, 155 14.3.1. General principle of the enzymatic assay with fluorogenic substrate

. Inhibitory, . Of, and . .. Vs-mmps,

. Labelling, . Mmps, and . .. Probes,

I. Schechter and A. Berger, On the size of the active site in proteases. I. Papain, Biochem. Biophys. Res. Commun, vol.27, pp.157-162, 1967.

J. Gross and C. M. Lapiere, COLLAGENOLYTIC ACTIVITY IN AMPHIBIAN TISSUES: A TISSUE CULTURE ASSAY*. Proc Natl Acad Sci U S A, vol.48, pp.1014-1022, 1962.

C. E. Brinckerhoff and L. M. Matrisian, Matrix metalloproteinases: a tail of a frog that became a prince, Nature Reviews Molecular Cell Biology, vol.3, p.207, 2002.

D. E. Woolley, R. W. Glanville, M. J. Crossley, and J. M. Evanson, Purification of Rheumatoid Synovial Collagenase and Its Action on Soluble and Insoluble Collagen, European Journal of Biochemistry, vol.54, pp.611-622

J. F. Woessner and H. Nagase, Matrix Metalloproteinases and TIMPs, 2000.

E. A. Bauer, A. Z. Eisen, and J. J. Jeffrey, Regulation of vertebrate collagenase activity in vivo and in vitro, J. Invest. Dermatol, vol.59, pp.50-55, 1972.

L. C. Chen, M. E. Noelken, and H. Nagase, Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1), Biochemistry, vol.32, pp.10289-10295, 1993.

B. Lovejoy, Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor, Science, vol.263, pp.375-377, 1994.

B. Cauwe, P. E. Steen, and G. Opdenakker, The Biochemical, Biological, and Pathological Kaleidoscope of Cell Surface Substrates Processed by Matrix Metalloproteinases, Critical Reviews in Biochemistry and Molecular Biology, vol.42, pp.113-185, 2007.

R. Visse and H. Nagase, Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry, Circulation Research, vol.92, pp.827-839, 2003.

J. S. Bond and R. J. Beynon, The astacin family of metalloendopeptidases, Protein Sci, vol.4, pp.1247-1261, 1995.

F. X. Gomis-rüth, S. Trillo-muyo, and W. Stöcker, Functional and structural insights into astacin metallopeptidases, Biol. Chem, vol.393, pp.1027-1041, 2012.

K. Nakahama, Cloning and sequencing of Serratia protease gene, Nucleic Acids Res, vol.14, pp.5843-5855, 1986.

K. Okuda, Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa IFO 3455, Infect Immun, vol.58, pp.4083-4088, 1990.

P. Delepelaire and C. Wandersman, Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide, J. Biol. Chem, vol.264, pp.9083-9089, 1989.
URL : https://hal.archives-ouvertes.fr/pasteur-00389611

W. Bode, F. Gomis-rüth, and W. Stöckler, Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and 81. Pirard, B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases, Drug Discov Today, vol.12, pp.640-646, 2007.

L. Devel, Insights from Selective Non-phosphinic Inhibitors of MMP-12 Tailored to Fit with an S1? Loop Canonical Conformation, J Biol Chem, vol.285, pp.35900-35909, 2010.

Q. A. Sang, Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases, Curr Top Med Chem, vol.6, pp.289-316, 2006.

A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt, Activity-based probes for the proteomic profiling of metalloproteases, Proc Natl Acad Sci U S A, vol.101, pp.10000-10005, 2004.

L. Devel, Simple Pseudo-dipeptides with a P2? Glutamate, J Biol Chem, vol.287, pp.26647-26656, 2012.

Y. Hu, Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis, Bioorg. Med. Chem, vol.13, pp.6629-6644, 2005.

C. K. Engel, Structural basis for the highly selective inhibition of MMP-13, Chem. Biol, vol.12, pp.181-189, 2005.

G. Pochetti, Extra binding region induced by non-zinc chelating inhibitors into the S1' subsite of matrix metalloproteinase 8 (MMP-8), J. Med. Chem, vol.52, pp.1040-1049, 2009.

V. Dive, Phosphinic peptides as zinc metalloproteinase inhibitors, CMLS, Cell. Mol. Life Sci, vol.61, pp.2010-2019, 2004.

L. Devel, Development of Selective Inhibitors and Substrate of Matrix Metalloproteinase-12

, J. Biol. Chem, vol.281, pp.11152-11160, 2006.

B. Czarny, Molecular Determinants of a Selective Matrix Metalloprotease-12 Inhibitor: Insights from Crystallography and Thermodynamic Studies, J. Med. Chem, vol.56, pp.1149-1159, 2013.

C. Rouanet-mehouas, Zinc-Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity, J. Med. Chem, vol.60, pp.403-414, 2017.

V. Defamie, Matrix metalloproteinase inhibition protects rat livers from prolonged cold ischemia-warm reperfusion injury, Hepatology, vol.47, pp.177-185, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315635

V. Dive, RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites, Proc Natl Acad Sci U S A, vol.96, pp.4330-4335, 1999.

D. Georgiadis, Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin: insights from selective inhibitors, Circ. Res, vol.93, pp.148-154, 2003.

J. L. Johnson, A Selective Matrix Metalloproteinase-12 Inhibitor Retards Atherosclerotic Plaque Development in Apolipoprotein E-Knockout Mice, Arterioscler Thromb Vasc Biol, vol.31, pp.528-535, 2011.

N. H. Lim, In Vivo Imaging of Matrix Metalloproteinase 12 and Matrix Metalloproteinase 13 Activities in the Mouse Model of Collagen-Induced Arthritis, Arthritis & Rheumatology, vol.66, pp.589-598, 2014.

R. P. Iyer, Early Matrix Metalloproteinase-12 Inhibition Worsens Post-Myocardial Infarction Cardiac Dysfunction by Delaying Inflammation Resolution, Int J Cardiol, vol.185, pp.198-208, 2015.

E. Ella, Matrix metalloproteinase 12 promotes tumor propagation in the lung, J. Thorac. Cardiovasc. Surg, vol.155, pp.2164-2175, 2018.

C. Bremer, C. H. Tung, and R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition, Nat. Med, vol.7, pp.743-748, 2001.

J. Deguchi, Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo, Circulation, vol.114, pp.55-62, 2006.

T. Jiang, Tumor imaging by means of proteolytic activation of cell-penetrating peptides, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.17867-17872, 2004.

R. Lebel and M. Lepage, A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging, Contrast Media Mol Imaging, vol.9, pp.187-210, 2014.

I. Goncalves, Elevated Plasma Levels of MMP-12 Are Associated With Atherosclerotic Burden and Symptomatic Cardiovascular Disease in Subjects With Type 2 Diabetes, Arterioscler. Thromb. Vasc. Biol, vol.35, pp.1723-1731, 2015.

E. Hadler-olsen, J. Winberg, and L. Uhlin-hansen, Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets, Tumour Biol, vol.34, pp.2041-2051, 2013.

R. Roy, J. Yang, and M. A. Moses, Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer, J. Clin. Oncol, vol.27, pp.5287-5297, 2009.

Y. Ye, Novel Arginine-containing Macrocyclic MMP Inhibitors: Synthesis, 99mTc-labeling, and Evaluation, Sci Rep, vol.8, p.11647, 2018.

T. Bordenave, Synthesis, in vitro and in vivo evaluation of MMP-12 selective optical probes, Bioconjug Chem, vol.27, pp.2407-2417, 2016.

M. J. Evans and B. F. Cravatt, Mechanism-Based Profiling of Enzyme Families, Chem. Rev, vol.106, pp.3279-3301, 2006.

D. Kato, Activity-based probes that target diverse cysteine protease families, Nat. Chem. Biol, vol.1, pp.33-38, 2005.

Q. Jin, A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals, Biosensors and Bioelectronics, vol.83, pp.193-199, 2016.

P. Yang and K. Liu, Activity-based protein profiling: recent advances in probe development and applications, Chembiochem, vol.16, pp.712-724, 2015.

M. Garland, J. J. Yim, and M. Bogyo, A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application, Cell Chem Biol, vol.23, pp.122-136, 2016.

D. K. Nomura, M. M. Dix, and B. F. Cravatt, Activity-based protein profiling for biochemical pathway discovery in cancer, Nat. Rev. Cancer, vol.10, pp.630-638, 2010.

M. Verdoes and S. H. Verhelst, Detection of protease activity in cells and animals, Biochimica et Biophysica Acta (BBA) -Proteins and Proteomics, vol.1864, pp.130-142, 2016.

L. Wofsy, H. Metzger, and S. J. Singer, Affinity Labeling-a General Method for Labeling the Active Sites of Antibody and Enzyme Molecules*, Biochemistry, vol.1, pp.1031-1039, 1962.

A. Sinz, Chemical Cross-Linking and Mass Spectrometry for Investigation of Protein-Protein Interactions, Mass Spectrometry of Protein Interactions, pp.83-107, 2006.

S. A. Sieber, S. Niessen, H. S. Hoover, and B. F. Cravatt, Proteomic profiling of metalloprotease activities with cocktails of active-site probes, Nature Chemical Biology, vol.2, p.781, 2006.

S. A. Sieber and B. F. Cravatt, Analytical platforms for activity-based protein profiling -exploiting the versatility of chemistry for functional proteomics, Chem. Commun, vol.0, pp.2311-2319, 2006.

P. P. Geurink, Design of Peptide Hydroxamate-Based Photoreactive Activity-Based Probes of Zinc-Dependent Metalloproteases, European Journal of Organic Chemistry, pp.2100-2112, 2010.

M. A. Leeuwenburgh, Solid-phase synthesis of succinylhydroxamate peptides: Functionalized matrix metalloproteinase inhibitors, Org.Lett, vol.8, pp.1705-1708, 2006.

W. Qiu, Design and Synthesis of Matrix Metalloprotease Photoaffinity Trimodular Probes, Chinese Journal of Chemistry, vol.27, pp.825-833, 2009.

J. Wang, M. Uttamchandani, J. Li, M. Hu, and S. Q. Yao, Click' synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases, Chem. Commun. (Camb.), pp.3783-3785, 2006.

A. David, Cross-Linking Yield Variation of a Potent Matrix Metalloproteinase Photoaffinity Probe and Consequences for Functional Proteomics, Angewandte Chemie International Edition, vol.46, pp.3275-3277, 2007.

A. Dabert-gay, Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe, J Biol Chem, vol.283, pp.31058-31067, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01997000

C. Nury, A Pan Photoaffinity Probe for Detecting Active Forms of Matrix Metalloproteinases, ChemBioChem, vol.14, pp.107-114, 2013.

Q. Zhu, A. Girish, S. Chattopadhaya, and S. Q. Yao, Developing novel activity-based fluorescent probes that target different classes of proteases, Chem. Commun, vol.0, pp.1512-1513, 2004.

C. Forbes, Active Site Ring-Opening of a Thiirane Moiety and Picomolar Inhibition of Gelatinases, Chemical Biology & Drug Design, vol.74, pp.527-534, 2009.

S. A. Testero, Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused Synthetic Library, ACS Med. Chem. Lett, vol.8, pp.1122-1127, 2017.

M. Morell, Coupling Protein Engineering with Probe Design To Inhibit and Image Matrix Metalloproteinases with Controlled Specificity, J. Am. Chem. Soc, vol.135, pp.9139-9148, 2013.

, BIBLIOGRAPHY II

L. Devel, Development of Selective Inhibitors and Substrate of Matrix Metalloproteinase-12, J. Biol. Chem, vol.281, pp.11152-11160, 2006.

J. L. Johnson, A Selective Matrix Metalloproteinase-12 Inhibitor Retards Atherosclerotic Plaque Development in Apolipoprotein E-Knockout Mice, Arterioscler Thromb Vasc Biol, vol.31, pp.528-535, 2011.

N. H. Lim, In Vivo Imaging of Matrix Metalloproteinase 12 and Matrix Metalloproteinase 13 Activities in the Mouse Model of Collagen-Induced Arthritis, Arthritis & Rheumatology, vol.66, pp.589-598, 2014.

D. J. Marchant, A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity, Nat. Med, vol.20, pp.493-502, 2014.

E. Ella, Matrix metalloproteinase 12 promotes tumor propagation in the lung, J. Thorac. Cardiovasc. Surg, vol.155, pp.2164-2175, 2018.

B. Czarny, Molecular Determinants of a Selective Matrix Metalloprotease-12 Inhibitor: Insights from Crystallography and Thermodynamic Studies, J. Med. Chem, vol.56, pp.1149-1159, 2013.

S. Fujishima, R. Yasui, T. Miki, A. Ojida, and I. Hamachi, Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells, J. Am. Chem. Soc, vol.134, pp.3961-3964, 2012.

K. Matsuo, One-step construction of caged carbonic anhydrase I using a ligand-directed acyl imidazole-based protein labeling method, Chem. Sci, vol.4, pp.2573-2580, 2013.

T. Miki, LDAI-Based Chemical Labeling of Intact Membrane Proteins and Its Pulse-Chase Analysis under Live Cell Conditions, Chemistry & Biology, vol.21, pp.1013-1022, 2014.

K. Yamaura, S. Kiyonaka, T. Numata, R. Inoue, and I. Hamachi, Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry, Nature Chemical Biology, vol.12, p.2150, 2016.

T. Bordenave, Synthesis and in Vitro and in Vivo Evaluation of MMP-12 Selective Optical Probes, Bioconjug. Chem, vol.27, pp.2407-2417, 2016.

C. Rouanet-mehouas, Zinc-Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity, J. Med. Chem, vol.60, pp.403-414, 2017.

A. Dabert-gay, Covalent Modification of Matrix Metalloproteinases by a Photoaffinity Probe: Influence of Nucleophilicity and Flexibility of the Residue in Position 241, Bioconjugate Chem, vol.20, pp.367-375, 2009.
URL : https://hal.archives-ouvertes.fr/cea-02000614

A. Dabert-gay, Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe INSIGHTS INTO ACTIVITY-BASED PROBE DEVELOPMENT AND CONFORMATIONAL VARIABILITY OF MATRIX METALLOPROTEINASES, J. Biol. Chem, vol.283, pp.31058-31067, 2008.

A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt, Activity-based probes for the proteomic profiling of metalloproteases, Proc Natl Acad Sci U S A, vol.101, pp.10000-10005, 2004.

L. Devel, Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1? cavity, Biochimie, vol.92, pp.1501-1508, 2010.

S. Bregant, Detection of Matrix Metalloproteinase Active Forms in Complex Proteomes: Evaluation of Affinity versus Photoaffinity Capture, J. Proteome Res, vol.8, pp.2484-2494, 2009.
URL : https://hal.archives-ouvertes.fr/cea-02000592

T. Bordenave, Synthesis, in vitro and in vivo evaluation of MMP-12 selective optical probes, Bioconjug Chem, vol.27, pp.2407-2417, 2016.

K. Kis-toth, Monocyte-derived dendritic cell subpopulations use different types of matrix metalloproteinases inhibited by GM6001, Immunobiology, vol.218, pp.1361-1369, 2013.

M. A. Miller, Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities, Integr Biol (Camb), vol.3, pp.422-438, 2011.

J. H. Tian, Genetic regulation of protective immune response in congenic strains of mice vaccinated with a subunit malaria vaccine, J. Immunol, vol.157, pp.1176-1183, 1996.

M. J. Banda and Z. Werb, Mouse macrophage elastase. Purification and characterization as a metalloproteinase, Biochem J, vol.193, pp.589-605, 1981.

A. Y. Jeng, Mouse macrophage metalloelastase expressed in bacteria absolutely requires zinc for activity, J. Biochem, vol.117, pp.216-221, 1995.

J. M. Shipley, R. L. Wesselschmidt, D. K. Kobayashi, T. J. Ley, and S. D. Shapiro, Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice, Proc Natl Acad Sci, pp.3942-3946, 1996.

Z. Werb and S. Gordon, Elastase secretion by stimulated macrophages. Characterization and regulation, J. Exp. Med, vol.142, pp.361-377, 1975.

W. R. Algar, P. Dawson, and I. L. Medintz, Chemoselective and Bioorthogonal Ligation Reactions: Concepts and Applications, 2017.

D. Lascoux, Discrimination and selective enhancement of signals in the MALDI mass spectrum of a protein by combining a matrix-based label for lysine residues with a neutral matrix, Angew. Chem. Int. Ed. Engl, vol.46, pp.5594-5597, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170418

T. Bordenave, Synthesis, in vitro and in vivo evaluation of MMP-12 selective optical probes, Bioconjug. Chem, 2016.

B. Czarny, Molecular determinants of a selective matrix metalloprotease-12 inhibitor: insights from crystallography and thermodynamic studies, J. Med. Chem, vol.56, pp.1149-1159, 2013.

S. Wakayama, Chemical labelling for visualizing native AMPA receptors in live neurons, Nat Commun, vol.8, p.14850, 2017.

A. Dabert-gay, Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe, J Biol Chem, vol.283, pp.31058-31067, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01997000

C. Antoni, Crystallization of bi-functional ligand protein complexes, J. Struct. Biol, vol.182, pp.246-254, 2013.

C. Rouanet-mehouas, Zinc-Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity, J. Med. Chem, vol.60, pp.403-414, 2017.

J. F. Morrison, Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors, Biochim. Biophys. Acta, vol.185, pp.269-286, 1969.

A. Horovitz and A. Levitzki, An accurate method for determination of receptor-ligand and enzymeinhibitor dissociation constants from displacement curves, Proc Natl Acad Sci U S A, vol.84, pp.6654-6658, 1987.

. Iii and . Schemes,

, Synthesis of compound 1 and, vol.2

, Synthesis of precursors 5, 6, 7 and 8, vol.4

, Synthesis of acyl imidazole probes, vol.5, pp.15-18

M. J. Evans and B. F. Cravatt, Chemical reviews, vol.106, pp.3279-3301, 2006.

B. Turk, D. Turk, and V. Turk, The EMBO journal, vol.31, pp.1630-1643, 2012.

E. Deu, M. Verdoes, and M. Bogyo, Nature structural & molecular biology, vol.19, pp.9-16, 2012.

S. Serim, U. Haedke, and S. H. Verhelst, ChemMedChem, vol.7, pp.1146-1159, 2012.

L. I. Willems, H. S. Overkleeft, and S. I. Van-kasteren, Bioconjugate chemistry, vol.25, pp.1181-1191, 2014.

M. Verdoes and S. H. Verhelst, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1864, pp.130-142, 2016.

A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.10000-10005, 2004.

E. W. Chan, S. Chattopadhaya, R. C. Panicker, X. Huang, and S. Q. Yao, Journal of the American Chemical Society, vol.126, pp.14435-14446, 2004.

S. A. Sieber, S. Niessen, H. S. Hoover, and B. F. Cravatt, Nature chemical biology, vol.2, pp.274-281, 2006.

A. David, D. Steer, S. Bregant, L. Devel, A. Makaritis et al., Angewandte Chemie International Edition, vol.46, pp.3275-3277, 2007.

P. Geurink, T. Klein, M. Leeuwenburgh, G. Van-der-marel, H. Kauffman et al., Organic & biomolecular chemistry, vol.6, pp.1244-1250, 2008.

A. Dabert-gay, B. Czarny, L. Devel, F. Beau, E. Lajeunesse et al., Journal of Biological Chemistry, vol.283, pp.31058-31067, 2008.

A. Dabert-gay, B. Czarny, E. Lajeunesse, R. Thai, H. Nagase et al., Bioconjugate chemistry, vol.20, pp.367-375, 2009.

S. Bregant, C. Huillet, L. Devel, A. Dabert-gay, F. Beau et al., Journal of proteome research, vol.8, pp.2484-2494, 2009.

J. Lenger, F. Kaschani, T. Lenz, C. Dalhoff, J. G. Villamor et al., Bioorganic & medicinal chemistry, vol.20, pp.592-596, 2012.

C. Nury, B. Czarny, E. Cassar-lajeunesse, D. Georgiadis, S. Bregant et al., Chembiochem, vol.14, pp.107-114, 2013.

C. Nury, S. Bregant, B. Czarny, F. Berthon, E. Cassarlajeunesse et al., Journal of Biological Chemistry, vol.288, pp.5636-5644, 2013.

L. Prely, T. Klein, P. P. Geurink, K. Paal, H. S. Overkleeft et al., Activity-Based Proteomics: Methods and Protocols, pp.103-111, 2017.

Q. Zhu, A. Girish, S. Chattopadhaya, and S. Q. Yao, Chemical Communications, pp.1512-1513, 2004.

S. A. Testero, C. Granados, D. Fernaì?ndez, P. Gallego, G. Covaleda et al., ACS Medicinal Chemistry Letters, vol.8, pp.1122-1127, 2017.

C. Forbes, Q. Shi, J. F. Fisher, M. Lee, D. Hesek et al., Chemical biology & drug design, vol.74, pp.527-534, 2009.

M. Morell, T. Nguyen-duc, A. L. Willis, S. Syed, J. Lee et al., Journal of the American Chemical Society, vol.135, pp.9139-9148, 2013.

S. Tsukiji, M. Miyagawa, Y. Takaoka, T. Tamura, and I. Hamachi, Nature chemical biology, vol.5, pp.341-343, 2009.

S. Fujishima, R. Yasui, T. Miki, A. Ojida, and I. Hamachi, Journal of the American Chemical Society, vol.134, pp.3961-3964, 2012.

Y. Takaoka, A. Ojida, and I. Hamachi, Angewandte Chemie International Edition, vol.52, pp.4088-4106, 2013.

L. Devel, V. Rogakos, A. David, A. Makaritis, F. Beau et al., Journal of Biological Chemistry, vol.281, pp.11152-11160, 2006.

B. Czarny, E. A. Stura, L. Devel, L. Vera, E. Cassar-lajeunesse et al., Journal of medicinal chemistry, vol.56, pp.1149-1159, 2013.

K. Matsuo, Y. Kioi, R. Yasui, Y. Takaoka, T. Miki et al., Chemical Science, vol.4, pp.2573-2580, 2013.

T. Miki, S. Fujishima, K. Komatsu, K. Kuwata, S. Kiyonaka et al., Chemistry & biology, vol.21, pp.1013-1022, 2014.

S. Wakayama, S. Kiyonaka, I. Arai, W. Kakegawa, S. Matsuda et al., Nature Communications, vol.8, 2017.

D. J. Marchant, C. L. Bellac, T. J. Moraes, S. J. Wadsworth, A. Dufour et al., Nature medicine, vol.20, pp.493-502, 2014.

J. L. Johnson, L. Devel, B. Czarny, S. J. George, C. L. Jackson et al., Arteriosclerosis, thrombosis, and vascular biology, vol.31, pp.528-535, 2011.

N. H. Lim, E. Meinjohanns, G. Bou-gharios, L. L. Gompels, E. Nuti et al., Arthritis & Rheumatology, vol.66, pp.589-598, 2014.

R. P. Iyer, N. L. Patterson, F. A. Zouein, Y. Ma, V. Dive et al., International journal of cardiology, vol.185, pp.198-208, 2015.

K. Yamaura, S. Kiyonaka, T. Numata, R. Inoue, and I. Hamachi, Nature Chemical Biology, 2016.

T. Bordenave, M. Helle, F. Beau, D. Georgiadis, L. Tepshi et al., Bioconjugate chemistry, vol.27, pp.2407-2417, 2016.

L. Devel, B. Czarny, F. Beau, D. Georgiadis, E. Stura et al., Biochimie, vol.92, pp.1501-1508, 2010.

A. Cobos-correa, J. B. Trojanek, S. Diemer, M. A. Mall, and C. Schultz, Nature chemical biology, vol.5, pp.628-630, 2009.

R. K. Koppisetti, Y. G. Fulcher, A. Jurkevich, S. H. Prior, J. Xu et al., Nature communications, issue.5, p.5552, 2014.