, Adsorption energies at nickel and copper (111) surfaces for H, O, and OH radicals

, Gibbs energy of adsorption ?G of H and OH, activation barrier E act , and reaction energy ?E of water formation on nickel and copper (111) surfaces

, All the energies are in eV

, Adsorption of H or OH on the mixed Cu/Ni(111) systems. All the energies are in eV

, Activation energy E act , energy ?G ini of the initial state, and reaction energy ?E for water formation on a variety of surface sites

, Column 1 and 2 give adsorption energies for surfaces with one layer of Ni on top followed by a layer of metal M on top of bulk nickel. Columns 3 and 4 show the data from section for one layer of M above bulk Ni. All energies are in eV, Adsorption Gibbs

, Adsorption de H ou OH sur les systèmes bimétalliques NiCu, p.103

B. , L'énergie d'activation, et l'énergie totale de la formation de l'eau dans différentes surfaces

, High symmetry points have been marked. The energy scale on right side in eV, PES for 100% Cu on Ni(111) with OH on fcc site

1. Pes-for-1ml-of-ni-on-cu and . Ni, ) with OH on fcc site. The black and magenta lines correspond to the unit cell and reaction path, p.75

, The results are divided according to the position in the periodic table: (a) first row; (b) second row; and (c) third row transition metals, H (top) and OH (bottom) adsorption Gibbs energies on the bimetallic NiM surfaces in three different sites

, The results are divided according to the position on the periodic table: (a) first row; (b) second row; and (c) third row d-metals, H (top) and OH (bottom) adsorption Gibbs energies on the bimetallic NiM surfaces, p.80

, Gibbs energies of adsorption of H (left) and OH (right) on the NiM surfaces, with a 25% of content of the second metal. The red dashed lines indicates the values corresponding to the adsorption on a clean Ni(111) surface, p.82

, Gibbs energies of adsorption of H (left) and OH (right) on the NiM surfaces as a function of the same energies on pure (111) surfaces (?G

, Blue circles correspond to a 25% content of the second metal. Orange and grey circles corresponds to a complete monolayer of M on first or second position of the slab, Gibbs energies of adsorption of H and OH on the NiM surfaces

A. , Different adsorption sites at 111 crystal surfaces: A is a top site, B is a bridge site, C is a fcc hollow site

, B.1 vues de dessus des cellules utilisées pour représenter les surfaces bimétalliques de NiM

M. 50%-de and . De-ni, c) 75% de M et 25% de Ni; (d) 100% M. Le système (e) a une couche supérieure complète de Ni et une deuxième couche de M. Les sphères grises et oranges représentent respectivement les atomes de Ni et de M. 99

, Dans cette carte, le radical OH est placé sur le site fcc, et les positions de H sont montrées en (a). (c) Coordonnée de réaction pour la recombinaison entre OH et H. La trajectoire en (c) correspond au chemin minimal indiqué en (b) (lignes pointillées en violet). Les valeurs d'énergie sont en eV, (a) Les sites d'adsorption possibles H ads , les cercles oranges et rouges correspondent respectivement à Cu et OH. Les lignes rouges pointillées représentent la cellule unité, vol.102

, B.3 H (en haut) et OH (en bas) des énergies libres d'adsorption sur les surfaces bimétalliques de NiM. Les résultats sont divisés en fonction de la position de M dans le tableau périodique

. Marcelo-linardi, Introdução à ciência e tecnologia de células a combustível

. Artliber, , 2010.

. Wolf, A. Vielstich, . Lamm, and A. Hubert, Hubert Andreas) Gasteiger, and Harumi

. Yokokawa, Handbook of fuel cells : fundamentals, technology, and applications, 2003.

H. Wendt, M. Götz, and M. Linardi, Tecnologia de células a combustível, Química Nova, vol.23, issue.4, pp.538-546, 2000.

H. Wendt, M. Linardi, and E. Estacionárias, Quim. Nova, vol.25, issue.3, pp.470-476, 2002.

G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science, vol.377, issue.1-2, pp.1-35, 2011.

M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, and H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Research, vol.9, issue.1, pp.28-46, 2016.

M. Breiter, Eletrochemical Study of Hydrogen Adsorption on Platinum Metals, Journal of The Electrochemical Society, vol.109, issue.3, pp.85-95, 1962.

P. Paunovic, O. Popovski, D. Slavkov, A. Dimitrov, and H. Jordanov, Effect of carbon nanotubes support in improving the performance of mixed eclectrocalysts for hydrogen evolution, Journal of the Serbian Chemical Society, vol.26, issue.2, pp.87-93, 2007.

M. Jaccaud, F. Leroux, and J. C. Millet, New chlor-alkali activated cathodes, Materials Chemistry and Physics, vol.22, issue.1-2, pp.105-119, 1989.

P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Volcano plots in hydrogen electrocatalysis -uses and abuses, Beilstein J. Nanotechnol, vol.5, pp.846-854, 2014.

S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.39, issue.1, pp.163-184, 1972.

W. Schmickler and E. Santos, Hydrogen reaction and electrocatalysis, Interfacial Electrochemistry, pp.163-175, 2010.

G. Gerhard, ). Ertl, and H. Knözinger, Handbook of heterogeneous catalysis, Ferdi Schüth, and Jens Weitkamp, 2008.

G. Alexandr, A. Oshchepkov, . Bonnefont, . Viktoriia, and . Saveleva, Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media, Topics in Catalysis, vol.59, issue.15, pp.1319-1331, 2016.

T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen et al., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis, Journal of Catalysis, vol.224, issue.1, pp.206-217, 2004.

S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, In situ studies of the oxidation of nickel electrodes in alkaline solution, Journal of Electroanalytical Chemistry, vol.587, issue.1, pp.172-181, 2006.

D. S. Hall, C. Bock, and B. R. Macdougall, The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution, Journal of the Electrochemical Society, vol.160, issue.3, pp.235-243, 2013.

H. Paul and . Holloway, Chemisorption and oxide formation on metals: Oxygen-nickel reaction, Journal of Vacuum Science and Technology, vol.18, issue.2, pp.653-659, 1981.

M. R. Tarasevich, A. Sadkowski, and E. Yeager, Comprehensive Treatise of Electrochemistry, 1983.

R. Adzic and . Electrocatalys, , 1998.

P. Ross and . Electrocatalys, , 1998.

. Dj, . Schmidt, . Tj:-markovic, V. Nm;-stamenkovic, . Ross et al., Surface characterization and electrochemical behavior of well-defined Pt-Pd111 singlecrystal surfaces: A comparative study using Pt111 and palladium-modified Pt111 electrodes, Lagmuir, vol.18, issue.18, pp.6969-6975, 2002.

D. Floner, C. Lamy, and J. Leger, Electrocatalytic oxidation of hydrogen on polycrystal and single-crystal nickel electrodes, Surface Science, vol.234, issue.1-2, pp.87-97, 1990.

M. Nenad, S. T. Markovi?a, H. A. Sarraf, P. N. Gasteiger, and . Ross, Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution

, J. Chem. Soc., Faraday Trans, vol.92, issue.20, pp.3719-3725, 1996.

J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature Materials, vol.5, issue.11, pp.909-913, 2006.

R. Subbaraman, D. Tripkovic, K. Chang, D. Strmcnik, and P. Arvydas,

P. Paulikas, M. Hirunsit, J. Chan, and . Greeley,

M. Nenad and . Markovic, Trends in activity for the water electrolyser reactions on 3d

M. Ni and F. Co, Mn) hydr(oxy)oxide catalysts, Nature Materials, vol.11, issue.6, pp.550-557, 2012.

N. N. Greenwood and A. Ernshaw, Chemistry of Elements, 1997.

L. M. Madeira, M. F. Portela, and C. Mazzocchia, Nickel Molybdate Catalysts and Their Use in the Selective Oxidation of Hydrocarbons, Catalysis Reviews, vol.46, issue.1, pp.53-110, 2004.

W. J. Neill, Use of high nickel alloy in the petroleum refining industry, Materials performance, vol.40, issue.5, pp.50-54, 1974.

K. Ahmed and K. Föger, Fuel Processing for High-Temperature High-Efficiency Fuel Cells. Industrial & Engineering Chemistry Research, vol.49, issue.16, pp.7239-7256, 2010.

J. Chorkendorff and I. Larsen, From fundamentals studies of reactivity on single crystals to design of catalysts, Surface Science reports, vol.35, issue.5-8, pp.165-222, 1999.

B. Beverskog and I. Puigdomenech, Revised Pourbaix diagrams for nickel at 25-300°C, Corrosion Science, vol.39, issue.5, pp.969-980, 1997.

J. Bode, H. Dehmelt, and K. Witte, Zur Kinntnis der nickelhydroxide elektrode -I. Uber das nickel (II)-hydroxidhydrat, Electrochimica Acta, vol.11, pp.1079-1087, 1966.

D. M. Macarthur, The Hydrated Nickel Hydroxide Electrode Potential Sweep Experiments, Journal of The Electrochemical Society, vol.117, issue.4, p.422, 1970.

D. Singh, Characteristics and Effects of ?-NiOOH on Cell Performance and a Method to Quantify It in Nickel Electrodes, Journal of The Electrochemical Society, vol.145, issue.1, p.116, 1998.

N. Sac-epee.-?-ni, OH)[sub 2] Transitions during Electrochemical Cycling of the Nickel Hydroxide Electrode, Journal of The Electrochemical Society, vol.145, issue.5, p.1434, 1998.

B. Macdougall and M. Cohen, Anodic Oxidation of Nickel in Neutral Sulfate Solution, Journal of The Electrochemical Society, vol.121, issue.9, p.1152, 1974.

S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, In situ studies of the oxidation of nickel electrodes in alkaline solution, Journal of Electroanalytical Chemistry, vol.587, issue.1, pp.172-181, 2006.

F. Hahn, B. Beden, M. J. Croissant, and C. Lamy, In situ uv visible reflectance spectroscopic investigation of the nickel electrode-alkaline solution interface, Electrochimica Acta, vol.31, issue.3, pp.335-342, 1986.

M. Dmochowska and A. Czerwinski, Behavior of a nickel electrode in the presence of carbon monoxide, Journal of Solid State Electrochemistry, vol.2, issue.1, pp.16-23, 1998.

R. S. Schrebler-guzman, J. R. Vilche, and A. J. Arvia, Non-equilibrium effects in the nickel hydroxide electrode, Journal of Applied Electrochemistry, vol.9, issue.2, pp.183-189, 1979.

W. Visscher and E. Barendrecht, Anodic oxide films of nickel in alkaline electrolyte, Surface Science, vol.135, issue.1-3, pp.436-452, 1983.

R. S. Schrebler-guzman, J. R. Vilche, and A. J. Arvía, Rate Processes Related to the Hydrated Nickel Hydroxide Electrode in Alkaline Solutions, Journal of The Electrochemical Society, vol.125, issue.10, p.1578, 1978.

N. Krstaji?, M. Popovi?, B. Grgur, M. Vojnovi?, and D. ?epa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution -Part II. Effect of temperature, Journal of Electroanalytical Chemistry, vol.512, issue.1-2, pp.27-35, 2001.

M. A. Devanathan and M. Selvaratnam, Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage, Transactions of the Faraday Society, vol.56, p.1820, 1960.

J. J. Kim, S. H. Ahh, S. J. Hwang, S. J. Woo, I. Choi et al., Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis, Journal of Materials Chemistry A, vol.22, pp.15153-15159, 2012.

R. L. Leroy, Analysis of Time-Variation Effects in Water Electrolyzers, Journal of The Electrochemical Society, vol.126, issue.10, p.1674, 1979.

D. M. Soares, Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media, Journal of The Electrochemical Society, vol.139, issue.1, p.98, 1992.

M. Bernardini, G. Comisso, G. Davolio, and . Mengoli, Formation of nickel hydrides by hydrogen evolution in alkaline media, Journal of Electroanalytical Chemistry, vol.442, issue.1-2, pp.125-135, 1998.

J. Weininger and M. W. Breiter, Hydrogen Evolution and Surface Oxidation of Nickel Electrodes in Alkaline Solution, Journal of The Electrochemical Society, vol.111, issue.6, p.707, 1964.

N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas et al., Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH) <sub>2</sub> /Metal Catalysts, Angewandte Chemie International Edition, vol.51, issue.50, pp.12495-12498, 2012.

M. Gong, W. Zhou, M. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature Communications, vol.5, issue.1, p.4695, 2014.
DOI : 10.1038/ncomms5695

URL : https://www.nature.com/articles/ncomms5695.pdf

M. K. Bates, Q. Jia, N. Ramaswamy, R. J. Allen, and S. Mukerjee, Composite Ni/NiO-Cr <sub>2</sub> O <sub>3</sub> Catalyst for Alkaline Hydrogen Evolution Reaction, The Journal of Physical Chemistry C, vol.119, issue.10, pp.5467-5477, 2015.

X. Yan, L. Tian, and X. Chen, Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction, Journal of Power Sources, vol.300, pp.336-343, 2015.
DOI : 10.1016/j.jpowsour.2015.09.089

A. G. Oshchepkov, P. A. Simonov, O. V. Cherstiouk, R. R. Nazmutdinov, D. V. Glukhov et al., On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium, Topics in Catalysis, vol.58, pp.1181-1192, 2015.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li + -Ni(OH) 2 -Pt interfaces, Science, vol.334, issue.6060, pp.1256-60, 2011.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura et al., Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces, Science, vol.334, issue.6060, pp.1256-1260, 2011.

G. Kreysa, B. Hakansson, and P. Ekdunge, Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes, Electrochimica Acta, vol.33, issue.10, pp.1351-1357, 1988.

P. Ross, Handbook of Fuel Cells, 2003.

L. C. José, M. Fajín, D. S. Natália, F. Cordeiro, J. R. Illas et al., Generalized Brønsted-Evans-Polanyi relationships and descriptors for O-H bond cleavage of organic molecules on transition metal surfaces, Journal of Catalysis, vol.313, pp.24-33, 2014.

D. Sebastiani and L. Delle-site, Adsorption of Water Molecules on Flat and Stepped Nickel Surfaces from First Principles, Journal of Chemical Theory and Computation, vol.1, issue.1, pp.78-82, 2005.

M. Pozzo, G. Carlini, R. Rosei, and D. Alfè, Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations, The Journal of Chemical Physics, vol.126, issue.16, p.164706, 2007.

E. A. Franceschini, G. I. Lacconi, and H. R. Corti, Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach, International Journal of Hydrogen Energy, vol.41, issue.5, pp.3326-3338, 2016.

N. Sergey, A. Pronkin, P. S. Bonnefont, E. R. Ruvinskiy, and . Savinova, Hydrogen oxidation kinetics on model Pd/C electrodes: Electrochemical impedance spectroscopy and rotating disk electrode study, Electrochimica Acta, vol.55, issue.9, pp.3312-3323, 2010.

R. M. Abouatallah, D. W. Kirk, S. J. Thorpe, and J. W. Graydon, Characterization of Vanadium Deposit Formation at a Hydrogen Evolving Electrode in Alkaline Media, Journal of The Electrochemical Society, vol.148, issue.9, p.357, 2001.

R. Abouatallah, D. Kirk, S. Thorpe, and J. Graydon, Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media

, Electrochimica Acta, vol.47, issue.4, pp.613-621, 2001.

O. Aaboubi, A. Ali-omar, E. Dzoyem, J. Marthe, and M. Boudifa, Ni-Mn based alloys as versatile catalyst for different electrochemical reactions, Journal of Power Sources, vol.269, pp.597-607, 2014.

I. Danaee and S. Noori, Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode, International Journal of Hydrogen Energy, vol.36, issue.19, pp.12102-12111, 2011.

M. G. Walter, E. L. Warren, J. R. Mckone, S. W. Boettcher, Q. Mi et al., Solar Water Splitting Cells, Chemical Reviews, vol.110, issue.11, pp.6446-6473, 2010.

I. Flis-kabulska and J. Flis, Electroactivity of Ni-Fe cathodes in alkaline water electrolysis and effect of corrosion, Corrosion Science, vol.112, pp.255-263, 2016.

M. Metiko?, -. Hukovi?, and A. Juki?, Correlation of electronic structure and catalytic activity of Zr-Ni amorphous alloys for the hydrogen evolution reaction, Electrochimica Acta, vol.45, pp.4159-4170, 2000.

L. Mihailov, T. Spassov, and M. Bojinov, Effect of microstructure on the electrocatalytic activity for hydrogen evolution of amorphous and nanocrystalline Zr-Ni alloys, International Journal of Hydrogen Energy, vol.37, issue.14, pp.10499-10506, 2012.

J. Halim, R. Abdel-karim, S. El-raghy, M. Nabil, and A. Waheed, Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production, Journal of Nanomaterials, pp.1-9, 2012.

M. M. Sandhya-shetty, D. K. Jaffer-sadiq, A. Bhat, and . Chitharanjan-hegde, Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis, Journal of Electroanalytical Chemistry, vol.796, pp.57-65, 2017.

M. Manazo?lu, G. Hapç?, and G. Orhan, Effect of electrolysis parameters of Ni-Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium, Journal of Applied Electrochemistry, vol.46, issue.2, pp.191-204, 2016.

I. Bakos, A. Paszternák, and D. Zitoun, Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions, Electrochimica Acta, vol.176, pp.1074-1082, 2015.

M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky et al.,

D. Dekel and . Zitoun, Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell, Journal of Power Sources, vol.304, pp.332-339, 2016.

V. Pérez-herranz, R. Medina, P. Taymans, C. González-buch, E. M. Ortega et al., Modification of porous nickel electrodes with silver nanoparticles for hydrogen production, Journal of Electroanalytical Chemistry, vol.808, pp.420-426, 2018.

E. A. Franceschini, G. I. Lacconi, and H. R. Corti, Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu, Journal of Energy Chemistry, vol.26, issue.3, pp.466-475, 2017.

V. V. Kuznetsov, Y. D. Gamburg, M. V. Zhalnerov, V. V. Zhulikov, and R. S. Batalov, Reaction of hydrogen evolution on Co-Mo (W) and Ni-Re electrolytic alloys in alkaline media, Russian Journal of Electrochemistry, vol.52, issue.9, pp.901-909, 2016.

J. Feng, F. Lv, W. Zhang, P. Li, K. Wang et al., Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis, Advanced Materials, vol.29, issue.47, p.1703798, 2017.

M. A. Domínguez-crespo, E. Ramírez-meneses, A. M. Torres-huerta, V. Garibay-febles, and K. Philippot, Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni-Pt nanoparticles obtained by an organometallic approach, International Journal of Hydrogen Energy, vol.37, issue.6, pp.4798-4811, 2012.

B. Pierozynski and T. Mikolajczyk, Cathodic Evolution of Hydrogen on Platinum-Modified Nickel Foam Catalyst, Electrocatalysis, vol.7, pp.121-126, 2016.

C. González-buch, I. Herraiz-cardona, E. M. Ortega, S. Mestre, and V. Pérez-herranz, Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis, International Journal of Hydrogen Energy, vol.41, issue.2, pp.764-772, 2016.

C. Lupi, A. Dell&apos;era, and M. Pasquali, In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction, International Journal of Hydrogen Energy, vol.39, issue.5, pp.1932-1940, 2014.

E. Santos, P. Quaino, P. F. Hindelang, and W. Schmickler, Hydrogen evolution on a pseudomorphic Cu-layer on Ni(1 1 1) -A theoretical study, Journal of Electroanalytical Chemistry, vol.649, issue.1-2, pp.149-152, 2010.

O. V. Cherstiouk, P. A. Simonov, A. G. Oshchepkov, V. I. Zaikovskii, T. Y. Kardash et al., Electrocatalysis of the hydrogen oxidation reaction on carbon-supported bimetallic NiCu particles prepared by an improved wet chemical synthesis, Journal of Electroanalytical Chemistry, vol.783, pp.146-151, 2016.

H. Sang-hyun-ahn, I. Park, S. J. Choi, S. Yoo, H. Hwang et al.,

J. M. Hernandez, S. W. Nam, T. Lim, S. Kim, and J. H. Jang, Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis, International Journal of Hydrogen Energy, vol.38, issue.31, pp.13493-13501, 2013.

M. Negem and H. Nady, Electroplated Ni-Cu nanocrystalline alloys and their electrocatalytic activity for hydrogen generation using alkaline solutions, International Journal of Hydrogen Energy, vol.42, issue.47, pp.28386-28396, 2017.

A. Gross, Theoretical Surface Science, 2009.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review, vol.136, issue.3B, pp.864-871, 1964.

W. Kohn, Nobel Lecture: Electronic structure of matter-wave functions and density functionals, Reviews of Modern Physics, vol.71, issue.5, pp.1253-1266, 1999.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

R. M. Martin, Electronic structure: basic theory and practical methods, 2010.

M. José, E. Soler, . Artacho, D. Julian, A. Gale et al., The SIESTA method for <i>ab initio</i> order<i>N</i> materials simulation, Journal of Physics: Condensed Matter, vol.14, issue.11, pp.2745-2779, 2002.

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Physical Review B, vol.71, issue.3, p.35109, 2005.

J. Enkovaara, J. Rostgaard, J. Mortensen, M. Chen, . Du?ak et al.,

J. T-t-rantala, . Schiøtz, K. K-s-thygesen, and . Jacobsen, Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method, Journal of Physics: Condensed Matter, vol.22, issue.25, p.253202, 2010.

M. C. Leandro, P. Pinto, M. D. Quaino, E. Arce, W. Santos et al., Alkaline Solutions: Combining DFT and Molecular Dynamics, vol.15, pp.2003-2009, 2014.

A. Mohsenzadeh, K. Bolton, and T. Richards, DFT study of the adsorption and dissociation of water on Ni(111), Ni(110) and Ni(100) surfaces, Surface Science, vol.627, pp.1-10, 2014.

S. Peter-ferrin and . Kandoi, Anand Udaykumar Nilekar, and Manos Mavrikakis. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study, Surface Science, vol.606, issue.7-8, pp.679-689, 2012.

E. Santos, P. Hindelang, P. Quaino, E. N. Schulz, G. Soldano et al., Hydrogen electrocatalysis on single crystals and on nanostructured electrodes, ChemPhysChem, vol.12, issue.12, pp.2274-2279, 2011.

A. Mohsenzadeh, T. Richards, and K. Bolton, Ni(100) and Ni(110) surfaces, DFT study of the water gas shift reaction on Ni(111), vol.644, pp.53-63, 2016.

F. Che, J. T. Gray, S. Ha, and J. Mcewen, Catalytic Water Dehydrogenation and Formation on Nickel: Dual Path Mechanism in High Electric Fields, Journal of Catalysis, vol.332, pp.187-200, 2015.

G. Wang, L. Jiang, . Cai, . Pan, W. Zhao et al., Surface Structure Sensitivity of the Water-Gas Shift Reaction on Cu( h kl ) Surfaces: A Theoretical Study, The Journal of Physical Chemistry B, vol.107, issue.2, pp.557-562, 2003.

L. C. José, M. Fajín, D. S. Natália, F. Cordeiro, J. R. Illas et al., Descriptors controlling the catalytic activity of metallic surfaces toward water splitting, Journal of Catalysis, vol.276, issue.1, pp.92-100, 2010.

M. Y. Gao, C. Yang, Q. B. Zhang, Y. W. Yu, Y. X. Hua et al., Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution, Electrochimica Acta, vol.215, pp.609-616, 2016.

H. L. Skriver and N. M. Rosengaard, Surface energy and work function of elemental metals, Physical Review B, vol.46, issue.11, pp.7157-7168, 1992.

G. S. Karlberg, Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces, Physical Review B -Condensed Matter and Materials Physics, vol.74, issue.15, pp.3-6, 2006.

S. Li, . X. Liu, . D. Zhang, . J. Gao, and . Shen, Hydrogen diffusion into the subsurfaces of metal catalysts from first principles, Physical Chemistry Chemical Physics, p.3557, 2017.

E. Kristinsdottir and L. Skulason, A systematic DFT study of Hydrogen diffusion on transition metal surfaces, Surface Science, vol.606, pp.1400-1404, 2012.

M. Ferrin, S. Peter;-kandoi, and . Nilekar, A.; Mavrikakis. Hydrogen Adsorption, Absorption and Diffusion on and in transition metals surfaces: A DFT study, Surface Science, vol.606, pp.679-689, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019515

M. Greeley, J. ;. Markvrikakis, S. Surface, and . Hydrogen, Adsorption Properties on Transition Metals and Near Surface Alloys, Journal of Physical Chemistry Physical Chemistry Physical Chemistry B, vol.109, pp.3460-3471, 2005.

J. Ko, J. H. Kwon, H. Kang, B. Kim, and . Han, Universality in surface mixing rule of adsorption for small adsorbates on binary transition metal alloys, Physical Chemistry Chemical Physics, vol.17, p.3123, 2015.

W. A. Badawy, H. Nady, and G. M. , Abd El-Hafez. Electrodeposited Zn-Ni alloys as promising catalysts for hydrogen production-Preparation, characterization and electrocatalytic activity, Journal of Alloys and Compounds, vol.699, pp.1146-1156, 2017.

L. Vázquez-gómez, S. Cattarin, P. Guerriero, and M. Musiani, Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir, Electrochimica Acta, vol.53, issue.28, pp.8310-8318, 2008.

Y. D. Gamburg, V. V. Zhulikov, and B. F. Lyakhov, Electrodeposition, properties, and composition of rhenium-nickel alloys, Russian Journal of Electrochemistry, vol.52, issue.1, pp.78-82, 2016.

A. Tavares and S. Trasatti, Ni+RuO2 co-deposited electrodes for hydrogen evolution, Electrochimica Acta, vol.45, pp.4195-4202, 2000.

U. ?. La?njevac, B. M. Jovi?, V. D. Jovi?, V. R. Radmilovi?, and N. V. Krstaji?, Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution, International Journal of Hydrogen Energy, vol.38, issue.25, pp.10178-10190, 2013.

M. Jaccaud, F. Leroux, and J. C. Millet, New chlor-alkali activated cathodes, Materials Chemistry and Physics, vol.22, issue.1-2, pp.105-119, 1989.

T. Sun, J. Cao, J. Dong, H. Du, H. Zhang et al., Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction, International Journal of Hydrogen Energy, vol.42, issue.10, pp.6637-6645, 2017.

J. Victor-perales-rondón, A. Ferre-vilaplana, J. M. Feliu, and E. Herrero, Oxidation Mechanism of Formic Acid on the Bismuth Adatom-Modified Pt

, Surface. Journal of the American Chemical Society, vol.136, issue.38, pp.13110-13113, 2014.

G. S. Karlberg, T. F. Jaramillo, E. Skúlason, J. Rossmeisl, T. Bligaard et al., Cyclic Voltammograms for H on Pt(111) and Pt(100) from First Principles, Physical Review Letters, vol.99, issue.12, p.126101, 2007.

*. J. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin et al., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B, vol.108, issue.46, pp.17886-17892, 2004.

Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du et al., Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001), Advanced Materials, vol.21, issue.27, pp.2777-2780, 2009.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, p.5188, 1976.

S. Fiameni, I. Herraiz-cardona, M. Musiani, V. Pérez-herranz, L. Vázquez-gómez et al., The HER in alkaline media on Ptmodified three-dimensional Ni cathodes, International Journal of Hydrogen Energy, vol.37, issue.14, pp.10507-10516, 2012.

R. ?impraga, S. Tremiliosi-filho, B. Y-qian, and . Conway, In situ determination of the 'real are factor' in H2 evolution electrocatalysis at porous Ni-Fe composite electrodes, Journal of Electroanalytical Chemistry, vol.424, issue.1-2, pp.141-151, 1997.

E. Santos, A. Lundin, K. Pötting, P. Quaino, and W. Schmickler, Model for the electrocatalysis of hydrogen evolution, Physical Review B, vol.79, issue.23, p.235436, 2009.