This chapter presents briefly the general context related to this thesis dissertation.

Indeed, it provides a typology of the imperfect information. Then, it introduces theories

and database models of imperfection.

1.2 Typology of Imperfection

Imperfect data is so obvious in several real life applications (like medicine, genetics,

industry, meteorology, etc). Types of imperfection can vary depending on the nature

of fields, on the reliability of sources, etc. In fact, several types of imperfect data can

be detected and they are partitioned into three major categories (Smets, 1996):

1. Uncertainty: is the lack of certainty or a state of a limited knowledge. It is a

property related to the veracity of the information.

2. Imprecision: is the lack of precision or exactness. It is a property related to the

content of the information.

3. Inconsistency: is the lack of coherence. It is a property related to the content

of the information.

Example 1 Suppose that we have four sources, each source gave an information as

follows:

• John has at least two children and I am not sure about it.

=⇒ This information is imprecise and uncertain.
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• John has at least two children and I am sure about it.

=⇒ This information is imprecise and certain.

• John has three children and I am not sure about it.

=⇒ This information is precise and uncertain.

• John has three children and I am sure about it.

=⇒ This information is precise and certain.

1. Uncertainty can be:

• Objective: based on random events and applies the chance concepts.

Example 2 Suppose having two same 6-sided dice. The chance of one dice

being a particular number is
1

6
. The chance of two dice being a same number

is
1

6
∗ 1

6
=

1

36
.

• Subjective: based on experts’ opinions about the truthfulness of a state-

ment.

For example, John is learning how to ride a bike, there are many chances

that he falls.

2. Imprecision can be itself divided into two parts:

2.1. Imprecision without error:

– Ambiguity: is an indefinite information.

As an example, the food is hot.

=⇒ The food is spicy or the food’s temperature is high.

– Vagueness: is an unclear or not explicitly expressed information.

For example, John is young.

=⇒ Young represents a vague information.

– Incompleteness: An information lacking some part.

As an example, John does not have the last score of the game.

2.2. Imprecision with error:

– Invalidity: is a deficient information.

For an example, John is 2000 years old.

– Bias: a misrepresented information, i.e, the set of individuals does not

represent the population.

For example, 250 ml of the persons living on earth have severe obesity.

3. Inconsistency can be:
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• Conflict: is a state of disagreement about one idea or information.

For example, One doctor is sure that the disease of the patient is anemia

and the second doctor is sure that the same patient does not have anemia.

• confusion:. is an unclear and incomprehensible information.

For example, I am waiting for a bill of 150 euros and i get one with 300

euros.

Table 1.1 summarizes the types of imperfection.

Uncertainty Imprecision Inconsistency

objective ambiguity conflict
subjective vagueness confusion

incompleteness
invalidity

bias

Table 1.1: Recapitulation of imperfection types

Dealing with imperfect data requires the use of mathematical theories that can

model and explicitly represent these imperfect data. Uncertainty and imprecision are

modeled via these theories, except for inconsistency that can only be detected after a

combination1.

1.3 Theories of Imperfection

Theories of imperfection were introduced to represent and manage the imperfect data,

depending on their types. The most known and classical theory is the probability

theory (Laplace, 1812). It was introduced to handle the uncertain data. Then, other

non-classical theories were proposed to offer different models like the possibility theory

(Zadeh, 1978) that represents the uncertain and the imprecise data, the fuzzy sets the-

ory (Zadeh, 1965) that represents the ambiguous data, the rough sets theory (Pawlak,

1982) that represents uncertain and vague data and the belief functions theory (Shafer,

1976; Dempster, 1967) that represents uncertainty, imprecision and ignorance. In this

section we give a brief refresher about three well known theories: the probability theory,

the possibility theory and the evidence theory.

1Combining two information coming from two different sources (two doctors for example) about one
variable can cause the conflict or a confusion
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1.3.1 The Theory of Probabilities

The probability theory has it roots in attempts to solve problems related to the games

of chance in the sixteenth century. It is the oldest and the most acknowledged among

theories of imperfection. The theory of probabilities was fully defined and considered

in the nineteenth century by Pierre Laplace (Laplace, 1812).

Defintion 1 Let Ω be a finite and countable set, called sample space, that relates to

the set of all possible outcomes. Let x be an element ∈ Ω, for each x a probability

distribution is attached and that satisfies the following properties:

p(x) ∈ [0; 1], ∀x ∈ Ω (1.1)

∑
x∈Ω

p(x) = 1 (1.2)

An event is defined as any subset E of the sample space Ω with E ⊆ Ω. The

probability of event E is defined such as:

P (E) =
∑
x∈E

p(x) (1.3)

Properties

• P (∅) = 0 and P (Ω) = 1

• ∀ E1, E2 ⊂ Ω, if E1 ∩ E2= ∅, P (E1 ∪ E2) = P (E1) + P (E2) (Additivity)

• ∀ E ⊂ Ω, P (E) = 1− P (E) (Duality)

1.3.2 The Possibility Theory

The possibility theory was introduced by (Zadeh, 1978) and developed by Dubois and

Prade (Dubois and Prade, 1987). It handles uncertainty in a qualitative way based

on the min/max algebra. This theory offers double representation/interpretation: the

numerical representation and the ordinal representation.

Defintion 2 Let Ω be the universe of discourse and x be a variable that takes its values

from Ω. A possibility distribution πx is attached to the variable x such that:

πx : Ω 7−→ L

L is a scale of a totally ordered plausibilities ([0,1], finite,...)
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An event E is defined as a subset of Ω. Each event associates two measures, the

possibility degree Π(E) and the necessity degree N(E).

The possibility and the necessity are dual measures such that:

N(E) = 1−Π(E)

The possibility theory provides two interpretations as detailed in Figure 1.1:

• Numerical interpretation: When degrees of values reflect a specific sens.

– Π(E) = 1

=⇒ The event E is completely possible.

– Π(E) = 0

=⇒ The event E is completely impossible.

• Ordinal interpretation: When values reflect an ordering between the different

states of the world.

– Π(E1) > Π(E2)

=⇒ E1 is more possible/more preferred than E2.

Figure 1.1: Numerical and Ordinal interpretations of the Possibility Theory
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1.3.3 The Evidence Theory

The theory of evidence2 also called the theory of belief functions or the Dempster-Shafer

theory, was introduced by Dempster (Dempster, 1967) in the context of statistical

inference, mathematically formalized by Shafer (Shafer, 1976) and later popularized by

Smets (Smets, 1998a) with the transferable belief model (TBM). The theory of belief

functions models and manages imperfect information through two levels: the credal

and the pignistic levels. In the credal level, beliefs are quantified, modeled and can be

aggregated. In the pignistic level, decisions are made considering the learned beliefs.

Defintion 3 Let Θ be a frame of discernment (the domain) containing all entities of

a given situation Θ = {θ1, θ2, .., θn} and 2Θ is the set of all subsets of Θ. A basic belief

mass is the degree of belief of an hypothesis A from the set 2Θ such that:∑
A⊆Θ

mΘ(A) = 1

The mass m is the truthfulness degree about hypothesis A.

1.4 Imperfect Databases

Classical relational databases deal with certain data, contrary to imperfect databases

that store sets of imperfect data. Indeed, several databases like probabilistic databases

(Cavallo and Pittarelli, 1987), possiblistic databases (Bosc and Pivert, 2005), evidential

databases (Bell et al., 1996; Choenni et al., 2006; Lee, 1992a; Lee, 1992b), etc, were

introduced for the aim of storage, querying, datamining and reporting.

An imperfect database can be modeled as a distribution of candidate representative

databases throughout treating the imperfection. Thus, two forms are studied in the

literature:

• The compact form where attributes’ values are distributions.

• The possible worlds’ form where the database is a distribution of candidate

databases.

When a result of a query processed over a compact database is the same when that

query is applied over its possible worlds, we say that the result is reliable and that the

model is a strong representation system.

2More details about this theory are explicitly presented in chapter 2
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1.4.1 Probabilistic Databases

Probabilistic databases were introduced by (Cavallo and Pittarelli, 1987), then popu-

larized by (Barbara et al., 1992). Later on, (Fuhr, 1990; Fuhr, 1992a; Fuhr, 1992b;

Fuhr, 1993) defined a more elaborated model of the probabilistic databases.

1. A probabilistic database, on its compact form, is an imperfect database that

includes N objects and D attributes where the imperfect values are expressed via

the probability theory (Cavallo and Pittarelli, 1987; Barbara et al., 1992; Fuhr,

1990; Fuhr, 1992a; Fuhr, 1992b; Fuhr, 1993).

2. A probabilistic database, on its non compact form, is a set of possible worlds

associated with degrees of probability. The probabilistic possible worlds represent

the set of all possible states generated from this database, where each probabilistic

possible world is a candidate to represent the compact probabilistic database

(Abiteboul et al., 1995b; Suciu et al., 2011).

Figure 1.2 is an illustration of both forms of a probabilistic database.

Figure 1.2: A Probabilistic Database

A probabilistic database PDB includes two levels of uncertainty:

• The tuple level uncertainty : a degree of probability P is associated to each tuple,

P ∈ [0, 1] where 0 represents a non existent tuple and 1 represents a certain one.
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• The attribute level uncertainty : a degree of probability is assigned to hypotheses

that reflect their veracity degree in the attribute.

Example 3 As pieces of information can be imperfect in the medical domain, let us

assume that a doctor gave his diagnoses about three patients as shown in the probabilistic

database in Table 1.2. He expresses his beliefs about each hypothesis using the probability

degrees. For instance, the tuple w.r.t ID#1 exists in the PDB with a probability of 0.3.

For the tuple ID#3, the disease is a dataset of values, i.e., Asthma with a probability

degree of 0.5 or Anemia with a probability degree of 0.5.

ID Disease P

1 Flu 0.3

2 Anemia 0.2

3 Asthma 0.5 0.5
Anemia 0.5

Table 1.2: An example of a probabilistic table PDB

Possible Worlds P

W1={(1,Flu);(2,Anemia);(3,Asthma)} = 0.3 * 0.2 * 0.25 = 0.015

W2={(1,Flu);(2,Anemia);(3,Anemia)} = 0.3 * 0.2 * 0.25 = 0.015

W3={(1,Flu);(2,Anemia)} =0.3 * 0.2 * (1 - 0.5) = 0.03

W4={(1,Flu);(3,Asthma)} = 0.3 * (1 - 0.2) * 0.25= 0.06

W5={(1,Flu);(3,Anemia)} = 0.3 * (1 - 0.2) * 0.25= 0.06

W6={(2,Anemia);(3,Anemia)} = (1 - 0.3) * 0.2 * 0.25= 0.035

W7={(2,Anemia);(3,Asthma)} = (1 - 0.3) * 0.2 * 0.25= 0.035

W8={(1,Flu)} = 0.3*(1-0.2)*(1-0.5) = 0.12

W9={(2,Anemia)} = (1-0.3)*0.2*(1-0.5)=0.07

W10={(3,Anemia)} = (1-0.3)*(1-0.2)*0.25=0.14

W11={(3,Asthma)} = (1-0.3)*(1-0.2)*0.25=0.14

W12={∅} = (1-0.3)*(1-0.2)*(1-0.5)= 0.28

Table 1.3: Possible worlds of the probabilistic table PDB

In Table 1.3, we provide the different possible worlds that correspond to PDB of

Table 1.2. For instance, the world W1 that includes {(1,Flu);(2,Anemia);(3,Asthma)}
is a possible candidate with a probability of 0.015 (=0.3 * 0.2 * 0.25).

Applying a query Q over a probabilistic database returns a set of tuple-probability

pairs {(t1, p1), (t2, p2), ...}.
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To evaluate the querying methods of the probabilistic database model, three steps

are required:

1. Querying the probabilistic compact form: It gives a compact result, which is a

set of tuples and their probabilities responding to the condition of the query.

2. Querying the possible worlds’ form of the probabilistic database: It means apply-

ing the query Q on each possible world. Each possible world gives one or more

possible answers. These answers are the set of tuples and with their probabilities

constitute the reply to Q.

3. Comparing results: It is about checking if the results derived from the compact

form are equivalent or not to the results derived from the possible worlds’ form.

If these results are equivalent the database model is said a strong representation

system.

Figure 1.3 summarizes the querying and the evaluation process of the probabilistic

database model.

Figure 1.3: Querying process of the Probabilistic Databases (where PWs refers to
possible worlds)
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1.4.2 Possibilistic Databases

Possibilistic databases were introduced by Prade and Testmale (Prade and Testemale,

1984), then were popularized by Bosc and Pivert (Bosc and Pivert, 2005).

1. A possibilistic database, on its compact form, has N objects, D attributes in

which imperfect values are expressed via the possibility theory (Bosc et al., 2003;

Bosc and Pivert, 2005; Bosc and Pivert, 2010).

2. A possibilistic database, on its non compact form, defined as a set of possible

worlds that associate degrees of possibilities. Each possibilistic world is a can-

didate to represent the real world described by means of the compact database

(Bosc and Pivert, 2010).

Figure 1.4 is an illustration of both forms of a possibilistic database.

Figure 1.4: A Possibilistic Database

A possibilistic database PosDB can include two levels of uncertainty:

• The tuple level uncertainty: a degree of possibility Π or necessity N is assigned

to each tuple.

• The attribute level uncertainty: a degree of possibility is assigned to hypotheses

in attributes. When the possibility of one hypothesis is equal to 1 then it is

completely possible and when the degree is equal to 0 then the hypothesis is

completely impossible.
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Example 4 Let us suppose now that some diagnoses given by a doctor are represented

in the possibilistic database of Table 1.4. This table includes two attributes where at-

tribute Disease contains imperfect data represented via the possibility theory. For ex-

ample, the first patient can either have the Flu with a possibility degree Π(Flu) = 1 or

Asthma with a possibility degree Π(Asthma) = 0.7. Possible worlds of Table 1.4 are

shown in Table 1.5.

ID Disease

1 1/Flu + 0.7/Asthma

2 1/Cancer + 0.3/Anemia

3 Asthma

4 Anemia

Table 1.4: An example of a possibilistic database

W1 W2 W3 W4

(1, 1/F lu ) (1, 1/F lu) (1, 0.7/Asthma) (1, 0.7/Asthma)

(2, 1/Cancer) (2, 0.3/Anemia) (2, 1/Cancer) (2, 0.3/Anemia)

(3, 1/Asthma) (3, 1/Asthma) (3, 1/Asthma) (3, 1/Asthma)

(4, 1/Anemia) (4, 1/Anemia) (4, 1/Anemia) (4, 1/Anemia)

min(1,1,1,1)=1 min(1,0.3,1,1)=0.3 min(0.7,1,1,1)=0.7 min(0.7,0.3,1,1)=0.3

Table 1.5: Possible worlds of the possibilistic database

In Table 1.5, we give the different possible worlds that correspond to PosDB of Table

1.4. For example, the possible world W4 that includes {(1,0.7/Asthma), (2,0.3/Ane-

mia), (3,1/Asthma), (4,1/Anemia)} has a possibility degree of 0.3 (=min(0.7, 0.3, 1,

1)).

Applying a query Q over a possibilistic database returns a set of tuple-possibility

pairs {(t1,Π1), (t2,Π2), ...}
To evaluate the querying methods of the possibilistic database model, three steps

are needed:

• Querying the compact possibilistic database: It provides a compact result, which

is a set of tuples and their degrees of possibility responding to query Q.

• Querying the possible worlds of the possibilistic database: Each possible world

is interrogated with Q independently of other possible worlds. The set of the

derived results from each world constitutes the set of answers, where each answer

associates a possibility degree.



1.4. Imperfect Databases 23

• Comparing results: Answers derived form the compact form and answers derived

from the possible worlds’ form are evaluated. Their equivalence means that the

possibilistic database model is a strong representation system.

Figure 1.5 clarifies the querying and the evaluation process of the possibilistic

database model.

Figure 1.5: Querying process of the Possibilistic Databases

1.4.3 Evidential Databases

Evidential databases (EDBs) were introduced by Lee et al., (Lee, 1992b; Lee, 1992a;

Bell et al., 1996). It is an imperfect database model that permits to represent certain

and uncertain data using the theory of belief functions.

1. An evidential database, on its compact form, is a set of N tuples and D attributes

where imperfect information is expressed by means of the evidence theory (Lee,

1992b; Lee, 1992a; Bell et al., 1996).

2. An evidential database, on its non compact form, is a set of possible worlds with
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degrees of belief and plausibility3 where each world is a candidate to represent

the compact model (Bousnina et al., 2015).

Figure 1.6 is an illustration of both forms of an evidential database.

Figure 1.6: An Evidential Database

An evidential database has two levels of uncertainty:

• The tuple level uncertainty : an interval of minimum and maximum degrees of

credibility are assigned to each tuple. This interval, named confidence level, re-

flects degrees of faith about the existence of the tuple.

• The attribute level uncertainty : a mass function is assigned to each hypothesis in

attributes. It reflects the degree of truthfulness about the hypothesis.

Example 5 We give an example of a doctor that expresses his medical diagnoses about

two patients by giving multiple hypotheses and their assignments. Its diagnoses are

modeled using the belief functions’ theory and stored in the following compact evidential

Table 1.6. The latter includes three attributes ID, Disease, Symptom. The domain

of attribute Disease is ΘDE = {Diabetes,Anemia, Stroke,Asthma} and the domain

of attribute Symptom ΘSY = {Fatigue,Nausea, V ertigo}. For instance, the doctor

believes that the second patient ID#2 has either the diabetes with a degree of 0.1 or

a stroke with a degree of 0.9. The degree of belief about each hypothesis given by the

doctor is called a mass (m). Possible worlds of EDB are detailed in Table 1.7.
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ID Disease Symptom

1 Diabetes Fatigue 0.4
{Fatigue,Nausea} 0.6

2 Diabetes 0.1 V ertigo
Stroke 0.9

Table 1.6: An evidential table EDB

Possible Worlds Confidence Level

W1={(1,Diabetes,Fatigue);(2,Diabetes,Vertigo)} [0.04;0,1]

W2={(1,Diabetes,Fatigue);(2,Stroke,Vertigo)} [0.36;0,9]

W3={(1,Diabetes,Nausea);(2,Diabetes,Vertigo)} [0;0,06]

W4={(1,Diabetes,Nausea);(2,Stroke,Vertigo)} [0;0,54]

Table 1.7: Possible worlds of the evidential table EDB

In Table 1.7 we provide the different possible worlds issued from Table 1.6. As an ex-

ample, the possible world W1 involves W1={(1,Diabetes,Fatigue);(2,Diabetes,Vertigo)}
with a confidence interval of [0.04;0,1]4.

Applying a query Q over an evidential database returns a set of tuple-interval pairs

{(t1, CL1), (t2, CL2), ...}
To evaluate the querying methods of the evidential database model, three steps are

needed:

1. Querying the compact evidential database: It provides a compact result, which

is a set of tuples and their confidence levels responding to query Q. A confidence

level is an interval of belief and plausibility.

2. Querying the possible worlds of the evidential database: Each queried possible

world generates a possible answer. The set of answers involves a set of tuples and

their confidence levels.

3. Comparing results: Answers derived from the compact form and answers derived

from the possible worlds’ form are compared. If they are equivalent the evidential

database model is a strong representation system, otherwise it is not.

Figure 1.7 clarifies the querying and the evaluation process of the evidential database

model.

3Notions of belief and plausibility are defined in Chapter 2.
4Details of confidence intervals’ computations will be explained in Chapter 3.
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Figure 1.7: Querying process of the Evidential Databases

To the best of our knowledge, no previous work focused on representations of evi-

dential databases and the querying evaluation process. The compact form is the only

conceivable form in practice but modeling the non compact from remains fundamental

to validate the querying methods of the compact representation. In this thesis, we

investigate the evidential database representations issue.
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1.5 Conclusion

Imperfection is widespread in several domains, hence the emergence of theories that

represent and handle the incomplete data. These theories like the probability theory,

the possibility theory, the belief functions theory, etc., came as powerful solutions to

effectively manage multiple types of imperfection. Their appearance throughout the

past years engendered the appearance of the database models of imperfection. These

database models are based on these theories and they came as a natural step to store

and query the imperfect data.

In this chapter, we presented a review about typologies of imperfection. Then,

we briefly presented three theories of imperfection (probability, possibility and belief

functions) and the database models that support these models. The evidence theory

and the evidential databases represent the core of this dissertation, they are detailed

in the coming chapters.
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2.1 Introduction

The evidence theory is used in lots of domains like chemistry (Samet and Dao, 2015),

sensor detection and data fusion (Ayoun and Smets, 2001), etc. In fact, this theory

(Dempster, 1967; Shafer, 1976; Smets, 1998a) models and manages imperfect infor-

mation through an explicit representation of uncertainty, imprecision and ignorance.

It extends the probability theory by making a difference between equi-probability and

ignorance. For example, an expert and a newbie will give their opinions about racing

horses {h1, h2, h3}. The expert thinks that all the three horses have the same chance

to win the race. The newbie does not have any idea about racing and horses.

• In probability theory their opinions are modeled such that:

– Expert: P (h1)= 1/3; P (h2)= 1/3; P (h3)= 1/3

– Newbie: P (h1)= 1/3; P (h2)= 1/3; P (h3)= 1/3

• In evidence theory their opinions are modeled such that:

– Expert: m(h1)= 1/3; m(h2)= 1/3; m(h3)= 1/3 ⇒ Equi-probability.

– Newbie: m({h1, h2, h3})=1 ⇒ Ignorance.

Note that m can be interpreted as a subjective probability.

The belief functions theory manages the imperfect information via two levels. The

first is the credal level where beliefs are quantified, represented and combined. The

second is the pignistic level where decisions are made (See Figure 2.1). Indeed, the

evidence theory provides the convenient tools to model, manage, aggregate and decide

when having imperfect information.

This chapter is dedicated to the basic notions of the belief functions theory that

will be used in the next chapters.

2.2 Basic Concepts

In this section, basic concepts of evidence theory as the frame of discernment, the basic

belief assignment, the body of evidence, belief and plausibility functions are detailed.

2.2.1 Frame of discernment

In the theory of belief functions, a frame of discernment (or universe of discourse) is

a set that contains all hypotheses of a given situation. Thus, Θ = {θ1, θ2, ..., θn} is a

finite, non empty and exhaustive set of n elementary and mutually exclusive hypotheses

related to a given problem.
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Figure 2.1: Credal and Pignistic Levels of the Evidence theory

The power set 2Θ is the set of all subsets of Θ. It includes hypotheses of Θ and all

disjunctions of Θ. It is defined as follows:

2Θ = {A : A ⊆ Θ} = {∅, θ1, θ2, ..., θn, {θ1, θ2}, .., {θ1, θ2, ..., θn}} (2.1)

Each element of 2Θ is a proposition (an event, an alternative or a solution).

Example 6 Let us consider a medical problem where a doctor gives his propositions

about the possible diseases of some patients. The possible diseases in our example are

either Flu, Asthma or Anemia. Thus, the frame of discernment is defined as follows:

ΘDE = {Flu, Asthma, Anemia}.

The different possible combinations for ΘDE are defined in the following set:

2Θ
DE = {∅, {Flu}, {Asthma}, {Anemia}, {Flu, Asthma}, {Flu, Anemia},
{Asthma, Anemia}, {Flu, Asthma, Anemia}}.

This application will be used through out this manuscript.

2.2.2 Basic belief assignment

A basic belief assignment (bba), noted mΘ, is a mapping from 2Θ to the interval [0, 1]

that assesses a degree of belief to some elements of the power set. A bba also called

mass function is defined such that:
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∑
A⊆Θ

mΘ(A) = 1 (2.2)

The amount mΘ(A) is called basic belief mass (bbm) and mass for short. It repre-

sents the degree of faith on the truth of hypothesis A. The mass mΘ(A) is the degree

of belief on A that is not distributed on its subsets.

Example 7 The doctor believes that this patient suffers from Flu with a degree of

belief equal to 0.7 or from Flu or Anemia with a degree of belief equal to 0.3. The

following basic belief assignment illustrates the beliefs of the doctor:

mΘ
DE ({Flu}) = 0.7

mΘ
DE ({Flu,Anemia}) = 0.3

.

2.2.3 Body of evidence

Subsets A of the frame of discernment Θ where mΘ(A) is strictly positive, are named

focal elements such that:

mΘ(A) > 0 (2.3)

We denote F the set of all focal elements and the couple {F,mΘ} the body of evidence.

The union of all focal elements is called core and is defined as follows:

ϕ =
⋃

A∈F :mΘ(A)>0

A (2.4)

Example 8 Let us consider the focal elements {Flu} and {Flu,Anemia} of mΘ
DE

such that:

F = {{Flu}, {Flu,Anemia}}: is the set of focal elements.

The couple (F, mΘ
DE ): is the body of evidence.

ϕDE = {Flu} ∪ {Flu, Anemia} = {Flu, Anemia}: is the core.

2.2.4 Belief and plausibility functions

The belief and the plausibility are functions derived from the basic belief mass (m).

They reflect degrees of faith about some hypotheses. The belief function (bel) and the

plausibility (pl) are considered as different expressions of the same information.
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Belief function

The belief function denoted bel, is the degree of faith exactly committed to hypothesis

A (Shafer, 1976). It assigns to each subset A of Θ the sum of the masses of belief

committed exactly to each subset of A by mΘ. The belief function is considered as the

minimal degree of belief given to A and it is defined as follows:

bel : 2Θ −→ [0, 1]

bel(A) =
∑

B,A⊆Θ:B⊆A
mΘ(B) (2.5)

Properties

• bel(∅) = 0 and bel(Θ) = 1 if m(∅) = 0

• bel(A) + bel(A) ≤ 1 (Sub additivity)

• A ⊆ B ⇒ bel(A) ≤ bel(B) (Monotonicity)

• bel(A ∪B) ≥ bel(A) + bel(B)

Note that A is the complement of A.

Example 9 The belief function (bel) corresponding to the basic belief assignment of

Example 7 is as follows:

bel(∅) = 0

bel({Flu}) = 0.7

bel({Anemia}) = 0

bel({Asthma}) = 0

bel({Flu,Anemia}) = 0.3 + 0.7 = 1

bel({Flu,Asthma}) = 0.7 + 0 = 0.7

bel({Anemia,Asthma}) = 0

bel(ΘDE ) = bel({Flu,Anemia,Asthma}) = 0 + 0.3 + 0.7 = 1

Plausibility function

The plausibility function denoted pl is equal to the sum of masses relative to subsets of

hypothesis B that do not contradict hypothesis A. It contains those parts of belief that

are compatible with A. The plausibility function is considered as the maximal amount

of belief given to hypothesis A and it is defined as follows:

pl : 2Θ −→ [0, 1]
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pl(A) =
∑

B,A⊆Θ:A∩B 6=∅

mΘ(B) (2.6)

Properties

• pl(A) = 1− bel(A) (Duality)

• pl(Θ) = 1 and pl(∅) = 0 if m(∅) = 0

• pl(A ∪B) ≤ pl(A) + pl(B)

• bel(A) ≤ pl(A)

• A ⊆ B ⇒ Pl(A) ≤ Pl(B) (Monotonicity)

• Pl(A) + Pl(A) ≥ 1 (Sub additivity)

Example 10 The plausibility function corresponding to the basic belief assignment of

Example 7 is represented as follows:

pl(∅) = 0

pl({Flu}) = 0.7 + 0.3 = 1

pl({Anemia}) = 0.3

pl({Asthma}) = 0

pl({Flu,Anemia}) = 0.3 + 0.7 = 1

pl({Flu,Asthma}) = 1

pl({Anemia,Asthma}) = 0 + 0.3 = 0.3

pl(ΘDE) = 1

Duality between bel and pl

The duality between the belief and the plausibility functions is one the properties

proposed by (Shafer, 1976).

Let A and A be two independent1 hypotheses such that :

bel(A) = 1− pl(A) since pl(A) = 1− bel(A) (2.7)

pl(x) = 1− bel(x) since bel(x) = 1− pl(x) (2.8)

1Two hypotheses are said to be independent when the occurrence of one does not affect the assignment
of occurrence of the other.
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Extended belief and plausibility functions

In the standard evidence theory, definitions of the belief and plausibility functions can

not handle comparisons like ( =, 6=, <, >,≤, ≥). That is why the definition of belief bel

and plausibility pl functions were extended in (Lee, 1992a; Lee, 1992b; Bell et al., 1996)

to deal with comparisons between two independent basic belief assignments (bbas).

Defintion 4 (Equality) Let x and y be two random independent variables and their

mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respective focal elements.

The equality between x and y are defined in the following way (Bell et al., 1996):

bel(x = y) =
∑
|A|=1

mΘ
x (A) ∗mΘ

y (A) (2.9)

pl(x = y) =
∑

A∩B 6=∅

mΘ
x (A) ∗mΘ

y (B) (2.10)

Note that * is the product operator.

Example 11 Let us consider information about Diseases of two patients given by a

doctor. The latter believes that the first patient is either diabetic or has a stroke. He

thinks that the second patient has either Anemia or Diabetes or stroke. His degrees of

belief are represented as follows in Table 2.1:

Patient Disease

x Diabetes 0.1
Stroke 0.9

y Anmeia 0.3
{Diabetes, Stroke} 0.7

Table 2.1: A medical diagnosis for two patients

We want to compute the belief (bel) and the plausibility pl values for the proposition

that both patients have the same disease.

Thus, according to definition 4:

• bel(x = y) = 0

• pl(x = y) = 0.1 ∗ 0.7 + 0.9 ∗ 0.7 = 0.7

Defintion 5 (Inequality) Let x and y be two random independent variables and their

mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respective focal elements.

The inequality between x and y is computed such that (Bell et al., 1996):
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bel(x 6= y) =
∑

A∩B=∅

mΘ
x (A) ∗mΘ

y (B) (2.11)

pl(x 6= y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ and [A=B implies |A|>1]

mΘ
y (B) (2.12)

Example 12 Let us consider the same diagnosis of Table 2.1. We want now to com-

pute the belief (bel) and the plausibility (pl) of both patients for the proposition that

they have different diseases.

Thus, according to definition 5:

• bel(x 6= y) = 0.1 ∗ 0.3 + 0.9 ∗ 0.3 = 0.3

• pl(x 6= y) = 0.1 ∗ 0.3 + 0.9 ∗ 0.3 + 0.1 ∗ 0.7 + 0.9 ∗ 0.7 = 1

Defintion 6 (Inferior Inequality) Let x and y be two random independent variables

and their mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respective focal

elements. The inferior inequality can be measured as follows (Bell et al., 1996):

bel(x < y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A<∀B

mΘ
y (B) (2.13)

where A <∀ B means that a < b for all a ∈ A, b ∈ B.

pl(x < y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A<∃B

mΘ
y (B) (2.14)

where A <∃ B means for every a ∈ A there exists b ∈ B such that a < b.

Defintion 7 (Inferior or Equal Inequality) Let x and y be two random independent

variables and their mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respec-

tive focal elements. x ≤ y is computed as follows (Bell et al., 1996):

bel(x ≤ y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A≤∀B

mΘ
y (B) (2.15)

where A ≤∀ B means that a ≤ b for all a ∈ A, b ∈ B.

pl(x ≤ y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A≤∃B

mΘ
y (B) (2.16)

where A ≤∃ B means for every a ∈ A there exists b ∈ B such that a ≤ b.

Example 13 The doctor orders diseases from the less to the most serious. Indeed,

he says that Stroke is more serious than Diabetes which is it self more serious than

Anemia. The descendant order is represented such that:
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Anemia < Diabetes < Stroke.

We want now to compare values of attribute Disease for both patients in Table 2.1.

We compute the bel and the pl for the proposition (x < y) and (x ≤ y).

Thus, according to Definitions 6 and 7.

• bel(x < y) = 0

• pl(x < y) = 0.1 ∗ 0.7 = 0.07

• bel(x ≤ y) = 0.1 ∗ 0.7 = 0.07

• pl(x ≤ y) = 0.1 ∗ 0.7 + 0.9 ∗ 0.7 = 0.7

Defintion 8 (Superior Inequality) Let x and y be two random independent variables

and their mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respective focal

elements. The superior inequality is calculated such that (Bell et al., 1996):

bel(x > y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A>∀B

mΘ
y (B) (2.17)

where A >∀ B means that a > b for all a ∈ A, b ∈ B.

pl(x > y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A>∃B

mΘ
y (B) (2.18)

where A >∃ B means for every a ∈ A there exists b ∈ B such that a > b.

Defintion 9 (Superior or Equal Inequality) Let x and y be two random independent

variables and their mass functions, mΘ
x , mΘ

y : 2Θ −→ [0, 1], A,B ⊆ Θ are their respec-

tive focal elements. x ≥ y is measured as follows (Bell et al., 1996):

bel(x ≥ y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A≥∀B

mΘ
y (B) (2.19)

where A ≥∀ B means that a ≥ b for all a ∈ A, b ∈ B.

pl(x ≥ y) =
∑
A⊆Θ

mΘ
x (A) ∗

∑
B⊆Θ∧A≥∃B

mΘ
y (B) (2.20)

where A ≥∃ B means for every a ∈ A there exists b ∈ B such that a ≥ b.

Example 14 Let us continue with the same example of Table 2.1. We want now to

calculate the bel and the pl of both patients for the proposition (x>y) and (x≥y) for the

attribute Disease.

Thus, according to Definitions 6 and 7.
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• bel(x > y) = 0.1 ∗ 0.3 + 0.9 ∗ 0.3 = 0.3

• pl(x > y) = 0.1 ∗ 0.3 + 0.9 ∗ 0.3 + 0.9 ∗ 0.7 = 0.93

• bel(x ≥ y) = 0.1 ∗ 0.3 + 09 ∗ 0.3 + 0.9 ∗ 0.7 = 0.93

• pl(x ≥ y) = 0.1 ∗ 0.3 + 09 ∗ 0.3 + 0.9 ∗ 0.7 + 0.1 ∗ 0.7 = 1

2.2.5 Special belief functions

Other types of belief functions were proposed in the literature as the vacuous belief

function, the certain belief function, the consonant belief function and the bayesian

belief function.

Vacuous belief function

A vacuous belief function is a special belief function (Shafer, 1976) where Θ is its

unique focal element. In this case, the basic belief assignment bba quantifies the total

ignorance. In other words it represents a bba with no information. It is defined such

that:

mΘ(Θ) = 1 and mΘ(A) = 0 where A 6= Θ (2.21)

Example 15 The frame of discernment relative to attribute Disease is

ΘDE = {Flu,Asthma,Anemia}.

mΘDE ({Flu,Asthma,Anemia}) = 1 is called a vacuous basic belief assignment.

Certain belief function

A certain belief function is a bba with only one focal element which is a singleton. That

bba represents the total certainty. It is defined such that:{
mΘ(A) = 1, A ∈ Θ and | A |= 1

mΘ(B) = 0 ∀B 6= A
(2.22)

Example 16 The frame of discernment of attribute Disease is

ΘDE = {Flu,Asthma,Anemia}.

mΘDE ({Anemia}) = 1 is called a certain basic belief assignment. This bba reflects

the full certainty about information Anemia.
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Bayesian belief function

A bayesian belief function is a particular case of belief function. When all focal elements

are singletons the bba is named bayesian and the distribution is said to be probabilistic

(Shafer, 1976). It is defined such that:{
mΘ(A) ∈]0, 1], if | A |= 1

mΘ(A) = 0 otherwise
(2.23)

Figure 2.2 is an illustration of a bayesian mass function.

Figure 2.2: Bayesian mass function

Properties

• bel(∅) = 0 and bel(Θ) = 1

• bel(A ∪B) = bel(A) + bel(B) ; A,B ⊂ Θ and A ∩B = ∅

• bel(A) + bel(A) = 1 ; A ⊂ Θ

• bel = pl

Example 17 Suppose the same frame of discernment of attribute Disease: ΘDE =

{Flu,Asthma,Anemia}.
Let’s consider the following masses:

mΘDE ({Asthma}) = 0.2

mΘDE ({Anemia}) = 0.3

mΘDE ({Flu}) = 0.5

mΘDE (Θ) = 0

Focal elements in this example are singletons. Thus, the distribution, in this case,

is probabilistic and the bba is bayesian.
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Consonant belief function

A consonant belief function is a function with nested focal elements such that:

A1 ⊂ A2 ⊂ ... ⊂ Θ (2.24)

Figure 2.3 is an illustration of a consonant mass function.

Figure 2.3: Consonant mass function

Properties

• bel = (A ∩B) = min(bel(A), bel(B)): Necessity measure.

• pl(A ∪B) = max(pl(A), pl(B)): Possibility measure.

Example 18 Let’s consider the same frame of discernment ΘDE = {Flu,Asthma,Anemia}.
We have the following masses:

mΘDE ({Asthma} = 0.3

mΘDE ({Asthma,Anemia} = 0.5

mΘDE ({Flu,Asthma,Anemia}) = 0.2

In this case, all focal elements are nested. Hence, this bba is called consonant.

Simple support function

A simple support function is a mass that supports only one subset of Θ; it has at most

one focal element different from Θ. This focal element is named the focus of the simple

support function (Smets, 1995). It is defined such that:
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mΘ(B) =


ω if B = Θ

1− ω if B = A, for some A ⊂ Θ

0 otherwise

(2.25)

Where:

A is the focus function.

ω is the degree of support of Θ, ω ∈ [0, 1].

1− ω is the degree of support of the focus A.

Figure 2.4 is an illustration of a simple support mass function.

Figure 2.4: Simple support mass function

Example 19 Suppose having the following bba:

mΘ({Anemia,Asthma} = 0.5

mΘ({Θ}) = 0.5

mΘ is a simple support function with {Anemia,Asthma} is its focus.

Dogmatic and non dogmatic functions

• A dogmatic mass function is defined such that (Smets, 1995):

mΘ(Θ) = 0 (2.26)

• A non dogmatic mass function is defined such that(Smets, 1995):

mΘ(Θ) > 0 (2.27)
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Smets defined the notions of the closed and the open worlds assumptions (Smets,

1988). Thus, under the closed world assumption, all possible hypotheses are enumer-

ated in Θ; where Θ is exhaustive. On the other side, when it is difficult to enumerate

from the beginning all the hypotheses the open world assumption is considered. Under

the open word assumption, the set of hypotheses are unknown; where Θ is not neces-

sarily exhaustive. Note that the closed world assumption is the one considered by the

Dempster-Shafer model (Dempster, 1967; Shafer, 1976).

Under the closed world assumption, the mass function is considered as a normalized

basic belief function. Under the open world assumption, the mass function is a non-

normalized one. The normalization can be executed such as: m∗Θ(A) =
mΘ(A)

1−mΘ(∅)
∀A ⊆ Θ

m∗Θ = 0

(2.28)

Information modeled and managed using the belief functions theory may come from

different sources that can be reliable and/or unreliable. Sometimes it is necessary to

merge them in order to make some decisions. Thus, the emergence of several combina-

tion rules under the evidential framework.

2.3 Combination Rules

In belief functions’ theory, Combination rules appear as an interesting solution to get a

more reliable information, specially in the presence of imperfect information (uncertain,

imprecise, incomplete). The major interest of combining several sources is to have

at the end one mass function that represents to the best all combined ones. Many

combination rules are proposed in the framework of evidence theory. In this section,

the most commonly used rules in literature are presented. Namely, the Dempster’s rule

(Dempster, 1967), the conjunctive and the disjunctive rules (Smets, 1993), Dubois and

Prade combination rule (Dubois and Prade, 1988), Yager’s rule (Yager, 1987).

In below, definitions of some basic notions related to combination rules are shown:

- Independence is the occurrence that one information does not affect the assign-

ment of the occurrence of an other one.

- Reliability is the ability to provide a trustworthy information.

- Normalization is an adjustment of a measured values to either have a non negative

ones or to asses them to a common scale.
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2.3.1 Dempster’s rule of combination

Suppose having M independent, distinct and reliable sources of information to combine.

Each source Sj with j ∈ [1,M ] expresses its belief over a defined problem and gives the

corresponding mass mΘ
j (Dempster, 1967). The combination (called the joint mass) is

calculated as follows:

mΘ
⊕ = mΘ

1 ⊕ ..⊕mΘ
M (2.29)

⊕ is the orthogonal sum.

The Dempster’s rule of combination is a normalized rule defined under the closed

world assumption.

Defintion 10 Let mΘ
1 and mΘ

2 be two independent mass functions, the joint mass mΘ
1⊕2

is computed such that:

mΘ
1⊕2(A) =


∑

B∩C=Am
Θ
1 (B).mΘ

2 (C)

1−
∑

B∩C=∅m
Θ
1 (B).mΘ

2 (C)
∀A 6= ∅

0 ∀A = ∅
(2.30)

The figure 2.5 shows how to combine M independent sources using the Dempster’s

rule.

Figure 2.5: Combination of M independent sources (Dempster, 1967)

Example 20 Suppose having two different doctors S1 and S2, each one gives his diag-

nosis about the same patient. The combination of their diagnoses using the Dempster’s
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rule of combination is shown in Table 20.

⊕ mΘDE
2 ({Asthma}) mΘDE

2 ({Flu}) mΘDE
2 ({Θ})

=0.4 =0.5 =0.1

mΘDE
1 ({Asthma}) mΘDE

1,2 ({Asthma}) mΘDE
1,2 (∅) mΘDE

1,2 ({Asthma})
=0.5 =0.2 =0.25 =0.05

mΘDE
1 ({Asthma, mΘDE

1,2 ({Asthma}) mΘDE
1,2 (∅) mΘDE

1,2 ({Asthma,
Anemia}) = 0.1 =0.04 =0.05 Anemia}) = 0.01

mΘDE
1 ({Flu}) mΘDE

1,2 (∅) mΘDE
1,2 ({Flu}) mΘDE1,2({Flu})

=0.2 =0.08 =0.1 =0.2

mΘDE
1 (Θ) mΘDE

1,2 ({Asthma}) mΘDE
1,2 ({Flu}) mΘDE

1,2 (Θ)

=0.2 =0.08 =0.1 =0.02

Table 2.2: Dempster’s Rule of combination over two different diagnoses of a same
patient

• mΘDE
1⊕2 ({Asthma}) =

0.2 + 0.05 + 0.04 + 0.08

1− (0.25 + 0.05 + 0.08)
= 0.56

• mΘDE
1⊕2 ({Asthma,Anemia}) =

0.01

1− (0.25 + 0.05 + 0.08)
= 0.05

• mΘDE
1⊕2 ({Flu}) =

0.1 + 0.02 + 0.1

1− (0.25 + 0.05 + 0.08)
= 0.355

• mΘDE
1⊕2 (Θ) =

0.02

1− (0.25 + 0.05 + 0.08)
= 0.035

2.3.2 Conjunctive rule of combination

The conjunctive rule of combination for two mass functions mΘ
1 and mΘ

2 defined on the

same frame of discernment Θ was introduced by Smets (Smets, 1993) and it is defined

as follows:

mΘ
1 ∩©mΘ

2 (C) =
∑

A,B⊆θ:A∩B=C

mΘ
1 (A).mΘ

2 (B) (2.31)

The conjunctive rule of combination merges bbas mΘ
1 and mΘ

2 provided by different,

independent and reliable sources, the result is the joint bba induced from the combi-

nation of mΘ
1 and mΘ

2 . The conjunctive rule of combination is an unnormalized rule

defined under the open world assumption.

Example 21 Let us consider the following frame of discernment ΘDE = {Flu, Asthma,

Anemia}. Sources S1 and S2 gave respectively the following masses mΘDE
1 and mΘDE

2
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for Patient P :

mΘDE
1 ({Flu,Anemia}) = 0.7

mΘDE
1 ({Asthma,Anemia}) = 0.3

mΘDE
2 ({Flu,Asthma}) = 0.5

mΘDE
2 ({Asthma,Anemia}) = 0.5

Now, we apply the conjunctive rule of combination. Results are shown in Table 2.3.

∩© mΘDE
1 ({Flu,Anemia}) mΘDE

1 ({Asthma,Anemia})
= 0.7 = 0.3

mΘDE
2 ({Flu,Asthma}) mΘDE

1,2 ({Flu}) mΘDE
1,2 ({Asthma})

= 0.5 = 0.35 = 0.15

mΘDE
2 ({Asthma,Anemia}) mΘDE

1,2 ({Anemia}) mΘDE
1,2 ({Asthma,Anemia})

= 0.5 = 0.35 = 0.15

Table 2.3: An application of the conjunctive rule of combination

• mΘDE
1

∩© mΘDE
2 ({Flu}) = 0.5 * 0.7 = 0.35

• mΘDE
1

∩© mΘDE
2 ({Asthma}) = 0.5 * 0.3 = 0.15

• mΘDE
1

∩© mΘDE
2 ({Anemia}) = 0.5 * 0.7 = 0.35

• mΘDE
1

∩© mΘDE
2 ({Asthma,Anemia}) = 0.5 * 0.3 = 0.15

2.3.3 Disjunctive rule of combination

The disjunctive rule of combination was also proposed by Smets (Smets, 1993). This

combination rule relies on independent sources with at least one of them is reliable. It is

based on the union of focal elements. Combining bbas mΘ
1 and mΘ

2 with the disjunctive

rule leads to a combined bba which focal elements are the union of focal elements of mΘ
1

and mΘ
2 . Combining two bbas mΘ

1 and mΘ
2 defined on the same frame of discernment

Θ is defined as follows:

mΘ
1 ∪©mΘ

2 (C) =
∑

A,B⊆θ:A∪B=C

mΘ
1 (A).mΘ

2 (B). (2.32)
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Example 22 We consider the same mass function as in the previous example. Sup-

pose now that one of the sources is reliable but we don’t know which one. We apply the

disjunctive rule of combination as shown in Table 2.4.

∪© mΘDE
1 ({Flu,Anemia}) mΘDE

1 ({Asthma,Anemia})
= 0.7 = 0.3

mΘDE
2 ({Flu,Asthma}) mΘDE

1,2 ({Flu,Asthma, mΘDE
1,2 ({Flu,Asthma,

= 0.5 Anemia}) = 0.35 Anemia}) = 0.15

mΘDE
2 ({Asthma,Anemia}) mΘDE

1,2 ({Flu,Asthma, mΘDE
1,2 ({Asthma,Anemia})

= 0.5 Anemia}) = 0.35 = 0.15

Table 2.4: An application of the disjunctive rule of combination

• mΘDE
1

∪© mΘDE
2 ({Flu,Asthma,Anemia}) = (0.5 * 0.7) + ((0.5 * 0.3) + (0.5 *

0.7) = 0.85

• mΘDE
1

∪© mΘDE
2 ({Asthma,Anemia})= 0.5 * 0.3 = 0.15

Table 2.5 represents an overview of the use of the presented combination rules. Note

that:

∩© ⊕ ∪©

Independent and reliable Independent and reliable Independent and at least one
pieces of evidence pieces of evidence of evidence pieces is reliable
non-normalized Normalized non-normalized

Table 2.5: An overview of combination rules properties

In case of having reliable and unreliable sources, where degrees of reliability can be

measured, the discounting rule is used.

2.4 Discounting

A particular combination is the discounting that considers sources’ reliabilities into their

mass functions. It is a specific mechanism to the belief functions theory that discounts

masses proportionally to their sources’ reliabilities. However, sources’ reliabilities need

to be learned before the discounting.

The reliability factor α in [0, 1] characterizes the reliance of a source. Note that (i)

α = 1 represents a fully reliable source, (ii) α = 0 represents an unreliable source. The

discounting rate is 1− α.
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The discounted mass mΘ,α is computed as follows:{
mΘ,α(A) = α.mΘ(A) ∀A ⊂ Θ

mΘ,α(Θ) = α.mΘ(Θ) + (1− α)
(2.33)

Example 23 Let’s consider this bba:

• mΘ
DE

({Flu}) = 0.4

• mΘ
DE

({Anemia,Asthma}) = 0.5

• mΘ
DE

(ΘDE) = 0.1

This bba is discounted with the reliability degree of the doctor which is α = 0.9.

• mΘ
DE

,α({Flu}) = 0.9 ∗ 0.4 = 0.36

• mΘ
DE

,α({Anemia,Asthma}) = 0.9 ∗ 0.5 = 0.45

• mΘ
DE

,α(ΘDE ) = 0.9 ∗ 0.1 + (1− 0.9) = 0.19

Basic belief assignments can be combined only when they are defined on the same

frame of discernment. Thus, when two basic belief assignments are defined on different

frames of discernments, a compatible frame can be specified.

2.5 Compatible Frames of Discernments

Vacuous extension, coarsening and refinement (Shafer, 1976) are tools to define a rela-

tionship between compatible frames of discernment in order to specify beliefs on anyone

of them.

2.5.1 Vacuous Extension

In some cases, we need to combine two bbas mΘ
1 and mΘ

2 which are not defined on the

same frame of discernment. However, all combination rules require that bbas have the

same frame of discernment. The vacuous extension of belief functions (Shafer, 1976) is

a tool that defines bbas on a compatible frame of discernment. It consists in extending

the frames of discernment Θ1 and Θ2, corresponding to the mass functions mΘ
1 and

mΘ
2 , to the joint frame of discernment Θ defined as:

Θ = Θ1 ×Θ2

Each focal element is extended to its cylindrical extension (A×Θ2 is the cylindrical

extension of A ⊆ Θ1).
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The extended mass function of any evidential value of the extended focal element

A, denoted by mΘ, is defined as follows:

mΘ1↑Θ1×Θ2(A) =

{
mΘ1(B) where A = B ×Θ2, B ⊆ Θ1

0 otherwise
(2.34)

Figure 2.6 represents an illustration of the vacuous extension operator

Figure 2.6: Vacuous Extension

Example 24 Suppose we have the following frames of discernment:

• The set of Diseases ΘDE = {Flu,Asthma,Anemia}

• The set of Blood Types ΘBT = {A,B,O}

The following Table 2.6 illustrates the doctor’s diagnosis about two patients.

ID Disease Blood Type

1 Flu A
{Asthma,Anemia}

2 Anemia B
{B,O}

Table 2.6: Diagnoses of two patients

The vacuous extension of the evidential Table 2.6 is demonstrated in Table 2.7.

Note that Θ denotes the joint frame of ΘDE and ΘBT and that ↑ denotes the vacuous

extension.
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ID ΘDE ↑ Θ ΘBT ↑ Θ

1 Flu×ΘBT A×ΘDE

{Asthma,Anemia} ×ΘBT

2 Anemia×ΘBT B ×ΘDE

{B,O} ×ΘDE

Table 2.7: The vacuous extension of Table 2.6

2.5.2 Refinement and Coarsening

Let Θ and Ω be two different and compatible frames of discernment. The set Ω is a

refinement of Θ provided by splitting hypotheses of Θ. The set Θ is called a coarsening

of Ω obtained by gathering hypotheses of Ω. Figure 2.7 illustrates the relationship of

coarsening and refinement between Θ and Ω.

Figure 2.7: Coarsening and Refinement

Example 25 Let’s give an illustration with the same frame of discernment

Θ = {Flu,Asthma,Anemia}.
A refinement of Θ can be such that:

Ω={Flu type A, Flu type B, Flu type C, Asthma, Thalassaemia, Aplastic-anemia,

Fanconi-anemia, Haemolytic-anemia}

• ω({Flu}) ={Flu type A, Flu type B, Flu type C}.

• ω({Asthma})= {Asthma}.

• ω({Anemia}) ={Thalassaemia, Aplastic-anemia, Fanconi-anemia, Haemolytic-

anemia}.

The set Θ is a coarsening of Ω.
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2.6 Cognitive and Evidential Independences

The cognitive and the evidential independences are properties introduced by (Shafer,

1976). Then, other works based on the evidential independence were proposed (Cheb-

bah et al., 2015).

2.6.1 Cognitive Independence

Defintion 11 “ Two frames of discernment may be called cognitively independent with

respect to the evidence if new evidence that bears on only one of them will not change

the degree of support for propositions discerned by the other”(Shafer, 1976).

The cognitive independence is the weak independence. Two variables x and y are

cognitively independent with respect to a mass function mΘ2 if new evidence that bears

on only one of them does not change the degree of support for propositions discerned

by the other one such that:

pl(x ∧ y) = pl(x)× pl(y) (2.35)

Example 26 Let ΘO = {O,O}, O for an obese person and O for a non obese person.

The frame of discernment ΘG = {M,F}, M for a male and F for a female. The joint

frame of discernment of ΘO and ΘG is Θ.

Suppose a mass function mΘ defined on the joint frame Θ such that:

mΘ((M,O)) = 0.26

mΘ((F,O)) = 0.16

mΘ((M,O) ∪ (F,O)) = 0.58

The plausibilities plΘO↑Θ and plΘG↑Θ are computed in Table 2.8.

ΘO plΘO↑Θ ΘG plΘG↑Θ

∅ 0 ∅ 0

O 0.84 M 1

O 0.74 F 0

O ∪O 1 M ∪ F 1

Table 2.8: plΘO↑Θ and plΘG↑Θ

Variables “Obesity” and “Gender” are cognitively independent according to mΘ

when the following equalities are verified:

2Θ = Θx × Θy
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
plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M)

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F )

plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M)

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F )

Thus, 
plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M) = 0.84 ∗ 1 = 0.84

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F ) = 0.84 ∗ 0 = 0

plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M) = 0.74 ∗ 1 = 0.74

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F ) = 0.74 ∗ 0 = 0

2.6.2 Evidential Independence

Defintion 12 “Two frames of discernment are evidentially independent with respect to

a support function if that support function could be obtained by combining evidence that

bears on only one of them with evidence that bears on only the other”(Shafer, 1976).

The evidential independence is the strong independence. Two variables x and y are

evidentially independent with respect to a mass function mΘ if mΘ can be obtained by

combining evidence that bears on only one of them with evidence that bears on only

the other one such that: {
pl(x ∧ y) = pl(x)× pl(y)

bel(x ∧ y) = bel(x)× bel(y)
(2.36)

Example 27 Variables “Obesity” and “Gender” are evidentially independent accord-

ing to mΘ when the following equalities are verified:
belΘ((O,M)) = belΘO↑Θ(O)× belΘG↑Θ(M)

belΘ((O,F )) = belΘO↑Θ(O)× belΘG↑Θ(F )

belΘ((O,M)) = belΘO↑Θ(O)× belΘG↑Θ(M)

belΘ((O,F )) = belΘO↑Θ(O)× belΘG↑Θ(F )
plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M)

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F )

plΘ((O,M)) = plΘO↑Θ(O)× plΘG↑Θ(M)

plΘ((O,F )) = plΘO↑Θ(O)× plΘG↑Θ(F )

The requirement on pl is already checked in Example 26. The beliefs belΘO↑Θ and

belΘG↑Θ are computed in Table 2.9.
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ΘO belThetaO↑Θ ΘG belΘG↑Θ

∅ 0 ∅ 0

O 0.26 M 1

O 0.16 F 0

O ∪O 1 M ∪ F 1

Table 2.9: belΘO↑Θ and belΘG↑Θ


belΘ((O,M)) = belΘO(O)× belΘG(M) = 0.26 ∗ 1 = 0.26

belΘ((O,F )) = belΘO(O)× belΘG(F ) = 0.26 ∗ 0 = 0

belΘ((O,M)) = belΘO(O)× belΘG(M) = 0.16 ∗ 1 = 0.16

belΘ((O,F )) = belΘO(O)× belΘG(F ) = 0.16 ∗ 0 = 0

2.7 Decision Making

In the credal level, theory of belief functions permits to model and handle imperfect

information. It also allows the combination of beliefs coming from different sources.

In the pignistic level, evidence theory ensures the decision making by providing several

solutions. This decision process can be not feasible because of the bbas’ nature. Indeed,

these bbas are modeled as singletons or as subsets. Hence, to facilitate the decision

making process, the belief functions theory offers the following tools:

• Pignistic probability (Smets, 1998b; Smets and Kennes, 1994).

• Maximum of credibility (Janez, 1997; Basir and Yuan, 2007).

• Maximum of plausibility (Janez, 1997; Basir and Yuan, 2007).

• Distance based (Essaid et al., 2014).

2.7.1 Pignistic Probability

The pignistic probability, denoted BetP , was introduced by the transferable belief

model (Smets, 1988; Smets and Kennes, 1994). This measure represents a compromise

between the credibility function and the plausibility function. Thus, it transforms the

beliefs to probability functions. The pignistic probability depends on choosing the most

probable singleton hypothesis such that:

BetP (A) =
∑
B⊆Θ

|A ∩B| ∗mΘ(B)

|B| ∗ (1−mΘ(∅))
∀A ⊆ Θ (2.37)
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Example 28 Suppose the following basic belief assignment where

ΘDE={Flu,Asthma,Anemia}:

m({Flu}) = 0.5

m({Asthma, F lu}) = 0.2

m(Θ) = 0.3

The corresponding pignistic probability BetP to this bba is computed as follows:

• BetP ({Flu}) =
0.5

1
+

0.2

2
+

0.3

3
= 0.7

• BetP ({Asthma}) =
0.2

2
+

0.3

3
= 0.2

• BetP ({Anemia}) =
0.3

3
= 0.1

The hypothesis that maximizes the BetP function is {Flu}. It is the most probable

hypothesis.

2.7.2 Maximum of Credibility

The maximum of credibility consists in selecting the most credible hypothesis. The

latter has the maximal value of belief bel.

The maximum of credibility determines the best hypothesis with the least chance of

being realized. It uses a pessimistic decision criterion (Janez, 1997) and it is defined

such that:

argmax[bel(A)] ∀A ⊆ Θ (2.38)

Example 29 Let’s compute the maximal credibility function of the same bba as the

previous Example 28.

• bel({Flu}) = 0.5

• bel({Asthma} = 0

• bel({Anemia} = 0

The hypothesis that maximizes the bel function is {Flu}. It is the most credible

hypothesis.
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2.7.3 Maximum of Plausibility

The maximum of plausibility consists in selecting the most plausible hypothesis. The

latter has the maximal value of plausibility pl.

The maximum of plausibility determines the best hypothesis with the most chance of

being realized. It uses an optimistic decision criterion (Janez, 1997) and it is defined

such that:

argmax[pl(A)] ∀A ⊆ Θ (2.39)

Example 30 Let’s compute the maximal plausibility function of the same bba in Ex-

ample 28.

• pl({Flu}) = 1

• pl({Asthma} = 0.5

• pl({Anemia} = 0.3

The hypothesis that maximizes the pl function is {Flu}. It is the most plausible

hypothesis.

2.8 Conclusion

In this chapter, we presented the basic concepts of the belief functions theory. All

notions like the frame of discernment, the belief function, the plausibility function,

combination rules, vacuous extension, etc., were detailed with examples. We also pre-

sented the decision making tools as the pignistic probability, the maximum of credibility

and the maximum of plausibility.

These tools will be used in the rest of our dissertation to model and handle evidential

databases.
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Summary

This chapter is about the compact form of evidential databases (EDB) and it is divided

into three major parts: first, we present the only existing model of evidential databases

(Bell et al., 1996; Lee, 1992b; Lee, 1992a). Second, we present how we practically

modeled and implemented this database model (Bousnina et al., 2016). Finally, we

focus on querying the compact form of EDB. Thus, we recall the extended evidential

relational queries (Bell et al., 1996). Then, we discuss two preferential queries; the

evidential top-k query (Bousnina et al., 2017a) and the evidential skyline query (Elmi

et al., 2014; Bousnina et al., 2017b).
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3.1 Introduction

Relational databases store only certain data where each attribute contains singleton

values with no additional information. Imperfect databases store sets of imperfect data

like uncertain, imprecise, missing ones, etc, where each attribute can handle a set of

values with other information about their existence in the table; hence, the divergence

between the relational databases and the imperfect databases in terms of querying.

Several models of imperfect databases and their querying methods were introduced

such as probabilistic databases (Cavallo and Pittarelli, 1987), possiblistic databases

(Bosc and Pivert, 2005), and evidential databases (Bell et al., 1996; Choenni et al.,

2006; Lee, 1992a; Lee, 1992b).

In this chapter, our interest goes to the compact form of the evidential database

(EDB). In fact, we present the most elaborated evidential database model (Bell et al.,

1996; Lee, 1992a; Lee, 1992b). Then, we focus on the querying methods that can be

applied over (EDB): The evidential relational queries (Bell et al., 1996), the evidential

top-k queries (Bousnina et al., 2017a) and the evidential skyline queries (Bousnina

et al., 2017b). We also present the Object-relational implementation of the evidential

compact database EDB (Bousnina et al., 2016) that serves as a basis to practically

evaluate the presented querying methods.

3.2 Evidential Databases Model

The most used and known evidential database model is the one introduced by (Lee,

1992b; Lee, 1992a) and extended later in (Bell et al., 1996). Thus, authors defined

an evidential database model in a compact form semantics. It is formally defined as

follow:

Defintion 13 (Compact form)

An Evidential Database, EDB, on its compact form, is a database with N tuples

and D attributes, storing perfect and imperfect data. Imperfection is expressed in two

levels:

• The attribute level uncertainty, modeled via the evidential values. An evidential

value, denoted Vta, is the value of an attribute a for the tuple t. An evidential

value is a bba, such that

Vta : 2Θa → [0, 1] (3.1)

with mΘ
ta(∅) = 0 and

∑
B⊆Θa

mΘ
ta(B) = 1 (3.2)

The set of focal elements of the bba Vta is noted Fta such that:
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Fta = {B ⊆ Θa/m
Θ
ta(B) > 0} (3.3)

The tuple level uncertainty, expressed through a particular attribute called confidence

level. It is denoted CL and it stores confidence intervals given by experts about the

existence of each tuple t in the evidential database. Each interval is a pair of belief and

plausibility, such that:

CL = [bel; pl] where ΘCL = {exist, exist} CL ⊆ [0; 1] bel ≤ pl (3.4)

Example 31 Let us have an example of a doctor that expressed his medical diagnoses

about three patients by giving multiple hypotheses and their assignments. His diagnoses

are modeled using the belief functions’ theory and stored in the following compact ev-

idential Table 3.1. The latter includes four attributes ID, Disease, Symptom and the

confidence level CL. The tuple level uncertainty is presented by the CL and the attribute

level uncertainty is expressed by the mass functions in the Disease and Symptom at-

tributes.

ID Disease Symptom CL

1 Diabetes Fatigue 0.4 [0.5 ; 1]
{Fatigue,Nausea} 0.6

2 Diabetes 0.1 V ertigo [0.4 ; 0.8]
Stroke 0.9

3 Anemia 0.3 Fainting [1 ; 1]
{Diabetes, Stroke} 0.7

Table 3.1: A Medical Evidential Table

Since evidential databases store more complex data compared to relational databases,

the relational structure seems to be not adequate to their storage. Hence, the need to

introduce a model that fits the structure of this evidential data.

3.3 Implementing Evidential Databases

An evidential database (Bell et al., 1996) is a model that handles uncertainty, impreci-

sion and ignorance. Storing these kind of data requires a specific model. At the best of

our knowledge there is no efficient implementation relative to evidential databases for

a querying purpose.

In our work (Bousnina et al., 2016), we introduce a meta-model and an object-

relational implementation for EDBs that offer a scalable and flexible solution to manage

evidential data.
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3.3.1 Meta-model

In classical databases, tables store data in a matrix format; attributes in columns and

objects in lines. In evidential databases, data are stored in object-relational format. As

shown in the class diagram of the evidential meta-model of Figure 3.1. An evidential

database is composed of tables where each table has N tuples and D attributes. These

attributes are based on the structure of basic belief assignments, bbas . An attribute

has a name and contains one bba for each tuple. A bba is composed of one or more focal

elements. A focal element has a mass and contains hypotheses. Each hypothesis has

a content. The belief and the plausibility functions compute respectively the minimal

and the maximal degrees of believes about a set of hypotheses in a bba. They are

defined as methods at the bba structure. Each evidential table stores N tuples. A tuple

is identified by its ID and its confidence level, CL that quantifies the confidence level

degree of the tuple’s source.

Figure 3.1: Meta-Model of Evidential Databases

3.3.2 Object-Relational Implementation

To put into practice the proposed meta-model, we relied on a commercial Object-

Relational Database Management System (ORDBMAS), Oracle 10g. Its main asset is

the Oriented-Object feature that facilitates the implementation of the complex struc-

ture of an evidential database, as designed in Figure 3.1. We define the bba type which

is basically a collection of focal elements, whose type contains two compartments, a

collection of hypotheses, and its mass value. As explained earlier, this modeling is
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impossible to implement in the relational framework, because of the first normal form

constraint.

In addition to the previous advantage, a commercial ORDBMS offers an interesting

I/O cost optimization. Indeed, Oracle uses a System Global Area (SGA) to keep in

cache reused data (the database buffer cache) and reused queries (the shared pool).

The database buffer cache contains previous extracted data. In case of querying some

of (or these) data, the database server avoids disk access and returns the result directly

from physical memory. In the other hand, queries execution plans whose computation

is costly, are stored in the shared pool in the SGA. In case of executing an existing

query in the pool, the system avoids syntactic analysis and execution plan computation

which saves important CPU time. Added to that, the use of indexes in DBMSs that

accelerates information extraction especially, in our case, when we use Nested tables

vs. Varying Arrays to store collections. Indeed, a varying arrays attribute (in Oracle,

the type is named varray) is physically stored in the same segment of the table. On

the other hand, a nested table attribute is stored in a separate segment. Thus, data

of that segment are indexable. For example, the attribute symptom in Table 3.1 is

a collection of focal elements. The use of nested table type implies the possibility to

create an index on that attribute which induces more efficiency when selecting tuples

with a symptom criterion.

Moreover, we benefit from the use of SQL3 when employing the Object-Relational

model in Oracle. Thus, if we want to create a bba type, which is mainly a collection

of focal elements, we need to create first the type hypos; because the focal element

structure contains a mass value, and also a collection of hypotheses (it can be one hy-

pothesis or a set of hypotheses). The type hypos is a collection of a basic data type:

CREATE TYPE FOCALELEMENT AS OBJECT

(content HYPOS, mass NUMBER, MEMBER FUNCTION)

Includes (search FOCALELEMENT) RETURN NUMBER,

MEMBER FUNCTION Intersect (search FOCALELEMENT) RETURN NUMBER);

The bba type is defined as an object with one attribute; content and two methods; bel

and pl. Content is defined as a collection of focal elements. bel and pl are methods

that compute respectively belief and plausibility of comparison with another bba.

CREATE TYPE bba AS OBJECT (content FOCALELEMENT),

MEMBER FUNCTION bel Comp (search bba, op CHAR(2)) RETURN NUMBER,

MEMBER FUNCTION pl Comp (search bba, op CHAR(2)) RETURN NUMBER,

MEMBER FUNCTION bel(FOCALELEMENT F) RETURN NUMBER,

MEMBER FUNCTION pl(FOCALELEMENT F) RETURN NUMBER);
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To integrate the tuple uncertainty level, we define the type CL that is an interval of

numbers.

CREATE TYPE CL AS OBJECT (bel NUMBER, pl NUMBER);

Example 32 To create the evidential Table of Example 3.1, we define the type on

which is based the table, i.e., the type diagnosis:

CREATE TYPE diagnosis AS OBJECT (ID NUMBER, Disease bba,

Symptom bba, CL CL);

And then we create the object table, called diagnoses, based on the type diagnosis:

CREATE TABLE diagnoses OF diagnosis (PRIMARY KEY(id),

NESTED TABLE Disease STORE AS

tab diseases (NESTED TABLE content STORE AS hypos),

NESTED TABLE Symptom STORE AS

tab symptoms (NESTED TABLE content STORE AS hypos);

The methods bel and pl are very important because we may select objects whose

attributes’ values (bbas) are compared as follows:

• Symptom=“Fatigue”: The search criterion is a single value. Then, “Fatigue” is

a bba with a single focal element, having a single hypothesis with a mass equal to

one (a certain bba).

• Symptom= “Fatigue” OR “Nausea”: It is a bba with one focal element that is

{“Fatigue”,“Nausea”} having a mass equal to one.

• e.Symptom=d.Symptom: It consists in comparing two bbas. For example, com-

paring symptoms of patient (ID=1) and patient (ID=2).

Querying is a form of questioning the stored data. Depending on the format of the

data’s storage, several families of queries can be applied like relational queries, ranking

queries, preferential queries, etc.

3.4 Querying Evidential Databases EDB

Processing queries over evidential data is very challenging because of the complex struc-

ture of their modeling. Thus, each hypothesis can be uncertain and/or imprecise with

two levels of assignment: at the attribute with masses and at the tuple with confidence



3.4. Querying Evidential Databases EDB 63

intervals. Specific queries to deal with evidential data were introduced like the evi-

dential relational queries (Bell et al., 1996), evidential top-k queries (Bousnina et al.,

2017a; Bousnina et al., 2018b) and evidential Skyline queries (Elmi et al., 2014; Elmi

et al., 2015; Bousnina et al., 2017b).

3.4.1 Evidential Relational Queries

The relational operators (selection, projection, Cartesian product, union and difference)

were introduced by (Codd, 1970) based on the relational algebra (Kamel, 1954) and set

theory (Moore, 1932). These operators represent the fundamental operators to query

any database. Hence, authors (Lee, 1992b; Lee, 1992a; Bell et al., 1996) extended the

classical relational operators to be suitable with the complex structure of an evidential

database.

Extended Select Operator

The relational select operator consists in extracting some tuples from a given table

whose attributes satisfy some conditions defined via the query. In the evidential

database model as presented in (Lee, 1992a; Bell et al., 1996), the evidential select

operator behaves almost the same as the classical ones except for the computation of

confidence levels.

A new CLt defined on Θa n ΘCL is computed such that:

CLt = [belΘa
a (a = h)× belθ1CLt ; plΘa

a (a = h)× plθ1CLt ] (3.5)

Where bela and pla are respectively the belief and the plausibility of attribute a with

an hypothesis h responding to the condition of the query; belt and plt are respectively

the belief and the plausibility of the tuple.

Example 33 Let’s apply the following select query over Table 3.1.

Q1: SELECT ID FROM EDB WHERE Disease = ‘‘Stoke’’

Tuples that do not satisfy the condition are eliminated. The returned relation in-

cludes the two tuples that verify the criterion. The confidence level of each tuple in the

result is computed using Equation (3.5) as shown in Table 3.2.

Extended Project Operator

The relational project operator consists in taking as an input a relation and then giving

as an output one attribute or more from attributes of the same relation. The evidential

project operator as presented in (Bell et al., 1996; Choenni et al., 2006; Lee, 1992a) is
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ID CL

2 [0.9*0.4 ; 0.9*0.9] = [0.36 ; 0.81]

3 [0*1; 0.7*1] = [0 ; 0.7]

Table 3.2: Result of query Q1

quite similar to classical one. Thus, it gives as a result the attribute values associated

with their masses.

Example 34 Let’s apply the following project query over same table 3.1.

Q2: SELECT ID, Disease FROM EDB

Attributes that do not satisfy the query are eliminated. The result is presented in

Table 3.3.

ID Disease

1 Diabetes 1

2 Diabetes 0.1
Stroke 0.9

3 Anemia 0.3
{Diabetes, Stroke} 0.7

Table 3.3: Result of query Q2

Extended Cartesian Product

The relational Cartesian product of two relations, denoted ×, consists in making the

product of every tuple of the first relation with every tuple of the second relation. The

evidential Cartesian product is defined in the same way except for the value of CL. It

is computed using the conjunctive combination between two tuples (Bell et al., 1996;

Lee, 1992a).

Defintion 14 Let CL1[bel1; pl1] and CL2[bel2; pl2] be two evidential confidence levels,

the conjunctive combination is defined such that:

[bel1; pl1] ∧ [bel2; pl2]) = [bel1 ∗ bel2; pl1 ∗ pl2] (3.6)

Example 35 Let Table 3.4 and Table 3.5 be two evidential tables. The Cartesian

product of EDB1 × EDB2 is presented in Table 3.6.
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ID Disease Symptom CL

1 Diabetes Nausea [0.1; 0.5]

2 Anemia V ertigo [0; 0.7]

Table 3.4: EDB1

Disease Blood Type CL

Stroke A [0.8; 1]

Anemia O [0.5; 0.9]

Table 3.5: EDB2

ID Disease Disease Symptom BloodType CL

1 Diabetes Stroke Nausea A [0.08; 0.5]

1 Diabetes Anemia Nausea O [0.05; 0.45]

2 Anemia Stroke V ertigo A [0; 0.7]

2 Anemia Anemia V ertigo O [0; 0.63]

Table 3.6: Cartesian Product: EDB1 × EDB2

Extended Join

The relational join operation, denoted ./, combines tuples from two (or more) tables

using the common values for each table. The result of a join operation is a selection

on Cartesian product of the joined relations. In evidential context, the extended join

behaves the same except for the confidence levels values which are calculated using the

conjunctive combination of equation (3.6) (Bell et al., 1996; Lee, 1992a; Lee, 1992b).

Example 36 We apply the extended join operator over Tables 3.4 and 3.5. The result

of the evidential join is shown in Table 3.7.

ID Disease Disease Symptom BloodType CL

2 Anemia Anemia V ertigo O [0; 0.63]

Table 3.7: Join: EDB1 ./ EDB2
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Experiments

The Object-Relational implementation of the compact evidential database model (Bous-

nina et al., 2016) allowed us to evaluate some extended relational operators and to

analyze the results. Indeed, we implemented the evidential select and project opera-

tors. These operators can make use of any comparison operator {<,>,≤,≥} to define

a criterion on a bba or to define a bel and a pl threshold.

Example 37 As an example, the query in below is about selecting patients whose dis-

eases are equal to “Anemia” with belief grater that 0.2. The searched symptom is

processed by the bel function as a bba with a single focal element whose mass is equal

to one.

Q: SELECT d.* FROM disease d

WHERE d.bel(bba(FOCALELEMENT(’Anemia’,1)), ’=’) > 0.2;

We evaluated the proposed Object–Relational implementation from a performance

point of view. We used a windows 8 desktop with a 2.67 GHZ CPU and 8GB RAM.

We also used SQL3 and PL/SQL for implementation on Oracle 10g server. The size of

the System Global Area (SGA) in Oracle server is set to 1GB.

Data sets The used data sets are synthetic with the following parameters (1) N the

size of the database, (2) %IR the imperfection rate of data, i.e., number of imperfect

tuples over N , (3) nfe the maximum number of focal elements per bba, (4) sfe the

maximum size of each focal element (5) D number of attributes and (6) di size of

attribute domain.

To generate a synthetic evidential database, the used algorithm uses a main proce-

dure that generates a synthetic bba. This procedure operates as follows: it computes

randomly a fixed number of focal elements in the interval [1, nfe]. Then, for each

focal element, it generates randomly a number in the interval [1, sfe]; that’s the size

of current focal element. Each hypothesis in the focal element is randomly generated

in the interval [1, d], di being the cardinality of our attribute domain. Masses of focal

elements are generated in the interval [0, 1]. We used the random function of JAVA

which is based on the uniform law.

We managed several constraints like uniqueness of hypotheses into one focal element,

uniqueness of focal elements in a bba, and normalization of a bba (sum of focal elements’

masses must be equal to one). Then, we generated for each tuple one bba per attribute.

We repeat this operation for %IR of N . Remaining tuples are perfect and contain in

every attribute one bba with one singleton focal element whose mass is equal to one.



3.4. Querying Evidential Databases EDB 67

Evaluation The experiments showed interesting results from a performance point of

a view although it has some limits when some parameters of the database reach some

thresholds.

Default values used in experiments are fixed to N = 1000, nfe = 4, sfe = 2,

di = 10 and %IR = 70. In the first experiments, we varied the parameter N from 1000

tuples to 500000. The system crashed when we set N = 500000. For N = 100000 the

system answers our test query in approximately 17 seconds. Experiments produced

very acceptable time of execution until the limit of 60000 tuples (about 6 seconds at

the worst). Figure 3.2(a) shows the experiment results.

Then, we varied the number of focal elements. Until nfe = 50, the system answers

with acceptable execution time, without exceeding 4 seconds. We judge the value of 50

as appropriate, because an expert (the doctor in our example) does not give a such great

number of believable hypotheses (in our case diagnoses). Results of this experiment

are shown in Figure 3.2(b).

For focal elements’ sizes, we varied the parameter sfe from 2 to 10. Figure 3.2(c)

shows the results. Execution time did not exceed 0.3 seconds. This acceptable perfor-

mance is due to bel Comp (respectively pl Comp) PL/SQL implementation. First of

all, PL/SQL is integrated in Oracle (such that every transactional programming lan-

guage), which reduces I/O costs. Second, scanning focal elements for belief/plausibility

computations’ amounts to scanning Oracle nested tables. Searching these structures is

optimized by Oracle which offers for them sequential and direct access.

Each attribute is characterized by its domain cardinality. It refers to the frame of

discernment size. We varied this parameter from 10 to 1000, the results are presented

in Figure 3.2(d). The performance is again very acceptable although we reached a high

size of cardinality (1000). Note that complexity of a generated bba also depends on

number and size of focal elements that are controlled by parameters nfe and sfe. If

we do not control these parameters, we can reach 21000 focal elements, with sizes that

could reach 1000. This situation is not realistic, because expressing a so huge number

of focal elements in one bba is impossible.

To mimic real imperfect databases, our solution should process objects that are

either perfect or imperfect. To show the impact of imperfect objects on our solution

performance, we varied the rate of imperfect objects in the database from 20% to

100%. It’s logical that performance decreases in case of high values of the imperfection

rate. Processing evidential bbas v.s. certain bbas involves more belief/plausibility

computations. However in general, the performance was acceptable (it didn’t exceed

0.5 seconds) even when the rate reached 100%.

An important feature of commercial databases consists in using memory caches

to speed-up queries answering. In general, two memory caches are used in most of

commercial solutions: (i) the database buffer cache, for keeping previous extracted

data; (ii) the shared pool for keeping syntactic and execution information of previous
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queries. To evaluate the contribution of caching data and queries in our solution, we

compared first execution of the test query (without cache), with next executions(with

cache). Naturally, the difference is clear and expected. Table 3.8 shows the result of

this experimentation for different values of the parameter n (size of the database).

Database size First execution time (s) Next executions’ times (s)

1000 0.2 0.03
5000 0.8 0.04

10 000 4.1 0.06
50 000 5.8 0.12
70 000 6.4 0.16
100 000 17 1.2

Table 3.8: Contribution of caches to queries re-execution

3.4.2 Evidential Top-k Query

Top-k queries, also known as Ranking queries, were introduced in the multimedia sys-

tems by Fagin (Fagin, 1996; Fagin, 1998).They represent a powerful tool to order

queries’ results and give only the most interesting answers. Generally, top-k queries

rank the results using a defined score function where only the k (k ≥ 1) most important

ones are returned; i.e, only answers with the highest scores are returned.

Top-k queries are needed in real worlds applications: for example movies can be

ordered by the most watched ones, music can be ranked by the most listened songs,

researchers can be ranked by their H-index, athletes by their race time, etc.

Several top-k processing techniques exist in the literature. In the uncertain data

context, they can be classified into three categories (Ilyas et al., 2008):

• Exact methods over certain data, where top-k queries and data are deterministic.

The majority of top-k processing techniques are based on exact methods and

certain data.

• Approximate methods over certain data, where processing top-k queries over cer-

tain data produces approximate results (Amato et al., ; Theobald et al., 2005).

• Methods over uncertain data, where top-k processing techniques deal with imper-

fect data. The top-k queries are based on different uncertainty models. At the

best of our knowledge, only top-k queries’ approaches that deal with probabilities

exist in the literature (Re et al., 2007; Soliman et al., 2007) but there is no work

that deals with other types of imperfect data.
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Similarly to the probabilistic top-k queries (Soliman et al., 2007), Evidential Top-

k queries should return the k answers that respond to an evidential query with the

highest scores based on a scoring function that takes into consideration the degrees of

imperfection in the database. Indeed, we introduced a new type of uncertain top-k

queries; the Evidential Top-k Queries (Bousnina et al., 2017a) that we apply over an

evidential relation. Thus, we introduced as a first step a new scoring function for ev-

idential data that returns an interval bounded by a belief and a plausibility. To rank

the evidential scores, we relied on the method of comparison of (Wang et al., 2005).

We also presented a new imperfect top-k semantics specific to the evidential scenario.

Formalism

Processing queries over evidential databases gives answers, each one quantified with a

degree of confidence in a form of interval. That degree reflects the lower and the upper

bounds of trust in that response which is calculated from the database. In this case,

one can not rank such answers, so the user is not able to choose the most interesting

ones from the set of results according to some defined criteria. In order to provide the

decision maker with a method to select the k best answers to this query, we need to

introduce a new top-k approach specific for evidential databases.

Table 3.9 presents an example of an evidential table that stores some users’ appre-

ciations about books: b1, b2, b3, b4. It is a relation with three attributes: The first

one is ID that represents the identifier of a specific reader. The second attribute is

BookRate where the reader expresses its preferred books using the evidence theory1.

The uncertainty here is of the attribute level nature. The third attribute is CL, it stores

the interval of confidence about the user’s appreciations (it deals with uncertainty at

the tuple level).

ID BookRate CL

1 b1 0.3 [0.5;1]
{b2, b3} 0.7

2 b2 0.5 [0.3;0.8]
b4 0.5

3 {b1, b2, b3} 1 [1;1]

4 b3 1 [0.5;0.9]

Table 3.9: Books Appreciations’ Table: BAT

1The literature is abundant in term of methods of preference elicitation using the evidence theory. We
cite two main works (Ben Yaghlane et al., 2008; Ennaceur et al., 2014)
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The new formalism of ranking evidential results is based on several steps. First,

we process a query Q over an evidential database. Then, for each generated response

an Evidential Score is computed. That score is an interval of belief and plausibility,

defined as follows:

Defintion 15 (Evidential Score) Let Ri be a response generated from processing a

query Q over an evidential database EDB, S(Ri) is the score function of Ri and bel(Ri)

and pl(Ri) are respectively its belief and plausibility in the table.

S(Ri) = [bel(Ri); pl(Ri)] (3.7)

Where bel(Ri) =

∑N
l=1 bell(Ri) ∗ bell

N

pl(Ri) =

∑N
l=1 pll(Ri) ∗ pll

N

Note that bell and pll are respectively the belief and the plausibility of the tuple l, defined

on ΘCL = {exist, exist}.

The belief of an answer, bel(Ri), is a disjunction of the response’s beliefs in each

object of the database. The belief of a response in one object l is the product of its

belief in the attribute and the belief of that object. Same for the plausibility of an

answer, pl(Ri). It is the disjunction of the response’s plausibilities in each object of the

database where the plausibility of a response in one object t is the product of its plau-

sibility in the attribute and the plausibility of that object (Bell et al., 1996; Lee, 1992a).

Example 38 Let’s process the query Q over the evidential Table 3.9 in order to get

the most two appreciated books (k=2) by all readers in the table.

Q2: SELECT BookRate FROM BAT ORDER BY S(BookRate) LIMIT 2;

The score of each item in the relation that may be a response to the query Q is

computed as follows:

• The first possible response is book b1, it appears in tuples l1 and l3. Therefore:
bel(b1) =

(0.3 ∗ 0.5) + (0 ∗ 0.3) + (0 ∗ 1) + (0 ∗ 0.5)

4

pl(b1) =
(0.3 ∗ 1) + (0 ∗ 0.8) + (1 ∗ 1) + (0 ∗ 0.9)

4

Thus:

S(b1) = [bel(b1); pl(b1)] = [0.0375; 0.325]
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• The second possible response is book b2, it appears in tuples l1, l2 and l3. There-

fore: 
bel(b2) =

(0 ∗ 0.5) + (0.5 ∗ 0.3) + (0 ∗ 1) + (0 ∗ 0.5)

4

pl(b2) =
(0.7 ∗ 1) + (0.5 ∗ 0.8) + (1 ∗ 1) + (0 ∗ 0.9)

4

Thus:

S(b2) = [bel(b2); pl(b2)] = [0.0375; 0.525]

• The third possible response is book b3, it appears in objects l1, l3 and l4. Therefore:
bel(b3) =

(0 ∗ 0.5) + (0 ∗ 0.3) + (0 ∗ 1) + (1 ∗ 0.5)

4

pl(b3) =
(0.7 ∗ 1) + (0 ∗ 0.8) + (1 ∗ 1) + (1 ∗ 0.9)

4

Thus:

S(b3) = [bel(b3); pl(b3)] = [0.125; 0.65]

• The final possible answer is book b4, it appears only in object l2. Therefore:
bel(b4) =

(0 ∗ 0.5) + (0.5 ∗ 0.3) + (0 ∗ 1) + (0 ∗ 0.5)

4

pl(b4) =
(0 ∗ 1) + (0.5 ∗ 0.8) + (0 ∗ 1) + (0 ∗ 0.9)

4

Thus:

S(b4) = [bel(b4); pl(b4)] = [0.0375; 0.1]

The computed evidential scores are shown in Table 3.10.

Item EvidentialScore

b1 R1= [0.0375 ; 0.325]

b2 R2= [0.0375 ; 0.525]

b3 R3= [0.125 ; 0.65]

b4 R4= [0.0375 ; 0.1]

Table 3.10: Evidential Score per Item

Classical Top-k queries are based on a defined score function that produces pre-

cise values. However, the evidential top-k queries are based on a score function that
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produces intervals bounded by belief and plausibility values. In (Wang et al., 2005),

authors introduced an approach of ranking intervals based on preference degrees. Their

method is the one that we adopted to rank scores previously generated.

Defintion 16 (Preference Degree) Let S(Ri)=[beli; pli] and S(Rj)=[belj ; plj] be two

evidential scores. Each one is an interval composed of a degree of belief and a degree

of plausibility. The degree of one interval to be greater than the other one is called a

degree of preference and denoted P .

The degree of preference that S(Ri) > S(Rj) is defined such that:

P (S(Ri) > S(Rj)) =
max(0, pli − belj)−max(0, beli − plj)

(pli − beli) + (plj − belj)
(3.8)

The degree of preference that S(Ri) < S(Rj) is defined such that:

P (S(Ri) < S(Rj)) =
max(0, plj − beli)−max(0, belj − pli)

(pli − beli) + (plj − belj)
(3.9)

The different cases of comparing intervals S(Ri) and S(Rj) are as follows :

• If P (S(Ri) > S(Rj)) > P (S(Rj) > S(Ri)), then S(Ri) is said to be superior to

S(Rj), denoted by S(Ri) � S(Rj).

• If P (S(Ri) > S(Rj)) = P (S(Rj) > S(Ri)) = 0.5, then S(Ri) is said to be indif-

ferent to S(Rj), denoted by S(Ri) ∼ S(Rj).

• If P (S(Rj) > S(Ri)) > P (S(Ri) > S(Rj)), then S(Ri) is said to be inferior to

S(Rj), denoted by S(Ri) ≺ S(Rj).

Theorem 3.1 Let S(Ri)=[beli; pli] and S(Rj)=[belj ; plj] be two evidential scores such

that:

• Case 1: if S(Ri) = S(Rj) then

P (S(Ri)) > P (S(Rj)) = P (S(Ri)) < P (S(Rj)) = 0.5.

• Case 2: if beli ≥ plj then P (S(Ri) > S(Rj)) = 1.
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• Case 3: if beli ≥ belj and pli ≥ plj then

P (S(Ri) > S(Rj)) ≥ 0.5 and P (S(Rj) > S(Ri)) ≤ 0.5.

In order to detect the dominant interval between the score of relation Ri denoted

S(Ri) and the score of relation Rj denoted S(Rj), we need to compute the degree

of preference that S(Ri) > S(Rj) and the degree of preference that S(Ri) < S(Rj).

The complexity of this computation can be reduced thanks to the complementarity of

P (S(Ri) > S(Rj)) and P (S(Ri) < S(Rj)).

The complementarity is only feasible when :{
S(Ri) 6= S(Rj)

beli < plj
(3.10)

Proof (Complementarity)

P (S(Ri) < S(Rj)) =
max(0, plj − beli)−max(0, belj − pli)

(pli − beli) + (plj − belj)

P (S(Rj) < S(Ri)) =
max(0, pli − belj)−max(0, beli − plj)

(pli − beli) + (plj − belj)

P (S(Ri) < S(Rj)) + P (S(Rj) < S(Ri))

=
max(0, plj − beli)−max(0, belj − pli)

(pli − beli) + (plj − belj)

+
max(0, pli − belj)−max(0, beli − plj)

(pli − beli) + (plj − belj)

=
max(0, plj − beli)− 0 +max(0, pli − belj)− 0

(pli − beli) + (plj − belj)

=
plj − beli + pli − belj
pli − beli + plj − belj

= 1

P (S(Ri) < S(Rj)) + P (S(Rj) < S(Ri)) = 1
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ut

Defintion 17 (Optimized Preference Degree)

Let S(Ri)=[beli; pli] and S(Rj)=[belj ; plj] be two evidential scores. Every interval

is composed of degrees of belief (bel) and plausibility (pl) and P is the calculated pref-

erence degree.

P (S(Ri) > S(Rj)) =
max(0, pli − belj)−max(0, beli − plj)

(pli − beli) + (plj − belj)
= λ (3.11)

The different cases of comparing intervals S(Ri) and S(Rj) are as follows:

• If λ > 0.5 then S(Ri) � S(Rj).

• If λ = 0.5 , then S(Ri) ∼ S(Rj).

• If λ < 0.5 then S(Ri) ≺ S(Rj).

Figure 3.3 summarizes the different cases of evidential scores intervals. It indicates also

which property to use for each case.

The transitivity property is necessary to achieve a complete ranking order for scores.

In (Wang et al., 2005), authors proved that preference relations are transitive.

Property 1 (Transitivity)

Let S(Ri) = [beli; pli], S(Rj) = [belj ; plj ] and S(Rk) = [belk; plk] be three intervals.

If S(Ri) � S(Rj) and S(Rj) � S(Rk) then S(Ri) � S(Rk).

Previous definitions provide a total ranking of answers that respond to the proposed

top-k query. But how to interpret any evidential answer ?

The top-k queries in deterministic databases are semantically clear. However, the

interpretation of top-k queries in imperfect databases is challenging. In (Soliman et al.,

2007), authors introduced new semantics relative to probabilistic top-k queries. They

defined them as the most probable query answers. Their work is based on the possible

worlds’ model and they proposed interpretations like: (i) The top-k tuples in the most

probable world. (ii)The most probable top-k tuples that belong to a valid possible world.
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The interpretations of probabilistic top-k queries can not be considered for evi-

dential top-k queries. Thus, a new specific semantics for Evidential Top-k Queries is

defined as follows:

Defintion 18 (E-Top-k)

Let EDB be an evidential database with N objects and A attributes; CL is an

attribute where the intervals associated to objects reflects the degrees of confidence about

these objects. Let S(Ri) be a score function that maximizes both CL and the interval

of belief on each result. Responses R are ordered according to the computed scores.

An E-topk returns the k most credible answers from the set of answers such that:

S(Ri) = ArgmaxRi∈R([bel(Ri); pl(Ri)]) (3.12)

Example 39 Let’s carry on with the same example of Table 3.9. We want to give a

total ranking of the resulting evidential scores and we want to deduce the top-2 answers

and their semantics.

(i) Since belb1 = belb2 = belb4 and plb2 > plb1 > plb4

then b2 � b1 � b4

(ii) Since belb3 > belb2 and plb3 > plb2

then b3 � b2

The final ranking deduced from (i) and (ii) is: b3 � b2 � b1 � b4.

The Top-2 appreciated books are :

• b3 with a confidence level [0.125 ; 0.65]

• b2 with a confidence level [0.0375 ; 0.525]

Books b3 and b2 are the most appreciated credible answers from the set of results.

Algorithms

The Object-Relational implementation of Evidential top-k queries (Bousnina et al.,

2017a) involves two methods to handle the evidential scores (evidential intervals):
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• The first method is naive, it consists in computing the preference degrees through

three steps each time: (a) it computes the preference degree that the first interval

is superior to the second one and then (b) it computes the preference degree that

the first interval is inferior to the second one, (c) finally, it compares results and

gives the partial ranking. This algorithm is presented in Table 3.11.

• The second method is an optimization of the first one. Indeed, it consists in

computing only in one step the preference degree and then deduces the partial

order between two intervals. This algorithm is detailed in Table 3.12.

After that, the final order is treated using a sorting algorithm, that ranks all eviden-

tial intervals and provides the k most interesting ones. The presented implementations

offer two methods of evidential intervals’ ranking. Both algorithms use the object-

oriented paradigm for its programming benefits.

Naive Method

Initialization
Tuple a, b ;
begin
if (a.bel=b.bel and a.pl=b.pl)
return 0;
if (a.pl<b.bel)
return -1;
if (b.pl<a.bel)
return 1;
if (a.bel>b.bel and a.pl>b.pl)
return 1;
if (b.bel>a.bel and b.pl>a.pl)
return -1;
if (score(a,b)>score(b,a))
return 1;
else return -1;
end

Naive Evidential Top-k Algorithm

Initialization
Integer m;
ArrayList Table;
begin
for (int i ←− 0; i<Table.size()-1; i++)
{ m←−i;
for (int j←− i+1; j<Table.size(); j++)
{
if (NaiveMethod(Table.get(j), Table.get(m))=1)
{ m←−j; }
}
if (NaiveMethod(Table.get(m) ,Table.get(i))=1)
{ Tuple c ←− Table.get(i);
Table.set(i,Table.get(m));
Table.set(m,c); }
}
end

Table 3.11: ETop-k Naive Algorithm

Experiments

The Object-Relational implementation of evidential top-k queries (Bousnina et al.,

2017a) allowed us to evaluate this new operator based on the Object-Relational im-

plementation of the compact evidential database (Bousnina et al., 2016). Indeed, we

implemented the evidential top-k operator using two methods of partial ranking scores

(a naive and an optimized ones).
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ETop-k Method

Initialization
Tuple a, b ;
begin
if (a.bel=b.bel and a.pl=b.pl)
return 0;
if (a.pl<b.bel)
return -1;
if (b.pl<a.bel)
return 1;
if (a.bel>b.bel and a.pl>b.pl)
return 1;
if (b.bel>a.bel and b.pl>a.pl)
return -1;
if (score(a,b)>0.5)
return 1;
else return -1;
end

Optimized ETop-k Algorithm

Initialization
Integer m;
ArrayList Table;
begin
for(int i←−0; i<Table.size()-1; i++)
{
for (int j←−i+1; j<Table.size(); j++)
{
if (EtopKMethod(Table.get(j), Table.get(m))=1)
{m←−j;}
}
if (EtopKMethod(Table.get(m) ,Table.get(i))=1)
{ Tuple c ←− Table.get(i);
Table.set(i,Table.get(m));
Table.set(m,c); }
}
end

Table 3.12: ETop-k Optimized Algorithm

Data sets We evaluated both algorithms from a performance point of view. We used

a windows 10 operating system with 2.10 GHz CPU and 4 GB RAM. We also used

Java programming language and NetBeans platform. We used synthetic data sets with

the following parameters (a) N the size of the database, (b) S the evidential score

which is an interval of belief and plausibility [bel; pl] with bel, pl ∈ [0;1] and bel ≤
pl2. To generate a synthetic evidential database, the used algorithm uses a procedure

that generates a synthetic S. Indeed, the procedure computes randomly a fixed number

of evidential scores in the interval [0, 1]. Then, we process the algorithms (naive or

optimized) in order to rank the intervals (scores). Finally, a sorting function is used

to provide the final complete ranking of all intervals. Note that each interval is asso-

ciated to one unique item in the evidential database. In our example, the item is a book.

Evaluation Experiments showed interesting results from a performance point of view.

In fact, we varied the database size parameter (N) from 10 to 3000. The execution time

did not exceed 4 minutes and 50 seconds for both algorithms. Results of the impact

of the database size for both methods is presented in Table 3.13. Both algorithms

showed interesting results. Moreover, OptETopK gave better ones as shown in Figure

3.4. For example, OptETopK ranked 1500 tuples in 69 seconds against 60 seconds for

2bel and pl are the two functions defined in the object-relational implementation of evidential databases
in (Bousnina et al., 2016)
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NaiETopKNote. Note that complexity depends also on the intervals’ nature generated

randomly as detailed theoretically above.

Tuples Number (N) Execution Time (s)
NaiETopK Method OptETopK Method

10 1 0
50 2 0
100 2 0
200 3 0
300 4 1
500 8 5
800 19 13
1000 33 28
1500 69 60
2000 125 121
3000 279 277

Table 3.13: Impact of the database size for methods: NaiTopK and OptTopK
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3.4.3 Evidential Skyline Query

The skyline operator (Börzsönyi et al., 2001) filters answers from a database to give

only those tuples that are not worse than any other. For example, a user wants to

select the cheapest and the closest hotels to the beach. The skyline operator in this

case selects those hotels that are not worse than any others in price and distance. The

evidential skyline operator (Elmi et al., 2014), denoted e-sky, is based on the belief and

plausibility dominance in order to give answers that are not worse than any other.

This evidential skyline operator was applied over some reviews collected from a real

platform: the TripAdvisor; TripAdvisor is one of the most well known crowd-sourcing

platforms where travelers express their opinions about hotels they visited through an

evaluation form. Since the TripAdvisor platform do not answer a multi-criteria request.

Then, we proposed to use these collected reviews to answer users’ queries about the

best hotels regarding some criteria like distance, price, etc.

TripAdvisor provides a reviewing form for travelers in order to evaluate hotels

according to several criteria. A response about one criteria for a specific hotel can

be in {-1;1;2;3;4;5}. If the response is in {1;2;3;4;5}, it is precise and certain. Thus,

it induces a precise and certain belief function. If the response is -1, then it reflects

the total ignorance. These reviews need to be transformed and then stored in the real

TripAdvisor evidential database, to be later queried with e-sky. Four major steps are

made:

• Construction of mass functions: A reviewer response is translated into a bba, in

the context of belief functions theory.

• Reliability estimation and discounting : Reviews are discounted based on the re-

liability of each reviewer.

• Combination of reviews: All responses to the same review (same hotel and same

criteria) are combined in order to provide one bba that summarizes all the review-

ers’ evaluations.

• Evidential skyline query : The e-sky is applied over the obtained TripAdvisor

evidential database.

Construction of Mass Functions

Belief functions theory allows the construction of basic belief assignments (bbas) from

the set of hypotheses. The mass of an hypothesis A as modeled in Equation (2.2) and

denoted, m(A), is interpreted as the degree of support given by an expert and that

reflects his belief on that response A. This mass can not be divided on subsets of A.
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Reviewers Hotels Price P lace Service Score

Rev1 h1 3 4 3 1510

Rev2 h1 -1 4 2 22800

Rev3 h2 4 -1 5 400

Rev4 h2 3 5 -1 8140

Table 3.14: Reviews about Hotels

In TripAdvisor platform, each traveler chooses one rate from 1 to 5. If he does

not provide a rate, his response is interpreted as −1. From the evidence theory point

of view, the frame of discernment is Θ= {1, 2, 3, 4, 5} and −1 is interpreted as total

ignorance, mΘ(Θ) = 1. Each non empty response is interpreted as certain and precise

belief functions over Θ.

Example 40 The first reviewer Rev1 gives a rate 3 for the service of hotel h1. Its

response is interpreted as mΘ(3) = 1.

Table 3.15 is an interpretation of Table 3.14, in the context of belief functions’

theory for criteria: Price, Place and Service.

Reviewers Hotels Price P lace Service Score

Rev1 h1 mΘ(3) = 1 mΘ(4) = 1 mΘ(3) = 1 0.136

Rev2 h1 mΘ(Θ) = 1 mΘ(4) = 1 mΘ(2) = 1 0.99

Rev3 h2 mΘ(4) = 1 mΘ(Θ) = 1 mΘ(5) = 1 0.036

Rev4 h2 mΘ(3) = 1 mΘ(5) = 1 mΘ(Θ) = 1 0.733

Table 3.15: Construction of mass functions

The obtained mass functions need to be combined in order to have only one bba

for each object. However, the reviews must be discounted by the estimated reliabilities

before their combination.

Reliability Estimation and Discounting

The conflict may appear according to different cases (Martin, 2019). in our case, the

conflict reflects the unreliability of at least one of the experts’ opinions. A user’s

estimated reliability is used to weaken its given opinions modeled through the basic

belief assignments (bbas).

The TripAdvisor platform gives to each reviewer a number of points depending to

its contributions. These points are accumulated when the traveler (reviewer) gives an

opinion about a hotel that he visited. Figure 3.5(a) shows how the TripAdvisor rewards
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reviewers that add photos, videos, helpful reviews, etc. Added to that, TripAdvisor

divides its reviewers into 6 levels, shown in Figure 3.5(b): the first level is assigned

to travelers having 300 to 2499 points and the final and the sixth level is affected to

travelers with points starting from 10.000. Method of rewarding travelers as illustrated

in Figure 3.5 is fixed by the TripAdvisor platform.

We proposed to estimate the reliability of each reviewer based on points and levels

given by the TripAdvisor platform. Thus, two methods are proposed: the first is to

calculate a reliability for each reviewer having points from 300 to 10.000 relatively to

the sixth level, as shown in Equation (3.13), and the second is to compute the reliability

score for reviewers having more than 10.000 point (i.e, travelers that acquire the last

level and accumulating more points), as shown in Equation (3.14).

The maximal score is fixed to 0.9 for the 10.000 points. Based on that, a reliability

is computed for reviewers having points under 10.000, such that:

Score = (points ∗ 0.9)/10.000 (3.13)

When the number of points accumulated by a reviewer are greater that 10000, the

reliability is computed such that:

Score = 1− (1/points) (3.14)

Figure 3.6 shows the reviewers’ reliabilities according to accumulated points.

Example 41 the first reviewer R1 in Table 3.14 has accumulated 1510 points and since

his number of points is lower than 10000 then his reliability score is computed using

method (i): ScoreR1 = 1510 * 0.9 / 10000 = 0.136. The second reviewer R2 has

accumulated more points than 10000 then his reliability score is computed using method

(ii): ScoreR2 = 1 - (1 /22800) = 0.99. Estimated reliabilities for all reviewers are

shown in Table 3.15.

The reliability estimated for each reviewer is used to discount the basic belief as-

signments that reflect their reviews about hotels using Equation (2.33).

Example 42 The reviewer R1, the reliability degree is α = 0.136. Thus:

mα
Price(3) = 0.136 ∗ 1 = 0.136

mα
Price(Θ) = 0.136 ∗ 0 + (1− 0.136) = 0.864

Results of discounted mass functions are shown in Table 3.16.

Once the reviews, modeled as bbas, are discounted, they are combined.
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Reviewers Hotels Price P lace Service

Rev1 h1 mΘ(3) = 0.136 mΘ(4) = 0.136 mΘ(3) = 0.136

mΘ(Θ) = 0.864 mΘ(Θ) = 0.864 mΘ(Θ) = 0.864

Rev2 h1 mΘ(Θ) = 1 mΘ(4) = 0.99 mΘ(2) = 0.99

mΘ(Θ) = 0.01 mΘ(Θ) = 0.01

Rev3 h2 mΘ(4) = 0.036 mΘ(Θ) = 1 mΘ(5) = 0.036

mΘ(Θ) = 0.964 mΘ(Θ) = 0.964

Rev4 h2 mΘ(3) = 0.733 mΘ(5) = 0.733 mΘ(Θ) = 1

mΘ(Θ) = 0.267 mΘ(Θ) = 0.267

Table 3.16: Discounting of mass functions

Combination of Reviews

In theory of belief functions, combination rules aggregate data from different sources

to get one mass function that reflects all sources’ opinions.

Example 43 Reviews about hotel h2 for attribute Price are combined as shown in

Table 3.17. Note that mΘ
3 is the mass function given by reviewer 3 and that mΘ

4 is the

mass function given by reviewer 4.

Price \ h2 mΘ
3 (Θ) = 0.964 mΘ

3 (4) = 0.036

mΘ
4 (Θ) = 0.267 mΘ(Θ) = 0.26 mΘ(4) = 0.01

mΘ
4 (3) = 0.733 mΘ(3) = 0.7 mΘ(∅) = 0.03

Table 3.17: Combination of bbas about the Price of h2

The joint mass of reviewers Rev3 and Rev4, mΘ
3⊕4 about the price of hotel h2 is:

(i) mΘ
3⊕4(3) = 1/(1− 0.03) * 0.7 = 0.72

(ii) mΘ
3⊕4(4) = 1/(1− 0.03) * 0.03 = 0.012;

(iii) mΘ
3⊕4(Θ) = 1/(1− 0.03) * 0.26 = 0.268.

Similarly, we combine all bbas for each attribute for the different hotels. The ob-

tained evidential database EDB is in Table 3.18.

The obtained database is evidential with either precise bbas, or partial ignorance

bbas. This EDB is then queried with preference conditions using the skyline operator.

Preference conditions may deal either with one attribute like Price, Place or Service or

with a combination of these attributes leading to the multi criteria filtering.
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Hotels Price P lace Service

h1 mΘ(3) = 0.136 mΘ(4) = 0.9814 mΘ(2) = 0.98

mΘ(Θ) = 0.864 mΘ(Θ) = 0.0086 mΘ(3) = 0.01

mΘ(Θ) = 0.01

h2 mΘ(3)= 0.72 mΘ(4) = 0.992 mΘ(5) = 0.036

mΘ(4) = 0.012 mΘ(Θ) = 0.008 mΘ(Θ) = 0.964

mΘ(Θ) = 0.268

Table 3.18: The obtained Evidential Database from TripAdvisor

Evidential Skyline Operator

The evidential skyline operator (Elmi et al., 2014) is based on two methods: the b-

dominance and the p-dominance; i.e, the skyline is computed using the dominance of

beliefs and plausibilities. This formalism was applied over the extracted data from

the TripAdvisor platform. As a consequence, the evidential skyline query in the

TripAdvisor context (Bousnina et al., 2017b) ameliorates the skyline performance com-

pared to the basic evidential skyline (Elmi et al., 2014). This amelioration is due to

the simple modeling of reviews in the evidential table which reduces the computations’

cost.

3.5 Conclusion

In this chapter, we presented the most known and used evidential database model on

its compact form (Lee, 1992b; Lee, 1992a; Bell et al., 1996). In fact, we presented the

Object-Relational implementation of this model using Java and SQL3 (Bousnina et al.,

2016). The proposed implementation was used to apply queries like extended relational

operators (Bell et al., 1996), evidential skyline and evidential Top-k (Bousnina et al.,

2017b). The latter is a ranking query that provides the k best credible answers via an

interval scores.

To evaluate the compact evidential model (EDB), we need to model it through its

possible worlds’ representation. The non compact form is fundamental to evaluate the

querying methods of (EDB).
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(a) Shortcut1 (b) Shortcut2
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Figure 3.3: Comparison of Evidential Scores
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(a) Point (b) Levels

Figure 3.5: Computation of points in TripAdvisor and their corresponding levels
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Summary

This chapter is about modeling and querying evidential databases as possible worlds.

First, we define representation systems. After that, we present the evidential databases

(EDB) on their non compact form, i.e, the possible worlds and their querying process.

Finally, we evaluate querying methods applied over this database model in order to

determine what kind of representation system it is.
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4.1 Introduction

The compact form is the only conceivable representation in practice. In fact, imple-

menting and querying the possible worlds is expensive in terms of memory and CPU.

However, the possible worlds’ form remains fundamental; first, it defines clear seman-

tics for the imperfect database, and second, it is used to validate querying methods

over the compact form. Although, a model is considered as a strong representation

system when querying the compact form is equivalent to querying the possible worlds

of the imperfect database.

Several researches (Bell et al., 1996; Choenni et al., 2006; Lee, 1992a; Lee, 1992b)

focused on modeling, querying and mining evidential databases on their compact forms.

In (Bousnina et al., 2015), we proposed a method for modeling and querying an ev-

idential database on its possible worlds form treating the attribute level uncertainty

(ALU). Then, we generalized the evidential possible worlds model by considering the

tuple level uncertainty (TLU) in addition to the attribute level uncertainty.

Table 4.1 is an example of an evidential table that stores blood types of two patients.

The blood types’ domain is ΘBT = ΘBTF = {A,B,O}. This table contains four

attributes where Blood Type, BloodTypeFather involve imperfect information modeled

thanks to the mass functions (to express the ALU) and the confidence level CL (to

express the TLU).

ID BloodType BloodTypeFather CL

1 A 0.5 A [0.5;1]
B 0.5

2 A 0.3 B 0.8 [0.3;0.8]
{A,B} 0.7 {A,B} 0.2

Table 4.1: Medical Evidential Table about Blood Types

4.2 Representation Systems

The concept of representation systems was introduced by Imielinski and Lipski (Imielin-

ski and Lipski, 1984). It constitutes the way of modeling an imperfect database from

its compact form to its possible worlds’ form and it is formally defined such that:

Defintion 19 A Representation System is a set of instances and a function Rep that

associates to each imperfect database DB the set of instances Rep(DB).
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Example 44 Figure 4.1 illustrates an incomplete database denoted DB as well as

Rep(DB); its possible worlds representation.

Figure 4.1: An imperfect database DB and its possible worlds Rep(DB)

A representation system (Abiteboul et al., 1995b) should be able to represent any

imperfect database. This property is called completeness of the RS. In addition, it

should be able to represent any query answers under the possible worlds’ form. This

property is called closure and is a consequence of the first one (the opposite is not true

(Suciu et al., 2011)). More formally, completeness and closure are defined as follow:

Defintion 20 (Completeness) A representation system is said to be complete if it can

represent any imperfect database (Sarma et al., 2006).

Defintion 21 (Closure) A representation system is said to be closed under a query

language if for any query Q and any database DB there is a database DB′ that repre-

sents Q(Rep(DB)) (Sarma et al., 2006).

A Strong representation system, denoted SRS, is closed when answers generated

from the compact form and answers generated from the possible worlds form are equiv-

alent (Abiteboul et al., 1995b). Figure 4.2 shows in details the steps towards the

validation of any imperfect database representation system.

Defintion 22 (Strong Representation System)

An imperfect database DB is said to be a strong representation system if:

Rep(Q(DB)) ≡ Q(Rep(DB)) (4.1)

Where Rep(DB) = {W1..Wj} is the set of possible worlds generated from DB and

{W ′1..W ′k} are possible worlds generated from Q(DB).
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Figure 4.2: Querying formalism towards a SRS

4.3 Evidential Database as Possible Worlds

The definition of the possible worlds form is motivated by two reasons:

1. Semantic interpretation: Most of uncertainty theories represent imperfect infor-

mation through a distribution of hypotheses where each one matches the solution

with a degree of uncertainty. In the same way, the possible worlds form models

an imperfect database with some degree of uncertainty. Thus, it is considered as

a clearer semantics than the compact form. It represents an imperfect database

as a distribution of candidate databases. Each candidate is a consistent database

that can match to the real database with a certain degree of credibility.

2. Use for proofs: Querying an imperfect database should be equivalent to querying

its possible worlds as stated in (Imielinski and Lipski, 1984) and well presented

in (Abiteboul et al., 1995a). A querying model over imperfect databases is con-

sidered as a strong representation system when it is equivalent to querying their

possible worlds.

In the remaining of this section, we explain how to produce possible worlds from a

compact evidential database using the Dempster-Shafer tools. A summarizing schema
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in Figure 4.3; and a recapitulate example of Figure 4.4 are provided at the end of this

section to illustrate the overall model.

The evidential non compact form is obtained by expanding the compact form into

different states where each state is representative of the evidential database (compact

form) with a degree of support. Thus, an evidential database EDB on its non compact

form, is a set of evidential objects.

Defintion 23 An evidential object is a basic belief assignment computed via the combi-

nation of all object’s evidential values. Its frame of discernment Θ is the joint frame of

all attributes’ domains. The mass function mΘ
t relative to the tuple t is the conjunctive

combination of all evidential values mΘ
ta issued from the vacuous extension to the joint

frame. An evidential object is defined such that:

mΘ
t = ∩©a∈[1,D]m

Θa↑Θ
ta with Θ =

⊗
a∈[1,D]

Θa (4.2)

Note that mta is the mass function of an attribute a for a tuple t, with D is the number

of attributes.

Example 45 Obtaining the evidential objects of Table 4.1 is based on two steps 1:

• First, evidential values are extended to the joint frame Θ (using the vacuous

extension given in Section 2.5.1) as shown in Table 4.2.

• Then, the extended evidential values are combined (using the conjunctive rule of

combination described in Section 2.3.2) as detailed in Table 4.3.

ΘID ↑ Θ ΘBT ↑ Θ ΘBTF ↑ Θ CL

1×ΘBT ×ΘBTF A×ΘID ×ΘBTF A×ΘID ×ΘBT [0.5;1]
B ×ΘID ×ΘBTF

2×ΘBT ×ΘBTF A×ΘID ×ΘBTF B ×ΘID ×ΘBT [0.3;0.8]
{A,B} ×ΘID ×ΘBTF {A,B} ×ΘID ×ΘBT

Table 4.2: Vacuous extension of the focal elements of the evidential Table 4.1

1Note that ΘID, ΘBT and ΘBTF are respectively the frames of discernment of the attributes ID,
BloodType and Father′sBloodType
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∩© CL

(1, A,A) 0.5 = 1× 0.5× 1 [0.5;1]
(1, B,A) 0.5 = 1× 0.5× 1

(2, A,B) 0.24 = 1× 0.3× 0.8 [0.3;0.8]
(2, {A,B}, B) 0.56 = 1× 0.7× 0.8
(2, A, {A,B}) 0.06 = 1× 0.3× 0.2

(2, {A,B}, {A,B}) 0.14 = 1× 0.7× 0.2

Table 4.3: Combination of the extended bbas using the conjunctive rule of combination

The expansion of the compact form leads to two intermediate results before getting

the possible worlds form (non compact form), the first is the generation of the imprecise

worlds and the second is the generation of uncertain worlds.

4.3.1 Imprecise Possible Worlds

The imprecise possible worlds form (Bousnina et al., 2015) is defined as follows:

Defintion 24 The non-compact form of an EDB is a finite set of imprecise possible

worlds such that EDB = {IW1, IW2, ..., IWi}. Each imprecise possible world has N ob-

jects, where each object involves one focal element per attribute (Bousnina et al., 2015).

The number of all imprecise possible worlds, I, is induced from sizes of sets F ta
(∀t ∈ [1;N ] and ∀a ∈ [1;D], where N is the size of tuples and D is the size of attributes)

as follows:

I =

N∏
t=1

D∏
a=1

| F ta | (4.3)

Example 46 The number of imprecise possible worlds generated from Table 4.1 is

I = 8. Table 4.4 is an example of one imprecise world generated from Table 4.1.

ID BloodType BloodTypeFather

1 A A
2 A {A,B}

Table 4.4: An Imprecise World

These worlds are qualified by imprecise because they include imprecise values

as attributes’ values. For example, {A,B} is an imprecise value of the attribute
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BloodTypeFather for the second tuple in Table 4.4.

An evidential database EDB is the union of its evidential objects, similarly an evi-

dential database on its non compact form is the disjunctive combination of its evidential

objects (Bousnina et al., 2015).

Defintion 25 A non-compact evidential database is presented via a basic belief assign-

ment derived from the disjunctive combination of the set of its evidential objects. That

mass is defined such that:

mΘ = ∪©t∈[1,N ]m
Θ
t (4.4)

Example 47 The disjunctive combination of all evidential objects is presented in Table

4.5. The bba mΘIW is defined on ΘIW . ΘIW = {IW1, IW2, IW3,

IW4, IW5, IW6, IW7, IW8} is the set of all imprecise possible worlds , denoted IWi.

mΘIW ({IW1}) = 0.12

mΘIW ({IW2}) = 0.07

mΘIW ({IW3}) = 0.12

mΘIW ({IW4}) = 0.07

mΘIW ({IW5}) = 0.03

mΘIW ({IW6}) = 0.28

mΘIW ({IW7}) = 0.03

mΘIW ({IW8}) = 0.28

The bba mΘIW reflects the degree of belief on which imprecise possible world repre-

sents the compact EDB in its imprecise state.

The confidence level CLs of the tuples in each imprecise world IWi are inherited

from objects’ CL of the compact from (see Table 4.1). For example, The first tuple of

IW1 inherits its CLs from the first tuple of Table 4.1.

Imprecise possible worlds are the first intermediate non compact form. They repre-

sent the compact form into several states but include imprecision. Uncertain possible

worlds are the second intermediate non compact form after imprecise worlds. They

treat the imprecision of the previous form but include uncertainty.

4.3.2 Uncertain Possible Worlds

Each imprecise possible world has different states called Uncertain Possible Worlds

UWj . In fact, each imprecise possible world can be expanded into several uncertain pos-

sible worlds by splitting imprecise values (attributes’ values) into several possible precise
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IW1

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A,B) [0.3;0.8]

IW2

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, {A,B}, {A,B}) [0.3;0.8]

IW3

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A,B) [0.3;0.8]

IW4

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, {A,B}, {A,B}) [0.3;0.8]

IW5

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A, {A,B}) [0.3;0.8]

IW6

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, {A,B}, B) [0.3;0.8]

IW7

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A, {A,B}) [0.3;0.8]

IW8

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, {A,B}, B) [0.3;0.8]

Table 4.5: Combination of the evidential objects of EDB using the disjunctive rule of
combination

values. Worlds are still uncertain because of tuples’ confidence levels. These confidence

levels measure the credibility and the plausibility about the existence of tuples. Note

that the attribute level uncertainty is treated at this step (the step of generating un-

certain possible worlds). For example IW5 has two uncertain states {(1,A,A);(2,A,A)}
and {(1,A,A);(2,A,B)}.

The number of uncertain possible worlds, J , is computed from sizes of cores ϕ
mΘa

ta

as follows:

J =

N∏
t=1

D∏
a=1

|ϕ
mΘa

ta
| (4.5)

The set ΘIW is the set of imprecise possible worlds IWi. Each IWi leads to one or

more uncertain possible worlds. The set ΘUW enumerates all uncertain possible worlds.

Therefore, ΘUW is a refinement of ΘIW and ΘIW is a coarsening of ΘUW .

Thus, the mass function mΘUW on which uncertain possible world is the best can-

didate to the evidential table, is deduced from mΘIW .

Example 48 Table 4.6 presents the set of uncertain possible worlds derived from the

imprecise worlds of Table 4.5 with the basic belief assignment mΘUW derived from

mΘIW . Note that ΘIW = {IW1, . . . , IW8} is the set of all imprecise possible worlds,

and that ΘUW = {UW1, . . . , UW8} represents the set of all uncertain possible worlds,
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such that ΘUW is a refinement of ΘIW and:

IW1 → {UW1}
IW2 → {UW1, UW3, UW4, UW5}
IW3 → {UW2}
IW4 → {UW2, UW6, UW7, UW8}
IW5 → {UW1, UW3}
IW6 → {UW1, UW5}
IW7 → {UW2, UW6}
IW8 → {UW2, UW7}

UW1

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A,B) [0.3;0.8]

UW2

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A,B) [0.3;0.8]

UW3

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A,A) [0.3;0.8]

UW4

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, B,A) [0.3;0.8]

UW5

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, B,B) [0.3;0.8]

UW6

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A,A) [0.3;0.8]

UW7

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, B,B) [0.3;0.8]

UW8

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, B,A) [0.3;0.8]

Table 4.6: Uncertain Possible worlds of EDB

mΘUW ({UW1}) = mΘIW ({IW1}) = 0.12

mΘUW ({UW1, UW3, UW4, UW5}) = mΘIW ({IW2}) = 0.07

mΘUW ({UW2}) = mΘIW ({IW3}) = 0.12

mΘUW ({UW2, UW6, UW7, UW8}) = mΘIW ({IW4}) = 0.07

mΘUW ({UW1, UW3}) = mΘIW ({IW5}) = 0.03
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mΘUW ({UW1, UW5}) = mΘIW ({IW6}) = 0.28

mΘUW ({UW2, UW6}) = mΘIW ({IW7}) = 0.03

mΘUW ({UW2, UW7}) = mΘIW ({IW8}) = 0.28

It is obvious that a same uncertain possible world can be derived from various im-

precise worlds. For example, UW1 is derived from IW1 and IW5. Uncertain possible

worlds inherit their degrees of belief from their imprecise possible worlds.

CLs per uncertain world UW need to be taken into consideration. In fact, they are

computed based on their mass functions as presented above.

UW1 ∈ {IW1, IW2, IW5, IW6} then its confidence level is UW1 [0.12;0.5] and it is

computed as follows:

- bel({UW1})= 0.12

- pl({UW1}) = 0.12 + 0.07 + 0.03 + 0.28 = 0.5

UW2 ∈ {IW3, IW4, IW7, IW8} then UW2 [0.12;0.5]

UW3 ∈ {IW2, IW5} then UW3 [0;0.1]

UW4 ∈ {IW2} then UW4 [0;0.07]

UW5 ∈ {IW2, IW6} then UW5 [0;0.35]

UW6 ∈ {IW4, IW7} then UW6 [0;0.1]

UW7 ∈ {IW4, IW8} then UW7 [0;0.35]

UW8 ∈ {IW4} then UW8 [0;0.07]
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UW1 [0.12;0.5]

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A,B) [0.3;0.8]

UW2 [0.12;0.5]

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A,B) [0.3;0.8]

UW3 [0;0.1]

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, A,A) [0.3;0.8]

UW4 [0;0.07]

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, B,A) [0.3;0.8]

UW5 [0;0.35]

EvidentialObjects CL

(1, A,A) [0.5;1]
(2, B,B) [0.3;0.8]

UW6 [0;0.1]

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, A,A) [0.3;0.8]

UW7 [0;0.35]

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, B,B) [0.3;0.8]

UW8 [0;0,07]

EvidentialObjects CL

(1, B,A) [0.5;1]
(2, B,A) [0.3;0.8]

Table 4.7: Uncertain Possible worlds of EDB

These confidence levels at uncertain worlds’ level (see Table 4.7) are considered

when computing the confidence levels at the tuple level as shown in Table 4.8.

UW1 CL UW2 CL

(1, A,A) [0.06;0.5] (1, B,A) [0.06;0.5]
(2, A,B) [0.036;0.4] (2, A,B) [0.036;0.5]

UW3 CL UW4 CL

(1, A,A) [0;0.1] (1, A,A) [0;0.07]
(2, A,A) [0;0.08] (2, B,A) [0;0.056]

UW5 CL UW6 CL

(1, A,A) [0;0.35] (1, B,A) [0;0.1]
(2, B,B) [0;0.28] (2, A,A) [0;0.08]

UW7 CL UW8 CL

(1, B,A) [0;0.35] (1, B,A) [0;0.07]
(2, B,B) [0;0.28] (2, B,A) [0;0.056]

Table 4.8: Uncertain Possible worlds of EDB

Each uncertain possible world UWj can be expanded itself into different states

called Possible Worlds, denoted Wjp. In possible worlds, tuple uncertainty level is

treated in addition to the attribute uncertainty level (already handled in uncertain

possible worlds).
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4.3.3 Possible Worlds

Generating possible worlds from uncertain possible worlds induces the treatment of the

tuple level uncertainty.

Each possible world Wjp is a candidate to represent the evidential relation where j

(1 ≤ j ≤ J) and p (1 ≤ p ≤ P ).

The number of possible worlds P is induced from possibilities about the existence

of tuples in uncertain worlds UWj such that:

P = 2N (4.6)

Thus, an uncertain world UWj is expanded into 2N possible worlds where each Wjp

is a combination of tuples belonging to UWj .

Defintion 26 A possible world Wjp is a precise subset from an uncertain possible world

UWj. Each uncertain possible world can be divided into one or more precise possible

worlds by handling uncertainty due to the confidence level. Each uncertain possible

world generates N + 2 possible worlds. The confidence level is bounded by the bel and

the pl of the existence of each object in the table. Therefore, ΘW is a refinement of

ΘUW and ΘUW is a coarsening of ΘW .

Example 49 Four possible worlds are carried out from UW1 :

• {t1, t2} : Both tuples 1 and 2 exist simultaneously.

• {t1} : Only tuple 1 exists.

• {t2} : Only tuple 2 exists.

• {∅} : None of the tuples exist.

Thus:

W11 = {(1, A,A); (2, A,B)} W13 = {(2, A,B)}

W12 = {(1, A,A)} W14 = {∅}

Defintion 27 The number of possible worlds, denoted P , varies between J and J ∗ 2N

with J is the number of uncertain possible worlds and N is the number of objects of

EDB.

• P = J : if all confidence levels are equal to [1;1]; in this case, the tuple level

uncertainty is not managed (Bousnina et al., 2015).

• P = J × 2N : if all confidence levels are different from [0;0] and [1;1].
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• P ∈
]
J, J × 2N

[
: if some confidence levels are either [0;0] or [1;1].

Example 50 Table 4.9 includes the 32 = 8 ∗ 4 possible worlds derived from the uncer-

tain worlds:

UW1 UW2

W11 = {(1, A,A); (2, A,B)} W21 = {(1, B,A); (2, A,B)}
W12 = {(1, A,A)} W22 = {(1, B,A)}
W13 = {(2, A,B)} W23 = {(2, A,B)}

W14 = {∅} W24 = {∅}
UW3 UW4

W31 = {(1, A,A); (2, A,A)} W41 = {(1, A,A); (2, B,A)}
W32 = {(1, A,A)} W42 = {(1, A,A)}
W33 = {(2, A,A)} W43 = {(2, B,A)}

W34 = {∅} W44 = {∅}
UW5 UW6

W51 = {(1, A,A); (2, B,B)} W61 = {(1, B,A); (2, A,A)}
W52 = {(1, A,A)} W62 = {(1, B,A)}
W53 = {(2, B,B)} W63 = {(2, A,A))}

W54 = {∅} W64 = {∅}
UW7 UW8

W71 = {(1, B,A); (2, B,B)} W81 = {(1, B,A); (2, B,A)}
W72 = {(1, B,A)} W82 = {(1, B,A)}
W73 = {(2, B,B)} W83 = {(2, B,A)}

W74 = {∅} W84 = {∅}

Table 4.9: Possible Worlds
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Defintion 28 Let W be a possible world generated from an uncertain world UW . The

confidence level of W is computed as follows:

CL = [belΘW
W ; plΘW

W ] (4.7)

belΘW
W =

∏
bel(ti) ∗

∏
(1− pl(tj))

plΘW
W =

∏
pl(ti) ∗

∏
(1− bel(tj))

(4.8)

where ti, tj ∈ UW and ti ∈W ; tj /∈W

Example 51 Confidence levels of possible worlds are computed using Definition 28

based on equations (2.8) (2.7), (2.36) such that:

{t1, t2}: {t1} :

• bel(t1 ∧ t2) = bel1 ∗ bel2 • bel(t1 ∧ t2) = bel1 ∗ (1− pl2)

• pl(t1 ∧ t2) = pl1 ∗ pl2 • pl(t1 ∧ t2) = pl1 ∗ (1− bel2)

{t2}: {∅}:
• bel(t1 ∧ t2) = (1− pl1) ∗ bel2 • bel(t1 ∧ t2) = (1− pl1) ∗ (1− pl2)

• pl(t1 ∧ t2) = (1− bel1) ∗ pl2 • pl(t1 ∧ t2) = (1− bel1) ∗ (1− bel2)

Thus, confidence levels of possible worlds: W11, W12, W13, W14 generated from

UW1 are computed as follows:

W11:

• bel(t1 ∧ t2) = bel1 ∗ bel2 = 0.06 * 0.036 = 0.0021

• pl(t1 ∧ t2) = pl1 ∗ pl2 = 0.5 * 0.4 = 0.2

CL11 = [0.0021; 0.2]

W12:

• bel(t1 ∧ t2) = bel1 ∗ (1− pl2) = 0.06 * (1-0.4) = 0.048

• pl(t1 ∧ t2) = pl1 ∗ (1− bel2) = 0.5 * (1-0.036)= 0.482

CL12 = [0.048; 0.482]

W13:

• bel(t1 ∧ t2) = (1− pl1) ∗ bel2 = 0.036 * (1-0.5) = 0.018

• pl(t1 ∧ t2) = (1− bel1) ∗ pl2 = 0.4 * (1-0.06) = 0.376

CL13 = [0.018; 0.376]
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W14:

• bel(t1 ∧ t2) = (1− pl1) ∗ (1− pl2) = (1-0.5) * (1-0.2) = 0.4

• pl(t1 ∧ t2) = (1− bel1) ∗ (1− bel2) = (1-0.06)*(1-0.036) = 0.9

CL14 = [0.4; 0.9]

All possible worlds and their confidence levels of Table 4.1 are presented in Table

4.10.
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UW1 CL UW2 CL

W11 = {(1, A,A); (2, A,B)} CL11 = [0.0021; 0.2] W21 = {(1, B,A); (2, A,B)} CL21 = [0.0021; 0.2]

W12 = {(1, A,A)} CL12 = [0.048; 0.482] W22 = {(1, B,A)} CL22 = [0.048; 0.482]

W13 = {(2, A,B)} CL13 = [0.018; 0.376] W23 = {(2, A,B)} CL23 = [0.018; 0.376]

W14 = {∅} CL14 = [0.4; 0.9] W24 = {∅} CL24 = [0.4; 0.9]

UW3 CL UW4 CL

W31 = {(1, A,A); (2, A,A)} CL31 = [0; 0.008] W41 = {(1, A,A); (2, B,A)} CL41 = [0; 0.004]

W32 = {(1, A,A)} CL32 = [0; 0.1] W42 = {(1, A,A)} CL42 = [0; 0.07]

W33 = {(2, A,A)} CL33 = [0; 0.8] W43 = {(2, B,A)} CL43 = [0; 0.056]

W34 = {∅} CL34 = [0.83; 1] W44 = {∅} CL44 = [0.88; 1]

UW5 CL UW6 CL

W51 = {(1, A,A); (2, B,B)} CL51 = [0; 0.098] W61 = {(1, B,A); (2, A,A)} CL61 = [0; 0.008]

W52 = {(1, A,A)} CL52 = [0; 0.35] W62 = {(1, B,A)} CL62 = [0; 0.1]

W53 = {(2, B,B)} CL53 = [0; 0.28] W63 = {(2, A,A))} CL63 = [0; 0.08]

W54 = {∅} CL54 = [0.47; 1] W64 = {∅} CL64 = [0.83; 1]

UW7 CL UW8 CL

W71 = {(1, B,A); (2, B,B)} CL71 = [0; 0.098] W81 = {(1, B,A); (2, B,A)} CL81 = [0; 0.004]

W72 = {(1, B,A)} CL72 = [0; 0.35] W82 = {(1, B,A)} CL82 = [0; 0.07]

W73 = {(2, B,B)} CL73 = [0; 0.28] W83 = {(2, B,A)} CL83 = [0; 0.056]

W74 = {∅} CL84 = [0.47; 1] W84 = {∅} CL84 = [0.88; 1]

Table 4.10: Possible Worlds with their CLs
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Generating the possible worlds of an evidential database is a complex process as

shown above. Figure 4.3 summarizes this process. Thus, it illustrates the obtained

intermediate non-compact forms:

• Imprecise Possible Worlds (IW).

• Uncertain Possible Worlds (UW).

• Possible Worlds (W).

It also details the used Dempster-Shafer theory tools and concepts:

• Conjunctive Rule of Combination ∩© and Disjunctive Rule of Combination ∪©.

• Splitting focal elements for the attribute level uncertainty treatment.

• Evidence Independence for the tuple level uncertainty treatment.

Figure 4.4 illustrates, through an example, the overall process:

• Starting from the EDB in the left, we obtain the imprecise worlds by using the

conjunctive rule of combination on evidential values of the same object (here we

have only one attribute), and then by applying the disjunctive rule of combination

on the obtained evidential objects.

• The result is a bba of imprecise worlds whose masses are mentioned between

parentheses in the first lines. Then, we consider only the imprecise world IW2.

We split the composite focal elements and we obtain two uncertain worlds UW1

and UW2.

• At this stage, each world is precise, but still uncertain because of the CL of each

object. Then, we show how the world UW2 is expanded into four possible worlds

which is the number of possible combinations of coexistence of two uncertain

objects. The confidence levels of the obtained possible worlds are computed using

the notion of evidential independence. Note that obtained confidence levels are

mentioned in the first worlds’ lines.
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Figure 4.3: Process of producing the possible worlds form
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Figure 4.4: Illustrative example for generating possible worlds of an EDB
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4.4 Querying Possible Worlds

Querying possible worlds is an essential step after the modeling in order to evaluate

the representation system in question. Indeed, we introduced in (Bousnina et al., 2015)

how to query possible worlds’ form.

Let Q be the query processed on each possible world W . Querying each possible

world W (noted Q(W )) gives a possible answer Ru:

Ru = Q(W )

Example 52 We evaluate the following query Q over the possible worlds’ form of Ta-

ble 4.10 possible worlds form.

Q: SELECT * FROM BT WHERE (BloodType==BloodTypeFather);

Eight possible answers responded to query Q. Responses and their confidence levels

are presented as follows:

R1 = Q(W11) = {(1, A,A)};CLR1 = [0.0021 ; 0.2]

R1 = Q(W12) = {(1, A,A)};CLR1 = [0.048 ; 0.482]

R2 = Q(W13) = {∅};CLR2 = [0.018 ; 0.376]

R2 = Q(W14) = {∅};CLR2 = [0.4; 0.9]

R2 = Q(W21) = {∅};CLR2 = [0.0021; 0.2]

R2 = Q(W22) = {∅};CLR2 = [0.048; 0.482]

R2 = Q(W23) = {∅};CLR2 = [0.018; 0.376]

R2 = Q(W24) = {∅};CLR2 = [0.4; 0.9]

R3 = Q(W31) = {(1, A,A); (2, A,A)};CLR3 = [0 ; 0.008]

R1 = Q(W32) = {(1, A,A)};CLR1 = [0; 0.1]
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R4 = Q(W33) = {(2, A,A)};CLR4 = [0 ; 0.08]

R2 = Q(W34) = {∅};CLR2 = [0.83; 1]

R2 = Q(W41) = {∅};CLR2 = [0; 0.004]

R1 = Q(W42) = {(1, A,A)};CLR1 = [0; 0.07]

R2 = Q(W43) = {∅};CLR2 = [0; 0.056]

R2 = Q(W44) = {∅};CLR2 = [0.88; 1]

R5 = Q(W51) = {(1, A,A); (2, B,B)};CLR5 = [0; 0.098]

R1 = Q(W52) = {(1, A,A)};CLR1 = [0; 0.35]

R6 = Q(W53) = {(2, B,B)};CLR6 = [0 ; 0.28]

R4 = Q(W63) = {(2, A,A)};CLR4 = [0 ; 0.08]

R2 = Q(W54) = {∅};CLR2 = [0.47; 1]

R4 = Q(W61) = {(2, A,A)};CLR4 = [0 ; 0.008]

R2 = Q(W62) = {∅};CLR2 = [0; 0.1]

R4 = Q(W63) = {(2, A,A)};CLR4 = [0 ; 0.08]

R2 = Q(W64) = {∅};CLR2 = [0.83; 1]

R6 = Q(W71) = {(2, B,B)};CLR6 = [0; 0.098]

R2 = Q(W72) = {∅};CLR2 = [0; 0.35]

R6 = Q(W73) = {(2, B,B)};CLR6 = [0 ; 0.28]

R2 = Q(W74) = {∅};CLR2 = [0.47; 1]

R2 = Q(W81) = {∅};CLR2 = [0; 0.004]
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R2 = Q(W82) = {∅};CLR2 = [0; 0.07]

R2 = Q(W83) = {∅};CLR2 = [0; 0.056]

R2 = Q(W84) = {∅};CLR2 = [0.88; 1]

Redundancy comes from different beliefs for identical tuples. In relational databases,

redundancy is considered automatically using the property of sets of the table. In

evidential databases, redundancy is handled in a different way such that (Hau and

Kashyap, 1990; Bell et al., 1996; Lee, 1992b):

Defintion 29 Let DB be an evidential database and t1 and t2 be two identical tuples

with t1.CL1 6= t2.CL2 and CL1 and CL2 are ∈ [0;1], then t1 and t2 are called redundant

tuples.

Defintion 30 Let E1 and E2 be two independent events. Each event has a confidence

level of belief and plausibility where CL1 = [bel1; pl1] and CL2 = [bel2; pl2]. The dis-

junction of the events E1 and E2 are defined such that:

[bel(E1 ∨ E2); pl(E1 ∨ E2)] = [1− (1− bel1)(1− bel2); 1− (1− pl1)(1− pl2)] (4.9)

Note that in the case where both confidence levels are equal to [1;1], the redundancy

is removed automatically via the set property.

Example 53 Let us carry on with the same example and compute the CLs for each

answer by treating the redundancy:

• R1={(1,A,A)}; CLR1= [(1-(1-0.0021)*(1-0.048)*(1-0)*(1-0)*(1-0)*(1-0));(1-(1-

0.2)*(1-0.482)*(1-0.1)*(1-0.35)*(1-0.004)*(1-0.07)] = [0.049 ; 0.775]

• R2={∅}; CLR2= [(1-(1-0.18)*(1-0.4)*(1-0.0021)*(1-0.048)*(1-0.018)*(1-0.4)*(1-

0.83)*(1-0)*(1-0.56)*(1-0.47)*(1-0)*(1-0.83)*(1-0)*(1-0.47)*(1-0)*(1-0)*(1-0)*(1-

0.88));(1-(1-0.376)*(1-0.9)*(1-0.2)*(1-0.482)*(1-0.376)*(1-0.9)*(1-1)*(1-0.88)*(1-

1)*(1-1)*(1-0.1)*(1-1)*(1-0.35)*(1-1)*(1-0.004)*(1-0.7)*(1-0.056)*(1-1)] = [0.99

; 1]

• R3={(1,A,A),(2,A,A)}; CLR3= [0 ; 0.008]

• R4={(2,A,A)}; CLR4= [(1-(1-0)*(1-0)*(1-0));(1-(1-0.8)*(1-0.008)*(1-0.08))] =

[0 ; 0.81]

• R5={(1,A,A),(2,B,B)}; CLR5= [0 ; 0.098]
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• R6={(2,B,B)}; CLR6= [(1-(1-0)*(1-0)*(1-0));(1-(1-0.28)*(1-0.28)*(1-0.098))] =

[0;0.53]

4.5 Generalizing Probabilistic Databases

Evidential database model as introduced in the pioneer work (Lee, 1992b) is an ex-

tension of the relational model where two levels of uncertainties are considered; the

tuple-level and the attribute-level, managed through the evidence theory. The main

advantage of this kind of imperfect database resides in its theoretical basis; the evi-

dence theory. This framework manages several kinds of imperfection, including those

handled by probability and possibility theories. Therefore, in this section, we discuss

the particular cases where evidential values are exclusively (1) probabilistic (bbas with

singleton focal elements) and (2) possibilistic (bbas with nested focal elements).

In the first case, the database is typically probabilistic. Attributes store probability

distributions (which is a special bba) and tuples are characterized by a maybe prob-

ability2 which is the belief bound of the confidence level. If we perform the process

of generating possible worlds (shown in Figure 4.3), we will start, for each tuple, by

combining the distributions of its attributes. The conjunctive rule of combination is

based on the cross product, which is exactly the same technique used for the prob-

abilistic model3. We obtain a normalized distribution for each original tuple. These

distributions are again combined, using the disjunctive rule of combination, that is

also based on multiplying masses of focal elements (tuples in our case). We obtain a

probabilistic distribution of possible worlds. The resulted possible worlds could not be

imprecise because the input distributions do not include composite focal elements. At

this stage, we treated the attribute level uncertainty. Then, each tuple t in each world

has a maybe probability, which corresponds to the tuple belief in the evidential model.

When a tuple t has a probability pt < 1, we have two possible scenarios; t exists with a

probability pt and t does not exist with the probability 1− pt. In our evidential model,

t has a belief (probability) bel(t). Thus t exists with the belief: bel(t), and does not

exist with the belief 1 − pl(t) where pl(t) is the plausibility of t. However, when an

evidential scenario is particularly probabilistic, belief and plausibility have exactly the

same value (Shafer, 1976). Thus, we fall into the same model, and the overall evidential

process to generate possible worlds matches the probabilistic process.

This observation is not surprising because of two statements. First, conjunctive and

disjunctive rules combine bbas by multiplying masses, which matches the probability

combination method. Thus, the attribute uncertainty level is handled in the same way.

2Term introduced in (Agrawal et al., 2006) and refers to the probability of a tuple’s existence
3The process of generating possible worlds in the case of probabilistic database is described in (Suciu
et al., 2011); an excellent survey about probabilistic databases.
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Second, belief and plausibility measures provide the same value in the probabilistic

case, matching the probability value. Therefore, the tuple uncertainty level is also per-

formed in the same way.

In case of possibilistic data (i.e. when bbas have consonant focal elements), we

obtain the same possible worlds. Indeed, both models4 use the cross product operator

to generate possible tuples and then worlds (for processing the attribute uncertainty

level). They also handle in the same way the problem of tuples’ existences, and generate

for each tuple the two possibilities of existence and non-existence. Therefore, the two

models generate the same possible worlds. However, obtained distributions produce dif-

ferent uncertainty measures. This is inherent from the theories on which the models are

based. Indeed, if combination rules in evidence theory uses the multiplication operator,

in possibility theory (Zadeh, 1965), combination is based on the minimum/maximum

operators.e singletons, e.g. the first tuple of attribute BT in Table 4.1. Possibilistic

data are also a special case for evidential data when focal elements are nested, e.g. the

second tuple of attribute BT in Table 4.1. As a consequence, semantics relative to

probabilistic and possibilistic worlds can be generalized with evidential possible worlds

(Agrawal and Widom, 2010).

4.6 EDB: What Kind of Representation System?

As explained earlier, an evidential database EDB (Lee, 1992b; Lee, 1992a; Bell et al.,

1996) has two representations: (i) the compact form and (ii) the possible worlds’ form.

(i) Querying the compact form provides a compact answer Q(EDB). This evidential

compact answer is expanded into several possible worlds that give themselves the

possible answers {R1, . . . , Ru} and their confidence levels {CL1, . . . , CLu}.

(ii) Querying the possible worlds’ form provides the possible answers {R′1, . . . , Rs}
and their confidence levels {CL′1, . . . , CL′s}.

The derived results from (i) and (ii) are compared in order to check weather the

evidential database is a strong representation system (SRS).{
If Q(Rep(EDB)) ≡ Rep(Q(EDB)) then EDB is said a SRS

If Q(Rep(EDB)) 6= Rep(Q(EDB)) then EDB is not a SRS

Figure 4.5 shows the process of querying the compact EDB and its possible worlds

as detailed above.
4Please refer to (Bosc and Pivert, 2010) for an excellent state of the art about possibilistic database
models.
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Figure 4.5: The process of querying both forms of EDB

Example 54 We take an evidential Table 4.11 about medical diagnosis that includes

three attributes: ID, Disease which contains hypotheses and their masses given by the

doctor about his patients and CL that reflect the tuple level uncertainty. In this example,

we choose a certain CL [1;1] to simplify computations. Our aim is to check the non-

equivalence between the compact form and the possible worlds’ form.

ID Disease CL

1 {Cancer,Anemia} 0.2 [1 ; 1]
Anemia 0.8

2 Anemia 1 [1 ; 1]

Table 4.11: An Evidential Table EDB

• Step 1: Modeling EDB from the compact form to the possible worlds’ form.

– Table 4.11 can be expanded into two imprecise possible worlds {IW1, IW2}
as shown in Table 4.12.

The computed mass functions of IW1 and IW2 are:

mΘIW ({IW1}) = 0.2 ∗ 1 = 0.2
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IW1

ID Disease CL

1 {Cancer,Anemia} [1;1]
2 Anemia [1;1]

IW2

ID Disease CL

1 Anemia [1;1]
2 Anemia [1;1]

Table 4.12: Imprecise Worlds of EDB

mΘIW ({IW2}) = 0.8 ∗ 1 = 0.8

The confidence levels, in this example, have no impact because tuples are

certain ones.

– Table 4.12 itself is exploded into two possible worlds {W1,W2} as shown in

Table 4.13.

W1

ID Disease

1 Cancer
2 Anemia

W2

ID Disease

1 Anemia
2 Anemia

Table 4.13: Possible Worlds of EDB

Their masses are inherited from masses of their imprecise possible worlds.

m({W1,W2}) = m({IW1}) = 0.2

m({W2}) = m({IW2}) = 0.8

• Step 2: Querying EDB from the compact form to the possible worlds’ form.

We suppose the following query:

Q : SELECT * FROM EDB WHERE < Disease = Cancer >

– We apply query Q over the compact Table 4.11. The result is the compact

answer Q(EDB) that contains tuples that only respond to query Q. This

relation is imperfect, i.e, it includes uncertainty and imprecision. Indeed,

it is modeled on its non compact form. In fact, the relation Q(EDB) is

expanded into possible worlds whose provide the possible answers {R′1, R′2}
and their confidence levels {CL′1, CL′2}. These steps are detailed in Figure

4.6.
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Figure 4.6: The querying process the compact form of EDB

– We apply now the same query Q over the possible worlds in Table 4.13 of

the evidential table. The result is a set of answers Q(Rep(EDB)). These

answers {R1, R2} are quantified by confidence levels {CL1, CL2}. These

steps are detailed in Figure 4.7.

Figure 4.7: The querying process of the non compact form of EDB
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• Step 3: Checking the equivalence between results issued from the compact form

and the possible worlds’ form of EDB.

Figure 4.8: Checking the equivalence between possible answers issued from both forms
of EDB

As shown in Figure 4.8, answers issued from the compact form of EDB are

different form those issued from its possible worlds’ form. Thus, while the compact

representation gave the answers:

R′1 = {1, Cancer} with CL′1 = [0; 0.2]

R′2 = {1, Anemia} with CL′2 = [0.8; 1]

The possible worlds’ form gave the answers:

R1 = {1, Cancer} with CL1 = [0; 0.2]

R2 = ∅ with CL2 = [0.8; 1]

Results are not the same which is due to structure of an evidential database that

returns the hole tuple when one of its elements responds to a given query.

This counter example proves that the evidential database model as presented in the

pioneer work (Lee, 1992b; Lee, 1992a; Bell et al., 1996) is not a strong representation

system.

4.7 Conclusion

Representation systems are defined as the way of modeling an imperfect database from

its compact form to its possible worlds’ form. In this chapter, we presented how to
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model the compact evidential database (Lee, 1992b; Lee, 1992a; Bell et al., 1996) into

its possible worlds’ form by treating the tuple level and the attribute level uncertainties.

This process provided two intermediate non compact forms: the imprecise possible

worlds and the uncertain possible worlds. Moreover, we showed that querying this

database model through its two equivalent forms is not a strong representation system.

Hence, the need to introduce an evidential database model that revises the weaknesses

of the EDB model towards a strong representation system under the relational algebra.
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Summary

This chapter is about modeling and querying evidential conditional databases, called

ec-tables. In fact, we use the strengths of classical conditional databases and evi-

dence theory to introduce a new evidential database model called evidential condi-

tional databases (ECD). First, we represent this model into its both representations:

the compact and the possible worlds; then, we present how to interrogate it using the

relational select-project operators. Indeed, the querying methods are used to check

the equivalence between both forms. Finally, we discuss the evidential conditional

databases’ specificities in order to make the ECD model a strong representation system

for evidential databases under select-project operators.

117
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5.1 Introduction

As shown in the previous chapter, an evidential database can be modeled through a

distribution of candidate databases called the possible worlds. Defining possible worlds

is a fundamental step towards the evaluation of the querying methods applied over

an evidential database model. We proved with a counter example that the evidential

database model (EDB) (Bell et al., 1996; Lee, 1992a; Lee, 1992b) is not a strong

representation system, i.e, querying the compact from is not equivalent to querying the

possible worlds’ form. Therefore, the need to introduce a new model that can treat the

weaknesses of the EDB model.

In this chapter, we introduce the evidential conditional databases, named ec-tables

and its assets. In fact, we use the strengths of the conditional databases and theory

of belief functions to elaborate the ec-tables model that represents an advanced step

towards strong representation systems under relational select-project operators. We

also discuss the specificities of ec-tables and how to translate a table from the classical

EDB model to the evidential conditional database model ECD.

5.2 Conditional Tables

Conditional databases were introduced to condition assumptions that can not coexist

at the same time. For example, in the medical domain, we can find two diseases that

can not appear together or two medicines that can not be used at the same time. In

addition to that, the exclusivity of elements in the frame of discernment is based on the

fact that the existence of one hypothesis implies the non existence of other hypotheses.

Indeed, an evidential conditional database model relays on these two observations.

Several representations systems that cope with incomplete and probabilistic databases,

were introduced in the literature: first, the Codd tables (Codd, 1972) appeared as re-

lations that model incomplete data with null values. Later on, the v-tables extended

Codd tables (Imielinski and Lipski, 1984). Then, other representation systems like

e-tables, g-tables, maybe tables, or-set-?-tables, c-tables, (Imielinski and Lipski, 1984;

Abiteboul et al., 1995b; Sarma et al., 2006) were introduced where each representation

system handles imperfect data in a different context.

• Codd tables: Relations are annotated with constants and null variables (Codd,

1972). In the Codd table in Table 5.1, the name and the disease fields of lines 2

and 3 are unknown. Null values @ represent here the incompleteness of the data.

• v-tables: Relations involve constants and also variables that represent incom-

plete data (Imielinski and Lipski, 1984). Note here that variables define a correla-

tion although they are unknown. For example, in Table 5.1, the v-table includes

two unknown names for lines 2 and 3 that are different. Such information is
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not representable in Codd tables, because values are null without any additional

information.

• or-set-?-tables: Relations include attributes on finite domains. Each attribute

may be imprecise; i.e., it involves several values where only one is true. The

”?” denotes the uncertainty that the tuple exists (Sarma et al., 2006). Table 5.1

illustrates an or-set-?-table where name and disease of the first and the second

tuples, respectively, are imprecise. Also note that the second tuple may not exist

at all.

An illustrative example is presented in Table 5.1 to clarify these representation

systems of imperfect databases.

Codd table

Name Disease

Smith Anemia
@ Asthma

Brown @

v-table

Name Disease

Smith Anemia
x Asthma
y Asthma

or-set-?-table

Name Disease

Smith < Anemia,Asthma >
< Smith,Brown > Asthma ?

Brown Asthma

Table 5.1: Examples of Representation Systems of Imperfect Databases

• c-tables: It is a relation where the existence of each tuple is conditioned by

a propositional formula over random variables called condition (Imielinski and

Lipski, 1984). A conditional database is defined in (Suciu et al., 2011) as follows:

Defintion 31 (Conditional Database CD)

Named c-tables for short, CD = {R1, ..., RK ,Φ} where {R1, .., Rk} is a relational

database instance and Φ assigns a propositional formula Φt for each tuple t in each

relation R1, .., Rk. Given a valuation ∂ of variables in Φ, the world associated with ∂

is W ∂ = {R∂1 , .., R∂k} where R∂i = {t|t ∈ Ri,Φt[∂] = true} for each i ∈ {i, .., k}.

Example 55 Table 5.2 is an illustration of a c-table that includes four attributes: the

ID, the social security number SSN , the Name and the Condition over random vari-

ables for each tuple. The attribute Condition involves conditions on random variables

reflecting the existence of the labeled tuple and its relation with the other tuples. For

example, the first Name is ‘Smith’ that can not exist twice with two different social
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security numbers. Therefore, conditions on a random variable X is added to the first

two tuples such that only one of them holds. Thus, if X = 1, the SSN of Smith is 185.

In this case the second tuple does not hold. Otherwise, if X 6= 1, the first tuple does

not hold and the SSN of Smith is 785. This table can be expanded into two possible

worlds as detailed in Table 5.3.

ID SSN Name Condition

1 185 Smith X=1
1 785 Smith X 6=1
2 186 Brown Y=1

Table 5.2: Example of a c-table

W1

ID SSN Name Condition

1 185 Smith X=1
2 186 Brown Y=1

W2

ID SSN Name Condition

1 785 Smith X 6=1
2 186 Brown Y=1

Table 5.3: Possible worlds of the c-table of Table 5.2

(Suciu et al., 2011) have shown that the c-tables are strong representation systems.

Thus, querying the compact c-table is equivalent to querying its possible worlds. In the

general case, to prove that a representation system is strong, the equivalence between

querying the compact form and the possible worlds’ form should be demonstrated.

There is no work that interested to combine the strengths of c-tables and the belief

functions theory to build a strong representation database model.

5.3 Evidential Conditional Tables

In conditional tables (c-tables), a propositional formula is assigned to each tuple. This

mechanism is very interesting because it defines the co-existence of one relation’s tuples.

For evidential conditional tables (ec-tables), this property is kept and a confidence level

is assigned to each tuple in order to define the belief on tuples’ existence. An evidential

conditional database (ECD) has two equivalent forms: (i) the compact form and (ii)

the possible worlds’ form.

5.3.1 Modeling ec-tables: Compact form

Formally, evidential conditional tables are defined as follow:
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Defintion 32 (Evidential Conditional Tables ECD)

An Evidential Conditional Database, ec-tables for short, on its compact form

has N tuples and D attributes. An ec-table, is an evidential table with conditions over

tuples. A confidence level, denoted CL is an attribute that contains degrees of confidence

about the existence of each tuple. It is a pair of belief bel and plausibility pl such that:

{[bel; pl] ∈ [0; 1]|bel ≤ pl}

ID Disease Condition CL

1 Anemia x=1 [0.2; 0.8]

1 Asthma x 6=1 [0.5 ; 0.7]

2 Anemia y=1 [0.5 ; 0.5]

2 Cancer y 6=1 [0.3 ; 0.9]

Table 5.4: A medical ec-table

Table 5.4 is an ec-table where a doctor expresses his diagnoses about several pa-

tients. In the first tuple, the doctor reveals that the first patient has either Anemia with

a confidence level [0.2 ; 0.8] or Asthma with a confidence level [0.5 ; 0.7]. The attribute

condition here indicates that when the first hypothesis is true (Disease=‘Anemia’), the

second hypothesis (Disease=‘Asthma’) is false and vis versa. Confidence levels reflect

the minimal and maximal beliefs about each tuple.

5.3.2 Modeling ec-tables: Possible Worlds’ Form

Most of theories that deal with imperfection represent the imperfect information as a

distribution of hypotheses. Each one of them performs as a candidate to the solution.

The main objective is to query the compact model and to get back a correct and reli-

able answers. Even though the only feasible model in practice is the compact one, the

possible worlds’ form is a fundamental step to validate the querying methods. Thus,

possible worlds provide shaper semantics when querying the imperfect database. In

fact, generating possible worlds is a way to model the compact database into several

states by treating its uncertainties.

For the ECD case, generating the possible worlds; i.e, the non compact form, goes

through an intermediate representation where imprecision is treated.

Defintion 33 (Non compact form of ECD)

A Conditional Evidential Database, ECD for short, on its non compact form is a

finite set of uncertain possible worlds such that:
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ECD = {UW1, UW2, ..., UWi}

Each uncertain possible world includes N tuples where each tuple contains one sin-

gleton focal element per attribute.

Example 56 In Table 5.5, four uncertain worlds UW1, UW2, UW3 and UW4 are

generated from Table 5.4.

UW1

1 Anemia x=1 [0.2 ; 0.8]

2 Anemia y=1 [0.5 ; 0.5]

UW2

1 Anemia x=1 [0.2 ; 0.8]

2 Cancer y6=1 [0.3 ; 0.9]

UW3

1 Asthma x6=1 [0.5 ; 0.7]

2 Anemia y=1 [0.5 ; 0.5]

UW4

1 Asthma x 6=1 [0.5 ; 0.7]

2 Cancer y 6=1 [0.3 ; 0.9]

Table 5.5: Uncertain possible worlds of a medical ec-table

Then, each UWi generates itself one or more possible worlds. Each possible world

Wj is a combination of the uncertain world’s tuples. Generating possible worlds is due

to handling confidence levels. Thus, each possible world is a subset of tuples that can

co-exist according to their defined propositional formulas, using equations (2.8) (2.7),

(2.36).

Defintion 34 (Possible World)

A possible world, denoted Wj, is a subset of an uncertain world UWi. Each gen-

erated possible world Wj has a confidence level CLj that represents the belWj and the

plWj of the existence of each tuple in the conditional table and it is defined such that:

CL = [belWj ; plWj ] (5.1)

belWj =
∏

bel(tv) ∗
∏

(1− pl(tz))
plWj =

∏
pl(tv) ∗

∏
(1− bel(tz))

(5.2)

where tv, tz ∈ UWi and tv ∈Wj ; tv /∈Wj

Note that equation (5.2) is based on equations (2.8),(2.7) and (2.36).

Suppose we have uncertain worlds with two tuples, the generated possible worlds

and their corresponding confidence levels are computed based on tuples’ existence as

follows:
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{t1, t2}: {t1} :

• bel(t1 ∧ t2) = bel1 ∗ bel2 • bel(t1 ∧ t2) = bel1 ∗ (1− pl2)

• pl(t1 ∧ t2) = pl1 ∗ pl2 • pl(t1 ∧ t2) = pl1 ∗ (1− bel2)

{t2}: {∅}:
• bel(t1 ∧ t2) = (1− pl1) ∗ bel2 • bel(t1 ∧ t2) = (1− pl1) ∗ (1− pl2)

• pl(t1 ∧ t2) = (1− bel1) ∗ pl2 • pl(t1 ∧ t2) = (1− bel1) ∗ (1− bel2)

Example 57 The number of possible worlds generated from Table 5.5 is P = 16 .

Confidence levels are computed using Definition 34. Possible worlds are shown in Table

5.6.

UW1

W11= {(1,Anemia),(2,Anemia)} [0.1;0.4]
W12={(1,Anemia)} [0.1;0.4]
W13= {(2,Anemia)} [0.2;0.4]

W14= {∅} [0.1;0.4]

UW2

W21= {(1,Anemia),(2,Cancer)} [0.06;0.72]
W22={(1,Anemia)} [0.02;0.56]
W23= {(2,Cancer)} [0.06;0.72]

W24= {∅} [0.02;0.56]

UW3

W31= {(1,Asthma),(2,Anemia)} [0.25;0.35]
W32={(1,Asthma)} [0.25;0.35]
W33= {(2,Anemia)} [0.15;0.25]

W34= {∅} [0.15;0.25]

UW4

W41= {(1,Asthma),(2,Cancer)} [0.15;0.63]
W42={(1,Asthma)} [0.05;0.49]
W43= {(2,Cancer)} [0.09;0.45]

W44= {∅} [0.03;0.35]

Table 5.6: Possible worlds of ec-table

Since the ECD is an imperfect database model, querying its compact form using the

relational operators requires their evaluation through querying also the possible worlds’

form. Figure 5.1 illustrates the querying and the evaluation process for the ECD model

under its both forms: the compact and the possible worlds.
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Figure 5.1: ECD Model

5.3.3 Querying ec-tables: Possible worlds form

Querying possible worlds of an ec-table denotedQ(Wj) gives possible answers {R1, ..., Ru}.

Example 58 We process a query Q over possible worlds presented in Table 5.6.

Q : SELECT * FROM ECD WHERE < Disease = Cancer >

Q(W11) = {∅} with [0.1 ; 0.4] = R1

Q(W12) = {∅} with [0.1 ; 0.4] = R1

Q(W13) = {∅} with [0.2 ; 0.4] = R1

Q(W14) = {∅} with [0.1 ; 0.4] = R1

Q(W21) = {(2, Cancer)} with [0.06 ; 0.72] = R2

Q(W22) = {∅} with [0.02 ; 0.56] = R1

Q(W23) = {(2, Cancer)} with [0.06 ; 0.72]= R2

Q(W24) = {∅} with [0.02 ; 0.56] = R1

Q(W31) = {∅} with [0.25 ; 0.35] = R1

Q(W32) = {∅} with [0.25 ; 0.35] = R1

Q(W33) = {∅} with [0.15 ; 0.25] = R1
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Q(W34) = {∅} with [0.15 ; 0.25] = R1

Q(W41) = {(2, Cancer)}with [0.15 ; 0.63] = R2

Q(W42) = {(2, Cancer)} with [0.09 ; 0.45] = R2

Q(W43) = {∅} with[0.05 ; 0.49] = R1

Q(W44) = {∅} with [0.03 ; 0.35] = R1

Applying the query Q over possible worlds may provide redundant tuples with

different confidence levels. This is due to the combination of the tuples when generating

the possible worlds; i.e. the CL of a same tuple can be taken into consideration in several

possible worlds. The redundancy is treated using Definitions 29, 30.

Example 59 If we carry on with the same example, two possible answers {R1, R2}
were generated. Each response with the two ones has different confidence levels.

• The first response R1 = {∅} has 12 different CLs coming from W11, W12, W13,

W14, W22, W24, W31, W32, W33, W34, W42 and W44.

• The second response R2 = {(2, Cancer)} has 4 different CLs coming from W21,

W23, W41 and W43.

Redundant answers are treated using Definition 30 such that:

• R1= {∅} [1-(1-0.1)*(1-0.1)*(1-0.2)*(1-0.1)*(1-0.02)*(1-0.02)*(1-0.25)*(1-0.25)*(1-

0.15)*(1-0.15)*(1-0.05)*(1-0.03) ; 1-(1-0.4)*(1-0.4)*(1-0.4)*(1-0.4)*(1-0.56)*(1-

0.56)*(1-0.35)*(1-0.35)*(1-0.25)*(1-0.25)*(1-0.49)*(1-0.35)] = [0.79; 0.998]

• R2= {2, Cancer} = [1-(1-0.06)*(1-0.06)*(1-0.15)*(1-0.09) ; 1-(1-0.72)*(1-0.72)*(1-

0.63)*(1-0.45)] = [0.31;0.98]

Thus, the final CLs for answers derived from the possible worlds’ form when apply-

ing the query Q are then:

R1= {∅} with CLR1=[0.79 ; 0.998]

R2= {2, Cancer} with CLR2=[0.31;0.98]

After querying the possible worlds of an ECD, we query the compact form in order

to evaluate the equivalence between results in a further step.
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5.3.4 Querying ec-tables: Compact form

Querying the compact form ECD gives a relation Q(ECD) that responds to query Q.

This result needs to be expanded into several possible states, called possible answers

{R′1, ..., R′s}.

Example 60 We process the same query Q over the compact form (Table 5.4), the

result (Q(ECD)) is presented in Table 5.7.

Q(ECD)

2 Cancer [0.3 ; 0.9]

Table 5.7: Compact result of query Q: Q(ECD)

The compact result itself is expanded into possible worlds as shown in Table 5.8.

The first possible world W ′1 reveals the existence of the tuple result and the possible

worlds W ′2 reveals the non existence of the tuple result.

W ′1 W ′2
2 Cancer ∅

Table 5.8: The possible worlds of the compact result of query Q

The possible answer of query Q over the compact form are:

R′1 = {2, Cancer}
R′2 = {∅}

• The first response R′1={(2,cancer)} is coming from the following cases:

1. When the first tuple with the condition (x=1) and the second tuple with the

condition (y 6= 1) exist together. Hence, the first tuple that store the value

< Anemia >, does not appear in the set of results. The computed CL for

this response < ∅, (2, cancer) > is [0.06 ; 0.72].

2. When the first tuple with condition (x=1) does not exist but the second tuple

with the condition (y 6= 1) exists. Its computed CL is [0.06 ; 0.72].

3. When the second tuple with condition (y 6= 1) exists with the first tuple with

condition (x 6= 1 ). The latter tuple does not respond to the query Q. The

computed CL for this response < ∅, (2, cancer) > is [0.15 ; 0.63].

4. When the first tuple with condition (x 6= 1) does not exist but the second

tuple with (y 6= 1) exists. Its computed CL is [0.15 ; 0.63].
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• The second response R′2 = {∅} is also coming from 12 cases, are the following:

1. Tuples with (x=1) and (y=1) exist together. Its CL is [0.1 ; 0.4].

2. Tuple with (x=1) exists and tuple with (y=1) does not exist. Its CL is [0.1

; 0.4].

3. Tuple with (x=1) does not exist and tuple with (y=1) exists. Its CL is [0.2

; 0.4].

4. Both tuples with (x=1) and (y=1) do not exist. Its CL is [0.1 ; 0.4].

5. Tuple with (x=1) exists and tuple with (y 6= 1) does not exist. Its CL is

[0.02 ; 0.56].

6. Both tuples with (x=1) and (y 6= 1) do not exist. Its CL is [0.02 ; 0.56].

7. Tuples with (x 6= 1) and (y=1) exist together. Its CL is [0.25 ; 0.35].

8. Tuple with (x6=1) exists and tuple with (y = 1) does not exist. Its CL is

[0.25; 0.35].

9. Tuple with (y=1) exists and tuple with (x 6= 1) does not exist. Its CL is

[0.15; 0.25].

10. None of tuples with conditions (x 6= 1) and (y = 1) exist. Its CL is [0.15 ;

0.25].

11. Tuple with (x 6= 1) exists and tuple with (y 6= 1) does not exist. Its CL is

[0.05 ; 0.49].

12. None of tuples with conditions (x 6= 1) and (y 6= 1) exist. Its CL is [0.03 .

0.35].

Answers R′1 and R′2 are redundant. Redundancy is treated using Definition 30.

Their CLs are combined as follows:

• R′1= {2, Cancer} = [1-(1-0.06)*(1-0.06)*(1-0.15)*(1-0.09) ; 1-(1-0.72)*(1-0.72)*(1-

0.63)*(1-0.45)] = [0.31;0.98]

• R′2= {∅} [1-(1-0.1)*(1-0.1)*(1-0.2)*(1-0.1)*(1-0.02)*(1-0.02)*(1-0.25)*(1-0.25)*(1-

0.15)*(1-0.15)*(1-0.05)*(1-0.03) ; 1-(1-0.4)*(1-0.4)*(1-0.4)*(1-0.4)*(1-0.56)*(1-

0.56)*(1-0.35)*(1-0.35)*(1-0.25)*(1-0.25)*(1-0.49)*(1-0.35)] = [0.79 ; 0.998]

Thus, the final CLs for answers derived from the compact form when applying the

query Q are:

R′1= {2, Cancer} [0.31;0.98]

R′2= {∅} [0.79 ; 0.998]
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5.3.5 Checking the equivalence

An ec-table is said to be SRS if querying its compact form is equivalent to querying

its possible worlds. Note that according to the query of Example 58, we obtained

exactly the same results for the possible worlds form and for the compact form, which

are {(2,Cancer)}, {∅}. This result was not surprising, since c-tables were proved to

be a strong representation system (Imielinski and Lipski, 1984). In fact, c-tables are

considered as a particular case of ec-tables where the CL is [1 ; 1]. Considering a CL ⊆
[1 ; 1] has not an effect on content of the possible worlds but on their quantifications,

i.e, their computed CLs.

Example 61 For our example, the equivalence under the select-project query is valid.

Indeed, possible answers are equivalent: {R1, R2}={R′1, R′2}.

Formally, according to Definition 22, ec-tables are strong representation system if

Rep(Q(ECD)) ≡ Q(Rep(ECD)). Rep(ECD) = W1..j in a set of couples (Wj , CLj);

Wj is a possible world and CLj is its associated confidence level. Thus, Q(W1..j) is

the application of Q on each world in (Rep(ECD)), and the result is the set of tuples

satisfying Q in each world denoted Ru. On the other hand, Q(ECD) provides the

tuples in the ec-table that satisfy the query Q. It produces couples (tj , CLj) where tj

is a tuple satisfying Q and CLj its confidence level. This process is exactly the same

as in the regular c-tables, proved to be SRS in (Imielinski and Lipski, 1984) under

the relational algebra. Now to quantify belief and plausibility of each world, either

generated from Q(Rep(ECD)) or from Rep(Q(ECD)), we use the same tool, i.e., the

evidential and cognitive independence formulas, based on the same confidence levels

associated to the ec-table tuples.

5.4 Discussion

Evidential databases as defined in (Bell et al., 1996) can handle several types of imper-

fection like uncertainty, imprecision and ignorance. However, this model was proven

not to be a strong representation system (cf. section 4.6). Transforming the evidential

databases into ec-tables is a way to remodel this representation towards a strong rep-

resentation system. In Example 62, below, we show how this transformation may be

performed.

Example 62 Table 5.9 represents an evidential database EDB as introduced in (Bell

et al., 1996), with three attributes: ID, Disease and CL; where experts expressed their

beliefs about some patients’ diseases. Table 5.10 constitutes an ec-table with four at-

tributes: ID, Disease, CL and Condition. Thus, it represents a translation of Table

5.9. Indeed, hypotheses are transformed to singletons and their confidence levels are a
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combination of masses and CLs. First, the belief and the plausibility of each hypothesis

are deduced from its mass functions. Then, a confidence level is associated to this hy-

pothesis. This CL is the product of bel and pl deduced from the masses (at the attribute

level) and bel and pl deduced from the tuple’s existence (at the tuple level).

For our example, the first tuple in Table 5.9, includes two hypotheses < Anemia;Cancer >.

This tuple is interpreted in ec-table of Figure 5.2. Thus, hypothesis < Cancer > of the

first tuple associates a computed CL. This CL is the product of bel and pl of < Cancer >

coming from the attribute level, and bel and pl of < Cancer > coming from the tuple

level. Indeed, the CL of hypothesis < Cancer > is [0*1 ; 0.2*1] = [0 ; 0.2]. The CL

of < Anemia > in the first tuple is computed the same way; it is a combination of its

CL coming the attribute level [0.8 ; (0.8+0.2)] and its CL coming the tuple level [1 ;

1], which is [0.8*1 ; 1*1] = [0.8 ; 1]. The rest of hypothesis in the table are considered

the same way. Results of computed CLs are shown in Table 5.10.

ID Disease CL

1 {Cancer,Anemia} 0.2 [1 ; 1]
Anemia 0.8

2 Anemia 1 [0.6 ; 0.9]

3 Asthma 0.5 [0.7 ; 1]
Anemia 0.5

Table 5.9: An Evidential table EDB

ID Disease CL Condition

1 Anemia [0.8 ; 1] x = 1

1 Cancer [0 ; 0.2] x 6= 1

2 Anemia [0.6 ; 0.9] y = 1

3 Asthma [0.35 ; 0.5] z = 1

3 Anemia [0.35 ; 0.5] z 6= 1

Table 5.10: Obtained Conditional Evidential table
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Figure 5.2: The first tuple’s interpretation from EDB to ECD

In addition, evidential conditional tables may be seen as a generalization of the prob-

abilistic conditional tables, when considering only the belief degree of the confidence

level. In this case, the belief degree is considered equivalent to the probability degree of

each tuple. Moreover, when the confidence level is equal to [1;1], ec-tables and c-tables

are equivalent. This interpretation is very important since the whole Dempster-Shafer

theory is considered as the generalization of the probability in the discrete case.

Example 63 We present now a complete example of modeling and querying an evi-

dential database, being first an EDB and transformed then to an ECD. As detailed in

Figure 5.4, first of all, we present an example of an evidential database EDB on its

compact form. This model is represented on its possible worlds’ form. Both forms are

queried by applying query Q and the results are verified. Second, the compact EDB is

translated into a compact ECD. The latter is modeled into its possible worlds and then

both forms are interrogated with the same query Q. Finally, results of EDB and results

of ECD are compared.
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Figure 5.3: From the compact ec-table to its possible worlds



13
2

C
h
a
p
ter5

.
E

vid
en

tia
l

C
o
n

d
itio

n
a
l

d
a
ta

ba
ses

Figure 5.4: The complete process: From EDB to ECD
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1. Modeling and Querying an EDB:

(a) Modeling the EDB from its compact form to its possible worlds’

form:

Table 5.11 is an evidential database EDB that stores medical information

about two patients given by a doctor.

ID Disease CL

1 {Cancer, Anemia} 0.2 [0.5;0.8]
Cancer 0.8

2 Asthma 0.5 [0.7;1]
Anemia 0.5

Table 5.11: A medical evidential database EDB

This compact EDB (Table 5.11) gives four imperfect possible worlds as shown

in Table 5.12.

IW1

ID Disease CL

1 {Cancer, Anemia} [0.5;0.8]

2 Asthma [0.7;1]

IW3

ID Disease CL

1 Cancer [0.5;0.8]

2 Asthma [0.7;1]

IW2

ID Disease CL

1 {Cancer, Anemia} [0.5;0.8]

2 Anemia [0.7;1]

IW4

ID Disease CL

1 Cancer [0.5;0.8]

2 Anemia [0.7;1]

Table 5.12: Imperfect worlds of EDB

m(IW1) = 0.2 ∗ 0.5 = 0.1

m(IW2) = 0.2 ∗ 0.5 = 0.1

m(IW3) = 0.8 ∗ 0.5 = 0.4

m(IW4) = 0.8 ∗ 0.5 = 0.4

m(IW1) = m({UW1, UW2}) = 0.1

m(IW2) = m({UW3, UW4}) = 0.1

m(IW3) = m({UW1}) = 0.4

m(IW4) = m({UW3}) = 0.4

Imperfect worlds themselves give four uncertain possible worlds as shown in

Table 5.13

m(IW1) = {UW1, UW2} = 0.1
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UW1

ID Disease CL

1 Cancer [0.5;0.8]

2 Asthma [0.7;1]

UW2

ID Disease CL

1 Anemia [0.5;0.8]

2 Asthma [0.7;1]

UW3

ID Disease CL

1 Cancer [0.5;0.8]

2 Anemia [0.7;1]

UW4

ID Disease CL

1 Anemia [0.5;0.8]

2 Anemia [0.7;1]

Table 5.13: Uncertain worlds of EDB

m(IW2) = {UW3, UW4}= 0.1

m(IW3) = {UW1}= 0.4

m(IW4) = {UW3}= 0.4

We compute now confidence levels of uncertain worlds by taking into con-

sideration their inherited mass functions.

UW1 ∈ {IW1, IW3} then UW1 [0.4;0.5]

UW2 ∈ {IW1} then UW2 [0;0.1]

UW3 ∈ {IW2, IW4} then UW3 [0.4;0.5]

UW4 ∈ {IW2} then UW4 [0;0.1]

UW1

ID Disease CL

1 Cancer [0.2;0.4]

2 Asthma [0.28;0.5]

UW2

ID Disease CL

1 Anemia [0;0.1]

2 Asthma [0;0.1]

UW3

ID Disease CL

1 Cancer [0.2;0.4]

2 Anemia [0.28;0.5]

UW4

ID Disease CL

1 Anemia [0;0.1]

2 Anemia [0;0.1]

Table 5.14: Uncertain worlds of EDB

Each uncertain world gives a set of possible worlds as shown in Table 5.15.

(b) Querying the compact form of EDB:

Let us process query Q on the compact EDB (Table 5.11).

Q: SELECT * FROM EDB WHERE (Disease=‘Cancer’);
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UW1 CL

W11={(1,Cancer);(2,Asthma)} [0.056;0.2]
W12={(1,Cancer)} [0.1;0.288]
W13={(2,Asthma)} [0.168;0.4]
W14={∅} [0.3;0.576]

UW2 CL

W21={(1,Anemia);(2,Asthma)} [0;0.01]
W22={(1,Anemia)} [0;0.1]
W23={(2,Asthma)} [0;0.1]
W24={∅} [0.81;1]

UW3 CL

W31={(1,Cancer);(2,Anemia)} [0.056;0.2]
W32= {(1,Cancer)} [0.1;0.288]
W33={(2,Anemia)} [0.168;0.4]
W34={∅} [0.3;0.576]

UW4 CL

W41={(1,Anemia);(2,Anemia)} [0;0.01]
W42={(1,Anemia)} [0;0.1]
W43={(2,Anemia)} [0;0.1]
W44= {∅} [0.81;1]

Table 5.15: Possible worlds of EDB

Querying the compact EDB gives a compact result Q(EDB) as shown in

Table 5.16. This table generates possible answers R′.

ID Disease CL

1 {Cancer,Anemia} 0.2 [1;1]
Cancer 0.8

Table 5.16: Table result Q(EDB)

R′1= {1,Anemia} [0;0.2]

R′2={1,Cancer} [0.8;1]

(c) Querying the possible worlds’ from of EDB:

Let’s now process the same query Q over the non compact form.

Q(W11)= {1,Cancer} with[0.056 ; 0.2] = R1

Q(W12)= {1,Cancer} with[0.1 ; 0.288] = R1

Q(W13)= {∅} with [0.168 ; 0.4] = R2

Q(W14)= {∅} with[0.3 ; 0.576] = R2
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Q(W21)= {∅}with [0 ; 0.01] = R2

Q(W22)= {∅} with [0 ; 0.1 ] = R2

Q(W23)= {∅} with [0 ; 0.1 ] = R2

Q(W24)= {∅} with [0.8 ; 1] = R2

Q(W31)= {1,Cancer} with [0.056 ; 0.2] = R1

Q(W32)= {1,Cancer} with [0.1 ; 0.288] = R1

Q(W33)= {∅} with [0.168 ; 0.4] = R2

Q(W34)= {∅} with [0.3 ; 0.576] = R2

Q(W41)= {∅} with [0 ; 0.01] = R2

Q(W42)= {∅} with [0 ; 0.1] = R2

Q(W43)= {∅} with [0 ; 0.1] = R2

Q(W44)= {∅} with [0.81 ; 1] = R2

Applying query Q over the possible worlds gives the set of possible answers

{R1, R2}. These answers are redundant. In fact, answer R1={(1,Cancer)}
has different CLs coming from W11, W12, W31 and W32. Answer R2={∅}
has also different CLs coming from worlds W13, W14, W21, W22, W23, W24,

W33, W34, W41, W42, W43 and W44. The redundancy of answers is treated

using Definition 30 such that:

R1 = {(1,Cancer)} = [1-(1-0.056)*(1-0.1)*(1-0.056)*(1-0.1);1-(1-0.2)*(1-

0.288)*(1-0.2)*(1-0.288)] = [0.27; 0.67]

R2 = {∅} = [1-(1-0.168)*(1-0.3)*(1-0)*(1-0)*(1-)*(1-0.8)*(1-0.168)*(1-0.3)*(1-

0)*(1-0)*(1-0)*(1-0.81); 1- (1-0.4)*(1-0.576)*(1-0.01)*(1-0.1)*(1-1)*(1-0.2)*(1-

0.288)*(1-0.4)*(1-0.576)*(1-0.01)*(1-0.1)*(1-1)] = [0.98 ; 1]

Thus, the final answer when applying the query Q over the possible worlds

of EDB:

R1= {(1,Cancer)} [0.27;0.67]

R2= {∅} = [0.98 ; 1]

(d) Checking the equivalence: It is obvious that both results; ie. the one

coming from querying the compact form and the one coming from the possible

worlds’ form, are not equivalent.

⇒ {R′1, R′2} 6= {R1, R2}.

2. Translating an EDB to an ECD: The compact evidential database EDB is

translated into the compact evidential database ECD of Table 5.17. Confidence

levels are attributed to each hypothesis by combining its CL in attribute level and

its CL in tuple level.
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ID Disease CL Condition

1 Cancer [0.4;0.8] x = 1

1 Anemia [0;0.16] x 6= 1

2 Asthma [0.35;0.5] y = 1

2 Anemia [0.35;0.5] y 6= 1

Table 5.17: The Obtained evidential database ECD after translation

3. Modeling and Querying an ECD:

(a) Modeling the ECD from its compact form to its possible worlds’

form:

The compact ECD generates four uncertain worlds as shown in Table 5.18.

UW1

ID Disease CL Condition

1 Cancer [0.4;0.8] x = 1

2 Asthma [0.35;0.5] y = 1

UW2

ID Disease CL Condition

1 Cancer [0.4;0.8] x = 1

2 Anemia [0.35;0.5] y 6= 1

UW3

ID Disease CL Condition

1 Anemia [0;0.16] x 6= 1

2 Asthma [0.35;0.5] y = 1

UW4

ID Disease CL Condition

1 Anemia [0;0.16] x 6= 1

2 Anemia [0.35;0.5] y 6= 1

Table 5.18: Uncertain worlds of ECD

The uncertain worlds generate the set of possible worlds as shown in Table

5.19.

(b) Querying the compact from of ECD:

Let’s apply the same query Q on the compact ECD. The result is shown in

Table 5.20.

Q: SELECT * FROM ECD WHERE (Disease=‘Cancer’);

Two possible answer are derived from the compact ECD:

R′1={(1,Cancer)}
R′2={∅}

• The first answer R′1={(1,Cancer)} is coming from different cases:

– When the first tuple with condition (x=1) and the second tuple with

the condition (y=1) exist together, but the latter does not respond to

the query Q. Its CL is [0.14 ; 0.4].
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UW1 CL

W11={(1,Cancer);(2,Asthma)} [0.14;0.4]
W12={(1,Cancer)} [0.2;0.52]
W13={(2,Asthma)} [0.07;0.3]
W14={∅} [0.1;0.39]

UW2 CL

W21={(1,Cancer);(2,Asthma)} [0.14;0.4]
W22={(1,Cancer)} [0.2;0.52]
W23={(2,Asthma)} [0.07;0.3]
W24={∅} [0.1;0.39]

UW3 CL

W31={(1,Anemia);(2,Asthma)} [0;0.08]
W32= {(1,Anemia)} [0;0.11]
W33={(2,Asthma)} [0.3;0.5]
W34={∅} [0.42;0.65]

UW4 CL

W41={(1,Anemia);(2,Anemia)} [0;0.08]
W42= {(1,Anemia)} [0;0.11]
W43= {(2,Anemia)} [0.3;0.5]
W44={∅} [0.42;0.65]

Table 5.19: Possible worlds of EDB

1 Cancer [0.4;0.8] X = 1

Table 5.20: The compact result Q(ECD)

– When the first tuple with (x=1) exists and the second tuple with

(y=1) does not. Its CL is [0.2 ; 0.52].

– When both tuples with condition (x=1) and (y 6= 1) exist but the

latter does not respond to Q. Its CL is [0.14 ; 0.4].

– When the first tuple with (x=1) exists and the second tuple with

(y 6= 1) does not exist. Its CL is [0.2 ; 0.52]

• The second answer R′2={∅} is also coming from different cases, com-

puted the same way; i.e, considering all the cases where R′2 can appear

based on the existence of tuples in the compact database of Table 5.17.

Computed CLs are:

– R′2=[0.07 ; 0.3]

– R′2=[0.1 ; 0.39]

– R′2=[0.07 ; 0.8]
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– R′2=[0.1 ; 0.39]

– R′2=[0 ; 0.08]

– R′2=[0 ; 0.4]

– R′2=[0.3 ; 0.5]

– R′2=[0.42 ; 0.65]

– R′2=[0 ; 0.08]

– R′2=[0 ; 0.11]

– R′2=[0.3 ; 0.5]

– R′2=[0.42 ; 0.65]

Redundancy of answers R′1 and R′2 are treated such that:

• R′1 = {(1,Cancer)} = [1-(1-0.14)*(1-0.2)*(1-0.14)*(1-0.2);1-(1-0.4)*(1-

0.52)*(1-0.4)*(1-0.52)] = [0.52; 0.91]

• R′2 = {∅} = [1-(1-0.07)*(1-0.1)*(1-0.07)*(1-0.1)*(1-0)*(1-0)*(1-0.3)*(1-

0.42)*(1-0)*(1-0)*(1-0.3)*(1-0.42); 1- (1-0.3)*(1-0.39)*(1-0.8)*(1-0.39)*(1-

0.08)*(1-0.4)*(1-0.5)*(1-0.65)*(1-0.08)*(1-0.11)*(1-0.5)*(1-65)] = [0.88

; 0.999]

Thus, answers derived from applying query Q over the compact ECD are:

R′1 = {(1,Cancer)} =[0.52; 0.91]

R′2 = {∅} = [0.88 ; 0.999]

(c) Querying the possible worlds’ from of ECD:

Let’s now apply the same query Q over the possible worlds’ form:

Q(W11) = {1, Cancer} with [0.14 ; 0.4] = R1

Q(W12) = {1, Cancer} with [0.2 ; 0.52] = R1

Q(W13) = {∅} with [0.07 ; 0.3] = R2

Q(W14) = {∅} with [0.1 ; 0.39] = R2

Q(W21) = {1, Cancer} with [0.14 ; 0.4] = R1

Q(W22) = {1, Cancer} with [0.2 ; 0.52] = R1

Q(W23) = {∅} with [0.07 ; 0.3] = R2

Q(W24) = {∅} with [0.1 ; 0.39] = R2

Q(W31) = {∅} with [0 ; 0.08] = R2

Q(W32) = {∅} with [0 ; 0.11] = R2

Q(W33) = {∅} with [0.3 ; 0.5] = R2

Q(W34) = {∅} with[0.42 ; 0.65] = R2

Q(W41) = {∅} with [0 ; 0.08] = R2

Q(W42) = {∅} with [0 ; 0.11] = R2
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Q(W43) = {∅} with [0.3 ; 0.5] = R2

Q(W44) = {∅} with [0.42 ; 0.65] = R2

Applying query Q over the possible worlds of ECD gives a set of possible an-

swers. Due to redundancy, multiple confidence levels are given. To combine

the selected tuples, we use Definitions 29 and 30.

• R1 = {(1,Cancer)} = [1-(1-0.14)*(1-0.2)*(1-0.14)*(1-0.2);1-(1-0.4)*(1-

0.52)*(1-0.4)*(1-0.52)] = [0.52 ; 0.91]

• R2 = {∅} = [1-(1-0.07)*(1-0.1)*(1-0.07)*(1-0.1)*(1-0)*(1-0)*(1-0.3)*(1-

0.42)*(1-0)*(1-0)*(1-0.3)*(1-0.42); 1- (1-0.3)*(1-0.39)*(1-0.8)*(1-0.39)*(1-

0.08)*(1-0.4)*(1-0.5)*(1-0.65)*(1-0.08)*(1-0.11)*(1-0.5)*(1-65)] = [0.88

; 0.999]

Thus, the answers derived from applying query Q over the possible worlds’

form are:

R1= {(1,Cancer)} = [0.52 ; 0.91]

R2= {∅} =[0.88 ; 0.999]

(d) Checking the equivalence:

As shown both results, coming from the compact ECD and from the non

compact ECD, are equivalent, namely:

{R′1, R′2} = {R1, R2}

4. Discussing results:

Even though the classical evidential model, denoted EDB can be more informative

than the ECD model, it does not provide a strong representation system under

relational operators. In the other side, we showed that the ECD model is an

advanced step towards a strong representation system. Translating the EDB model

to the ECD model is then very beneficial. Thus, the EDB can explicitly illustrate

the imperfect information within the belief functions’ theory tools and the ECD

manages very well the querying methods under relational operators. In fact, we

showed throughout Example 62 that querying the EDB model into its both forms

provides non equivalent results, but transforming this model into an ECD and

querying it into its both forms provide equivalent ones.

5.5 Conclusion

A representation system may be queried over its compact or its possible worlds forms.

While the possible worlds form is not an implementable model, proving that a repre-
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sentation system is strong may reduce computational complexity by querying directly

the equivalent compact form.

Even though, evidential databases as introduced in (Bell et al., 1996; Lee, 1992a;

Lee, 1992b) are more informative than ec-tables. They do not represent a strong rep-

resentation system. Thus, we proved with a counterexample that this model do not

provide the same results when querying its compact form and when querying its pos-

sible worlds’ form. To solve this problem, we introduced the ec-tables that are based

on singleton hypothesis and conditions. Querying the compact and the non compact

forms of ec-tables generates equivalent results. Added to that, we showed how to trans-

form any classical evidential database to ec-tables, in order to benefit from its querying

methods’ efficiency.

Implementing the proposed evidential conditional model and evaluating other types

of queries like skyline (Bousnina et al., 2017b; Elmi et al., 2017; Yong et al., 2014) and

top-k over ec-tables, constitutes a very interesting and promising future work.
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Conclusion

Generally, modeling imperfect information can be a very challenging process. Thus,

several theories were introduced to handle imperfect information depending on contexts,

domains and the nature of information. Theory of belief functions (or the evidence the-

ory) is one of these theories that offered efficient tools to model, manage and combine

imperfect data. In fact, it provides a good framework to represent uncertainty, impre-

cision and ignorance. Evidential databases store information modeled via the belief

functions theory. It has two equivalent representations: the compact and the possible

worlds. Results of querying both forms should be equivalent to consider the database

model as a strong representation system.

Our aim in this thesis is to investigate all techniques and methods of modeling and

querying evidential databases in order to set a strong representation system. Indeed,

we started by developing the possible worlds’ representation for evidential databases

EDB. While generating the non compact form, we treated the tuple level uncertainty

and the attribute level uncertainty. This step is essential to validate querying methods

over the compact form. Then, we developed an object-oriented implementation for

evidential databases EDB in order to prepare the querying step. Thanks to the object-

oriented design, we applied several types of querying over the compact form: evidential

relational queries, evidential top-k queries and evidential skyline queries. Results were

satisfying in terms of execution time for all applied queries. Added to that, we used

a real data that we extracted from the Tripadvisor platform in order to construct the

evidential database. To construct this database, we used the mathematical tools pro-

vided by the belief functions theory. We also proposed a formalism to rank evidential

results and select the best ones. Studying in depth the evidential database EDB guided

us to conclude that this representation system is not strong. Thus, we prove with a

counter example that querying the compact EDB and querying the non compact EDB

does not provide the same results, neither the same confidence levels. Therefore, we

introduced a new evidential database system: the ec-tables ECD. This database model

combines the strengths of conditional tables and the specificities of the evidence theory.

After modeling the evidential ECD from its compact form to its possible worlds’ form,

we proved that this system offers a strong representation system under select-project

operators.

143
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Our major contributions are summarized as follows:

(1) Modeling and querying the compact evidential database (EDB):

– Object-Relational Evidential Implementation (Bousnina et al., 2016): We

presented an object relational model for the evidential database on its com-

pact form (Lee, 1992b; Lee, 1992a; Bell et al., 1996). Then we presented

the implementation of this object relational model using SQL3 and Java.

Finally, we evaluated the select and the project operators under the belief

functions framework.

– Evidential Top-K query (Bousnina et al., 2017a; Bousnina et al., 2018b): We

introduced a new ranking querying formalism for the evidential data. Its aim

is to select the best k responses when querying an evidential database on its

compact form. We made use of the object-relational evidential implementa-

tion to implement and evaluate the evidential Top-k query. Added to that,

we introduced new semantics for this kind of queries.

– Evidential skyline query (Bousnina et al., 2017b): We treated the aggrega-

tion of information coming from different sources to construct an evidential

database where information are coming from a real platform (the TripAdvi-

sor platform). Then, we applied the evidential skyline query as introduced

in (Elmi et al., 2014).

(2) Modeling and querying the possible worlds of the evidential database (EDB):

Modeling Evidential databases as Possible worlds’ (Bousnina et al., 2018a):

We modeled the evidential database (Bell et al., 1996) on its possible worlds’

form. We used a previous contribution as a basis (Bousnina et al., 2015)

for this work. Thus, we modeled the non compact form of the evidential

database by treating the two levels of uncertainties (the tuple level uncer-

tainty and the attribute level uncertainty). This contribution was a very

important step towards the evaluation and the validation of querying meth-

ods of an EDB (Lee, 1992b; Lee, 1992a; Bell et al., 1996).

(3) Modeling and querying the evidential conditional database (ECD):

Evidential Conditional Tables: We proved that the most used evidential

database EDB (Lee, 1992b; Lee, 1992a; Bell et al., 1996) is not a strong rep-

resentation system. Then, we introduced a new evidential database model,
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named ec-tables (ECD). We discuss how the ec-tables present a vigorous

basis towards a strong representation system under relational operators. We

used several detailed examples to support the presented formalism.

As future works, we intend to improve and extend our researches in other directions:

– In the last part of this thesis, we developed the ec-tables model under select-

project. We intend to validate the rest of querying method (Cartesian product,

join and union) for evidential conditional databases. In fact, checking if the ec-

tables are strong representation system is a very complex mathematical process

and needs to evaluate all relational operators.

– We started to collect real data in the medical domain where doctors give their

diagnoses and their beliefs about patients’ diseases. To evaluate the queries and

their results, we started to implement the evidential conditional database model.

Conditions are essential in such application because some hypotheses (like dis-

eases, blood types, pharmaceuticals, etc,.) can not coexist at the same time.

– Using the evidential conditional databases in aeronautics can be a very promising

future work. Thus, in air crashes for example, hypotheses relative to reasons of

the crash can not coexist simultaneously. Added to that, hypotheses are given by

experts and can associate degrees of truthfulness about each hypothesis. There-

fore, we intend to collect real data and evaluate the relational queries that we

intend to apply over this data.

– We presented the evidential top-k queries (Bousnina et al., 2017a) and the ev-

idential skyline queries (Elmi et al., 2014; Bousnina et al., 2017b; Abidi et al.,

2018; Elmi et al., 2016) for the EDB model. It will be interesting to extend these

queries using the ec-tables model.

– Data-mining methods applied earlier over evidential databases (Bach Tobji and

Ben Yaghlane, 2011; Bach Tobji et al., 2008; Samet and Dao, 2015; Samet et al.,

2014; Samet et al., 2016) can be extended to be applied over the ECD model.

– It would be also interesting to extend the evidential models to the case of Nosql

datasets framework.
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Modeling and Querying Evidential Databases

An evidential database has two equivalent representations: (1) the compact repre-

sentation represented as a set of attributes and a set of tuples; (2) the possible worlds’

representation modeled as a distribution of candidate databases. Querying the possible

worlds’ form is a fundamental step in order to check the querying methods over the

compact one. In fact, a model is said to be a strong representation system when results

of querying its compact form are equivalent to results of querying its non compact

form. Throughout this thesis, we study the foundations of evidential databases in both

modeling and querying via three major parts: (i) first by modeling and querying the

compact form of the evidential database (EDB); (ii) second by modeling the possible

worlds’ form of the evidential database (EDB) through treating the tuple level uncer-

tainty and the attribute level uncertainty; (iii) finally by modeling and querying the

evidential conditional database (ECD) in its both forms (the compact and the non

compact).

Keywords: Databases Management; Imperfect databases; Dempster-Shafer the-

ory; Evidential Databases; Possible worlds; Evidential Conditional databases; Repre-

sentation system; Querying; Evidential Top-k.

Modélisation et Exploitation des Bases de Données Crédibilistes

Une base de donnée crédibiliste a deux représentations équivalentes: (1) la représentation

compacte caractérisée par un ensemble d’attributs et un ensemble de tuples; (2) la

représentation des mondes possibles représentée par une distribution de base de données

candidates. Interroger la représentation des mondes possibles est une étape fondamen-

tale pour valider les méthodes d’interrogation sur la base compacte crédibiliste. En effet,

un modèle de base de donnée est dit système fort si le résultat de l’interrogation de sa

représentation compacte est équivalent au résultat de l’interrogation de sa représentation

des mondes possibles. Tout au long de cette thèse, nous étudions les fondements des

bases de données crédibilistes à travers trois parties majeures: (i) premièrement par la

modélisation et l’interrogation de la base de donnée crédibiliste (EDB) sous sa forme

compacte; (ii) deuxièmement par la modélisation de la base de données crédibiliste

(EDB) sous sa forme des mondes possibles en traitant les niveaux incertitudes par at-

tributs et par tuples; (iii) finalement par la modélisation et l’interrogation de la base

de données crédibiliste (ECD) sous ces formes compacte et non compacte.

Mots clés: Bases de données – Gestion; Bases de données imparfaites; Théorie de

Dempster-Shafer; Bases de données crédibilistes; Bases de données crédibilistes condi-

tionnelles; Mondes possibles; Système de représentation; Bases de données – Interroga-

tion; Top-k évidentiel.
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