B. Pospiech and W. Kujawski, Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation, Rev. Chem. Eng, vol.31, pp.179-191, 2015.

W. Kujawski, M. Staniszewski, and T. Q. Nguyen, Transport parameters of alcohol vapors through ion-exchange membranes, Sep. Purif. Technol, vol.57, pp.476-482, 2007.

L. Karpenko-jereb, E. Rynkowska, W. Kujawski, S. Lunghammer, J. Kujawa et al.,

K. Marais, C. Fatyeyeva, A. M. Chappey, and . Kelterer, Ab initio study of cationic polymeric membranes in water and methanol, Ionics, vol.22, pp.357-367, 2016.

E. Rynkowska, J. Kujawa, C. Chappey, K. Fatyeyeva, L. Karpenko-jereb et al.,

S. Kelterer, W. Marais, and . Kujawski, Effect of the polar-nonpolar liquid mixtures on pervaporative behavior of perfluorinated sulfonic membranes in lithium form, J. Membr. Sci, vol.518, pp.313-327, 2016.

C. Chappey, K. Fatyeyeva, E. Rynkowska, W. Kujawski, L. Karpenko-jereb et al., Sulfonic membrane sorption and permeation properties: Complementary approaches to select a membrane for pervaporation, J. Phys. Chem. B, vol.121, pp.8523-8538, 2017.

, Membrane modification. Technology and applications, 2012.

B. Smitha, D. Suhanya, S. Sridhar, and M. Ramakrishna, Separation of organic-organic mixtures by pervaporation -a review, J. Membr. Sci, pp.1-21, 2004.

N. K. Acharya, V. Kulshrestha, K. Awasthi, A. K. Jain, M. Singh et al., Hydrogen separation in doped and blend polymer membranes, Int. J. Hydrogen Energy, vol.33, pp.327-331, 2008.

, Membrane technology benefits the food processing industry, Filtr, pp.32-33, 2004.

E. M. Hoek and V. Tarabara, Encyclopedia of membrane science and technology, 1999.

R. W. Baker, Membrane technology and applications, 2004.

H. Strathmann, Introduction to Membrane Science and Technology, 2011.

M. Mulder, Basic principles of membrane technology, 1996.

W. Kujawski, Application of pervaporation and vapor permeation in environmental protection, Pol. J. Environ. Stud, vol.1, pp.13-26, 2000.

M. Ulbricht, Advanced functional polymer membranes, Polymer, vol.47, pp.2217-2262, 2006.

S. Roy and N. Singha, Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects, Membranes, vol.7, p.53, 2017.

N. Hilal, A. F. Ismail, and C. J. Wright, Membrane Fabrication, 2015.

J. Ren and R. Wang, Preparation of polymeric membranes, Membrane and Desalination Technologies, pp.47-100, 2011.

I. Pinnau and B. D. Freeman, Formation and modification of polymeric membranes: overview, in: Membrane Formation and Modification, pp.1-22, 1999.

B. Bolto, T. Tran, M. Hoang, and Z. Xie, Crosslinked poly(vinyl alcohol) membranes, Prog. Polym. Sci, vol.34, pp.969-981, 2009.

Y. Ye, J. Rick, and B. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A, vol.1, pp.2719-2743, 2013.

K. C. Khulbe, C. Feng, and T. Matsuura, The art of surface modification of synthetic polymeric membranes, J. Appl. Polym. Sci, vol.115, pp.855-895, 2010.

S. S. Hosseini, E. Bringas, N. R. Tan, I. Ortiz, M. Ghahramani et al., Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review, J. Water Process Eng, vol.9, pp.78-110, 2016.

J. G. Bitter, Transport mechanisms in membrane separation processes, 1991.

T. D. Naylor, Permeation properties, Comprehensive Polymer Science and Supplements, pp.643-668, 1989.

A. Rozicka, J. Niemistö, R. L. Keiski, and W. Kujawski, Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures, J. Membr. Sci, vol.453, pp.108-118, 2014.

J. Crank, The mathematics of diffusion, 1975.

G. Jyoti, A. Keshav, and J. Anandkumar, Review on pervaporation: theory, membrane performance, and application to intensification of esterification reaction, J. Eng, pp.1-24, 2015.

D. W. Van-krevelen, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 2009.

A. Y. Houde and S. A. Stern, Solubility and diffusivity of light gases in ethyl cellulose at elevated pressures Effects of ethoxy content, J. Membr. Sci, vol.127, pp.171-183, 1997.

A. S. Michaels and H. J. Bixler, Solubility of gases in polyethylene, J. Polym. Sci, vol.50, pp.393-412, 1961.

T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), J. Polym. Sci., Part B: Polym. Phys, vol.38, pp.415-434, 2000.

T. Messin, N. Follain, A. Guinault, G. Miquelard-garnier, C. Sollogoub et al., Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties, vol.525, pp.135-145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01483691

S. Charlon, N. Follain, C. Chappey, E. Dargent, J. Soulestin et al., Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion, J. Membr. Sci, vol.496, pp.185-198, 2015.

P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci, vol.318, pp.5-37, 2008.

J. G. Crespo and C. Brazinha, Pervaporation, Vapour Permeation and Membrane Distillation, pp.3-17, 2015.

I. L. Borisov, V. V. Volkov, V. A. Kirsh, and V. I. Roldugin, Simulation of the temperature-driven pervaporation of dilute 1-butanol aqueous mixtures through a PTMSP membrane in a cross-flow module, Pet. Chem, vol.51, pp.542-554, 2011.

W. Kujawski and S. R. Krajewski, Sweeping gas pervaporation with hollow-fiber ionexchange membranes, Desalination, vol.162, pp.129-135, 2004.

J. Kujawski, A. Rozicka, M. Bryjak, and W. Kujawski, Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures, Sep. Purif. Technol, vol.132, pp.422-429, 2014.

R. W. Baker, J. G. Wijmans, and Y. Huang, Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data, J. Membr. Sci, vol.348, pp.346-352, 2010.

J. G. Wijmans and R. W. Baker, The solution-diffusion model -a review, J. Membr. Sci, vol.107, pp.1-21, 1995.

Y. Yampolskii, Polymeric gas separation membranes, Macromolecules, pp.3298-3311, 2012.

K. Friess, M. Lan?, K. Pilná?ek, V. Fíla, O. Vopi?ka et al., CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing, J. Membr. Sci, vol.528, pp.64-71, 2017.

L. Cheng, M. S. Rahaman, R. Yao, L. Zhang, X. Xu et al., Study on microporous supported ionic liquid membranes for carbon dioxide capture, Int. J. Greenhouse Gas Control, vol.21, pp.82-90, 2014.

H. Park, E. M. Hoek, and V. V. Tarabara, Encyclopedia of Membrane Science and Technology, 2013.

L. M. Robeson, The upper bound revisited, J. Membr. Sci, vol.320, pp.390-400, 2008.

M. L. Jue and R. P. Lively, Targeted gas separations through polymer membrane functionalization, React. Funct. Polym, vol.86, pp.88-110, 2015.

Y. Y. Gu and T. P. Lodge, Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block, Macromolecules, vol.44, pp.1732-1736, 2011.

L. M. Robeson, B. D. Freeman, D. R. Paul, and B. W. Rowe, An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis, J. Membr. Sci, vol.341, pp.178-185, 2009.

K. Hunger, N. Schmeling, H. B. Jeazet, C. Janiak, C. Staudt et al., Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation, Membranes, issue.2, pp.727-763, 2012.

L. Chen and J. Chen, Asymmetric membrane containing ionic liquid [A336][P507] for the preconcentration and separation of heavy rare earth lutetium, ACS Sustainable Chem. Eng, vol.4, pp.2644-2650, 2016.

D. R. Greer, A. E. Ozcam, and N. P. Balsara, Pervaporation of organic compounds from aqueous mixtures using polydimethylsiloxane-containing block copolymer membranes, AIChE J, vol.61, pp.2789-2794, 2015.

X. Li, K. Y. Wang, B. Helmer, and T. S. Chung, Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes, Ind. Eng. Chem. Res, vol.51, pp.10039-10050, 2012.

C. Liew, K. H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh et al., Electrical and structural studies of ionic liquid-based poly(vinyl alcohol) proton conductors, J. NonCryst. Solids, vol.425, pp.163-172, 2015.

H. Park, M. Misra, L. T. Drzal, and A. K. Mohanty, Green" nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer, Biomacromolecules, vol.5, pp.2281-2288, 2004.

S. Wang, A. Lu, and L. Zhang, Recent advances in regenerated cellulose materials, Prog. Polym. Sci, vol.53, pp.169-206, 2016.

H. Kamal, F. M. Abd-elrahim, and S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation, J. Radiat. Res. Appl. Sci, vol.7, pp.146-153, 2014.

K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler et al.,

D. Shelton and . Tindall, Advances in cellulose ester performance and application, Prog. Polym. Sci, vol.26, pp.1605-1688, 2001.

L. Wang, J. Li, Y. Lin, and C. Chen, Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/poly(vinyl alcohol) blend membranes, J. Membr. Sci, vol.305, pp.238-246, 2007.

C. Moreau, A. Villares, I. Capron, and B. Cathala, Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials, Ind. Crops Prod, vol.93, pp.96-107, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606350

P. A. Dantas and V. R. Botaro, Synthesis and characterization of a new cellulose acetatepropionate gel: crosslinking density determination, Open J. Polym. Chem, vol.2, pp.144-151, 2012.

K. L. Huang, B. Wang, Y. Cao, H. Q. Li, J. S. Wang et al., Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid, J. Agric. Food Chem, vol.59, pp.5376-5381, 2011.

J. Kadokawa, Preparation of polysaccharide-based materials compatibilized with ionic liquids, Ionic Liquids: Applications and Perspectives, 2011.

A. Schenzel, A. Hufendiek, C. Barner-kowollik, and M. A. Meier, Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters, Green Chem, vol.16, pp.3266-3271, 2014.

M. Schilling, M. Bouchard, H. Khanjian, T. Learner, A. Phenix et al., Application of chemical and thermal analysis methods for studying cellulose ester plastics, Acc. Chem. Res, vol.43, pp.888-896, 2010.

M. D. Bastos, L. D. Laurentino, K. M. Canuto, L. G. Mendes, C. M. Martins et al., Physical and mechanical testing of essential oil-embedded cellulose ester films, Polym. Test, vol.49, pp.156-161, 2016.

R. G. Candido, G. G. Godoy, and A. R. Gonçalves, Characterization and application of cellulose acetate synthesized from sugarcane bagasse, Carbohydr. Polym, vol.167, pp.280-289, 2017.

P. ?íhal, O. Vopi?ka, M. Lan?, M. Kludský, J. Velas et al., Poly(butylene succinate)-cellulose triacetate blends: permeation, pervaporation, sorption and physical structure, Polym. Test, vol.65, pp.468-479, 2018.

M. E. Manaf, M. Tsuji, S. Nobukawa, and M. Yamaguchi, Effect of moisture on the orientation birefringence of cellulose esters, Polymers, vol.3, pp.955-966, 2011.

G. Burwell, N. Smith, and O. Guy, Investigation of the utility of cellulose acetate butyrate in minimal residue graphene transfer, lithography, and plasma treatments, Microelectron. Eng, vol.146, pp.81-84, 2015.

M. S. Marques, K. M. Zepon, F. C. Petronilho, V. Soldi, and L. A. Kanis, Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application, Mater. Sci. Eng, vol.76, pp.365-373, 2017.

E. Rynkowska, K. Dzieszkowski, A. Lancien, K. Fatyeyeva, A. Szymczyk et al., Physicochemical properties and pervaporation performance of dense membranes based on cellulose acetate propionate (CAP) and containing polymerizable ionic liquid (PIL), J. Membr. Sci, vol.544, pp.243-251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619410

E. Rudnik, Compostable polymer materials, 2008.

E. S. Carvalho, R. J. Sánchez, M. I. Tavares, and Á. C. Lamônica, Characterization and properties of hydrophilic cellulose acetate propionate derivative, J. Polym. Environ, vol.18, pp.661-667, 2010.

M. Chanda and S. K. Roy, Plastics technology handbook, 2007.

A. J. Guiomar, S. D. Evans, and J. Guthrie, Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection, Cellulose, vol.8, pp.297-301, 2002.

G. S. Luo, M. Niang, and P. Schaetzel, Development of cellulose acetate propionate membrane for separation of ethanol and ethyl tert-butyl ether mixtures, Sep. Sci. Technol, vol.32, pp.1143-1156, 1997.

C. M. Buchanan, S. C. Gedon, A. W. White, and M. D. Wood, Cellulose acetate propionate and poly(tetramethylene glutarate) blends, Macromolecules, vol.26, pp.2963-2967, 1993.

T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, Progress in bio-based plastics and plasticizing modifications, J. Mater. Chem. A, vol.1, pp.13379-13398, 2013.

P. Wojciechowska, The effect of concentration and type of plasticizer on the mechanical properties of cellulose acetate butyrate organic-inorganic hybrids, Recent Advances in Plasticisers, pp.141-164, 2012.

E. Rynkowska, K. Fatyeyeva, J. Kujawa, K. Dzieszkowski, A. Wolan et al., The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes, Polymers, vol.10, p.86, 2018.

M. G. Vieira, M. A. Silva, L. O. Santos, and M. M. Beppu, Natural-based plasticizers and biopolymer films: A review, Eur. Polym. J, vol.47, pp.254-263, 2011.

A. Bendaoud and Y. Chalamet, Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing, Carbohydr. Polym, vol.108, pp.75-82, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01087935

P. Liu, X. Guo, F. Nan, Y. Duan, and J. Zhang, Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid, ACS Appl. Mater. Interfaces, vol.9, pp.3085-3092, 2017.

W. Ning, Z. Xingxiang, L. Haihui, and H. Benqiao, 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes, Carbohydr. Polym, vol.76, pp.482-484, 2009.

K. Matsumoto and T. Endo, Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins, Macromolecules, pp.6981-6986, 2008.

C. Schmidt, T. Glück, and G. Schmidt-naake, Modification of Nafion membranes by impregnation with ionic liquids, Chem. Eng. Technol, vol.31, pp.13-22, 2008.

L. W. Chan, J. S. Hao, and P. W. Heng, Evaluation of permeability and mechanical properties of composite polyvinyl alcohol films, Chem. Pharm. Bull, vol.47, pp.1412-1416, 1999.

O. W. Guirguis and M. T. Moselhey, Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends, Nat. Sci, vol.4, pp.57-67, 2012.

C. López-de-dicastillo, M. Jordá, R. Catalá, R. Gavara, and P. Hernández-muñoz, Development of active polyvinyl alcohol/?-cyclodextrin composites to scavenge undesirable food components, J. Agric. Food Chem, vol.59, pp.11026-11033, 2011.

A. Martínez-felipe, C. Moliner-estopiñán, C. T. Imrie, and A. , Ribes-Greus, Characterization of crosslinked poly(vinyl alcohol)-based membranes with different hydrolysis degrees for their use as electrolytes in direct methanol fuel cells, J. Appl. Polym. Sci, vol.124, pp.1000-1011, 2012.

J. Rhim, H. B. Park, C. Lee, J. Jun, D. S. Kim et al., Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membr. Sci, vol.238, pp.143-151, 2004.

S. M. Mahdi-dadfar, G. Kavoosi, and S. M. Ali-dadfar, Investigation of mechanical properties, antibacterial features, and water vapor permeability of polyvinyl alcohol thin films reinforced by glutaraldehyde and multiwalled carbon nanotube, Polym. Compos, vol.35, pp.1736-1743, 2014.

S. Riyajan, S. Chaiponban, and K. Tanbumrung, Investigation of the preparation and physical properties of a novel semi-interpenetrating polymer network based on epoxised NR and PVA using maleic acid as the crosslinking agent, Chem. Eng. J, vol.153, pp.199-205, 2009.

Y. Wang and Y. Hsieh, Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride, J. Appl. Polym. Sci, vol.116, pp.3249-3255, 2010.

S. Bano, A. Mahmood, and K. Lee, Vapor permeation separation of methanol-water mixtures: effect of experimental conditions, Ind. Eng. Chem. Res, vol.52, pp.10450-10459, 2013.

K. Kim, S. Lee, and N. Han, Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde, Korean J. Chem. Eng, vol.11, pp.41-47, 1994.

K. C. Figueiredo, T. L. Alves, and C. P. Borges, Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions, J. Appl. Polym. Sci, vol.111, pp.3074-3080, 2009.

Y. Zhang, P. C. Zhu, and D. Edgren, Crosslinking reaction of poly(vinyl alcohol) with glyoxal, J. Polym. Res, vol.17, pp.725-730, 2010.

C. Birck, S. Degoutin, N. Tabary, V. Miri, and M. Bacquet, New crosslinked cast films based on poly(vinyl alcohol): Preparation and physico-chemical properties, eXPRESS Polym. Lett, vol.8, pp.941-952, 2014.

Y. Kudoh, T. Kojima, M. Abe, M. Oota, and T. Yamamoto, Proton conducting membranes consisting of poly(vinyl alcohol) and poly(styrene sulfonic acid): Crosslinking of poly(vinyl alcohol) with and without succinic acid, Solid State Ionics, vol.253, pp.189-194, 2013.

C. Ajith, A. P. Deshpande, and S. Varughese, Proton conductivity in crosslinked hydrophilic ionic polymer system: Competitive hydration, crosslink heterogeneity, and ineffective domains, J. Polym. Sci., Part B: Polym. Phys, vol.54, pp.1087-1101, 2016.

L. Wang, J. Li, Y. Lin, and C. Chen, Crosslinked poly(vinyl alcohol) membranes for separation of dimethyl carbonate/methanol mixtures by pervaporation, Chem. Eng. J, vol.146, pp.71-78, 2009.

K. Kumeta, I. Nagashima, S. Matsui, and K. Mizoguchi, Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: Effect of neutralization of PAA, J. Appl. Polym. Sci, vol.90, pp.2420-2427, 2003.

Y. Wang, H. Yang, and Z. Xu, Influence of post-treatments on the properties of porous poly(vinyl alcohol) membranes, J. Appl. Polym. Sci, vol.107, pp.1423-1429, 2008.

N. Follain, J. M. Valleton, L. Lebrun, B. Alexandre, P. Schaetzel et al., Simulation of kinetic curves in mass transfer phenomena for a concentrationdependent diffusion coefficient in polymer membranes, J. Membr. Sci, vol.349, pp.195-207, 2010.

M. P. Singh, R. K. Singh, and S. Chandra, Ionic liquids confined in porous matrices: physicochemical properties and applications, Prog. Mater. Sci, vol.64, pp.73-120, 2014.

N. V. Plechkova and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev, vol.37, pp.123-150, 2008.

T. Peppel, M. Köckerling, M. Geppert-rybczy?ska, R. V. Ralys, J. K. Lehmann et al., Low-viscosity paramagnetic ionic liquids with doubly charged, Angew. Chem., Int. Ed, vol.49, pp.7116-7119, 2010.

A. Takegawa, M. Murakami, Y. Kaneko, and J. Kadokawa, A facile preparation of composites composed of cellulose and polymeric ionic liquids by in situ polymerization of ionic liquids having acrylate groups, Polym. Compos, vol.30, pp.1837-1841, 2009.

M. Diaz, A. Ortiz, M. Isik, D. Mecerreyes, and I. Ortiz, Highly conductive electrolytes based on poly(HSO3-BVIm TfO)/HSO3-BMIm TfO mixtures for fuel cell applications, Int. J. Hydrogen Energy, vol.40, pp.11294-11302, 2015.

J. Lemus, A. Eguizábal, and M. P. Pina, UV polymerization of room temperature ionic liquids for high temperature PEMs: Study of ionic moieties and crosslinking effects, Int. J. Hydrogen Energy, vol.40, pp.5416-5424, 2015.

M. Díaz, A. Ortiz, and I. Ortiz, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J. Membr. Sci, vol.469, pp.379-396, 2014.

C. B. Yue, D. Fang, L. Liu, and T. F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq, vol.163, pp.99-121, 2011.

Z. Dai, R. D. Noble, D. L. Gin, X. Zhang, and L. Deng, Combination of ionic liquids with membrane technology: A new approach for CO2 separation, J. Membr. Sci, vol.497, pp.1-20, 2016.

A. Fernicola, B. Scrosati, and H. Ohno, Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices, Ionics, vol.12, pp.95-102, 2006.

K. Dong, X. Liu, H. Dong, X. Zhang, and S. Zhang, Multiscale studies on ionic liquids, Chem. Rev, vol.117, pp.6636-6695, 2017.

K. N. Marsh, J. A. Boxall, and R. Lichtenthaler, Room temperature ionic liquids and their mixtures -a review, Fluid Phase Equilib, vol.219, pp.93-98, 2004.

C. Liew, S. Ramesh, and A. K. Arof, Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties, Int. J. Hydrogen Energy, vol.39, pp.2953-2963, 2014.

C. Liew, S. Ramesh, and A. K. Arof, A novel approach on ionic liquid-based poly(vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications, Int. J. Hydrogen Energy, vol.39, pp.2917-2928, 2014.

R. L. Vekariya, A review of ionic liquids: applications towards catalytic organic transformations, J. Mol. Liq, vol.227, pp.44-60, 2017.

R. Zarrougui, R. Mdimagh, and N. Raouafi, Highly efficient extraction and selective separation of uranium(VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions, J. Hazard. Mater, vol.342, pp.464-476, 2018.

J. Lu, F. Yan, and J. Texter, Advanced applications of ionic liquids in polymer science, Prog. Polym. Sci, vol.34, pp.431-448, 2009.

E. Rynkowska, K. Fatyeyeva, and W. Kujawski, Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review, Rev. Chem. Eng, vol.34, pp.341-363, 2018.

T. Makanyire, S. Sanchez-segado, and A. Jha, Separation and recovery of critical metal ions using ionic liquids, Adv. Manuf, vol.4, pp.33-46, 2016.

D. D. Agreda, I. Garcia-diaz, F. A. López, and F. J. , Supported liquid membranes technologies in metals removal from liquid effluents, Rev. Metal, vol.47, pp.146-168, 2011.

J. Grünauer, V. Filiz, S. Shishatskiy, C. Abetz, and V. Abetz, Scalable application of thin film coating techniques for supported liquid membranes for gas separation made from ionic liquids, J. Membr. Sci, vol.518, pp.178-191, 2016.

J. Wang, J. Luo, S. Feng, H. Li, Y. Wan et al., Recent development of ionic liquid membranes, Green Energ. Environ, vol.1, pp.43-61, 2016.

T. Uragami, E. Fukuyama, and T. Miyata, Selective removal of dilute benzene from water by poly(methyl methacrylate)-graft-poly(dimethylsiloxane) membranes containing hydrophobic ionic liquid by pervaporation, J. Membr. Sci, vol.510, pp.131-140, 2016.

Y. T. Ong and S. H. Tan, Pervaporation separation of a ternary azeotrope containing ethyl acetate, ethanol and water using a buckypaper supported ionic liquid membrane, Chem. Eng. Res. Des, vol.109, pp.116-126, 2016.

A. S. Shaplov, R. Marcilla, and D. Mecerreyes, Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s, Electrochim. Acta, vol.175, pp.18-34, 2015.

Y. Yang, H. Gao, and L. Zheng, Anhydrous proton exchange membranes at elevated temperatures: effect of protic ionic liquids and crosslinker on proton conductivity, RSC Adv, vol.5, pp.17683-17689, 2015.

E. I. Izgorodina and D. R. Macfarlane, Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids, J. Phys. Chem. B, vol.115, pp.14659-14667, 2011.

M. D. Green and T. E. Long, Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies, Polym. Rev, vol.49, pp.291-314, 2009.

S. Imaizumi, H. Kokubo, and M. Watanabe, Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers, Macromolecules, pp.401-409, 2012.

T. P. Lodge, A unique platform for materials design, Science, pp.50-51, 2008.

M. K. Mistry, S. Subianto, N. R. Choudhury, and N. K. Dutta, Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties, Langmuir, vol.25, pp.9240-9251, 2009.

S. Hong, D. Park, Y. Ko, and I. Baek, Polymer-ionic liquid gels for enhanced gas transport, Chem. Commun, pp.7227-7229, 2009.

B. Pospiech, Facilitated transport of palladium(II) across polymer inclusion membrane with ammonium ionic liquid as effective carrier, Chem. Pap, vol.72, pp.301-308, 2018.

S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes, J. Membr. Sci, pp.168-175, 2012.

M. I. Almeida, R. W. Cattrall, and S. D. Kolev, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), J. Membr. Sci, pp.9-23, 2012.

M. Matsumoto, Y. Murakami, and K. Kondo, Separation of 1-butanol by pervaporation using polymer inclusion membranes containing ionic liquids, Solvent Extr. Res. Dev., Jpn, vol.18, pp.75-83, 2011.

M. Diaz, A. Ortiz, M. Vilas, E. Tojo, and I. Ortiz, Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes, Int. J. Hydrogen Energy, vol.39, pp.3970-3977, 2014.

T. Yasuda, S. Nakamura, Y. Honda, K. Kinugawa, S. Y. Lee et al., Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications, ACS Appl. Mater. Interfaces, vol.4, pp.1783-1790, 2012.

H. R. Cascon and S. K. Choudhari, 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes, J. Membr. Sci, vol.429, pp.214-224, 2013.

Y. Dong, H. Guo, Z. Su, W. Wei, and X. Wu, Pervaporation separation of benzene/cyclohexane through AAOM-ionic liquids/polyurethane membranes, Chem. Eng. Process, vol.89, pp.62-69, 2015.

A. Samadi, R. K. Kemmerlin, and S. M. Husson, Polymerized ionic liquid sorbents for CO2 separation, Energy Fuels, vol.24, pp.5797-5804, 2010.

P. Izák, U. Kragl, M. Köckerling, and M. Membrane, , 2006.

P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco et al., Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol, vol.97, pp.73-82, 2012.

K. Friess, J. C. Jansen, F. Bazzarelli, P. Izák, V. Jarmarová et al., High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties, J. Membr. Sci, pp.801-809, 2012.

J. C. Jansen, G. Clarizia, P. Bernardo, F. Bazzarelli, K. Friess et al., Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids, Sep. Purif. Technol, vol.109, pp.87-97, 2013.

F. Hassan-hassan-abdellatif, J. Babin, C. Arnal-herault, L. David, and A. Jonquieres, Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation, Carbohydr. Polym, vol.147, pp.313-322, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02054807

A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina et al., Polymeric ionic liquids: comparison of polycations and polyanions, vol.44, pp.9792-9803, 2011.

M. Li, B. Yang, L. Wang, Y. Zhang, Z. Zhang et al., New polymerized ionic liquid (PIL) gel electrolyte membranes based on tetraalkylammonium cations for lithium ion batteries, J. Membr. Sci, vol.447, pp.222-227, 2013.

M. Murakami, Y. Kaneko, and J. Kadokawa, Preparation of cellulose-polymerized ionic liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution, Carbohydr. Polym, vol.69, pp.378-381, 2007.

J. E. Bara, S. Lessmann, C. J. Gabriel, E. S. Hatakeyama, R. D. Noble et al., Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes, Ind. Eng. Chem. Res, vol.46, pp.5397-5404, 2007.

M. G. Cowan, D. L. Gin, and R. D. Noble, Poly(ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content: platform membrane materials for CO2/light gas separations, Acc. Chem. Res, vol.49, pp.724-732, 2016.

R. Marcilla, F. Alcaide, H. Sardon, J. A. Pomposo, C. Pozo-gonzalo et al., Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices, Electrochem. Commun, vol.8, pp.482-488, 2006.

K. Põhako-esko, M. Timusk, K. Saal, R. Lõhmus, I. Kink et al., Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive, J. Mater. Res, vol.28, pp.3086-3093, 2013.

D. Mecerreyes, Applications of ionic liquids in polymer science and technology, 2015.

Y. F. Wang, M. Qin, Z. Shao, and Q. Xu, Homogeneous acylation and regioselectivity of cellulose with 2-chloro-2-phenylacetyl chloride in ionic liquid, BioResources, vol.9, pp.5134-5146, 2014.

J. Kujawa, A. Rozicka, S. Cerneaux, and W. Kujawski, The influence of surface modification on the physicochemical properties of ceramic membranes, Colloids Surf., A, vol.443, pp.567-575, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687252

M. Gindl, G. Sinn, W. Gindl, A. Reiterer, and S. Tschegg, A comparison of different methods to calculate the surface free energy of wood using contact angle measurements, Colloids Surf., A, vol.181, pp.279-287, 2001.

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci, vol.13, pp.1741-1747, 1969.

F. M. Fowkes, Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion, Contact Angle, Wettability, and Adhesion, pp.99-111, 1964.

C. Joly, D. L. Cerf, C. Chappey, D. Langevin, and G. Muller, Residual solvent effect on the permeation properties of fluorinated polyimide films, Sep. Purif. Technol, vol.16, pp.47-54, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01869134

. Ich-harmonised-tripartite-guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), pp.1-13, 1994.

A. Kujawska, K. Knozowska, J. Kujawa, and W. Kujawski, Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes, Sep. Purif. Technol, vol.159, pp.68-80, 2016.

C. Tsai, C. Lin, and B. Hwang, A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation, J. Power Sources, pp.2166-2173, 2010.

M. S. Boroglu, S. U. Celik, A. Bozkurt, and I. Boz, Proton-conducting blend membranes of crosslinked poly(vinyl alcohol)-sulfosuccinic acid ester and poly(1-vinyl-1,2,4-triazole) for high temperature fuel cells, Polym. Eng. Sci, vol.53, pp.153-158, 2013.

J. Zhou, Y. Ma, L. Ren, J. Tong, Z. Liu et al., Preparation and characterization of surface crosslinked TPS/PVA blend films, Carbohydr. Polym, vol.76, pp.632-638, 2009.

P. Vashisth and V. Pruthi, Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application, Mater. Sci. Eng. C, vol.67, pp.304-312, 2016.

J. S. Won, J. E. Lee, D. Y. Jin, and S. G. Lee, Mechanical properties and biodegradability of the kenaf/soy protein isolate-PVA biocomposites, Int. J. Polym. Sci, pp.1-11, 2015.

R. W. Korsmeyer and N. A. Peppas, Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs, J. Membr. Sci, vol.9, pp.211-227, 1981.

L. Rey, J. Duchet, J. Galy, H. Sautereau, D. Vouagner et al., Structural heterogeneities and mechanical properties of vinyl/dimethacrylate networks synthesized by thermal free radical polymerisation, Polymer, vol.43, pp.4375-4384, 2002.

A. V. Penkova, S. F. Acquah, M. E. Dmitrenko, B. Chen, K. N. Semenov et al., Transport properties of cross-linked fullerenol-PVA membranes, Carbon, vol.76, pp.446-450, 2014.

O. Farid, F. Mansour, M. Habib, J. Robinson, and S. Tarleton, Investigating the sorption influence of poly(vinyl alcohol) (PVA) at different crosslinking content, J. Environ. Chem. Eng, vol.4, pp.293-298, 2016.

Y. Salt, E. Arçevik, and B. Ekinci, Sorption and pervaporation results of clinoptilolite filled poly(vinylalcohol) membrane prepared for dehydration of aqueous organic mixtures, Can. J. Chem. Eng, vol.92, pp.503-510, 2014.

M. Kárászová, M. Kacirková, K. Friess, and P. Izák, Progress in separation of gases by permeation and liquids by pervaporation using ionic liquids: A review, Sep. Purif. Technol, vol.132, pp.93-101, 2014.

H. Gui, Y. Li, S. Chen, P. Xu, B. Zheng et al., Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA, Macromol. Res, vol.22, pp.583-591, 2014.

J. Yoon, H. J. Lee, and C. M. Stafford, Thermoplastic elastomers based on ionic liquid and poly(vinyl alcohol), pp.2170-2178, 2011.

S. Patachia, C. Friedrich, C. Florea, and C. Croitoru, Study of the PVA hydrogel behaviour in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid, eXPRESS Polym. Lett, vol.5, pp.197-207, 2011.

N. N. Rozik and A. A. Ward, A novel approach on poly(ionic liquid)-based poly(vinyl alcohol) as a hydrophilic/hydrophobic conductive polymer electrolytes, Polym. Bull, vol.75, pp.267-287, 2018.

A. L. Saroj, S. Krishnamoorthi, and R. K. Singh, Structural, thermal and electrical transport behaviour of polymer electrolytes based on PVA and imidazolium based ionic liquid, J. Non-Cryst. Solids, pp.87-95, 2017.

K. Donato, L. Mat?jka, R. Mauler, and R. Donato, Recent applications of ionic liquids in the sol-gel process for polymer-silica nanocomposites with ionic interfaces, Colloids Surf, vol.1, p.5, 2018.

J. C. Geng, L. Qin, X. Du, S. L. Xiao, and G. H. Cui, Synthesis, crystal structures, and catalytic properties of silver(I) and cobalt(II) coordination polymers based on flexible bis(benzimidazole) with pyridine-2, 6-dicarboxylate, Z. Anorg. Allg. Chem, vol.638, pp.1233-1238, 2012.

P. A. Hunt, C. R. Ashworth, and R. P. Matthews, Hydrogen bonding in ionic liquids, vol.44, pp.1257-1288, 2015.

T. Schafer, R. E. Paolo, R. Franco, and J. G. Crespo, Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy, Chem. Commun, vol.0, pp.2594-2596, 2005.

T. Xi, L. Tang, W. Hao, L. Yao, and P. Cui, Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes, RSC Adv, vol.8, pp.7792-7799, 2018.

R. L. Weber, Y. Ye, S. M. Banik, Y. A. Elabd, M. A. Hickner et al., Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids, J. Polym. Sci., Part B: Polym. Phys, vol.49, pp.1287-1296, 2011.

H. Ohtani, S. Ishimura, and M. Kumai, Thermal decomposition behaviors of imidazolium-type ionic liquids studied by pyrolysis-gas chromatography, Anal. Sci, vol.24, pp.1335-1340, 2008.

M. T. Garcia, I. Ribosa, L. Perez, A. Manresa, and F. Comelles, Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium-and pyridinium-based ionic liquids in aqueous solution, Langmuir, vol.29, pp.2536-2545, 2013.

E. S. Gadelmawla, M. M. Koura, T. M. Maksoud, I. M. Elewa, and H. H. Soliman, Roughness parameters, J. Mater. Process. Technol, vol.123, pp.133-145, 2002.

J. Deng, L. Bai, S. Zeng, X. Zhang, Y. Nie et al., Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation, RSC Adv, vol.6, pp.45184-45192, 2016.

K. Hooshyari, M. Javanbakht, and M. Adibi, Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature, Int. J. Hydrogen Energy, pp.10870-10883, 2016.

M. Erceg, T. Kova?i?, and I. Klari?, Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate, Polym. Degrad. Stab, vol.90, pp.313-318, 2005.

M. Maiza, M. T. Benaniba, G. Quintard, and V. Massardier-nageotte, Biobased additive plasticizing Polylactic acid (PLA), Polimeros, pp.581-590, 2015.

S. Ramesh, R. Shanti, and E. Morris, Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes, Carbohydr. Polym, vol.87, pp.2624-2629, 2012.

Y. Wang, C. Zhou, Y. Xiao, S. Zhou, C. Wang et al., Preparation and evaluation of acetylated mixture of citrate ester plasticizers for poly(vinyl chloride), Iran, Polym. J, vol.27, pp.423-432, 2018.

P. Berman, N. Meiri, L. A. Colnago, T. B. Moraes, C. Linder et al., Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel), Biotechnol. Biofuels, vol.8, p.12, 2015.

A. W. White, C. M. Buschanan, B. G. Pearcy, and M. D. Wood, Mechanical properties of cellulose acetate propionate/aliphatic polyester blends, J. Appl. Polym. Sci, vol.52, pp.525-530, 1994.

I. Harte, C. Birkinshaw, E. Jones, J. Kennedy, and E. Debarra, The effect of citrate ester plasticizers on the thermal and mechanical properties of poly(DL-lactide), J. Appl. Polym. Sci, vol.127, pp.1997-2003, 2013.

J. F. Shackelford, Y. Han, S. Kim, and S. Kwon, CRC Materials science and engineering handbook, 2015.

S. Kalachandra and D. T. Turner, Water sorption of poly(methyl methacrylate): 3. Effects of plasticizers, Polymer, vol.28, pp.1749-1752, 1987.

M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging, J. Food Sci. Technol, vol.53, pp.326-336, 2016.

Y. Shuto and H. Taniguchi, Cellulose acetate propionate, in, Google Patents, 1999.

J. A. Brydson, Plastics materials, 1999.

S. Chen, R. Vijayaraghavan, D. R. Macfarlane, and E. I. Izgorodina, Ab initio prediction of proton NMR chemical shifts in imidazolium ionic liquids, J. Phys. Chem. B, vol.117, pp.3186-3197, 2013.

S. Scheiner, Assessment of the presence and strength of H-bonds by means of corrected NMR, Molecules, vol.21, p.1426, 2016.

N. Shin, S. Kwon, S. Moon, C. H. Hong, and Y. G. Kim, Ionic liquid-mediated deoxydehydration reactions: Green synthetic process for bio-based adipic acid, Tetrahedron, pp.4758-4765, 2017.

L. Crépy, L. Chaveriat, J. Banoub, P. Martin, and N. Joly, Synthesis of cellulose fatty esters as plastics -influence of the degree of substitution and the fatty chain length on mechanical properties, ChemSusChem, vol.2, pp.165-170, 2009.

J. Chen, Q. Guo, D. Li, J. Tong, and X. Li, Properties improvement of SPEEK based proton exchange membranes by doping of ionic liquids and Y2O3, Prog. Nat. Sci, vol.22, pp.26-30, 2012.

T. Erdmenger, J. Vitz, F. Wiesbrock, and U. S. Schubert, Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids, J. Mater. Chem. A, vol.18, pp.5267-5273, 2008.

J. J. Raj, C. D. Wilfred, S. N. Shah, M. Pranesh, M. I. Mutalib et al., Physicochemical and thermodynamic properties of imidazolium ionic liquids with nitrile and ether dual functional groups, J. Mol. Liq, vol.225, pp.281-289, 2017.

Y. Cao and T. Mu, Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis, vol.53, pp.8651-8664, 2014.

W. Li, J. Fang, M. Lv, C. Chen, X. Chi et al., Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications, J. Mater. Chem, vol.21, pp.11340-11346, 2011.

S. K. Shalu, R. K. Chaurasia, S. Singh, and . Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, vol.117, pp.897-906, 2013.

J. I. Kadokawa, M. A. Murakami, and Y. Kaneko, A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid, Compos. Sci. Technol, vol.68, pp.493-498, 2008.

M. T. Sanz and J. Gmehling, Study of the dehydration of isopropanol by a pervaporation-based hybrid process, Chem. Eng. Technol, vol.29, pp.473-480, 2006.

A. P. Ríos, F. J. Hernández-fernández, F. Tomás-alonso, J. M. Palacios, D. Gómez et al., A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids, J. Membr. Sci, vol.300, pp.88-94, 2007.

M. M. Pereira, K. A. Kurnia, F. L. Sousa, N. J. Silva, J. A. Lopes-da-silva et al., Contact angles and wettability of ionic liquids on polar and nonpolar surfaces, Phys. Chem. Chem. Phys, vol.17, pp.31653-31661, 2015.

C. M. Hansen, Hansen solubility parameters. A user's book, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01639526

S. Ramanaiah, P. R. Rani, and K. S. Reddy, Hansen solubility parameters for the solid surface of cellulose acetate propionate by inverse gas chromatography, J. Macromol. Sci., Part B: Phys, vol.51, pp.2191-2200, 2012.

M. O. Mavukkandy, M. R. Bilad, J. Kujawa, S. Al-gharabli, and H. A. Arafat, On the effect of fumed silica particles on the structure, properties and application of PVDF membranes, Sep. Sci. Technol, vol.187, pp.365-373, 2017.

D. Mecerreyes, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci, vol.36, pp.1629-1648, 2011.

M. Mohsen-nia, H. Amiri, and B. Jazi, Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study, J. Solution Chem, vol.39, pp.701-708, 2010.

S. Marais, M. Métayer, Q. T. Nguyen, M. Labbé, and D. Langevin, New methods for the determination of the parameters of a concentration-dependent diffusion law for molecular penetrants from transient permeation or sorption data, Macromol. Theory Simul, vol.9, pp.207-214, 1999.

J. Chen, J. Zhang, Y. Feng, J. He, and J. Zhang, Effect of molecular structure on the gas permeability of cellulose aliphatate esters, Chin. J. Polym. Sci, vol.32, pp.1-8, 2014.

R. W. Baker and J. G. Wijmans, Membrane separation of organic vapors from gas streams, Polymeric Gas Separation Membranes, 1994.

W. J. Koros and D. R. Paul, Synthetic membranes, 1986.

D. R. Lide, CRC Handbook of chemistry and physics, 2003.

E. Rynkowska, K. Fatyeyeva, J. Kujawa, K. Dzieszkowski, A. Wolan et al., The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes, Polymers, vol.10, p.86, 2018.

E. Rynkowska, K. Fatyeyeva, and W. Kujawski, Application of polymer based membranes containing ionic liquids in membrane separation processes -a critical review, Reviews in Chemical Engineering, vol.34, pp.341-363, 2018.

E. Rynkowska, K. Dzieszkowski, A. Lancien, K. Fatyeyeva, A. Szymczyk et al., Physicochemical properties and pervaporation performance of dense membranes based on cellulose acetate propionate (CAP) and containing polymerizable ionic liquid (PIL), Journal of Membrane Science, vol.544, pp.243-251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619410

, Articles (Other)

C. Chappey, K. Fatyeyeva, E. Rynkowska, W. Kujawski, L. Karpenko-jereb et al., Sulfonic Membrane Sorption and Permeation Properties: Complementary Approaches to Select a Membrane for Pervaporation, Journal of Physical Chemistry B, vol.121, pp.8523-8538, 2017.

J. Kujawski, W. Kujawski, H. Sondej, and K. Jarzynka,

. Kujawa, Dewatering of 2,2,3,3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly(vinyl alcohol) based Pervap TM membranes, Separation and Purification Technology, vol.174, pp.520-528, 2017.

E. Rynkowska, J. Kujawa, C. Chappey, K. Fatyeyeva, L. Karpenko-jereb et al., Effect of the polar-nonpolar liquid mixtures on pervaporative behavior of perfluorinated sulfonic membranes in lithium form, Journal of Membrane Science, vol.518, pp.313-327, 2016.

L. Karpenko-jereb, E. Rynkowska, W. Kujawski, S. Lunghammer, and J. Kujawa,

A. Chappey and . Kelterer, Ab-initio study of cationic polymeric membranes in water and methanol, Ionics, vol.22, pp.357-367, 2016.

E. Rynkowska, K. Fatyeyeva, J. Kujawa, A. Wolan, K. Dzieszkowski et al., Elaboration and characterization of PVA-based composite films with esterfunctionalized ionic liquids, XII Copernican International Young Scientists Conference

E. Rynkowska, K. Fatyeyeva, K. Dzieszkowski, J. Kujawa, and W. Kujawski, Preparation and characterization of cellulose acetate propionate based membranes functionalized with reactive ionic liquids of various nature, Workshop of Students' Presentations, Straz pod Ralskem, 2017.

E. Rynkowska, K. Fatyeyeva, K. Dzieszkowski, J. Kujawa, and W. Kujawski, Effect of reactive ionic liquid and plasticizer incorporation on physicochemical and transport properties of cellulose acetate propionate-based membranes, 5th International Scientific Conference on Pervaporation, Vapor Permeation, and Membrane Distillation, pp.20-23

K. Dzieszkowski, E. Rynkowska, K. Fatyeyeva, J. Kujawa, A. Wolan et al., Synteza, w?a?ciwo?ci i wykorzystanie cieczy jonowych do modyfikacji membran polimerowych, Ogólnopolska Szko?a Chemii, vol.11, pp.10-14, 2016.

E. Rynkowska, W. Kujawski, C. Chappey, K. Fatyeyeva, L. Karpenko-jereb et al.,

S. Kelterer, J. Marais, and . Kujawa, Ion-pairs dissociation of sulfonic groups -lithium counter-ions during pervaporation of polar -non-polar binary liquid mixtures using perfluorinated ion-exchange membranes, Membranes and Membrane Processes in Environmental Protection, 2016.

E. Rynkowska, K. Fatyeyeva, S. Marais, A. Wolan, and W. Kujawski, Behaviour of Novel Crosslinked PVA/Ionic Liquid Membranes in Contact with Polar Solvents, The 24th Annual World Forum on Advanced Materials (Polychar

E. Rynkowska, K. Fatyeyeva, J. Kujawa, A. Wolan, K. Dzieszkowski et al., Tailoring of polymer membranes properties with reactive ionic liquids, 2018.

E. Rynkowska, K. Fatyeyeva, J. Kujawa, A. Wolan, K. Dzieszkowski et al., The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on Physicochemical, Equilibrium, and Transport Properties of Cellulose Acetate Propionate-Based Membranes, Polymers: Design, Function and Application

E. Rynkowska, K. Fatyeyeva, K. Dzieszkowski, J. Kujawa, A. Wolan et al., Cellulose acetate propionate based membranes with poly(ionic liquid): elaboration and characterization, XIV Szko?a Membranowa Od bada? podstawowych do wdro?enia, pp.22-25, 2017.

E. Rynkowska, K. Fatyeyeva, S. Marais, K. Dzieszkowski, A. Wolan et al.,

. Kujawski, Properties of novel cellulose acetate propionate based materials containing reactive ionic liquid or plasticizer, International Congress on Membranes and Membrane Processes (ICOM), 2017.

E. Rynkowska, K. Fatyeyeva, A. Wolan, S. Marais, J. Kujawa et al., The 2016 European Membrane Society Summer School on Membranes and Membrane Processes Design

W. Kujawski, E. Rynkowska, K. Fatyeyeva, A. Wolan, K. Dzieszkowski et al., Properties of poly(vinyl alcohol) based materials containing reactive ionic liquids, Ionothermal Synthesis Symposium: Exploiting Ionic Liquids for Advanced Materials Synthesis & Design

W. Kujawski, A. Kraslawski, A. Kujawska, K. Knozowska, E. Rynkowska et al., Impact of organic component on separation efficiency of hydrophilic pervaporation with polymeric membranes, p.4

, International Conference on Methods and Materials for Separation Processes, 2016.

L. Karpenko-jereb, E. Rynkowska, A. Kelterer, and W. Kujawski, Effect of counterions on the water state in the polymer electrolytes: computational study, Ion Transport in Organic and Inorganic Membranes

E. Rynkowska, A. Lancien, K. Fatyeyeva, A. Szymczyk, A. Wolan et al., Preliminary Studies on the Properties of Novel Polymer Based Materials Containing Polymerisable Ionic Liquid, vol.10, pp.18-21, 2015.

L. Karpenko-jereb, E. Rynkowska, W. Kujawski, C. Chappey, K. Fatyeyeva et al.,

A. Marais and . Kelterer, Ab-initio study of cation-exchange membranes in water and methanol