C. W-román-acevedo, M. Ferreyra, C. Sánchez, . Acha, D. Gay et al., Concurrent ionic migration and electronic effects at the memristive TiOx /La1/3Ca2/3MnO3-x interface, J. Phys. D. Appl. Phys, vol.51, p.125304, 2018.

T. Akbay, A. Staykov, J. Druce, H. Téllez, T. Ishihara et al., The interaction of molecular oxygen on LaO terminated surfaces of La2NiO4, J. Mater. Chem. A, vol.4, pp.13113-13124, 2016.

Y. Aoki, C. Wiemann, V. Feyer, H. Kim, C. M. Schneider et al., Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour, Nat. Commun, vol.5, issue.1, p.3473, 2014.

S. Asanuma, H. Akoh, H. Yamada, and A. Sawa, Relationship between resistive switching characteristics and band diagrams of Ti/Pr1-xCaxMnO3 junctions, Phys. Rev. B, vol.80, p.23, 2009.

. Asml, webpage: the TWINSCAN NXE:3400B, accessing the 7 and 5 nm technology nodes

P. L. Bach, J. M. Vila-fungueiriño, V. Leborán, E. Ferreiro-vila, B. Rodríguez-gonzález et al., Strain-induced enhancement of the thermoelectric power in thin films of hole-doped La2NiO4+?, APL Mater, vol.1, issue.2, p.38, 2013.

I. G. Baek, M. S. Lee, S. Sco, M. J. Lee, D. H. Seo et al., Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage References pulses, IEDM Tech. Dig. IEEE Int. Electron Devices Meet, pp.587-590, 2004.

K. Baek, S. Park, J. Park, Y. M. Kim, H. Hwang et al., situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface, vol.9, pp.582-593, 2017.

C. Baeumer, C. Schmitz, H. H. Amr, H. Ramadan, K. Du et al., Spectromicroscopic insights for rational design of redox-based memristive devices, Nat. Commun, vol.6, p.8610, 2015.

S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, Interface-type resistive switching in perovskite materials, J. Electroceramics, vol.39, p.43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758865

. Bassat, Anisotropic ionic transport properties in La2NiO4+? single crystals, Solid State Ionics, vol.167, p.26, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00137969

J. M. Bassat, F. Gervais, P. Odier, and J. P. Loup, Anisotropic transport properties of La2NiO4 single crystals, Mater. Sci. Eng. B, vol.3, p.25, 1989.

J. M. Bassat, P. Odier, and J. P. Loup, The Semiconductor-to-Metal Transition in Question in La2-xNiO4+? (? > 0 or ? < 0), J. Solid State Chem, vol.110, pp.124-135, 1994.

J. Bassat, J. Loup, and P. Odier, Progressive change with T from hopping to random phase propagation in La2-xNiO4-delta (delta > or = 0), J. Phys. Condens. Matter, vol.6, pp.8285-8293, 1994.

F. E. Bates and J. E. Eldridge, Normal modes of tetragonal La2NiO4 and La2CuO4, isomorphs of the hight Tc superconductor La2-xSrxCuO4. Solid State Commun, vol.72, pp.187-190, 1989.

R. Berdan, E. Vasilaki, A. Khiat, and G. Indiveri, Emulating short-term synaptic dynamics with memristive devices, Sci. Rep, vol.6, p.18639, 2015.

R. N. Bhowmik, K. Venkata, and . Siva, Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system, J. Magn, 2018.

. Magn and . Mater, , vol.457, pp.17-29, 2018.

E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier et al., Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+? oxides, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019259

, Solid State Ionics, vol.176, pp.2717-2725, 2005.

F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil et al., Chemical insight into electroforming of resistive switching manganite heterostructures, arXiv:_barata Materials and Techniques of polychrome wooden sculpture, vol.5, p.56, 2013.

M. Burriel, G. Garcia, M. D. Rossell, A. Figueras, G. Van-tendeloo et al., Enhanced High-Temperature Electronic Transport Properties in Nanostructured Epitaxial Thin Films of the Lan+1NinO3n +1 RuddlesdenPopper Series, vol.19, p.97, 2007.

M. Burriel, . Garcia, J. Santiso, R. Kilner, S. Chater et al., Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+?, J. Mater, 2008.

. Chem, , vol.18, p.26, 2008.

M. Burriel, H. Téllez, R. J. Chater, R. Castaing, P. Veber et al., Influence of Crystal Orientation and Annealing on the Oxygen Diffusion and Surface Exchange of La2NiO4+?, J. Phys. Chem. C, vol.120, p.23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01377151

M. Burriel and L. , Epitaxial thin films of lanthanum nikel oxides: deposition by PI-MOCVD, strutural characterization and high temperature transport properties, 2007.

Y. Cai, Q. Yuan, Y. Ye, J. Liu, and C. Liang, Coexistence of resistance switching and negative differential resistance in the ?-Fe2O3 nanorod film, Phys. Chem. Chem. Phys, vol.18, pp.17440-17445, 2016.

N. Chaban, M. Weber, S. Pignard, and J. Kreisel, Phonon-@ -Raman scattering of perovskite LaNiO3 thin films, Appl. Phys. Lett, vol.97, p.171, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01067349

L. Yang-yin-chen, S. Goux, B. Clima, R. Govoreanu, G. Degraeve et al., Endurance/Retention Trade-off on HfO2/Metal Cap1T1R Bipolar RRAM, IEEE Trans. Electron Devices, vol.60, issue.3, pp.1114-1121, 2013.

. Fu-chien-chiu, A Review on Conduction Mechanisms in Dielectric Films, Adv. Mater. Sci. Eng, vol.2014, p.193, 2014.

F. C. Chou and D. C. Johnston, Phase separation and oxygen diffusion in electrochemically oxidized La2CuO4+d: A static magnetic susceptibility study, Phys. Rev. B, vol.54, pp.572-583, 1996.

A. Chroneos, D. Parfitt, J. A. Kilner, and R. W. Grimes, Anisotropic oxygen diffusion in tetragonal La2NiO4+? : molecular dynamics calculations, 2010.

, J. Mater. Chem, vol.20, p.24, 2010.

L. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit Theory, vol.18, pp.507-519, 1971.

A. R. Cleave, J. A. Kilner, S. J. Skinner, S. T. Murphy, and R. W. Grimes, Atomistic computer simulation of oxygen ion conduction mechanisms in La2NiO4, Solid State Ionics, vol.179, pp.823-826, 2008.

M. De-andres, J. Fernandez-diaz, . Martinez, . Rodriguez-carvajal, F. Saez-puche et al., Raman scattering of orthorhombic and tetragonal Ln 2 NiO 4+ delta (Ln identical to La,Pr,Nd) oxides, J. Phys. Condens. Matter, vol.3, pp.3813-3823, 1991.

A. D. Roger and . Souza, Limits to the rate of oxygen transport in mixedconducting oxides, J. Mater. Chem. A, vol.5, p.12, 2017.

A. Demourgues, P. Dordor, J. Doumerc, J. Grenier, E. Marquestaut et al., Transport and Magnetic Properties of La2NiO4+? (0<? <0.25), J. Solid State Chem, vol.124, issue.2, pp.199-204, 1996.

P. Deng and V. A. Klyachko, The diverse functions of short-term plasticity components in synaptic computations, Commun. Integr. Biol, vol.4, issue.5, pp.543-548, 2011.

Y. Dobin, R. Nikolaev, N. Krivorotov, D. Dahlberg, M. Goldman et al., Electronic and crystal structure of fully strained LaNiO3 films, Phys. Rev. BCondens. Matter Mater. Phys, vol.68, pp.3-7, 2003.

J. Drennan, C. P. Tavares, and B. C. Steele, An electron microscope investigation of phases in the system La-Ni-O, Mater. Res. Bull, vol.17, issue.5, pp.621-626, 1982.

Y. Du, H. Pan, S. Wang, and T. Wu, Symmetrical negative differential resistance behavior of a resistive switching device, ACS Nano, vol.6, p.88, 2012.

C. Frayret, A. Villesuzanne, and M. Pouchard, Application of density functional theory to the modeling of the mixed ionic and electronic conductor La2NiO4+? : Lattice relaxation, oxygen mobility, and energetics of Frenkel defects, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018809

, Chem. Mater, vol.17, pp.6538-6544, 2005.

E. Gale, The Memory-Conservation Theory of Memristance, 2011.

X. Gao, Y. Xia, J. Ji, H. Xu, Y. Su et al., Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films, Appl. Phys. Lett, vol.97, p.87, 2010.

G. Garcia, J. Caro, and J. Santiso, Pulsed injection MOCVD of YSZ thin films onto dense and porous substrates, Albert Figueras, and Adulfus Abrutis, vol.9, p.155, 2003.

J. L. García-muñoz, J. Rodríguez-carvajal, P. Lacorre, and J. B. Torrance, Electronically induced structural changes across the metal-insulator transition, Phys. Rev. B, vol.46, pp.4414-4425, 1992.

G. A. Gibson, Designing Negative Differential Resistance Devices Based on Self-Heating, Adv. Funct. Mater, vol.28, pp.1-9, 2018.

J. B. Goodenough and S. Ramasesha, Further evidence for the coexistence of localized and itinerant 3d electrons in La2NiO4, Mater. Res. Bull, vol.17, issue.9, p.92902, 1982.

M. Hasan, R. Dong, H. Choi, D. Lee, M. B-pyun et al., Uniform resistive switching with a thin reactive metal interface layer, Appl. Phys. Lett, vol.202102, p.202102, 2008.

A. Hayashi, H. Tamura, and Y. Ueda, Successive structural phase transitions in stoichiometric La2NiO4 observed by X-ray diffraction, Phys. C Supercond. its Appl, vol.216, issue.93, pp.90635-90639, 1993.

A. Herpers, C. Lenser, C. Park, F. Offi, F. Borgatti et al., Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices, Adv. Mater, vol.26, pp.2730-2735, 2014.

T. W. Hickmott, Low-Frequency Negative Resistance in Thin Anodic Oxide Films, J. Appl. Phys, vol.33, pp.2669-2682, 1962.

Z. Hiroi, T. Obata, M. Takano, Y. Bando, Y. Takeda et al., Ordering of interstitial oxygen atoms in La2NiO4 observed by transmission electron microscopy, Phys. Rev. B, vol.41, pp.11665-11668, 1990.

L. Hong, T. Thanh, D. Nam, N. Thuan, and N. Phuc, Switching and Electrical Memory Effect in theColossal Permittivity Material La2NiO4+d, J. Korean Phys. Soc, vol.53, issue.5, pp.2582-2586, 2008.

M. Hücker, K. Chung, M. Chand, T. Vogt, J. M. Tranquada et al., Oxygen and strontium codoping of La2NiO4: Room-temperature phase diagrams, 2004.

, Phys. Rev. B, vol.70, p.19, 2004.

S. Kyu-seog-hwang, Y. Suk-min, and . Park, Formation of highlyoriented and polycrystalline lanthanum nicklelate films by a spin coating-pyrolysis References process, Surf. Coatings Technol, vol.137, pp.1123-1126, 2001.

. Intel, webpage: The Story of the Intel 4004, Intel's First Microprocessor, 2018.

K. Ishikawa, K. Shibata, T. Watanabe, M. Isonaga, Y. Hashimoto et al., Metal -Semiconductor Transition of La2NiO4+?, J. Solid State Chem, vol.131, issue.2, pp.275-281, 1997.

M. Jain, N. K. Karan, J. Yoon, H. Wang, I. Usov et al., High tunability of lead strontium titanate thin films using a conductive LaNiO3 as electrodes, Appl. Phys. Lett, vol.91, pp.1-4, 2007.

R. Moon-hyung-jang, P. Agarwal, D. Nukala, A. T. Choi, I. W. Johnson et al., Observing Oxygen Vacancy Driven Electroforming in Pt-TiO2-Pt Device via Strong Metal Support Interaction, Nano Lett, vol.16, issue.4, pp.2139-2144, 2016.

B. Doo-seok-jeong, C. Choi, and . Hwang, Electroforming Processes in Metal Oxide Resistive-Switching Cells, Resist. Switch, vol.12, p.13, 2016.

H. Doo-seok-jeong, U. Schroeder, R. Breuer, and . Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere, J. Appl. Phys, vol.104, p.91, 2008.

C. H. Jia, X. W. Sun, G. Q. Li, Y. H. Chen, and W. F. Zhang, Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions, Appl. Phys. Lett, vol.104, p.43501, 2014.

J. D. Jorgensen, B. Dabrowski, S. Pei, D. G. Hinks, L. Soderholm et al., Superconducting phase of La2CuO4+d. A superconducting composition resulting from phase separation, 1988.

, , vol.38, pp.11337-11345, 1988.

J. D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards, and D. G. Hinks, Structure of the interstitial oxygen defect in La2NiO4+d, Phys. Rev. B, vol.40, p.26, 1989.

J. , J. Yang, F. Miao, M. D. Pickett, A. Douglas et al., The mechanism of electroforming of metal oxide memristive switches, Nanotechnology, vol.20, p.13, 2009.

J. Woo-hwan, Dielectric Relaxation and Hopping Conduction in La2NiO4+d, 2013.

J. Mater, , pp.1-6, 2013.

A. P. Vladislav-v-kharton, E. N. Viskup, F. Naumovich, and . Marques, Oxygen ion transport in La2NiO4-based ceramics, J. Mater. Chem, vol.9, p.25, 1999.

J. A. Kilner and M. Burriel, Materials for Intermediate-Temperature Solid-Oxide Fuel Cells, Annu. Rev. Mater. Res, vol.44, pp.365-393, 2014.

K. Kim, High Density Crossbar Structure for Memory Application, 2011.

J. S. Sun-gil-kim, H. Han, S. Y. Kim, . Kim, . Ho-won et al., Recent Advances in Memristive Materials for Artificial Synapses, Adv. Mater. Technol, vol.1800457, p.85, 2018.

P. King, H. Wei, Y. Nie, M. Uchida, C. Adamo et al., Atomic-scale control of competing electronic phases in ultrathin LaNiO3, Nat. Nanotechnol, vol.9, p.100, 2014.

D. Lee and H. Lee, Controlling Oxygen Mobility in RuddlesdenPopper Oxides, Materials (Basel), vol.10, issue.4, p.368, 2017.

H. Lee, T. Wu, and J. Lee, X-ray absorption spectroscopic studies of sputter-deposited LaNiO3 thin films on Si substrate, J. Appl. Phys, vol.80, 1996.

J. S. Lee, S. Lee, and T. Noh, Resistive switching phenomena: A review of statistical physics approaches, Appl. Phys. Rev, vol.2, issue.3, p.31303, 2015.

M. Lee, C. B. Lee, D. Lee, M. Seung-ryul-lee, J. H. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures, Nat. Mater, vol.10, pp.625-630, 2011.

A. Li, C. Ge, P. Lü, and N. Ming, Preparation of perovskite conductive LaNiO3 films by metalorganic decomposition, Appl. Phys. Lett, vol.1347, p.1347, 1995.

X. Li, J. Zhai, and H. Chen, Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thin films grown on LaNiO3-buffered and Pt-buffered silicon substrates by sol-gel processing, J. Appl. Phys, vol.97, p.24102, 2005.

Z. Liao, P. Gao, X. Bai, D. Chen, and J. Zhang, Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3, J. Appl. Phys, vol.111, p.114506, 2012.

Z. Liao, P. Gao, Y. Meng, H. Zhao, X. Bai et al., Electroforming and endurance behavior of, 2011.

. Al/pr0, 7Ca0.3MnO3/Pt devices, Appl. Phys. Lett, vol.99, p.87, 2011.

E. Lim and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics, vol.4, pp.586-613, 2015.

X. J. Liu, X. M. Li, W. D. Wang, . Yu, . Yang et al., Improved resistive switching properties in Ti/TiOx/La0.7Ca0.3MnO3 /Pt stacked structures, Solid State Commun, vol.150, issue.2, p.86, 2010.

V. Metlenko, H. Amr, F. Ramadan, H. Gunkel, H. Du et al., Do dislocations act as atomic autobahns for oxygen in the References 143, 2014.

. Perovskite-oxide-srtio3, Nanoscale, vol.6, pp.12864-12876, 2014.

L. Minervini, R. W. Grimes, J. A. Kilner, and K. E. Sickafus, Oxygen migration in La2NiO4+?, J. Mater. Chem, vol.10, p.23, 2000.

E. Gordon and . Moore, Cramming more components onto integrated circuits, Proc. IEEE, vol.86, pp.82-85, 1998.

R. Moreno, P. Garcia, J. Zapata, J. Roqueta, J. Chaigneau et al., Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved X-ray diffraction, Chem. Mater, vol.25, p.208, 2013.

R. Moreno, J. Zapata, . Roqueta, J. Bagués, and . Santiso, Chemical Strain and Oxidation-Reduction Kinetics of Epitaxial Thin Films of Mixed Ionic-Electronic Conducting Oxides Determined by X-Ray Diffraction, J. Electrochem. Soc, vol.161, pp.3046-3051, 2014.

R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Coexistence of Filamentary and Homogeneous Resistive Switching in Fe-Doped SrTiO3 Thin-Film Memristive Devices, Adv. Mater, vol.22, pp.4819-4822, 2010.

M. S. Munde, A. Mehonic, W. H. Ng, M. Buckwell, L. Montesi et al., Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure, Sci. Rep, vol.7, pp.1-7, 2017.

V. K. Nagareddy, M. D. Barnes, F. Zipoli, K. T. Lai, A. M. Alexeev et al., Multilevel Ultrafast Flexible Nanoscale Nonvolatile Hybrid Graphene Oxide-Titanium Oxide Memories, 2017.

, ACS Nano, vol.11, pp.3010-3021, 2017.

. Navrotsky, Thermochemistry of Perovskite-related oxides with high oxidation states: Superconductors, sensors, fuel cell materials, Pure Appl. Chem, vol.66, issue.9, p.80, 1994.

U. Viet-huong-nguyen, A. Gottlieb, D. Valla, D. Muñoz, D. Bellet et al., Electron tunneling through grain boundaries in transparent References conductive oxides and implications for electrical conductivity: The case of ZnO:Al thin films, Mater. Horizons, vol.5, pp.715-726, 2018.

S. Nishiyama, T. Sakaguchi, and . Hattori, Electrical conduction and thermoelectricity of La2NiO4+? and La2(Ni,CO)O4+?, Solid State Commun, vol.94, pp.279-282, 1995.

R. Ortega-hernandez, M. Coll, J. Gonzalez-rosillo, A. Palau, X. Obradors et al., Resistive switching in CeO2/La0.8Sr0.2MnO3 bilayer for non-volatile memory applications, Microelectron. Eng, vol.147, pp.37-40, 2015.

H. Peng, G. Li, J. Y-ye, Z. Wei, Z. Zhang et al., Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms, Appl. Phys. Lett, vol.96, p.27, 2010.

H. Peng, J. C. Pu, . Wu, J. Cha, W. Hong et al., Effects of electrode material and configuration on the characteristics of planar resistive switching devices, APL Mater, vol.1, issue.5, p.52106, 2013.

A. Perrichon, A. Piovano, M. Boehm, M. Zbiri, M. Johnson et al., Lattice Dynamics Modified by Excess Oxygen in Nd2NiO4+? : Triggering Low-Temperature Oxygen Diffusion, J. Phys. Chem. C, vol.119, pp.1557-1564, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01107610

R. Mohan-ram, L. Ganapathi, P. Ganguly, and C. N-r-rao, Evolution of threedimensional character across the Lan+1NinO3n+1homologous series with increase in n, J. Solid State Chem, vol.63, issue.86, p.18, 1986.

C. N. Rao, D. J. Buttrey, N. Otsuka, P. Ganguly, H. R. Harrison et al., Crystal structure and semiconductor-metal transition of the quasitwo-dimensional transition metal oxide, La2NiO4, J. Solid State Chem, vol.51, issue.2, p.18, 1984.

D. E. Rice and D. J. Buttrey, An X-Ray diffraction Study of the Oxygen Content Phase Diagram of La2NiO4, vol.18, p.19, 1993.

, References 145

J. Rodriguez-carvajal, M. Fernandez-diaz, and J. Martinez, Neutron diffraction study on structural and magnetic properties of La2NiO4, J. Phys. Condens. Matter, vol.3, p.25, 1991.

M. Aruppukottai, D. Saranya, A. Pla, A. Morata, J. Cavallaro et al., Engineering Mixed Ionic Electronic Conduction in La0.8Sr0.2MnO3+? Nanostructures through Fast Grain Boundary Oxygen Diffusivity, Adv. Energy Mater, vol.5, p.1500377, 2015.

. Saraswat, Metal/SC Ohmic contacts, vol.25, p.51, 1997.

K. M. Satyalakshmi, R. M. Mallya, K. V. Ramanathan, X. D. Wu, B. Brainard et al., Epitaxial metallic LaNiO3 thin films grown by pulsed laser deposition, Appl. Phys. Lett, vol.62, pp.1233-1235, 1993.

A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0, 2004.

, Appl. Phys. Lett, vol.85, p.87, 2004.

A. Sawa and R. Meyer, Interface-Type Switching, Resist. Switch, pp.457-482, 2016.

M. Sayer and P. Odier, Electrical properties and stoichiometry in La2NiO4, J. Solid State Chem, vol.67, p.80, 1987.

R. Sayers, R. A. Souza, J. A. Kilner, and S. J. Skinner, Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate, Solid State Ionics, vol.181, issue.10, pp.386-391, 2010.

R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert et al., Metal-insulator transition in ultrathin LaNiO3 films, Phys. Rev. Lett, vol.106, pp.3-6, 2011.

R. Scherwitzl, P. Zubko, C. Lichtensteiger, and J. M. Triscone, Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3, Appl. Phys. Lett, vol.95, pp.2007-2010, 2009.

H. Schroeder, V. Victor, R. K. Zhirnov, R. Cavin, and . Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells, J. Appl. Phys, vol.107, pp.1-9, 2010.

K. Ivan, R. Schuller, R. Stevens, M. Pino, and . Pechan, Neuromorphic Computing-From Materials Research to Systems Architecture Roundtable, USDOE Office of Science, vol.2, issue.SC, p.4, 2015.

J. Sénateur, C. Dubourdieu, M. Weiss, A. Rosina, and . Abrutis, Pulsed injection MOCVD of functional electronic oxides, Adv. Mater. Opt. Electron, vol.10, p.164, 2000.

J. S-u-sharath, P. Kurian, . Komissinskiy, . Hildebrandt, . Bertaud et al., Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories, Appl. Phys. Lett, vol.105, p.73505, 2014.

K. Shono, H. Kawano, T. Yokota, and M. Gomi, Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pr0.7Ca0.3MnO3/Pt structure, Appl. Phys. Express, vol.1, issue.5, p.56, 2008.

H. Sim, H. Choi, D. Lee, M. Chang, D. Choi et al., Excellent resistance switching characteristics of Pt/SrTiO/sub 3/ schottky junction for multi-bit nonvolatile memory application. Electron Devices Meet, 2005.

. Dig and . Int, , vol.00, pp.758-761, 2005.

J. Stephen and . Skinner, Characterisation of La2NiO4+? using in-situ high temperature neutron powder diffraction, Solid State Sci, vol.5, p.24, 2003.

S. J. Skinner and J. A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+?, Solid State Ionics, vol.135, p.25, 2000.

J. Son, P. Moetakef, J. M. Lebeau, D. Ouellette, L. Balents et al., Low-dimensional Mott material: TransReferences, vol.147, 2010.

, Appl. Phys. Lett, vol.96, issue.6, p.173, 2010.

D. B. Strukov, F. Alibart, and R. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metaloxide-metal memristors, Appl. Phys. A, vol.107, issue.3, pp.509-518, 2012.

B. Dmitri, . Strukov, S. Gregory, . Snider, R. Duncan et al., The missing memristor found, Nature, vol.453, pp.80-83, 2008.

D. Telesca, B. O. Wells, and B. Sinkovic, Structural reorientation of PLD grown La2NiO4 thin films, Surf. Sci, vol.606, p.180, 2012.

T. Dang-thanh, H. T. Van, D. T. Thu, L. V. Bau, D. N. Nguyen-van-dang et al., Structure, Magnetic, and Electrical Properties of La2NiO4+d Compounds, IEEE Trans. Magn, vol.53, issue.11, pp.1-4, 2017.

P. Bobo-tian, M. Nukala, X. Ben-hassine, X. Zhao, H. Wang et al., Interfacial memristors in Al-LaNiO3 heterostructures, Phys. Chem. Chem. Phys, vol.19, pp.16960-16968, 2017.

J. M. Tranquada, D. J. Buttrey, V. Sachan, and J. E. Lorenzo, Simultaneous ordering of holes and spins in La2NiO4.125, Phys. Rev. Lett, vol.73, issue.7, pp.1003-1006, 1994.

J. M. Tranquada, Y. Kong, J. E. Lorenzo, D. J. Buttrey, D. E. Rice et al., Oxygen intercalation, stage ordering, and phase separation in La2NiO4+d with 0.05<d<0.11, Phys. Rev. B, vol.50, p.25, 1994.

L. Harry, S. R. Tuller, and . Bishop, Point Defects in Oxides: Tailoring Materials Through Defect Engineering, Annu. Rev. Mater. Res, vol.41, pp.369-398, 2011.

T. Raymond and . Tung, The physics and chemistry of the Schottky barrier height, 2014.

, Appl. Phys. Rev, vol.1, p.77, 2014.

I. Valov and R. Waser, 09 Physics and Chemistry of Nanoionic, In Resist. Switch. From Fundam. Nanoionic Redox Process. to Memristive Device Appl, pp.253-287, 2016.

S. Vongehr, The Missing Memristor: Novel Nanotechnology or rather new Case Study for the Philosophy and Sociology of Science?, Adv. Sci. Lett, vol.17, pp.285-290, 2012.

Z. Wang, S. Joshi, E. Sergey, H. Savel&apos;ev, R. Jiang et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater, vol.16, 2016.

Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi et al., Nanoionics-Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications, Adv. Electron. Mater, vol.3, issue.7, p.1600510, 2017.

R. Waser, Redox-Based Resistive Switching Memories, Journal of Applied Physics, vol.12, p.9, 2005.

M. C. Weber, M. Guennou, N. Dix, D. Pesquera, F. Sánchez et al., Multiple strain-induced phase transitions in LaNiO3 thin films, Phys. Rev. B, vol.94, p.1, 2016.

J. Russell, . Woolley, N. Benoit, M. P. Illy, S. Ryan et al., In situ determination of the nickel oxidation state in La2NiO4+? and La4Ni3O10-? using Xray absorption near-edge structure, J. Mater. Chem, vol.21, p.197, 2011.

T. Yamamoto, R. Yasuhara, I. Ohkubo, H. Kumigashira, and M. Oshima, Formation of transition layers at metal perovskite oxide interfaces showing resistive switching behaviors, J. Appl. Phys, vol.110, p.87, 2011.

G. Yang, C. H. Jia, Y. H. Chen, X. Chen, and W. F. Zhang, Negative differential resistance and resistance switching behaviors in BaTiO3 thin films, J. Appl. Phys, vol.115, p.204515, 2014.

J. Yang, Structural analysis of perovskite LaCr1-x Nix O3 by Rietveld refinement of X-ray powder diffraction data, Acta Crystallogr. Sect. B Struct. Sci, vol.64, issue.3, pp.281-286, 2008.

J. , J. Yang, M. D. Pickett, X. Li, A. A. Douglas et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol, vol.3, pp.429-433, 2008.

J. , J. Yang, J. P. Strachan, F. Miao, M. X. Zhang et al., Metal/TiO2 interfaces for memristive switches, Appl. Phys. A Mater. Sci. Process, vol.102, p.50, 2011.

J. Ki-hyun-yoon, . Sohn, D. Byoung-duk-lee, and . Kang, Effect of LaNiO3 interlayer on dielectric properties of (Ba0.5Sr0.5)TiO3 thin films deposited on differently oriented Pt electrodes, Appl. Phys. Lett, vol.81, 2002.

J. Zhang, H. Zheng, Y. Ren, and J. F. Mitchell, High-Pressure FloatingZone Growth of Perovskite Nickelate LaNiO3 Single Crystals, Cryst. Growth Des, vol.17, issue.5, pp.2730-2735, 2017.

Z. Zhang, Y. Zhao, and M. Zhu, NiO films consisting of vertically aligned cone-shaped NiO rods, Appl. Phys. Lett, vol.88, issue.3, pp.1-3, 2006.

M. Zhu, P. Komissinskiy, A. Radetinac, M. Vafaee, Z. Wang et al., Effect of composition and strain on the electrical properties of LaNiO3 thin films, Appl. Phys. Lett, vol.103, p.141902, 2013.

M. Zinkevich and F. Aldinger, Thermodynamic analysis of the ternary La-Ni-O system, J. Alloys Compd, vol.375, p.177, 2003.

A. Figure, 7 -(a) ? -2? XRD patterns of lanthanum-nickelate thin films deposited on STO substrates with increasing La/Ni atomic ratios in the injected solution. (b) and (c) are magnifications of the areas inside the red rectangles drawn in (a)

, B.1.1 Thin film deposition by PiMOCVD

, 1 La and Ni atomic concentration in the injected solution, p.166

, 1 Electrical properties of the films

, 2 Strain effect in the epitaxial LNO3/LAO and LNO3/STO films, p.169

, Microscopic Characterization of the microstructure: a TEM study, vol.173

. .. Pimocvd, L2NO4/LNO3 bilayers prepared by, p.177

, 180 deposited by PiMOCVD on STO (100) and LAO (100) perovskite single-crystal substrates (a pseudo-cubic setting was used for LAO)

, Reciprocal Space Maps of La 2 NiO 4

. .. Xpeem), , p.188

, C.2.5 Electron-Probe Micro-Analysis

C. , Details on the Transmission Line Measurements (TLM) measurements 190

, Conduction mechanisms in a metal/oxide/metal heterostructure, p.192