Skip to Main content Skip to Navigation

Local structure of liquid 3d metals under extreme conditions of pressure and temperature

Abstract : Understanding the physical phenomena of our planet requires the capability to investigate the structural and thermodynamic properties of liquid-state materials present in the Earth's outer core. Thus, the melting curves of nickel and cobalt allow to constrain the temperature at the inner core boundary (ICB).This Thesis presents the study of the melting curves and the local structure of nickel and cobalt under extreme conditions. The experimental analysis was performed by X-ray absorption spectroscopy (XAS), technique ideal for the study of the local structure. Ab-initio calculations were performed as well in order to validate the melting criterion adopted and to provide starting radial distribution function for the analysis of the local structure.The melting curves of nickel and cobalt were determined with the XAS melting criterion recently proposed for iron. The criterion consists in the flattening of the shoulder and the disappearance of the first two oscillations in the X-ray Absorption Near Edge Structure (XANES). It has been validated with Focused Ion Beam (FIB) coupled with Scanning Electron Microscopy (SEM) analysis on the recovered samples, by means of a detection of textural changes in the sample. The melting temperature was detected for nickel and cobalt at different pressures, thus providing a measurement of the melting curve up to 1 Mbar for the two materials.A comparison of the melting curves of nickel and cobalt with iron shows that the presence of these two materials in the outer core of Earth gives a negligible contribution for the determination of the geotherm at the inner core boundary.Ab-initio calculations performed on cobalt provided an additional confirmation of the XAS melting criterion adopted. Moreover they permitted to understand that the flattening of the oscillations in the XANES is due to the smearing of the structures in the density of the p states linked to the different environments surrounding each absorbing atom in the liquid.These calculations allowed as well to evaluate the compression of liquid cobalt at 5000 K and provided a starting radial distribution function for the analysis of the experimental Extended X-ray Absorption Fine Structure (EXAFS) extracted from the measured XAS.The EXAFS of the liquids along the melting curve was analysed providing a measurement of the first neighbour distance in the liquid as a function of pressure for both nickel and cobalt. In the two cases our experimental results show slightly less compression than theoretically predicted. This can be interpreted as a first neighbour bond that at higher pressures is slightly more rigid than predicted or as due to an increase of 10-20% of the coordination number.Combined to theory, our experimental observation suggests that the local structure of liquid Co and Ni increasingly deviates from a hard sphere model with P and T along the melting curve.In conclusion, we have developed a protocol that allows validating the melting criterion for a given solid structure. In this work it has been applied to 3d metals with fcc structures and it can be applied to other structures.The presence of nickel and cobalt in the outer core of Earth was found to be irrelevant for the determination of the temperature at the ICB.XAS was shown to be an adequate technique to measure the first neighbour bond under extreme conditions, although both experiment and theory have large margin for improvement. The application of this method to more complex liquid alloys opens the way to investigation of relevant geophysical systems.
Complete list of metadata

Cited literature [179 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, June 20, 2019 - 1:02:51 AM
Last modification on : Friday, July 24, 2020 - 3:20:18 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02160813, version 1



Silvia Boccato. Local structure of liquid 3d metals under extreme conditions of pressure and temperature. Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAY093⟩. ⟨tel-02160813⟩



Record views


Files downloads