S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2007.

N. Zheludev, The life and time of the led -a 100 year history, Nature Photonics, vol.1, pp.189-192, 2007.

O. Losev, Luminous carborundum detector and detection with crystals, Telegrafiya i Telefoniya bez Provodov, vol.44, pp.485-494, 1927.

R. Braunstein, Radiative transitions in semiconductors, Physical review, vol.99, issue.6, pp.1892-1893, 1955.

S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness ingan/algan double-heterostructure blue-light-emitting diodes, Applied Physics Letters, vol.64, issue.13, pp.1687-1689, 1994.

Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material, 1999.

R. Haitz, F. Kish, J. Tsao, and J. Nelson, The case for a national research program on semiconductor lighting, Optoelectronics Industry Development Association forum, 1999.

A. Barbet, Pompage par LED de matériaux laserémettant dans le visible ou l'infrarouge proche, 2016.

T. H. Maiman, Stimulated radiation in ruby, Nature, vol.187, p.493, 1960.

P. P. Sorokin and R. Lankard, Stimulated emission observed from an organic dye, chloroaluminium phtalocyanine, IBM Journal of Research and Development, vol.10, issue.2, pp.162-1963, 1966.

F. P. Schafer, W. Schmidt, and J. Volze, Organic dye solution laser, Applied Physics Letters, vol.9, issue.8, pp.306-309, 1966.

B. H. Soffer and B. B. Mcfarland, Continuously tunable, narrow-band organic dye lasers, Applied Physics Letters, vol.10, issue.10, p.266, 1967.
DOI : 10.1063/1.1754804

E. P. Ippen, C. V. Shank, and A. Dienes, Passive mode locking of the cw dye laser, Applied Physics Letters, vol.21, issue.8, pp.348-350, 1972.

T. Leang, Etude des phénomènes de photodégradation et de polarisation dans les lasers organiques solidesà cavité verticale externe, 2014.

A. Dubois, M. Canva, A. Brun, F. Chaput, and J. Boilot, Photostability of dye molecules trapped in solid matrices, Applied Optics, vol.35, issue.18, pp.3193-3199, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00627963

S. Forget and S. Chénais, Organic solid-state lasers, 2013.
DOI : 10.1007/978-3-642-36705-2

URL : https://hal.archives-ouvertes.fr/tel-01662173

O. Mhibik, T. Leang, A. Siove, S. Forget, and S. Chénais, Broadly tunable (440-670nm) solid-state organic laser with disposable capsules, Applied Physics Letters, vol.102, issue.4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00988350

C. Vijila and A. Ramalingam, Photophysical characteristics of coumarin 485 dye doped poly(methyl methacrylate) modified with various additives, Journal of Materials Chemistry, vol.11, pp.749-755, 2001.

R. Kabe and C. Adachi, Organic long persistent luminescence, Nature, vol.550, pp.384-387, 2017.
DOI : 10.1038/nature24010

S. Kéna-cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. Bradley et al., Plasmonic sinks for the selective removal of long-lived states, ACSnano, vol.5, issue.12, pp.9958-9965, 2011.

Y. Zhang and S. R. Forrest, Existence of continuous-wave threshold for organic semiconductor lasers, Physics Review B, vol.84, issue.24, 2011.

S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, and U. Scherf, Triplet excitation scavenging in films of conjugated polymers, ChemPhysChem, vol.10, issue.7, pp.1071-1076, 2009.

R. Bornemann, U. Lemmer, and E. Thiel, Continuous-wave solid-state dye laser, Optics Letters, vol.31, issue.11, p.1669, 2006.

Y. Yang, G. A. Turnbull, and I. D. Samuel, Hybrid optoelectronics : a polymer laser pumped by a nitride lightemitting diode, Applied Physics Letters, vol.92, 2008.

W. Streifer, D. R. Scifres, and R. D. Burnham, Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers, IEEE Journal of Quantum Electronics, vol.11, issue.11, pp.867-873, 1975.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Brauer et al., Corrugated neat thin-film conjugated polymer distributed-feedback lasers, Applied Physics B : Lasers and Optics, vol.74, pp.333-342, 2002.
DOI : 10.1007/s003400200821

Y. Wang, Low threshold organic semiconductor lasers, 2014.

C. Karnutsch, C. Pflumm, G. Heliotis, J. C. Demello, D. D. Bradley et al., Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design, Applied Physics Letters, vol.90, issue.13, 2007.

J. Herrnsdorf, Y. Wang, J. J. Mckendry, Z. Gong, D. Massoubre et al., Micro-led pumped polymer laser : A discussion of future pump sources for organic lasers, Laser and Photonics Reviews, vol.7, issue.6, pp.1065-1078, 2013.

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull et al., Led pumped polymer laser sensor for explosives, Laser Photonics revue, vol.7, issue.6, pp.226-228, 2013.

I. D. Samuel and G. A. Turnbull, Polymer lasers : recent advances, Materials Today, vol.7, issue.9, pp.28-35, 2004.

M. D. Mcgehee and A. J. Heeger, Semiconducting (conjugated)polymers as materials for solid-state lasers, Advanced Materials, vol.12, issue.22, pp.1655-1668, 2000.

D. Moses, High quantum efficiency luminescence from a conducting polymer : a novel polymer laser dye, Applied Physics, vol.60, issue.26, pp.3215-3216, 1992.

H. Rabanni-haghighi, S. Forget, S. Chénais, and A. Siove, Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser, Optics Letters, vol.35, issue.12, pp.1968-1969, 2010.

S. Forget, H. Rabbani-haghighi, N. Diffalah, A. Siove, and S. Chénais, Tunable ultraviolet vertically-emitting organic laser, Applied Physics Letters, vol.98, issue.13, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00574714

A. Barbet, F. Balembois, A. Paul, J. Blanchot, A. Viotti et al., Revisiting of led pumped bulk laser : first demonstration of nd :yvo4 led pumped laser, Optics Letters, vol.39, issue.23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01096408

, Directed Energy, Inc. PCO-7120 laser diode driver module, installation and operation note

S. Nakamura, The roles of structural imperfections in ingan-based blue light-emitting diodes and laser diodes, Science, vol.281, pp.956-961, 1998.

Y. Yang, Organic semiconductor lasers : compact hybrid light sources and development of applications, 2010.

P. Lumiled, C. Luxeon-z, and . Portofolio,

M. Canva, A. Dubois, P. Georges, and A. Brun, Perylene, pyrromethene and grafted rhodamine doped xerogels for tunable solid state laser, SPIE, vol.2288, 1994.

J. B. Prieto, F. L. Arbeloa, V. M. Martinez, T. A. Lopez, and I. L. Arbeloa, Photophysical properties of the pyrrométhène 597 dye : solvent effect, Journal of Physical Chemistry A, vol.108, issue.26, pp.5503-5508, 2004.

T. Susdorf, D. Agua, A. Tyagi, A. Penzkofer, O. Garcia et al., Photophysical characterization of pyrromethene 597 laser dye in silicon-containing organic matrices, Applied Physics B, vol.86, pp.537-545, 2007.

G. A. Berger, M. Kempe, and A. Z. Genack, Dynamics of stimulated emission from random media, Physical Review E, vol.56, issue.5, pp.6118-6122, 1997.

. Hadi-rabbani-haghighi, Nouveaux matériaux et architectures de dispositifs pour les lasers organiquesà l'état solide, 2011.

B. Crist, M. E. Maric, G. Raviv, and M. Epstein, Optical absorption in polymer glasses by laser calorimetry, Journal of Applied Physics, vol.51, issue.2, pp.1160-1162, 1979.

G. Jones, W. R. Jackson, and A. M. Halpern, Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes, Chemical Physics Letters, vol.72, issue.2, pp.391-394, 1980.

A. Costela, I. Garcia-moreno, J. M. Figuera, F. Amat-guerri, and R. Sastre, Polymeric matrices for lasing dyes : recent developments, Laser Chemistry, vol.18, pp.63-84, 1998.
DOI : 10.1155/1998/71976

URL : http://downloads.hindawi.com/archive/1998/071976.pdf

S. Nad, M. Kumbhakar, and H. Pal, Photophysical properties of coumarin-152 and coumarin-481 dyes : Unusual behavior in nonpolar and in higher polarity solvents, Journal of Physical Chemistry A, vol.107, pp.4808-4816, 2003.

C. Delezoïde, Microrésonateur en anneaux polymères pour capteurs optofuidiquesà champévanescent, 2013.

K. Jeong, J. Kim, and L. P. Lee, Biologically inspired artificial compound eyes, Science, vol.312, pp.557-561, 2006.
DOI : 10.1126/science.1123053

G. Genolet, New photoplastic fabrication techniques and devices based on high aspect ratio photoresist, 2001.

C. Lin, G. Lee, B. Chang, and G. Chang, A new fabrication process for ultra-thick microfluidic microstructures utilizing su-8 photoresist, Journal of Micromechanics and Microengineering, vol.12, pp.590-597, 2002.
DOI : 10.1088/0960-1317/12/5/312

K. Y. Lee, N. Labianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme et al., Micromachining applications of a high resolution ultrathick photoresist, Journal of Vacuum Science and Technology B, vol.13, issue.6, pp.3012-3016, 1995.

F. Chollet, , 2013.

. Microchem, Processing guidelines for : SU-8 2100 and SU, vol.8, p.2150

. Microchem, Processing guidelines for : SU-8, p.8, 2000.

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hübner, The effect of soft bake temperature on the polymerization of su-8 photoresist, Journal of Micromechanics and Microengineering, vol.16, issue.9, pp.1819-1824, 2006.

R. Daunton, A. J. Gallant, and D. Wood, Manipulation of exposure dose parameters to improve production of high aspect ratio structures using su-8, Journal of Micromechanics and Microengineering, vol.22, issue.7, pp.1-8, 2012.

S. Youn, A. Ueno, M. Takahashi, and R. Maeda, Microstructuring of su-8 photoresist by uv-assisted thermal imprinting with non-transparent mold, Microelectronic Engineering, vol.85, pp.1924-1931, 2008.

A. Olziersky, P. Barquinha, A. Vilà, L. Pereira, G. Gonçalves et al., Insight on the su-8 resist as passivation layer for transparent ga2o3-in2o3-zno thin-film transistors, Journal of Applied Physics, vol.108, issue.6, 2010.
DOI : 10.1063/1.3477192

A. Mata, J. Fleischman, and S. Roy, Fabrication of multi-layer su-8 microstructures, Journal of Micromechanics and Microengineering, vol.16, issue.2, pp.276-284, 2006.

M. Diemeer, L. Hilderink, R. Dekker, and A. Driessen, Low-cost and low-loss multimode waveguides of photodefinable epoxy, IEEE Photonics Technology Letters, vol.18, issue.15, pp.1624-1626, 2006.
DOI : 10.1109/lpt.2006.879519

J. Kim, J. Kang, and J. Kim, Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a uv-curable epoxy, Japanese Journal of Applied Physics, vol.42, pp.1277-1279, 2003.
DOI : 10.1143/jjap.42.1277

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers, Journal of Applied Polymer Science, vol.46, pp.1835-1841, 1992.

S. Baumer, Handbook of plastics optics, 2010.

. Microchem, . Nano, and . Copolymer,

Y. Molard, C. Labbé, J. Cardin, and S. Cordier, Sensitization of er3+ infrared photoluminescence embedded in a hybrid organic-inorganic copolymer containing octahedral molybdenum clusters, Advanced Functional Materials, vol.23, pp.4821-4825, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138686

M. Amela-cortes, Y. Molard, S. Paofai, A. Desert, J. Duvail et al., Versatility of the ionic assembling method to design highly luminescent pmma nanocomposites containing [m6qi8la6]n? octahedral nano-building blocks, Dalton Transactions, vol.45, pp.237-245, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01236442

Y. Yang, I. D. Samuel, and G. A. Turnbull, The development of luminescent concentrators for pumping organic semiconductor lasers, Advanced Materials, vol.21, pp.3205-3209, 2009.

N. Sobeschchuk, Micro-lasers based on polymer composites, 2015.

O. Veledar, P. Byrne, S. Danaher, J. H. Allen, L. F. Thompspon et al., Simple techniques for generating nanosecond blue light pulses from light emitting diodes, Measurement Science and Technology, vol.18, issue.1, pp.131-137, 2007.
DOI : 10.1088/0957-0233/18/1/016

M. J. Damzen, M. Trew, E. Rosas, and G. J. , Crofts. Continuous-wave nd :yvo4 grazing-incidence laser with 22, Optics Communications, vol.196, issue.1, pp.237-241, 2001.

T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, Power scaling of highly neodymium-doped yag ceramic lasers with a bounce amplifier geometry, Optics Express, vol.13, issue.18, pp.7011-7016, 2005.

H. Ries, Thermodynamic limitations of the concentration of electromagnetic radiation, Journal of the Optical Society of America, vol.72, issue.3, pp.380-385, 1982.

S. A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science, vol.30, issue.3, pp.231-295, 2004.
DOI : 10.1016/j.pecs.2004.02.001

P. Gleckman, J. O'gallagher, and R. Winston, Concentration of sunlight to solarsurface levels using non-imaging optics, Nature, vol.339, 1989.

K. Shanks, S. Senthilarasu, and T. K. Mallick, Optics for concentrating photovoltaics : Trends, limits and opportunities for materials and design, Renewable and Sustainable Energy Reviews, vol.60, pp.394-407, 2016.
DOI : 10.1016/j.rser.2016.01.089

URL : https://doi.org/10.1016/j.rser.2016.01.089

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, 2006.

R. Winston, Principle of solar concentrators of novel design, Solar Energy, vol.16, issue.2, pp.89-95, 1974.

A. , Optical and thermal properties of compound parabolic concentrators, Solar Energy, vol.18, issue.6, pp.497-511, 1976.

D. R. Mills and J. E. Giutronich, Asymmetrical non-imaging cylindrical solar concentrators, Solar Energy, vol.20, issue.1, pp.45-55, 1978.

W. H. Weber and J. Lambe, Luminescent greenhouse collector for solar radiation, Applied Optics, vol.15, issue.10, pp.2299-2300, 1976.

M. G. Debije and P. C. Verbunt, Thirty years of luminescent concnetrator research : solar energy for the built environment, Advanced Energy Materials, vol.2, pp.12-35, 2012.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators, Nature energy, 2016.

Y. Zhao and R. R. Lunt, Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors, Advanced energy materials, vol.3, issue.9, pp.1143-1148, 2013.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri et al., Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nature photonics, vol.11, issue.3, pp.177-185, 2017.

W. G. Van-sark, K. W. Barnham, A. J. Chatten, A. Büchtemann, A. Meyer et al., Meijerink, and D. Vanmaekelbergh. Luminescent solar concentrators -a review of recent results, Optics Express, vol.16, issue.26, pp.21773-21792, 2008.

V. I. Klimov, T. A. Baker, J. Lim, A. V. Kirill, and H. Mcdaniel, Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots, ACS photonics, vol.3, issue.6, pp.1138-1148, 2016.

D. K. De-boer, D. Bruls, and H. Jagt, High-brightness source based on luminescent solar concentration, Optics Express A, vol.24, issue.14, pp.1069-1074, 2016.

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J. Blanchot et al., Led pumped luminescent concentrators : a new opportunity for low cost solid-state lasers, Optica, vol.3, pp.465-468, 2016.

C. V. Kogelnik and J. Shank, Coupled mode theory of distributed feedback lasers, Journal of Applied Physics, vol.43, pp.2327-2335, 1972.

J. S. Batchelder, A. H. Zewail, and T. Cole, Luminescent solar concentrators. 1 : Theory of operation and techniques for performance evaluation, Applied Optics, vol.18, issue.18, p.3090, 1979.

J. S. Batchelder, A. H. Zewail, and T. Cole, Luminescent solar concentrators. 2 : Experimental and theoretical analysis of their possible efficiencies, Applied Optics, vol.20, issue.21, pp.3733-3754, 1981.

J. Batchelder, The luminescent solar concentrator, 1982.

J. Roncali and F. Garnier, Photon-transport properties of luminescent solar concentrators : analysis ans optimization, Applied Optics, vol.23, issue.16, pp.2809-2817, 1984.

M. Kennedy, S. J. Mccormack, J. Doran, and B. Norton, Modelling the effect of device geometry on concentration ratios of quantum dot solar concentrators, Proceedings of ISES 2007, 2007.

K. R. Mcintosh, N. Yamada, and B. S. Richards, Theoretical comparison of cylindrical and square-planar luminescent solar concentrators, Applied Physics B : lasers and Optic, vol.8, issue.5, pp.392-399, 2007.

M. D. Hughes, C. Maher, D. Borca-tasciuc, D. Polanco, and D. Kaminski, Performance comparison of wedge-shaped and planar luminescent solar concentrators, Renewable energy, vol.52, pp.266-272, 2013.

N. Soleimani, S. Knabe, H. B. Gottfried, T. Markvart, and O. L. Muskens, Role of light scattering in the performance of fluorescent solar collectors, Journal of photonics for energy, vol.2, issue.1, 2012.

, Lasercomponents. www.lasercomponents.com, 2017.

N. D. Bronstein, Y. Yao, L. Xu, E. O'brien, A. S. Powers et al., Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration, ACS Photonics, vol.2, pp.1576-1583, 2015.

U. Rau, F. Einsele, and G. C. Glaeser, Efficiency limits of photovoltaic fluorescent collectors, Applied Physics Letters, vol.87, issue.17, p.171101, 2005.

J. A. Stratton, Electromagnetic theory. McGraw-Hill book company, 1941.

C. Chen, Foundations for guided-wave optics, 2007.

S. Roelandt, D. K. De-boer, D. Bruls, P. Van-de-voorde, and H. Thienpont, Incoupling and outcoupling of light from a luminescent rod using a compoud parabolic concentrator, Optical Engineering, vol.54, issue.5, 2015.

, Refractive index database. www.refractiveindexinfo, 2017.

M. J. Waber, Handbook of optical materials, 2003.

C. Wuang, Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies, 2011.

D. Yokoyama, K. Nakayama, T. Otani, and J. Kido, Wide-range refractive index control of organic semiconductor films toward advanced optical design of organic optoelectronic devices, Advanced Materials, vol.24, issue.47, 2012.

R. Reisfeld, D. Shamrakov, and C. Jorgensen, Photostable solar concentrators based on fluorescent glass films, Solar Energy Materials and Solar Cells, vol.33, issue.4, pp.417-427, 1994.

G. C. Glaeser and U. Rau, Collection and conversion properties of photovoltaic fluorescent collectors with photonic band stop filters, Proceedings of Photonics for Solar Energy System, 2006.

M. Peters, J. C. Goldsmidt, P. Löper, B. Grob, J. Üpping et al., Spectrally-selective photonic structures for pv applications, Energies, vol.3, issue.2, pp.171-193, 2010.

E. Yablonovitch, Thermodynamics of the fluorescent planar concentrator, Journal of the Optical Society of America, vol.70, issue.11, pp.1362-1363, 1980.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, The thermodynamics limits of light concentrators, Solar Energy Material, vol.21, pp.99-111, 1990.

U. Brackmann, , 2000.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, High-efficiency organic solar concentrators for photovoltaics, Science, vol.321, pp.226-228, 2008.

B. Valeur, Molecular fluorescence Principles and applications, 2001.

C. Tummeltshammer, A. Taylor, A. J. Kenyon, and I. Papakonstantinou, Losses in luminescent solar concentrators unveiled, Solar Energy Materials and Solar Cells

L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones et al., Characterization and reduction of reabsorption losses in luminescent solar concentrators, Applied Optics, vol.49, issue.9, pp.1651-1661, 2010.

A. P. Green, K. T. Butler, and A. R. Buckley, Tuning of the emission energy of fluorophores using solid state solvation for efficient luminescent solar concentrators, Applied Physics Letters, vol.102, issue.13, p.133501, 2013.

P. P. Verbunt, A. Kaiser, K. Hermans, C. W. Bastiaansen, D. J. Broer et al., Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals, Applied Physics B, vol.19, issue.17, pp.2714-2719, 2009.

, LightTools Core Module User's Guide, 2014.

, Phosphor modelling in LightTools, 2014.

B. Heeg, P. A. Debarber, and G. Rumbles, Influence of fluorescence reabsorption and trapping on solid-state optical cooling, Applied Optics, vol.44, issue.15, pp.3117-3124, 2005.

S. Chandrasekhar, Stochastic problems in physics and astronomy. Reviews of Modern, Physics, vol.15, issue.1, pp.1-89, 1943.

A. S. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue et al., Toward continuous-wave operation of organic semiconductor lasers, Science Advances, vol.3, issue.4, 2017.

G. A. Reynolds and K. H. Drexhage, New coumarin dyes with rigidized structure for flashlamp pumped dye lasers, Optics Communications, vol.13, issue.3, pp.222-225, 1975.
DOI : 10.1016/0030-4018(75)90085-1

V. Bachmann, C. Ronda, and A. Meijerink, Temperature quenching of yellow ce 3+ luminescence in yag : ce, Chemical Materials, vol.21, pp.2077-2084, 2009.

J. Sathian, J. D. Breeze, B. Richards, . Mcn, M. Alford et al., Solid-state source of intense yellow light based on a ce :yag luminescent concentrator, Optics Express, vol.25, issue.12, pp.13714-13727, 2017.

G. Blasse and A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television : yellow-emitting y 3 al 5 o 12 ? ce 3+, Applied Physics Letters, vol.11, issue.2, pp.53-55, 1963.

A. Mills, Phosphors development for led lighting. The advanced semiconductor magazine, vol.18, pp.32-34, 2009.

N. Tsutsumi, S. Nagi, K. Kinashi, and W. Sakai, Re-evaluation of all-plastic organic dye laser with dfb structure fabricated using photoresists, Scientific Reports, vol.6, issue.34741, 2016.

, Refractive Index Liquid datasheet, 2015.

P. Pichon, A. Barbet, D. Blengino, P. Legare, T. Gallinelli et al., High-radiance light sources with led-pumped luminescent concentrators applied to pump nd :yag passively q-switched laser, Optics and Laser Technology, vol.96, pp.7-12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586179

E. Yablonovitch, Statistical ray optics, Journal of the Optical Society of America, vol.72, issue.7, pp.899-907, 1982.

E. and F. Schubert, Light-emitting diodes, 2006.

I. Schnitzer and E. Yablonovitch, 30% external quantum efficiency from surface textured, thin-film light-emitting diodes, Applied Physics Letters, vol.63, issue.16, pp.2174-2176, 1993.

A. David, Surface-roughened light-emitting diodes : an accurate model, Journal Of Display Technology, vol.9, issue.5, pp.301-316, 2013.

A. Lenef, J. F. Kelso, and A. Piquette, Light extraction from luminescent light sources and application to monolithic ceramic phosphors, Optics Letters, vol.39, issue.10, pp.3058-3061, 2014.

J. K. Kim, H. Luo, Y. Xi, J. M. Shah, T. Gessmann et al., Light extraction in gainn light-emitting diodes using diffuse omnidirectional reflectors, Journal of The Electrochemical Society, vol.153, issue.2, pp.105-107, 2006.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, and S. P. Denbaars, Increase in the extraction efficiency of gan-basd light-emitting diodes via surface roughening, Applied Physics Letters, vol.84, issue.6, pp.855-857, 2004.

J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han et al., Comparison of various surface textured layer in ingan leds for high light extraction efficiency, Optics Express, vol.19, issue.4, pp.3637-3647, 2011.

T. Schwab, Top-Emitting OLEDs -Improvement of the light extraction efficiency and optimization of microcavity effects for white emission, 1986.

W. Li, R. A. Jones, S. C. Allen, J. C. Heikenfeld, and A. J. Steckl, Maximizing Alq 3 oled internal and external efficiencies : charge balanced device structure and color conversion outcoupling lenses, Journal Of Display Technology, vol.2, issue.2, pp.143-152, 2006.

M. F. Schumann, A. Abass, G. Gomard, S. Wiesendanger, U. Lemmer et al., Single-pass and omniangle light extraction from light-emitting diodes using transformation optics, Optics Letters, vol.40, issue.23, pp.5626-5629, 2015.

S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Transactions on electron devices, vol.26, issue.12, pp.1880-1886, 1979.

R. C. Lo, Microfluidics technology : future prospects for molecular diagnostics, Advanced Health Care Technologies, vol.3, pp.3-17, 2017.

A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems : a novel concept for chemical sensing, Sensors and Actuators B : Chemical, pp.244-248, 1990.

P. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Micro total analysis systems. 2. analytical standard operations and applications, Analytical Chemistry, vol.74, issue.12, pp.2637-2652, 2002.

S. D. Petra, K. Tachikawa, and A. Manz, Micro total analysis systems. latest advancements and trands, Analytical Chemistry, vol.78, issue.12, pp.3887-3907, 2006.

J. West, M. Becker, S. Tombrink, and A. Manz, Micro total analysis systems : Latest achievements, Analytical Chemistry, vol.80, issue.12, pp.4403-4419, 2008.

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.442, pp.403-411, 2006.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja et al., Monolithically integrated dye-doped pdms long-pass filters for disposable on-chip fluorescence detection, Lab on a Chip, vol.6, pp.981-987, 2006.

C. Delezoide, J. Lautru, J. Zyss, I. Ledou-rak, and C. T. Nguyen, Vertically coupled polymer microresonators for optofluidic label-free biosensors, Proceedings of SPIE 2012, vol.8264, 2012.

B. Kuswandia, J. Nuriman, W. Huskens, and . Verbomm, Optical sensing systems for microfluidic devices : A review, Analytica Chemica Acta, vol.601, pp.141-155, 2007.

M. O'toole and D. Diamond, Absorbance based light emitting diode optical sensors and sensing devices, Sensors, vol.8, pp.2453-2479, 2008.

F. Dang, L. Zhang, H. Hagiwara, Y. Mishina, and Y. Baba, Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection, Electrophoresis, vol.24, pp.714-721, 2013.

S. A. Evenson and A. H. Rawicz, Thin-film luminescent concentrators for integrated devices, Applied Optics, vol.34, pp.7231-7238, 1995.

B. Lamprecht, H. Ditlbacher, G. Jakopic, and J. R. Krenn, Monolithically integrated organic waveguide photodiode, Physica Status Solidi, vol.2, issue.6, pp.266-268, 2008.
DOI : 10.1002/pssr.200802142

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun et al., Wide field-of-view fluorescent antenna for visible light communications beyond theéten-due limit, Optica, vol.3, issue.7, pp.702-706, 2016.

, InfiniLED. www.infiniLED.com, 2017.

I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, Journal of the optical society of America, vol.55, issue.10, pp.1205-1209, 1965.

, AGC Chemicals. Amorphous fluoropolymer CYTOP, 2016.

, MY Polymers. MY-133 MC datasheet, 2016.

H. Rabbani-haghighi, S. Forget, S. Chénais, and A. Siove, Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser, Optics Letters, vol.35, issue.12, pp.1968-1970, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489400

S. Olivier, Matériaux photoréticulablesà base de fluorophores photopolymé-risables : synthèse et caractérisations pour la fabrication d'OLEDs, 2015.

G. A. Luurtsema, Spin coating for rectangular substrates, 1997.

G. A. Turnbull and I. Samuel, Integrated organic photonics one step closer, SPIE Newsroom, 2010.

D. P. Pacheco, H. R. Aldag, I. Itzkan, and P. S. Rostler, An improved experimental determination of external photoluminescence quantum efficiency, Advanced Materials, vol.9, issue.3, pp.230-232, 1997.

B. Bilenberg, T. Nielsen, B. Clausen, and A. Kristensen, Pmma to su-8 bonding for polymer based lab-on-a-chip systems with integrated optics, Journal of Micromechanics and Microengineering, vol.14, issue.6, pp.814-818, 2004.

J. C. De-mello, H. F. Wittmann, and R. H. Friend, An improved experimental determination of external photoluminescence quantum efficiency, Advanced Materials, vol.9, issue.3, pp.230-232, 1997.

, Ocean Optics. USB2000+ datasheet

E. Hecht, . Optique, and . Pearson, , 2005.

T. Rabe, K. Gerlach, T. Riedl, H. -. Johannes, W. Kowalsky et al., Quasicontinuous-wave operation of an organic thin-film distributed feedback laser, Physics Letters, vol.89, issue.8, p.81115, 2006.

J. Potfajova, B. Schmidt, M. Helm, T. Gemming, M. Benyoucef et al., Microcavity enhanced silicon emitting pn-diode, Applied Physics Letters, vol.96, issue.15, pp.23-25, 2010.

H. Benisty, H. De-neve, and C. Weisbuch, Impact of planar microcavity effects on light extraction-part i : Basic concepts and analytical trends, IEEE Journal of Quantum Electronics, vol.34, issue.9, pp.1612-1631, 1998.

H. Benisty, H. De-neve, and C. Weisbuch, Impact of planar microcavity effects on light extraction-part ii : Selected exact simulations and role of photon recycling, IEEE Journal of Quantum Electronics, vol.34, issue.9, pp.1632-1643, 1998.

H. Ries, A. Segal, and J. Karni, Extracting concentrated light, Applied Optics, vol.36, issue.13, pp.2869-2874, 1997.
DOI : 10.1364/ao.36.002869

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Physical Review Letters, vol.78, issue.17, pp.3294-3297, 1997.

A. Revaux, G. Dantelle, D. Decanini, F. Guillemot, A. Haghiri-gosnet et al., Microcavity enhanced silicon emitting pn-diode, Applied Physics Letters, vol.96, issue.15, pp.23-25, 2010.

G. H. Spencer and M. V. Murty, Removal of su-8 photoresist for thick film applications, Microelectronic Engineering, vol.61, pp.993-1000, 2002.

G. H. Spencer and M. V. Murty, General ray tracing procedure, Journal of the Optical Society of America, vol.52, issue.6, pp.672-678, 1962.

N. Metropolis and S. Ulam, The monte carlo method, Journal of The American Statistical Association, vol.44, issue.247, pp.335-341, 1949.