C. Gonnier, J. Estrade, G. Bignan, and B. Maugard, Experimental Devices in Jules Horowitz Reactor and First Orientations for the Experimental Programs, 2017.

. Dr and . Olander, Fundamental aspects of nuclear reactor fuel elements: solutions to problems

L. J. Siefken, SCDAP/RELAP5/MOD3. 3 Code Manual, 2000.

K. A. Gillis, Thermodynamic properties of two gaseous halogenated ethers from speed-of-sound measurements: Difluoromethoxy-difluoromethane and 2-difluoromethoxy-1,1,1-trifluoroethane, Int. J. Thermophys, vol.15, issue.5, pp.821-847, 1994.

M. R. Moldover, J. B. Mehl, and M. Greenspan, Gas-filled spherical resonators: Theory and experiment, J. Acoust. Soc. Am, vol.79, issue.2, pp.253-272, 1986.

J. Y. Ferrandis, Full-Scale Hot Cell Test of an Acoustic Sensor Dedicated to Measurement of the Internal Gas Pressure and Composition of a LWR Nuclear Fuel Rod, IEEE Trans. Nucl. Sci, vol.60, issue.4, pp.2894-2897, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01996738

E. Rosenkrantz, J. Ferrandis, G. Leveque, and D. Baron, Ultrasonic measurement of gas pressure and composition for nuclear fuel rods, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip, vol.603, issue.3, pp.504-509, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01614894

. Jy, E. Ferrandis, G. Rosenkrantz, F. Lévêque, J. F. Augereau et al., Capteur acoustique de mesure de pression et/ou de la masse molaire d'un gaz dans une enceinte cylindrique et procédé de mesure correspondant, pp.2911961-2911962

. Jy, E. Ferrandis, G. Rosenkrantz, F. Lévêque, J. F. Augereau et al., Capteur acoustique pour la mesure d'un gaz dans une enceinte, et ensemble comportant une enceinte et un tel capteur, Brevet d'invention Français n° 0855096, n° publication: FR2934409 A1, vol.20, 2010.

T. Lambert, REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor, 2011 2nd International Conference on Advancements in Nuclear Instrumentation, pp.1-6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01784785

F. Very, Acoustic Sensors for Fission Gas Characterization in MTR Harsh Environment, Phys. Procedia, vol.70, pp.292-295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02065584

B. Redha, Réalisation et caractérisation de composites particulaires métalliques utilisés comme dos de sondes ultrasonores hautes températures, Univ. Montpellier, 2017.

R. A. Levy, Electrical Properties of Insulators, Principles of Solid State Physics, pp.149-192, 1968.

T. R. Shrout and S. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT?

. Electroceramics, , vol.19, pp.185-185, 2007.

A. Kazys, B. Volei?is, and . Volei?ien, High temperature ultrasonic transducers: review

, ULTRAGARSAS (ULTRASOUND), vol.63, issue.2, 2008.

M. Giot, Nuclear instrumentation and measurement: a review based on the ANIMMA conferences, EPJ Nucl. Sci. Technol, vol.3, p.33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01693991

I. Pioro, Handbook of generation IV nuclear reactors, 2016.

C. Lhuillier, B. Marchand, J. Augem, J. Sibilo, and J. Saillant, Generation IV nuclear reactors: Under sodium ultrasonic transducers for Inspection and Surveillance, 2013 3rd International Conference on Advancements in Nuclear Instrumentation, pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01836062

C. Lhuillier, O. Descombin, F. Baque, B. Marchand, J. F. Saillant et al., In sodium tests of ultrasonic transducers, 2011 2nd International Conference on Advancements in Nuclear Instrumentation, pp.1-7, 2011.

F. Baqué, F. Jadot, R. Marlier, J. F. Saillant, and V. Delalande, In service inspection and repair of sodium cooled ASTRID prototype, 2015.

M. Dierckx, W. Leysen, and D. Van-dyck, Overview of the ultrasonic instrumentation research in the MYRRHA project, 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), pp.1-8, 2015.

L. J. Bond and J. R. Bowler, Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 -Ultrasonics, pp.13-5150, 2017.

C. Lissenden and B. Tittmann, High Temperature Transducers for Online Monitoring of

, Microstructure Evolution, pp.11-3046, 2015.

K. M. Sinding, A. Orr, L. Breon, and B. R. Tittmann, Effect of sintering temperature on adhesion of spray-on piezoelectric transducers, J. Sens. Sens. Syst, vol.5, issue.1, pp.113-123, 2016.

C. Searfass, Fabrication and Testing of Piezoelectric Bismuth Titanate for Use as a High Temperature Ultrasonic Transducer, 2008.

R. Lee and C. , Research on Low Frequency Composite Transducers Fabricated Using a Solgel Spray-on Method

D. A. Parks, S. Zhang, and B. R. Tittmann, High-temperature (>500 °C) ultrasonic transducers: an experimental comparison among three candidate piezoelectric materials, IEEE Trans

, Ultrason. Ferroelectr. Freq. Control, vol.60, issue.5, pp.1010-1015, 2013.

A. Baba, C. T. Searfass, and B. R. Tittmann, High temperature ultrasonic transducer up to 1000 °C using lithium niobate single crystal, Appl. Phys. Lett, vol.97, issue.23, p.232901, 2010.

J. Soejima, K. Sato, and K. Nagata, Preparation and characteristics of ultrasonic transducers for high temperature using PbNb2O6, Jpn. J. Appl. Phys, vol.39, issue.1, 2000.

J. A. Johnson, K. Kim, S. Zhang, D. Wu, and X. Jiang, High-temperature (> 1000 °C) acoustic emission sensor," presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, p.869428, 2013.

S. Zhang and F. Yu, Piezoelectric Materials for High Temperature Sensors, J. Am. Ceram. Soc, vol.94, issue.10, pp.3153-3170, 2011.

D. Damjanovic, Materials for high temperature piezoelectric transducers, Curr. Opin. Solid State Mater. Sci, vol.3, issue.5, pp.469-473, 1998.

R. Hou, D. Hutson, K. J. Kirk, and Y. Fu, AIN thin film transducers for high temperature non-destructive testing applications, J. Appl. Phys, vol.111, issue.7, p.74510, 2012.

X. Jiang, K. Kim, S. Zhang, J. Johnson, and G. Salazar, High-Temperature Piezoelectric Sensing, Sensors, vol.14, issue.1, pp.144-169, 2013.

M. Budimir, A. Mohimi, C. Selcuk, and T. Gan, High temperature NDE ultrasound transducers for condition monitoring of superheated steam pipes in nuclear power plants, International Conference Nuclear Energy for New Europe, pp.501-502, 2011.

D. Berlincourt, Piezoelectric Crystals and Ceramics, Ultrasonic Transducer Materials, O. E

E. Mattiat and M. A. Boston, , pp.63-124, 1971.

T. R. Shrout, S. J. Zhang, R. Eitel, C. Stringer, and C. A. Randall, High performance, high temperature perovskite piezoelectrics, 14th IEEE International Symposium on Applications of Ferroelectrics, pp.126-129, 2004.

H. S. Shulman, Piezoelectric bismuth titanate ceramics for high temperature applications, 1997.

E. Subbarao, A family of ferroelectric bismuth compounds, J. Phys. Chem. Solids, vol.23, issue.6, pp.665-676, 1962.

C. Wang and J. Wang, Aurivillius Phase Potassium Bismuth Titanate: K0.5Bi4.5Ti4O15

, J. Am. Ceram. Soc, vol.91, issue.3, pp.918-923, 2008.

X. Wu, P. Xiao, Y. Guo, Q. Zheng, and D. Lin, Structure, Ferroelectric and Photoluminescence Properties of Eu-Doped CaBi4Ti4O15 Multifunctional Ceramics, J. Electron. Mater, vol.44, issue.10, pp.3696-3703, 2015.

I. Jung and K. Ho-auh, Crystal growth and piezoelectric properties of langasite (La3Ga5SiO14) crystals, Mater. Lett, vol.41, issue.5, pp.241-246, 1999.

P. Krempl, G. Schleinzer, and W. Wallno¨fer, Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics, Sens. Actuators Phys, vol.61, issue.1-3, pp.361-363, 1997.

E. Rosenkrantz, J. Y. Ferrandis, F. Augereau, T. Lambert, D. Fourmentel et al., An Innovative Acoustic Sensor for In-Pile Fission Gas Composition Measurements, IEEE Trans. Nucl. Sci, vol.60, issue.2, pp.1346-1353, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01627717

R. A. Dorey, R. W. Whatmore, S. P. Beeby, R. N. Torah, and N. M. White, Screen Printed PZT Composite Thick Films, Integr. Ferroelectr, vol.63, issue.1, pp.89-92, 2004.

M. Dietze and M. Es-souni, Structural and functional properties of screen-printed PZT-PVDFTrFE composites, Sens. Actuators Phys, vol.143, issue.2, pp.329-334, 2008.

H. Zhang, S. Jiang, J. Xiao, and K. Kajiyoshi, Low temperature preparation and electrical properties of sodium-potassium bismuth titanate lead-free piezoelectric thick films by screen printing

, Eur. Ceram. Soc, vol.30, issue.15, pp.3157-3165, 2010.

M. Kobayashi, T. R. Olding, L. Zou, M. Sayer, C. Jen et al., Piezoelectric thick film ultrasonic transducers fabricated by a spray technique, IEEE Ultrasonics Symposium, 2000.

, Proceedings. An International Symposium (Cat. No.00CH37121), vol.2, pp.985-989, 2000.

M. Kobayashi and C. Jen, Piezoelectric thick bismuth titanate/lead zirconate titanate composite film transducers for smart NDE of metals, Smart Mater. Struct, vol.13, issue.4, pp.951-956, 2004.

M. Kobayashi, Y. Ono, C. Cheng-kuei-jen, and . Cheng, High-temperature piezoelectric film ultrasonic transducers by a sol-gel spray technique and their application to process monitoring of polymer injection molding, IEEE Sens. J, vol.6, issue.1, pp.55-62, 2006.

A. N. Sinclair and A. M. Chertov, Radiation endurance of piezoelectric ultrasonic transducers -A review, Ultrasonics, vol.57, pp.1-10, 2015.

F. Augereau, J. Y. Ferrandis, J. F. Villard, D. Fourmentel, M. Dierckx et al., Effect of intense neutrons dose radiation on piezoceramics, pp.6473-6477, 2008.

D. V. Boychenko, A. Y. Nikiforov, P. K. Skorobogatov, and A. V. Sogoyan, Radiation effects in piezoelectric sensor, 2007 9th European Conference on Radiation and Its Effects on Components and Systems, pp.1-4, 2007.

K. E. Holbert, S. Sankaranarayanan, and S. S. Mccready, Response of lead metaniobate acoustic emission sensors to gamma irradiation, IEEE Trans. Nucl. Sci, vol.52, issue.6, pp.2583-2590, 2005.

R. W. Smith, Gamma radiation effects in lithium niobate, Proc. IEEE, vol.59, pp.712-713, 1971.

S. L. Halverson, T. T. Anderson, A. P. Gavin, and T. Grate, Radiation Exposure of a Lithium Niobate Crystal at High Temperatures, IEEE Trans. Nucl. Sci, vol.17, issue.6, pp.335-340, 1970.

G. H. Broomfield, The effect of low-fluence neutron irradiation on silver-electroded leadzirconate-titanate piezoelectric ceramics, J. Nucl. Mater, vol.91, issue.1, pp.23-34, 1980.

G. Broomfield, The effects of temperature and irradiation on piezoelectric acoustic transducers and materials, NASA STI/Recon, 1985.

J. Daw, Irradiation Testing of Ultrasonic Transducers, IEEE Trans. Nucl. Sci, vol.61, issue.4, pp.2279-2284, 2014.

G. F. Knoll, Radiation detection and measurement, 2010.

K. E. Holbert, S. Sankaranarayanan, S. S. Mccready, D. R. Spearing, and A. Sharif,

. Heger, Response of Piezoelectric acoustic emission sensors to gamma radiation, Scan. Electron Microsc, pp.559-565, 2003.

J. M. Benedetto, R. A. Moore, F. B. Mclean, P. S. Brody, and S. K. Dey, The effect of ionizing radiation on sol-gel ferroelectric PZT capacitors, IEEE Trans. Nucl. Sci, vol.37, issue.6, pp.1713-1717, 1990.

R. Kazys, High temperature ultrasonic transducers for imaging and measurements in a liquid

/. Pb and . Bi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.52, issue.4, pp.525-537, 2005.

R. Kazys, Research and development of radiation resistant ultrasonic sensors for quasi-image forming systems in a liquid lead-bismuth, ULTRAGARSAS ULTRASOUND, vol.62, issue.3, 2007.

J. Daw, J. Rempe, and J. Palmer, NEET In-Pile Ultrasonic Sensor Enablement-Final Report

L. P. Houssay, Robotics and Radiation Hardening in the Nuclear Industry, 2000.

K. U. Vandergriff, Designing equipment for use in gamma radiation environments, 1990.

K. E. Holbert, S. S. Mccready, A. Sharif, T. H. Heger, D. R. Harlow et al., Performance of piezoresistive and piezoelectric sensors in pulsed reactor experiments, IEEE Trans. Nucl. Sci, vol.50, pp.1852-1859, 2004.

V. M. Baranov, S. P. Martynenko, and A. I. Sharapa, Durability of ZTL piezoceramic under the action of reactor radiation, Sov. At. Energy, vol.53, issue.5, pp.803-804, 1982.

J. Knight, Institute of Measurement and Control, and Institution of Electrical Engineers, 1977.

D. A. Parks and B. R. Tittmann, Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.61, issue.7, pp.1216-1222, 2014.

T. Yano, K. Inokuchi, M. Shikama, J. Ukai, S. Onose et al., Neutron irradiation effects on isotope tailored aluminum nitride ceramics by a fast reactor up to 2×l0^26 n/m2, J. Nucl. Mater, pp.1471-1475, 2004.

M. R. Severson, An Experimental Design for Measuring In Situ Radiation Damage to a

P. Transducer, &. Of, and . Management, , 2014.

H. Watanabe, T. Mihara, H. Yoshimori, and C. A. De-araujo, Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds, Jpn. J. Appl. Phys, vol.34, issue.9B, pp.5240-5244, 1995.

O. Auciello, J. F. Scott, and R. Ramesh, The Physics of Ferroelectric Memories, Phys. Today, vol.51, issue.7, pp.22-27, 1998.

U. De, K. R. Sahu, and A. De, Ferroelectric Materials for High Temperature Piezoelectric Applications, Solid State Phenom, vol.232, pp.235-278, 2015.

T. Takenaka, Bismuth-based piezoelectric ceramics, Piezoelectric and Acoustic Materials for Transducer Applications, pp.103-130, 2008.

L. G. Tejuca and J. L. Fierro, Properties and applications of perovskite-type oxides, M. Dekker, 1993.

P. W. Atkins, Shriver and Atkins' inorganic chemistry, 2010.

B. Aurivillius, Mixed bismuth oxides with layer lattices, Ark Kemi, vol.1, p.499, 1949.

W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology, 2008.

Z. G. Gai, Y. Y. Feng, J. F. Wang, and H. Wu, The Effect of (Li,Ce) Doping in Aurivillius Phase Material Na0.5Bi4.5Ti4O15, Adv. Mater. Res, pp.89-92, 2010.

C. Pirovano, Modelling the crystal structures of Aurivillius phases, Solid State Ion, vol.140, issue.1-2, pp.115-123, 2001.

J. W. Kim, Fabrication and orientation Dependence on Electrical Properties of

, Na0.5Bi4.5Ti4O15 Thin Films, vol.107, pp.112-120, 2009.

J. Liu, G. Zou, and Y. Jin, Raman scattering study of Na0.5Bi4.5Ti4O15 and its solid solutions

, J. Phys. Chem. Solids, vol.57, issue.11, pp.1653-1658, 1996.

R. E. Newnham, Cation ordering in Na0.5Bi4.5Ti4O15, Mater. Res. Bull, vol.2, issue.11, pp.1041-1044, 1967.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, vol.32, issue.5, pp.751-767, 1976.

S. Kennour, Synthèse par technique sol-gel et caractérisation de compositions dielectriques de formulation (1-x) Na0. 5Bi0. 5TiO3-xBaTiO3, 2011.

Y. Y. Feng, The High-Performance of Cerium Doped Sodium Bismuth Titanate Aurivillirs Phase Material, Adv. Mater. Res, pp.1389-1392, 2011.

L. Zhao, J. Xu, N. Yin, H. Wang, C. Zhang et al., Microstructure, dielectric, and piezoelectric properties of Ce-modified Na0.5Bi4.5Ti4O15 high temperature piezoceramics

, Status Solidi RRL -Rapid Res. Lett, vol.2, issue.3, pp.111-113, 2008.

C. Wang, J. Wang, S. Zhang, and T. R. Shrout, Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature, J. Appl. Phys, vol.105, issue.9, p.94110, 2009.

C. M. Raghavan, J. W. Kim, T. K. Song, and S. S. Kim, Microstructural and ferroelectric properties of rare earth (Ce, Pr, and Tb)-doped Na0.5Bi4.5Ti3O15 thin films, Appl. Surf. Sci, vol.355, pp.1007-1012, 2015.

X. Jiang, High performance Aurivillius type Na0.5Bi4.5Ti4O15 piezoelectric ceramics with neodymium and cerium modification, J. Adv. Ceram, vol.4, issue.1, pp.54-60, 2015.

H. Du and X. Shi, Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15, J. Phys. Chem. Solids, vol.72, issue.11, pp.1279-1283, 2011.

C. M. Raghavan, J. Y. Choi, and S. S. Kim, Structural and electrical properties of

, Yb and Lu) thin films, Ceram. Int, vol.42, issue.8, pp.9577-9582, 2016.

X. Jiang, X. Jiang, C. Chen, N. Tu, Y. Chen et al., Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation

, Mater. Sci, vol.10, issue.1, pp.31-37, 2016.

X. Jiang, X. Jiang, C. Chen, N. Tu, Y. Chen et al., Photoluminescence

, Electrical Properties of Erbium-Doped Na 0.5 Bi 4.5 Ti 4 O 15 Ferroelectric Ceramics, J. Am. Ceram. Soc, vol.99, issue.4, pp.1332-1339, 2016.

D. Do, J. W. Kim, S. S. Kim, T. K. Song, and B. C. Choi, Properties of La-substituted

, Na0.5Bi4.5Ti4O15 ferroelectric thin films, vol.518, pp.6478-6481, 2010.

F. Rehman, H. Jin, and J. Li, Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na 0.5 Gd 0.5 Bi 4 Ti 4 O 15 ceramics, RSC Adv, vol.6, issue.41, pp.35102-35109, 2016.

C. M. Wang, L. Zhao, Y. Liu, R. L. Withers, S. Zhang et al., The temperature-dependent piezoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate, Ceram. Int, vol.42, issue.3, pp.4268-4273, 2016.

R. Abah, Z. G. Gai, S. Q. Zhan, and M. L. Zhao, The effect of B-site (W/Nb) co-substituting on the electrical properties of sodium bismuth titanate high temperature piezoceramics, J. Alloys Compd, vol.664, pp.1-4, 2016.

J. W. Kim, Electrical Properties of V-Doped Na 0.5 Bi 4.5 Ti 4 O 15 Thin Films Prepared by Chemical Solution Deposition, Ferroelectrics, vol.406, issue.1, pp.39-43, 2010.

D. Do, J. W. Kim, and S. S. Kim, Enhancement of Ferroelectricity in Neodymium-and Vanadium

, Codoped Na0.5Bi4.5Ti4O15 Thin Films, J. Am. Ceram. Soc, vol.93, issue.11, pp.3545-3548, 2010.

D. Do, J. W. Kim, and S. S. Kim, Improved electrical properties in La-and V-co-doped Na0.5Bi4.5Ti4O15 thin films, Appl. Phys. A, vol.108, issue.2, pp.357-361, 2012.

C. M. Raghavan, J. W. Kim, and S. S. Kim, Structural, Electrical, and Ferroelectric Properties of Nb-Doped Na 0.5 Bi 4.5 Ti 4 O 15 Thin Films, J. Am. Ceram. Soc, vol.98, issue.10, pp.3153-3158, 2015.

J. W. Kim, C. M. Raghavan, and S. S. Kim, Structural, electrical and ferroelectric properties of acceptor-doped Na0.5Bi4.5Ti4O15 thin films prepared by a chemical solution deposition method, Ceram. Int, vol.41, issue.1, pp.1567-1571, 2015.

D. Gao, K. W. Kwok, and D. Lin, Microstructure, piezoelectric and ferroelectric properties of Mnadded Na0.5Bi4.5Ti4O15 ceramics, Curr. Appl. Phys, vol.11, issue.3, pp.124-127, 2011.

C. M. Wang, L. Zhao, J. F. Wang, S. Zhang, and T. R. Shrout, Enhanced piezoelectric properties of sodium bismuth titanate (Na 0.5Bi4.5Ti4O15) ceramics with b-site cobalt modification, Phys. Status Solidi -Rapid Res. Lett, vol.3, issue.1, pp.7-9, 2009.

F. Very, Capteur acoustique sérigraphié pour application haute température, 2015.

C. Lucat, P. Ginet, F. Ménil, and H. Debéda, Production of multilayer microcomponents by the sacrificial thick layer method, p.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00670351

J. Zussman,

. Paris, Mineral. Mag, vol.41, issue.319, pp.425-426, 1976.

, Malvern Panalytical X-Pert PRO diffractometer, 2018.

, International Center for Diffraction Data (ICCD), 2018.

B. E. Warren, X-ray diffraction, 1990.

P. Scardi, M. Leoni, and R. Delhez, Line broadening analysis using integral breadth methods: a critical review, J. Appl. Crystallogr, vol.37, issue.3, pp.381-390, 2004.

P. Gravereau, Introduction à la pratique de la diffraction des rayons X par les poudres, 2011.
URL : https://hal.archives-ouvertes.fr/cel-00671294

, ESL400 Organic Vehicule, 2018.

, EXAKT 80E Three Roll Mill, 2018.

, Rotational Rheometer: RheolabQC, p.7, 2018.

, LayoutEditor

, DB Products -official web-page

G. Baehr, J. Day, L. Dieskow, and D. Faulise, Ceramics-Windows To The Future, Materials Science and Technology, 1995.

M. N. Rahaman, Sintering of ceramics, 2008.

C. Wang, L. Zhao, Y. Liu, R. L. Withers, S. Zhang et al., The temperature-dependent piezoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate, Ceram. Int, vol.42, issue.3, pp.4268-4273, 2016.

, A RoHS compliant silver palladium paste that is fired at 850C on alumina, p.7, 2018.

D. Damjanovic, Hysteresis in piezoelectric and ferroelectric materials, The science of hysteresis, pp.337-465, 2006.

S. Zhang and T. R. Shrout, Relaxor-PT single crystals: observations and developments

, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.57, issue.10, pp.2138-2146, 2010.

, Keithley Series 2650 High Power SourceMeter® SMU Instruments, p.7, 2018.

, Signatone official web-page, p.7, 2018.

X. Du and I. Chen, Ferroelectric Thin Films of Bismuth-Containing Layered Perovskites: Part I, Bi 4 Ti 3 O 12, J. Am. Ceram. Soc, vol.81, issue.12, pp.3253-3259, 1998.

K. Uchino, Ferroelectric devices, 2010.

D. Damjanovic, Lead-Based Piezoelectric Materials," in Piezoelectric and Acoustic Materials for Transducer Applications, pp.59-79, 2008.

S. Swartz, W. A. Schulze, and J. V. Biggers, Fabrication and electrical properties of grain oriented Bi 4 Ti 3 O 12 ceramics, Ferroelectrics, vol.38, issue.1, pp.765-768, 1981.

R. C. Turner, P. A. Fuierer, R. E. Newnham, and T. R. Shrout, Materials for high temperature acoustic and vibration sensors: A review, Appl. Acoust, vol.41, issue.4, pp.299-324, 1994.

P. Debye, Polar molecules, 1929.

L. Onsager, Electric Moments of Molecules in Liquids, J. Am. Chem. Soc, vol.58, issue.8, pp.1486-1493, 1936.

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys, vol.9, issue.4, pp.341-351, 1941.

H. Fröhlich, Theory of dielectrics, 1949.

M. Bouix, Étude des diélectriques

, Constante diélectrique, pertes diélectriques et claquage, 1952.

R. Holland, Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients, IEEE Trans. Sonics Ultrason, vol.14, issue.1, pp.18-20, 1967.

E. J. Murphy and S. O. Morgan, The Dielectric Properties of Insulating Materials, III Alternating and Direct Current Conductivity, Bell Syst. Tech. J, vol.18, issue.3, pp.502-537, 1939.

, Material Test System. User Guide, Solartron Analytical Ltd, 2010.

, E4990A Impedance Analyzer, 2018.

D. Lapeine, Etude et optimisation de nouveaux types de capteurs pour la détection de polluants en milieu aquatique, 2016.

, Ferroelectrics, and Frequency Control Society, 1987.

F. Li, Z. Xu, X. Wei, and X. Yao, Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method, J. Phys. Appl. Phys, vol.42, issue.9, p.95417, 2009.

R. Krimholtz, D. A. Leedom, and G. L. Matthaei, New equivalent circuits for elementary piezoelectric transducers, Electron. Lett, vol.6, issue.13, p.398, 1970.

L. P. Tran-huu-hue, F. Levassort, N. Felix, D. Damjanovic, W. Wolny et al., Comparison of several methods to characterise the high frequency behaviour of piezoelectric ceramics for transducer applications, Ultrasonics, vol.38, issue.1-8, pp.219-223, 2000.

H. Jaffe, D. Berlincourt, T. Kinsley, and T. Lambert, IRE standards on piezoelectric crystals: measurements of piezoelectric ceramics, vol.49, pp.1161-1169

Z. Yao, R. Chu, Z. Xu, J. Hao, W. Li et al., Thermal stability and enhanced electrical properties of Er 3+ -modified Na 0.5 Bi 4.5 Ti 4 O 15 lead-free piezoelectric ceramics, RSC Adv, vol.6, issue.97, pp.94870-94875, 2016.

C. Wang, L. Zhao, J. Wang, S. Zhang, and T. R. Shrout, Enhanced piezoelectric properties of sodium bismuth titanate (Na 0.5 Bi 4.5 Ti 4 O 15) ceramics with B-site cobalt modification, Phys. Status Solidi RRL -Rapid Res. Lett, vol.3, issue.1, pp.7-9, 2009.

X. Jiang, High performance Aurivillius type Na0.5Bi4.5Ti4O15 piezoelectric ceramics with neodymium and cerium modification, J. Adv. Ceram, vol.4, issue.1, pp.54-60, 2015.

D. Do, J. W. Kim, and S. S. Kim, Improved electrical properties in La-and V-co-doped Na0.5Bi4.5Ti4O15 thin films, Appl. Phys. A, vol.108, issue.2, pp.357-361, 2012.

D. Do, J. W. Kim, S. S. Kim, T. K. Song, and B. C. Choi, Properties of La-substituted

, Na0.5Bi4.5Ti4O15 ferroelectric thin films, vol.518, pp.6478-6481, 2010.

R. Abah, Z. Gai, S. Zhan, and M. Zhao, The effect of B-site (W/Nb) co-substituting on the electrical properties of sodium bismuth titanate high temperature piezoceramics, J. Alloys Compd, vol.664, pp.1-4, 2016.

M. Stewart and M. G. Cain, Direct Piezoelectric Measurement: The Berlincourt Method, Characterisation of Ferroelectric Bulk Materials and Thin Films, vol.2, pp.37-64, 2014.

A. Meggitt, T. M. Denmark--ferroperm, and . Piezoceramics,

S. Kumar and K. B. Varma, Structural, dielectric and ferroelectric properties of four-layer Aurivillius phase Na0.5La0.5Bi4Ti4O15, Mater. Sci. Eng. B, vol.172, issue.2, pp.177-182, 2010.

Y. Podgorny, K. Vorotilov, P. Lavrov, and A. Sigov, Leakage currents in porous PZT films, Ferroelectrics, vol.503, issue.1, pp.77-84, 2016.

V. Walter, P. Delobelle, P. L. Moal, E. Joseph, and M. Collet, A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate, Sens. Actuators Phys, vol.96, issue.2-3, pp.157-166, 2002.

P. Tran-huu-hue, F. Levassort, F. Vander-meulen, J. Holc, M. Kosec et al., Preparation and electromechanical properties of PZT/PGO thick films on alumina substrate, J. Eur

, Ceram. Soc, vol.21, issue.10-11, pp.1445-1449, 2001.

H. Ur?i?, PZT thick films on different ceramic substrates; piezoelectric measurements, J. Electroceramics, vol.20, issue.1, pp.11-16, 2008.

L. Simon, Elaboration et caractérisation de films épais piézoélectriques sérigraphiés sur alumine, silicium, aciers inoxydables et vitrocéramiques, INSA Lyon, 2002.

M. Dunce, Thermal Expansion, Burns Temperature and Electromechanical Properties in Na

, Properties of 316L stainless steel, Ferroelectrics, vol.424, issue.1, pp.15-20, 2011.

, Properties of Alumina Ceramic | 96% Alumina Al2O3

R. N. Torah, S. P. Beeby, M. J. Tudor, and N. M. White, Thick-film piezoceramics and devices
DOI : 10.1007/s10832-007-9040-7

, J. Electroceramics, vol.19, issue.1, pp.97-112, 2007.

J. García, Extrinsic Contribution and Instability Properties in Lead-Based and Lead-Free Piezoceramics, Materials, vol.8, issue.11, pp.7821-7836, 2015.

V. A. Grosso and C. W. Mader, Speed of Sound in Pure Water, J. Acoust. Soc. Am, vol.52, issue.5B, pp.1442-1446, 1972.

W. Wilson and D. Bradley, Speed of Sound in Four Primary Alcohols as a Function of Temperature and Pressure, NIST Standard Reference Database Number, vol.36, issue.2, pp.333-337, 1964.

M. Greenspan, Propagation of Sound in Five Monatomic Gases, J. Acoust. Soc. Am, vol.28, issue.4, pp.644-648, 1956.

P. Roux, The MADISON experimental hosting system in the future Jules Horowitz Reactor, 2010.