R. A. Adams, J. F. , and J. Fournier, Sobolev spaces, Pure Appl. Math, p.140, 2003.

V. I. Arnold, Ordinary Differential Equations, p.249, 1992.

V. Barbu, Partial differential equations and boundary value problems, vol.441

, Springer Science & Business Media, 2013.

J. Barrett and E. Suli, Existence of global weak solutions to some regularized kinetic models for dilute polymers, Multiscale Model. Simul, pp.506-546, 2007.

A. Bensoussan, G. Da, M. C. Prato, S. K. Delfour, and . Mitter, Representation and control of infinite dimensional systems, vol.1, pp.432-438, 1993.

K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks, American Journal of Physics, 1991.
DOI : 10.1119/1.16590

J. P. Bourguignon and H. Brezis, Remarks on the Euler equations, J. Funct. Analysis, pp.341-363, 1976.

F. Boyer and P. Fabrie, Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, vol.52, 2005.
DOI : 10.1007/3-540-29819-3

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2010.
DOI : 10.1007/978-0-387-70914-7

C. Conca, J. A. San-martin, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, vol.25, pp.99-110, 2000.

P. Constantin and M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal, vol.206, issue.3, pp.725-740, 2012.

P. Cumsille and T. Takahashi, Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J, vol.58, pp.961-992, 2008.

B. Desjardins and M. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal, vol.146, pp.59-71, 1999.

B. Desjardins and M. Esteban, On weak solutions for fluidrigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations, vol.25, pp.263-285, 2000.

R. Farwig and H. Sohr, The stationary and non-stationary stokes system in exterior domains with non-zero divergence and non-zero boundary values, Math. methods Appl. Sci, vol.17, pp.269-291, 1994.

E. , On the motion of rigid bodies in a viscous fluid, Appl. Math, vol.47, pp.463-484, 2002.

E. Feireisl, M. Hillairet, and . Necasová, On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, vol.21, issue.6, p.1349, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00635182

G. P. Galdi and A. L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, Nonlinear Problems in Mathematical Physics and Related Topics I, pp.121-144, 2002.

M. Geissert, K. Götze, and M. Hieber, L p theory for strong solutions to fluid-rigid body interaction in newtonian and generalized newtonian fluids, Trans. Amer. Math. Soc, vol.365, pp.1393-1439, 2013.
DOI : 10.1090/s0002-9947-2012-05652-2

D. Gérard-varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. for ration. mech. Anal, vol.195, pp.375-407, 2010.

C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Analy, vol.34, pp.609-636, 2000.
DOI : 10.1051/m2an:2000159

URL : https://www.esaim-m2an.org/articles/m2an/pdf/2000/03/m2an912.pdf

C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal, pp.849-869, 1990.

T. I. Hesla, Collisions of smooth bodies in viscous fluids: A mathematical investigation, 2005.

M. Hillairet, Lack of collision between solid bodies in a 2d incompressible viscous flow, Comm. Partial Differential Equations, vol.32, pp.1345-1371, 2007.

M. Hilliaret and T. Takahashi, Blow up and grazing collision in viscous fluid solid interaction systems, Analyse non linéaire, pp.291-313, 2010.

M. Hilliaret and T. Takahashi, Collision in 3D fluid structure interaction problems, SIAM J. Math. Anal, pp.2451-2477, 2009.

K. H. Hoffmann and V. Starovoitov, On a motion of a solid body in a viscous fluid. two-dimentional case, Adv. Math. Sci. Appl, vol.9, pp.633-648, 1999.

A. Inoue and M. Wakimoto, On existence of solutions of the navier-stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.24, pp.303-319, 1977.

N. Judakov, The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splosn. Sredy, vol.255, pp.249-253, 1974.

J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol.1, 1972.
DOI : 10.1007/978-3-642-65393-3

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of nonNewtonian flows, Chinese Ann. Math. Ser. B, vol.21, issue.2, pp.131-146, 2000.

M. Molina and P. E. Mercado, Modelling and Control Design of PitchControlled Variable Speed Wind Turbines, 2011.

L. Molinet and R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Differential Equations Appl, vol.1, issue.3, pp.349-359, 2004.

J. A. San-martín, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rot. Mech. Anal, vol.161, pp.113-147, 2002.

J. C. Saut, Lectures on the mathematical theory of viscoelastic fluids, 2012.

D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. existence, Japan J. Appl. Math, vol.4, pp.99-110, 1987.
DOI : 10.1007/bf03167757

A. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech, vol.4, pp.285-326, 2002.

V. N. Starovoitov, Behavior of a rigid body in an incompressible viscous fluid near a boundary, pp.313-327, 2003.

V. N. Starovoitov, Nonuniqueness of a solution to the problem on motion of rigid body in a viscous incompressible fluid, J. Math. Sci, 2005.

T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, vol.8, pp.1499-1532, 2003.

T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech, vol.6, pp.53-77, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00141195

R. Temam, Navier-Stokes equations and nonlinear functional analysis, 1995.

R. Temam, Navier-Stokes equations: theory and numerical analysis, American Mathematical Soc, vol.343, 2001.

R. Temam, Problèmes mathématiques en plasticité , gauthier-villars, paris, 1983.

J. L. Vàzquez and E. Zuazua, Large time behavior for a simplified 1D model of fluidsolid interaction, Comm. Partial Differential Equations, vol.28, issue.9, pp.1705-1738, 2003.

L. Wang, Nonlinear aeroelastic modelling of large wind turbine composite blades, University of Central Lancashire, 2015.