R. J. Cintra, S. Duffner, C. Garcia, and A. Leite, Low-complexity approximate Convolutional Neural Networks, IEEE Transactions on Neural Networks and Learning Systems, 2018.
DOI : 10.1109/tnnls.2018.2815435

URL : https://hal.archives-ouvertes.fr/hal-01727219

S. Berlemont, G. Lefebvre, S. Duffner, and C. Garcia, Classbalanced siamese neural networks, Neurocomputing, vol.273, pp.47-56, 2018.
DOI : 10.1016/j.neucom.2017.07.060

URL : https://hal.archives-ouvertes.fr/hal-01580527

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Deep and low-level feature-based attribute learning for person re-identification, Image and Vision Computing, 2018.
DOI : 10.1016/j.imavis.2018.09.001

URL : https://hal.archives-ouvertes.fr/hal-01895367

L. Zheng, S. Duffner, K. Idrissi, C. Garcia, and A. Baskurt, Pairwise identity verification via linear concentrative metric learning, IEEE Transactions on Cybernetics, vol.48, issue.1, pp.324-335, 2018.
DOI : 10.1109/tcyb.2016.2634011

URL : https://hal.archives-ouvertes.fr/hal-01435368

S. Duffner and C. Garcia, Fast pixelwise adaptive visual tracking of non-rigid objects, IEEE Transactions on Image Processing, vol.26, issue.5, pp.2368-2380, 2017.
DOI : 10.1109/tip.2017.2676346

URL : https://hal.archives-ouvertes.fr/hal-01574513

S. Duffner and C. Garcia, Using discriminative motion context for on-line visual object tracking, IEEE Transactions on Circuits and Systems for Video Technology, vol.26, pp.2215-2225, 2016.
DOI : 10.1109/tcsvt.2015.2504739

URL : https://hal.archives-ouvertes.fr/hal-01340308

S. Duffner and C. Garcia, Visual focus of attention estimation with unsupervised incremental learning, IEEE Transactions on Circuits and Systems for Video Technology, vol.26, pp.2264-2272, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01153969

L. Zheng, S. Duffner, K. Idrissi, C. Garcia, and A. Baskurt, Siamese Multi-layer Perceptrons for dimensionality reduction and face identification, Multimedia Tools and Applications, vol.75, issue.9, pp.5055-5073, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01182273

T. Nakashika, T. Yoshioka, T. Takiguchi, Y. Ariki, S. Duffner et al., Convolutive Bottleneck Network with Dropout for Dysarthric Speech Recognition, Transactions on Machine Learning and Artificial Intelligence, pp.1-15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01301040

S. Duffner, C. Liu, and J. Odobez, Leveraging colour segmentation for upper-body detection, Pattern Recognition, vol.47, issue.6, pp.2222-2230, 2014.
DOI : 10.1016/j.patcog.2013.12.014

URL : https://hal.archives-ouvertes.fr/hal-01270720

P. Motlicek, S. Duffner, D. Korchagin, H. Bourlard, C. Scheffler et al., Real-time audio-visual analysis for multiperson videoconferencing, Advances in Multimedia, 2013.
DOI : 10.1155/2013/175745

URL : https://hal.archives-ouvertes.fr/hal-01339256

S. Duffner and J. Odobez, A track creation and deletion framework for long-term online multi-face tracking, IEEE Transactions on Image Processing, vol.22, issue.1, pp.272-285, 2013.
DOI : 10.1109/tip.2012.2210238

URL : http://www.idiap.ch/~odobez/publications/DuffnerOdobez-IEEE-IP-2013.pdf

S. Duffner, P. Motlicek, and D. Korchagin, The TA2 database -a multi-modal database from home entertainment, International Journal of Computer and Electrical Engineering, vol.4, issue.5, pp.670-673, 2012.

A. Herbulot, S. Jehan-besson, S. Duffner, M. Barlaud, and G. Aubert, Segmentation of vectorial image features using shape gradients and information measures, Journal of Mathematical Imaging and Vision, vol.25, issue.3, pp.365-386, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00418217

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Pedestrian attribute recognition with part-based CNN and combined feature representations, Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), 2018.
DOI : 10.5220/0006622901140122

URL : https://hal.archives-ouvertes.fr/hal-01625470

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Person re-identification using group context, Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), 2018.
DOI : 10.1007/978-3-030-01449-0_33

URL : https://hal.archives-ouvertes.fr/hal-01895373

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Person re-identification with a body orientation-specific convolutional neural network, Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), 2018.
DOI : 10.1007/978-3-030-01449-0_3

URL : https://hal.archives-ouvertes.fr/hal-01895374

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Similarity learning with listwise ranking for person re-identification, Proceedings of the International Conference on Image Processing (ICIP), 2018.
DOI : 10.1109/icip.2018.8451628

URL : https://hal.archives-ouvertes.fr/hal-01895355

N. Medjkoune, F. Armetta, M. Lefort, and S. Duffner, Autonomous object recognition in videos using siamese neural networks, EUCognition Meeting (European Society for Cognitive Systems) on "Learning: Beyond Deep Neural Networks, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630163

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Triplet CNN and pedestrian attribute recognition for improved person re-identification, Proceedings of the International Conference on Advanced Video and Signal-Based Surveillance (AVSS), 2017.
DOI : 10.1109/avss.2017.8078542

URL : https://hal.archives-ouvertes.fr/hal-01625479

S. Bhattarai, A. Madanayake, R. J. Cintra, S. Duffner, and C. Garcia, Digital architecture for real-time CNN-based face detection for video processing, IEEE Cognitive Communications for Aerospace Applications Workshop (CCAA), 2017.
DOI : 10.1109/ccaaw.2017.8001608

URL : https://hal.archives-ouvertes.fr/hal-01574551

S. Berlemont, G. Lefebvre, S. Duffner, and C. Garcia, Polar sine based siamese neural network for gesture recognition, Proceedings of the International Conference on International Conference on Artificial Neural Networks (ICANN), 2016.
DOI : 10.1007/978-3-319-44781-0_48

URL : https://hal.archives-ouvertes.fr/hal-01369302

M. Kristan, J. Matas, A. Leonardis, M. Felsberg, G. Luka?ehovin et al., The Visual Object Tracking VOT2015 challenge results, ICCV (Workshop), 2015.
DOI : 10.1109/iccvw.2013.20

URL : https://hal.archives-ouvertes.fr/hal-01336773

S. Berlemont, G. Lefebvre, S. Duffner, and C. Garcia, Siamese neural network based similarity metric for inertial gesture classification and rejection, Proceedings of the International Conference on Automatic Face and Gesture Recognition (FG), 2015.
DOI : 10.1109/fg.2015.7163112

URL : https://hal.archives-ouvertes.fr/hal-01179993

J. Lu, J. Hu, V. E. Liong, X. Zhou, A. Bottino et al., The FG 2015 Kinship Verification in the Wild Evaluation, Proceedings of the International Conference on Automatic Face and Gesture Recognition (FG), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158942

L. Zheng, K. Idrissi, C. Garcia, S. Duffner, and A. Baskurt, Triangular similarity metric learning for face verification, Proceedings of the International Conference on Automatic Face and Gesture Recognition (FG), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01158908

L. Zheng, K. Idrissi, C. Garcia, S. Duffner, and A. Baskurt, Logistic similarity metric learning for face verification, Proceedings of the International Conference on International Conference on Acoustics, Speech, and Signal Processing, 2015.
DOI : 10.1109/icassp.2015.7178311

URL : https://hal.archives-ouvertes.fr/hal-01158949

S. Moujtahid, S. Duffner, and A. Baskurt, Classifying global scene context for on-line multiple tracker selection, Proceedings of the British Machine Vision Conference (BMVC), 2015.
DOI : 10.5244/c.29.163

URL : https://hal.archives-ouvertes.fr/hal-01208200

S. Moujtahid, S. Duffner, and A. Baskurt, Coherent selection of independent trackers for real-time object tracking, Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01161859

T. Nakashika, T. Yoshioka, T. Takiguchi, Y. Ariki, S. Duffner et al., Dysarthric speech recognition using a convolutive bottleneck network, IEEE International Conference on Signal Processing, pp.505-509, 2014.
DOI : 10.1109/icosp.2014.7015056

URL : https://hal.archives-ouvertes.fr/hal-01301122

S. Duffner and C. Garcia, Exploiting contextual motion cues for visual object tracking, Workshop on Visual Object Tracking Challenge (VOT2014) -ECCV, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01301089

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin et al., The Visual Object Tracking VOT2014 challenge results, Workshop on Visual Object Tracking Challenge (VOT2014) -ECCV, pp.1-27, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01301090

S. Duffner, S. Berlemont, G. Lefebvre, and C. Garcia, 3D gesture classification with convolutional neural networks, Proceedings of the International Conference on International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.
DOI : 10.1109/icassp.2014.6854641

URL : https://hal.archives-ouvertes.fr/hal-01180542

S. Duffner and C. Garcia, Pixeltrack: a fast adaptive algorithm for tracking non-rigid objects, Proceedings of the International Conference on International Conference on Computer Vision (ICCV), 2013.
DOI : 10.1109/iccv.2013.308

URL : https://hal.archives-ouvertes.fr/hal-00976387

S. Duffner and C. Garcia, Unsupervised online learning of visual focus of attention, Proceedings of the International Conference on Advanced Video and Signal-Based Surveillance (AVSS), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00976391

D. Korchagin, S. Duffner, P. Motlicek, and C. Scheffler, Multimodal cue detection engine for orchestrated entertainment, Proceedings of the International Conference on MultiMedia Modeling, 2012.
DOI : 10.1007/978-3-642-27355-1_71

URL : http://publications.idiap.ch/downloads/reports/2011/Korchagin_Idiap-RR-34-2011.pdf

D. Korchagin, P. Motlicek, and S. Duffner, Just-in-time multimodal association and fusion from home entertainment, IEEE International Conference on Multimedia and Expo (ICME), Workshop on Multimodal Audio-based Multimedia Content Analysis (MAMCA), 2011.

S. Duffner and J. Odobez, Exploiting long-term observations for track creation and deletion in online multi-face tracking, Proceedings of the International Conference on Automatic Face and Gesture Recognition (FG), 2011.
DOI : 10.1109/fg.2011.5771453

URL : http://infoscience.epfl.ch/record/163159/files/Duffner_FG_2011.pdf

S. Duffner, D. Korchagin, and P. Motlicek, The TA2 database -a multi-modal database from home entertainment, International Conference on Signal Acquisition and Processing (ICSAP), 2011.

S. Duffner, J. Odobez, and E. Ricci, Dynamic partitioned sampling for tracking with discriminative features, Proceedings of the British Machine Vision Conference (BMVC), 2009.
DOI : 10.5244/c.23.71

S. Duffner and C. Garcia, Robust face alignment using convolutional neural networks, Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), 2008.

S. Duffner and C. Garcia, Face recognition using non-linear image reconstruction, Proceedings of the International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp.459-464, 2007.
DOI : 10.1109/avss.2007.4425354

S. Duffner and C. Garcia, An online backpropagation algorithm with validation errorbased adaptive learning rate, Proceedings of the International Conference on Artificial Neural Networks (ICANN), vol.1, pp.249-258, 2007.
DOI : 10.1007/978-3-540-74690-4_26

S. Roux, F. Mamalet, C. Garcia, and S. Duffner, An embedded robust facial feature detector, International Conference on Machine Learning and Signal Processing, pp.170-175, 2007.
DOI : 10.1109/mlsp.2007.4414301

C. Garcia and S. Duffner, Facial image processing with convolutional neural networks, International Workshop on Advances in Pattern Recognition (IWAPR), pp.97-108, 2007.
DOI : 10.1007/978-1-84628-945-3_10

S. Duffner and C. Garcia, A neural scheme for robust detection of transparent logos in TV programs, Proceedings of the International Conference on Artificial Neural Networks (ICANN), vol.2, pp.14-23, 2006.

S. Duffner and C. Garcia, A connexionist approach for robust and precise facial feature detection in complex scenes, Fourth International Symposium on Image and Signal Processing and Analysis (ISPA), pp.316-321, 2005.

Y. Chen, S. Duffner, A. Stoian, J. Dufour, and A. Baskurt, Ré-identification de personne avec perte min-triplet. In 16e journées francophones des jeunes chercheurs en vision par ordinateur, 2017.

A. Lehuger, S. Duffner, and C. Garcia, A robust method for automatic player detection in sport videos, Compression et Représentation des Signaux Audiovisuels (CORESA), 2007.

S. Duffner and C. Garcia, A hierarchical approach for precise facial feature detection, Compression et Représentation des Signaux Audiovisuels (CORESA), pp.29-34, 2005.

S. Jehan-besson, S. Duffner, A. Herbulot, M. Barlaud, and A. G. , Utilisation des gradients de forme et des contours actifs basés régions pour la segmentation des vecteurs mouvement, GRETSI, 2005.

M. Everingham, A. Zisserman, C. K. Williams, L. Van-gool, A. Moray et al., The 2005 PASCAL Visual Object Classes Challenge, Selected Proceedings of the first PASCAL Challenges Workshop, 2006.

C. Garcia and S. Duffner, Procédé de recadrage d'images de visage, 2006.

C. Garcia and S. Duffner, Procédé de reconnaissance de visages par reconstruction croisée non linéaire FR20060055929, WO2007FR52569, 2006.

C. Garcia and S. Duffner, Système et procédé de localisation de points d'intérêt dans une image d'objet mettant en oeuvre un réseau de neurones, 2005.

S. Duffner, Face Image Analysis With Convolutional Neural Networks, 2007.

S. Duffner, Master's thesis,École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), 2004.

A. Adam, E. Rivlin, and I. Shimshoni, Robust fragments-based tracking using the integral histogram, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.798-805, 2006.
DOI : 10.1109/cvpr.2006.256

URL : http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack_cvpr06.pdf

A. Adam, E. Rivlin, and I. Shimshoni, Robust fragments-based tracking using the integral histogram, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.798-805, 2006.
DOI : 10.1109/cvpr.2006.256

URL : http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack_cvpr06.pdf

C. Aeschliman, J. Park, and A. C. Kak, A probabilistic framework for joint segmentation and tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1371-1378, 2010.
DOI : 10.1109/cvpr.2010.5539810

E. Ahmed, M. Jones, and T. K. Marks, An improved deep learning architecture for person re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3908-3916, 2015.
DOI : 10.1109/cvpr.2015.7299016

T. Ahonen, A. Hadid, and M. Pietikäinen, Face recognition with local binary patterns, Proceedings of the European Conference on Computer Vision (ECCV), pp.469-481
DOI : 10.1007/978-3-540-24670-1_36

. Springer, , 2004.

O. Akin, E. Erdem, A. Erdem, and K. Mikolajczyk, Deformable part-based tracking by coupled global and local correlation filters, Journal of Visual Communication and Image Representation, vol.38, pp.763-774, 2016.
DOI : 10.1016/j.jvcir.2016.04.018

A. Akl and S. Valaee, Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.
DOI : 10.1109/icassp.2010.5495895

S. R. Arashloo and J. Kittler, Efficient processing of MRFs for unconstrained-pose face recognition, Biometrics: Theory, Applications and Systems (BTAS), pp.1-8, 2013.
DOI : 10.1109/btas.2013.6712721

J. Shervin-rahimzadeh-arashloo and . Kittler, Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features, IEEE Transactions on Information Forensics and Security, vol.9, issue.12, pp.2100-2109, 2014.

S. Asteriadis, K. Karpouzis, and S. Kollias, Visual focus of attention in non-calibrated environments using gaze estimation, International Journal of Computer Vision, vol.107, issue.3, pp.293-316, 2013.

. Shai-avidan, Ensemble tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.2, pp.261-271, 2007.

O. Sileye, J. Ba, and . Odobez, A Rao-Blackwellized mixed state particle filter for head pose tracking, Proceedings of ICMI Workshop on Multi-modal Multi-party Meeting Processing (MMMP), pp.9-16, 2005.

O. Sileye, J. Ba, and . Odobez, Evaluation of multiple cue head pose estimation algorithms in natural environements, Proceedings of ICME, pp.1330-1333, 2005.

O. Sileye, J. Ba, and . Odobez, Recognizing visual focus of attention from head pose in natural meetings, IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, vol.39, issue.1, pp.16-33, 2009.

O. Sileye, J. Ba, and . Odobez, Multiperson visual focus of attention from head pose and meeting contextual cues, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, pp.101-116, 2011.

O. Sileye, H. Ba, J. Hung, and . Odobez, Visual activity context for focus of attention estimation in dynamic meetings, Proceedings of ICME, pp.1424-1427, 2009.

B. Babenko, M. Yang, and S. Belongie, Visual tracking with online multiple instance learning, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
DOI : 10.1109/cvpr.2009.5206737

S. Bae and K. Yoon, Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1218-1225, 2014.
DOI : 10.1109/cvpr.2014.159

C. Bailer, A. Pagani, and D. Stricker, A superior tracking approach: Building a strong tracker through fusion, Proceedings of the European Conference on Computer Vision (ECCV), pp.170-185, 2014.
DOI : 10.1007/978-3-319-10584-0_12

URL : http://alain.pagani.free.fr/papers/Bailer2014_ECCV.pdf

S. Bak, E. Corvee, F. Bremond, and M. Thonnat, Person reidentification using spatial covariance regions of human body parts, IEEE International Conference on Advanced Video and Signal Based Surveillance, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00496116

S. Bak, S. Zaidenberg, B. Boulay, and F. Bremond, Improving person re-identification by viewpoint cues, Advanced Video and Signal Based Surveillance (AVSS), pp.175-180, 2014.
DOI : 10.1109/avss.2014.6918664

URL : https://hal.archives-ouvertes.fr/hal-01004390

D. Ballard, Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition, 1981.
DOI : 10.1016/0031-3203(81)90009-1

URL : https://urresearch.rochester.edu/fileDownloadForInstitutionalItem.action?itemId=13504&itemFileId=31267

C. Bao, Y. Wu, H. Ling, and H. Ji, Real time robust l1 tracker using accelerated proximal gradient approach, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1830-1837, 2012.

O. Barkan, J. Weill, L. Wolf, and H. Aronowitz, Fast high dimensional vector multiplication face recognition, Proceedings of the International Conference on Computer Vision (ICCV), 2013.
DOI : 10.1109/iccv.2013.246

M. Basseville, Detecting changes in signals and systems -a survey, Automatica, vol.24, pp.309-326, 1988.

L. Bazzani, D. Tosato, M. Cristani, M. Farenzena, G. Pagetti et al., Social interactions by visual focus of attention in a three-dimensional environment, Expert Systems, vol.30, issue.2, pp.115-127, 2013.

V. Belagiannis, F. Schubert, N. Navab, and S. Ilic, Segmentation based particle filtering for real-time 2d object tracking, Proceedings of European Conference on Computer Vision (ECCV), pp.1-14, 2012.
DOI : 10.1007/978-3-642-33765-9_60

URL : http://campar.in.tum.de/pub/belagiannis2012eccv/belagiannis2012eccv.pdf

A. Bellet, A. Habrard, and M. Sebban, A survey on metric learning for feature vectors and structured data, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01666935

B. Benfold and I. Reid, Stable multi-target tracking in real-time surveillance video, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3457-3464, 2011.
DOI : 10.1109/cvpr.2011.5995667

B. Benfold and I. Reid, Unsupervised learning of a scene-specific coarse gaze estimator, Proceedings of the International Conference on Computer Vision (ICCV), 2011.
DOI : 10.1109/iccv.2011.6126516

J. Berclazi, F. Fleuret, E. Turetken, and P. Fua, Multiple object tracking using k-shortest paths optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.9, pp.1806-1819, 2011.

T. Berg and P. N. Belhumeur, Tom-vs-pete classifiers and identity-preserving alignment for face verification, Proceedings of the British Machine Vision Conference (BMVC), vol.1, p.5, 2012.
DOI : 10.5244/c.26.129

URL : http://www.bmva.org/bmvc/2012/BMVC/paper129/paper129.pdf

S. Berlemont, Automatic non linear metric learning : Application to gesture recognition. Thesis, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01379579

M. Bertalmio, G. Sapiro, and G. Randall, Morphing active contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.733-737, 2000.
DOI : 10.1007/3-540-48236-9_5

L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr, Staple: Complementary learners for real-time tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/cvpr.2016.156

URL : http://arxiv.org/pdf/1512.01355

S. M. Bhandarkar and X. Luo, Integrated detection and tracking of multiple faces using particle filtering and optical flow-based elastic matching, Computer Vision and Image Understanding, vol.113, pp.708-725, 2009.

C. Bibby and I. Reid, Robust real-time visual tracking using pixel-wise posteriors, Proceedings of European Conference on Computer Vision (ECCV), 2008.
DOI : 10.1007/978-3-540-88688-4_61

S. Birchfield, Elliptical head tracking using intensity gradients and color histograms, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.232-237, 1998.
DOI : 10.1109/cvpr.1998.698614

URL : http://robotics.stanford.edu/~birch/publications/headtracker_cvpr1998.pdf

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, Visual object tracking using adaptive correlation filters, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
DOI : 10.1109/cvpr.2010.5539960

A. Bordes, J. Weston, R. Collobert, and Y. Bengio, Learning structured embeddings of knowledge bases, Conference on Artificial Intelligence, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752498

M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-meier, and L. Van-gool, Online multiperson tracking-by-detection from a single, uncalibrated camera, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.9, pp.1820-1833, 2011.

J. Bromley, I. Guyon, Y. Lecun, E. Säckinger, and R. Shah, Signature Verification using a "Siamese" Time Delay Neural Network, Proceedings of NIPS, 1994.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds et al., Learning to rank using gradient descent, International Conference on Machine Learning (ICML), pp.89-96, 2005.

J. Christopher, R. Burges, Q. Ragno, and . Le, Learning to rank with nonsmooth cost functions, NIPS, pp.193-200, 2007.

A. A. Butt and R. T. Collins, Multi-target tracking by Lagrangian relaxation to min-cost network flow, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1846-1853, 2013.

Y. Cai, V. Takala, and M. Pietikainen, Matching groups of people by covariance descriptor, Pattern Recognition (ICPR), 2010 20th International Conference on, pp.2744-2747, 2010.

Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Z. Li, Structured visual tracking with dynamic graph, Proceedings of the Asian Conference on Computer Vision (ACCV), pp.86-97, 2012.
DOI : 10.1007/978-3-642-37431-9_7

K. Cannons, R. Gryn, and . Wildes, Visual tracking using a pixelwise spatiotemporal oriented energy representation, Proceedings of European Conference on Computer Vision (ECCV), pp.511-524, 2010.
DOI : 10.1007/978-3-642-15561-1_37

Q. Cao, Y. Ying, and P. Li, Similarity metric learning for face recognition, Proceedings of the International Conference on Computer Vision (ICCV), 2013.
DOI : 10.1109/iccv.2013.299

Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, Learning to rank: from pairwise approach to listwise approach, International Conference on Machine Learning (ICML), pp.129-136, 2007.

G. Chechik, V. Sharma, U. Shalit, and S. Bengio, Large scale online learning of image similarity through ranking, Journal of Machine Learning Research, vol.11, pp.1109-1135, 2010.
DOI : 10.1007/978-3-642-02172-5_2

C. Chen, R. Jafari, and N. Kehtarnavaz, Improving Human Action Recognition Using Fusion of Depth Camera and Inertial Sensors, IEEE Transactions on Human-Machine Systems, vol.45, issue.1, pp.51-61, 2015.
DOI : 10.1109/thms.2014.2362520

C. Chen and J. Odobez, We are not contortionists: Coupled adaptive learning for head and body orientation estimation in surveillance video, Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012.

D. Chen, X. Cao, F. Wen, and J. Sun, Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3025-3032, 2013.

K. Chen and A. Salman, Extracting Speaker-Specific Information with a Regularized Siamese Deep Network, Proceedings of Advances in Neural Information Processing Systems (NIPS), pp.298-306, 2011.

W. Chen, X. Chen, J. Zhang, and K. Huang, Beyond triplet loss: a deep quadruplet network for person re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, 2017.
DOI : 10.1109/cvpr.2017.145

URL : http://arxiv.org/pdf/1704.01719

W. Chen, X. Chen, J. Zhang, and K. Huang, A multi-task deep network for person re-identification, AAAI, pp.3988-3994, 2017.

Y. Chen, X. Zhu, and S. Gong, Person re-identification by deep learning multi-scale representations, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2590-2600, 2017.
DOI : 10.1109/iccvw.2017.304

URL : https://qmro.qmul.ac.uk/xmlui/bitstream/123456789/36238/1/Gong%20Person%20re-identification%202017%20Accepted.pdf

Y. Chen, Person Re-identification in Images with Deep Learning. Thesis, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02090746

D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, Person reidentification by multi-channel parts-based cnn with improved triplet loss function, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1335-1344, 2016.
DOI : 10.1109/cvpr.2016.149

M. Dong-seon-cheng, M. Cristani, L. Stoppa, V. Bazzani, and . Murino, Custom pictorial structures for re-identification, Bmvc, vol.1, 2011.

P. Chockalingam, S. Pradeep, and . Birchfield, Adaptive fragments-based tracking of nonrigid objects using level sets, Proceedings of International Conference on Computer Vision (ICCV), 2009.

J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi, Visual tracking using attentionmodulated disintegration and integration, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/cvpr.2016.468

URL : http://openaccess.thecvf.com/content_cvpr_2016/papers/Choi_Visual_Tracking_Using_CVPR_2016_paper.pdf

S. Chopra, R. Hadsell, and Y. Lecun, Learning a similarity metric discriminatively, with application to face verification, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.539-546, 2005.
DOI : 10.1109/cvpr.2005.202

T. Robert, Y. Collins, and . Liu, On-line selection of discriminative tracking features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, pp.1631-1643, 2005.

D. Comaniciu, V. Ramesh, and P. Meer, Real-time tracking of non-rigid objects using mean shift, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, pp.142-149, 2000.

D. Cremers and G. Funka-lea, Dynamical statistical shape priors for level set based sequence segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.8, pp.1262-1273, 2006.
DOI : 10.1007/11567646_18

Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen, Fusing robust face region descriptors via multiple metric learning for face recognition in the wild, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3554-3561, 2013.

J. Cumin and G. Lefebvre, A priori Data and A posteriori Decision Fusions for Human Action Recognition, 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01282008

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, Accurate scale estimation for robust visual tracking, Proceedings of the British Machine Vision Conference (BMVC), 2014.
DOI : 10.5244/c.28.65

URL : http://www.bmva.org/bmvc/2014/files/abstract038.pdf

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, Learning spatially regularized correlation filters for visual tracking, Proceedings of International Conference on Computer Vision (ICCV), 2015.

M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, Beyond correlation filters: Learning continuous convolution operators for visual tracking, Proceedings of European Conference on Computer Vision (ECCV), 2016.

J. G. Daugman, Complete discrete 2-D gabor transforms by neural networks for image analysis and compression, IEEE Transactions on Acoustics, Speech and Signal Processing, vol.36, issue.7, pp.1169-1179, 1988.

J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, Information-theoretic metric learning, Proceedings of the International Conference on Machine Learning (ICML), pp.209-216, 2007.
DOI : 10.1145/1273496.1273523

N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, Front-end factor analysis for speaker verification, IEEE Transactions on Audio, Speech and Language Processing, vol.19, issue.4, pp.788-798, 2011.

Y. Deng, P. Luo, C. C. Loy, and X. Tang, Pedestrian attribute recognition at far distance, Proceedings of the ACM international conference on Multimedia, pp.789-792, 2014.

M. Dikmen, E. Akbas, S. Thomas, N. Huang, and . Ahuja, Pedestrian recognition with a learned metric, Asian conference on Computer vision, pp.501-512, 2010.
DOI : 10.1007/978-3-642-19282-1_40

URL : http://vision.ai.uiuc.edu/publications/dikmen_accv10.pdf

S. Ding, L. Lin, G. Wang, and H. Chao, Deep feature learning with relative distance comparison for person re-identification, Pattern Recognition, vol.48, issue.10, pp.2993-3003, 2015.

N. Tb-dinh, G. Vo, and . Medioni, Context tracker: Exploring supporters and distracters in unconstrained environments, Proceedings of the Computer Vision and Pattern Recognition (CVPR), 2011.

S. L. Dockstader, N. S. Imennov, and A. M. Tekalp, Markov-based failure prediction for human motion analysis, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, pp.1283-1288, 2003.
DOI : 10.1109/iccv.2003.1238638

URL : http://lear.inrialpes.fr/people/triggs/events/iccv03/cdrom/iccv03/1283_dockstader.pdf

L. Dong, H. Di, L. Tao, G. Xu, and P. Oliver, Visual focus of attention recognition in the ambient kitchen, Proceedings of the Asian Conference on Computer Vision (ACCV), pp.548-559, 2009.

A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, vol.10, pp.197-208, 2000.

D. Du, H. Qi, W. Li, L. Wen, Q. Huang et al., Online deformable object tracking based on structure-aware hyper-graph, IEEE Transactions on Image Processing, vol.25, issue.8, pp.3572-3584, 2016.
DOI : 10.1109/tip.2016.2570556

A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance, Proceedings of IEEE, vol.90, issue.7, pp.1151-1163, 2002.
DOI : 10.1109/jproc.2002.801448

URL : http://www.umiacs.umd.edu/~ramani/pubs/ieee_proc.pdf

J. Fan, W. Xu, Y. Wu, and Y. Gong, Human tracking using convolutional neural networks, IEEE Transactions on Neural Networks, vol.21, issue.10, pp.1610-1623, 2010.

J. Fan, W. Xu, Y. Wu, and Y. Gong, Human tracking using convolutional neural networks, IEEE Transactions on Neural Networks, vol.21, issue.10, pp.1610-1623, 2010.

M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, Person re-identification by symmetry-driven accumulation of local features, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2360-2367, 2010.

S. S. Fels and G. E. Hinton, Glove-Talk: a neural network interface between a data-glove and a speech synthesizer, IEEE Transactions on Neural Networks, vol.4, issue.1, 1993.
DOI : 10.1109/72.182690

M. Felsberg, Enhanced distribution field tracking using channel representations, 2013.
DOI : 10.1109/iccvw.2013.22

URL : http://liu.diva-portal.org/smash/get/diva2:358053/FULLTEXT01.pdf

P. Felzenszwalb, R. Girshick, D. Mcallester, and D. Ramanan, Object detection with discriminatively trained part based models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, 2010.

I. Fogel and D. Sagi, Gabor filters as texture discriminator, Biological cybernetics, vol.61, issue.2, pp.103-113, 1989.
DOI : 10.1007/bf00204594

T. E. Fortmann, Y. Bar-shalom, and M. Scheffe, Sonar tracking of multiple targets using joint probabilistic data association, IEEE Journal of Oceanatic Engineering, vol.8, issue.3, pp.173-184, 1983.

D. Freedman and T. Zhang, Active contours for tracking distributions, IEEE Transactions on Image Processing, vol.13, issue.4, pp.518-526, 2004.
DOI : 10.1109/tip.2003.821445

E. G. Freedman and D. L. Sparks, Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys, Journal of Neurophysiology, vol.77, pp.2328-2348, 1997.

K. Fukushima, Neocognitron: A self-organizing neural-network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, vol.36, pp.193-202, 1980.

K. A. , F. Mora, and J. Odobez, Gaze estimation from multimodal kinect data, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Gesture Recognition, 2012.

J. Gall, A. Yao, N. Razavi, L. Van-gool, and V. Lempitsky, Hough forests for object detection, tracking, and action recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.11, pp.2188-202, 2011.
DOI : 10.1109/tpami.2011.70

J. Gao, J. Xing, W. Hu, and X. Zhang, Graph embedding based semi-supervised discriminative tracker, 2013.
DOI : 10.1109/iccvw.2013.25

C. Garcia and M. Delakis, Convolutional Face Finder: A neural architecture for fast and robust face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, pp.1408-1423, 2004.
DOI : 10.1109/tpami.2004.97

J. García, N. Martinel, G. L. Foresti, A. Gardel, and C. Micheloni, Person orientation and feature distances boost re-identification, Pattern Recognition (ICPR), 2014 22nd International Conference on, pp.4618-4623, 2014.

D. Garcia, -. Romero, and C. Y. Espy-wilson, Analysis of i-vector length normalization in speaker recognition systems, In Interspeech, pp.249-252, 2011.

E. Gasca, S. Salda-na, V. Velásquez, E. Rendón, and R. Cruz, A rejection option for the multilayer perceptron using hyperplanes, Adaptive and Natural Computing Algorithms, pp.51-60, 2011.

N. Gengembre and P. Pérez, Probabilistic color-based multi-object tracking with application to team sports, INRIA, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00285122

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
DOI : 10.1109/cvpr.2014.81

URL : http://arxiv.org/pdf/1311.2524

M. Godec and P. M. Roth, Hough-based tracking of non-rigid objects, Proceedings of International Conference on Computer Vision (ICCV), 2011.

I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Proceedings of the International Conference on, pp.2672-2680, 2014.

H. Grabner and H. Bischof, On-line boosting and vision, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.260-267, 2006.
DOI : 10.1109/cvpr.2006.215

H. Grabner, M. Grabner, and H. Bischof, Real-time tracking via on-line boosting, Proceedings of British Machine Vision Conference (BMVC), 2006.
DOI : 10.5244/c.20.6

URL : http://www.bmva.org/bmvc/2006/papers/033.pdf

H. Grabner, C. Leistner, and H. Bischof, Semi-supervised on-line boosting for robust tracking, Proceedings of European Conference on Computer Vision (ECCV), 2008.
DOI : 10.1007/978-3-540-88682-2_19

H. Grabner, J. Matas, L. Van-gool, and P. Cattin, Tracking the invisible: Learning where the object might be, Proceedings of the Computer Vision and Pattern Recognition (CVPR), vol.3, pp.1285-1292, 2010.

A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, IEEE Transactions on Neural Networks, issue.18, pp.5-6, 2005.
DOI : 10.1016/j.neunet.2005.06.042

D. Gray and H. Tao, Viewpoint invariant pedestrian recognition with an ensemble of localized features, Proceedings of the European Conference on Computer Vision (ECCV), pp.262-275, 2008.

C. S. Greenberg, D. Bansé, G. R. Doddington, D. Garcia-romero, J. J. Godfrey et al., The NIST 2014 speaker recognition i-vector machine learning challenge, Odyssey: The Speaker and Language Recognition Workshop, 2014.

M. Guillaumin, J. Verbeek, and C. Schmid, Is that you? metric learning approaches for face identification, Proceedings of International Conference on Pattern Recognition (ICPR), pp.498-505, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00439290

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.309-316, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00439276

R. Hadsell, S. Chopra, and Y. Lecun, Dimensionality reduction by learning an invariant mapping, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1735-1742, 2006.
DOI : 10.1109/cvpr.2006.100

S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. M. Cheng et al., Struck: Structured output tracking with kernels, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.10, pp.2096-2109, 2016.
DOI : 10.1109/iccv.2011.6126251

URL : http://www.ymer.org/papers/files/2011-Struck.pdf

S. Hare, A. Saffari, and P. H. Torr, Struck: Structured output tracking with kernels, Proceedings of International Conference on Computer Vision (ICCV), 2011.
DOI : 10.1109/iccv.2011.6126251

URL : http://www.ymer.org/papers/files/2011-Struck.pdf

S. Hare, A. Saffari, and P. H. Torr, Efficient online structured output learning for keypoint-based object tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
DOI : 10.1109/cvpr.2012.6247889

URL : http://www.ymer.org/papers/files/2012-LearnMatch.pdf

M. Hayhoe and D. Ballard, Eye movements in natural behavior, TRENDS in Cognitive Sciences, vol.9, issue.4, pp.188-194, 2005.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
DOI : 10.1109/cvpr.2016.90

URL : http://arxiv.org/pdf/1512.03385

T. Heap and D. Hogg, Towards 3D hand tracking using a deformable model, Proceedings of Automatic Face and Gesture Recognition (FG), 1996.
DOI : 10.1109/afgr.1996.557255

M. Heikkilä, M. Pietikäinen, and C. Schmid, Description of interest regions with centersymmetric local binary patterns, Proceedings of Indian conference on Computer Vision, Graphics and Image Processing, pp.58-69, 2006.

A. Heili, A. López-méndez, and J. Odobez, Exploiting long-term connectivity and visual motion in CRF-based multi-person tracking, IEEE Transactions on Image Processing, 2014.
DOI : 10.1109/tip.2014.2324292

URL : http://publications.idiap.ch/downloads/reports/2013/Heili_Idiap-RR-06-2014.pdf

J. Henriques, R. Caseiro, P. Martins, and J. Batista, High-speed tracking with kernelized correlation filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.3, pp.583-596, 2015.
DOI : 10.1109/tpami.2014.2345390

URL : http://arxiv.org/pdf/1404.7584

R. Herbrich, Large margin rank boundaries for ordinal regression, pp.115-132, 2000.

A. Hermans, L. Beyer, and B. Leibe, defense of the triplet loss for person re-identification, 2017.

R. Hess and A. Fern, Discriminatively trained particle filters for complex multi-object tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.240-247, 2009.
DOI : 10.1109/cvprw.2009.5206801

URL : http://www.cs.orst.edu/~afern/papers/cvpr09.pdf

N. V. Hieu and B. Li, Cosine similarity metric learning for face verification, Proceedings of the Asian Conference on Computer Vision (ACCV), pp.709-720, 2011.

G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol.313, issue.5786, pp.504-507, 2006.

M. Hoffman, P. Varcholik, and J. J. Laviola, Breaking the status quo: Improving 3D gesture recognition with spatially convenient input devices, Virtual Reality Conference (VR), pp.59-66, 2010.

F. G. Hofmann, P. Heyer, and G. Hommel, Velocity profile based recognition of dynamic gestures with discrete Hidden Markov Models, Gesture and Sign Language in HumanComputer Interaction, vol.1371, pp.81-95, 1998.

Z. Hong, X. Mei, and D. Tao, Dual-force metric learning for robust distracterresistant tracker, Proceedings of European Conference on Computer Vision (ECCV), pp.513-527, 2012.
DOI : 10.1007/978-3-642-33718-5_37

Z. Hong, C. Wang, X. Mei, D. Prokhorov, and D. Tao, Tracking using multilevel quantizations, Proceedings of European Conference on Computer Vision (ECCV), pp.155-171, 2014.
DOI : 10.1007/978-3-319-10599-4_11

Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov et al., MUlti-Store Tracker (MUSTer): a cognitive psychology inspired approach to object tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/cvpr.2015.7298675

URL : https://hal-upec-upem.archives-ouvertes.fr/hal-01155588/file/MUlti-Store%20Tracker%20%28MUSTer%29%20a%20Cognitive%20Psychology%20Inspired%20Approach%20to%20Object%20Tracking.pdf

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.
DOI : 10.1016/0893-6080(89)90020-8

J. Hu, J. Lu, and Y. Tan, Discriminative deep metric learning for face verification in the wild, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1875-1882, 2014.
DOI : 10.1109/cvpr.2014.242

Y. Hua, K. Alahari, and C. Schmid, Occlusion and motion reasoning for long-term tracking, Proceedings of the European Conference on Computer Vision (ECCV), pp.172-187, 2014.
DOI : 10.1007/978-3-319-10599-4_12

URL : https://hal.archives-ouvertes.fr/hal-01020149

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-miller, Labeled faces in the wild: A database for studying face recognition in unconstrained environments, 2007.

S. U. Hussain, T. Napoléon, and F. Jurie, Face recognition using local quantized patterns, Proceedings of the British Machine Vision Conference (BMVC), 2012.
DOI : 10.5244/c.26.99

URL : https://hal.archives-ouvertes.fr/hal-00806104

M. Isard and A. Blake, CONDENSATION -conditional density propagation for visual tracking, Proceedings of International Conference on Computer Vision (ICCV), vol.29, pp.5-28, 1998.

M. Jaderberg, K. Simonyan, and A. Zisserman, Spatial transformer networks, Advances in neural information processing systems, pp.2017-2025, 2015.

A. D. Jepson, J. D. Fleet, and T. F. El-margaghi, Robust online appearance models for visual tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, pp.1296-1311, 2003.
DOI : 10.1109/cvpr.2001.990505

A. D. Jepson, D. J. Fleet, and T. R. El-maraghi, Robust online appearance models for visual tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), vol.I, 2001.
DOI : 10.1109/cvpr.2001.990505

Y. Jin and F. Mokhtarian, Variational particle filter for multi-object tracking, Proceedings of International Conference on Computer Vision (ICCV), pp.1-8, 2007.
DOI : 10.1109/iccv.2007.4408952

Z. Kalal, J. Matas, and K. Mikolajczyk, Online learning of robust object detectors during unstable tracking, Proceedings of International Conference on Computer Vision (ICCV)(CV workshop), pp.1417-1424, 2009.
DOI : 10.1109/iccvw.2009.5457446

URL : https://dspace.cvut.cz/bitstream/10467/9549/1/2009-Online-learning-of-robust-object-detectors-during-unstable-tracking.pdf

Z. Kalal, K. Matas, and . Mikolajczyk, P-N learning: Bootstrapping binary classifiers by structural constraints, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
DOI : 10.1109/cvpr.2010.5540231

URL : https://dspace.cvut.cz/bitstream/10467/9552/1/2010-P-n-learning-Bootstrapping-binary-classifiers-by-structural-constraints.pdf

Z. Kalal, K. Mikolajczyk, and J. Matas, Forward-backward error: Automatic detection of tracking failures, Proceedings of International Conference on Pattern Recognition (ICPR), 2010.
DOI : 10.1109/icpr.2010.675

URL : https://dspace.cvut.cz/bitstream/10467/9553/1/2010-forward-backward-error-automatic-detection-of-tracking-failures.pdf

Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-Learning-Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.7, pp.1409-1422, 2012.

S. Kallio, J. Kela, and J. Mantyjarvi, Online gesture recognition system for mobile interaction, Proceedings of Systems, Man and Cybernetics, vol.3, pp.2070-2076, 2003.
DOI : 10.1109/icsmc.2003.1244189

M. Kan, S. Shan, D. Xu, and X. Chen, Side-information based linear discriminant analysis for face recognition, Proceedings of the British Machine Vision Conference (BMVC), 2011.
DOI : 10.5244/c.25.125

URL : http://www.bmva.org/bmvc/2011/proceedings/paper125/paper125.pdf

Y. Ke and R. Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, p.506, 2004.

D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger, Non-linear metric learning, Proceedings of Advances in Neural Information Processing Systems (NIPS), pp.2573-2581, 2012.

J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio, G. Savino et al., Accelerometer-based gesture control for a design environment, Personal and Ubiquitous Computing, vol.10, issue.5, pp.285-299, 2006.
DOI : 10.1007/s00779-005-0033-8

J. C. Obaidullah-khalid, A. Sanmiguel, and . Cavallero, Multi-tracker partition fusion, IEEE Transactions on Circuits and Systems for Video Technology, 2016.

S. Khamis, C. Kuo, K. Vivek, . Singh, D. Vinay et al., Joint learning for attribute-consistent person re-identification, ECCV Workshops (3), pp.134-146, 2014.
DOI : 10.1007/978-3-319-16199-0_10

Z. Khan, T. Balch, and F. Dellaert, An MCMC-based particle filter for tracking multiple interacting targets, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.11, pp.1805-1918, 2005.
DOI : 10.1007/978-3-540-24673-2_23

S. Kim, S. Kwak, J. Feyereisl, and B. Han, Online multi-target tracking by large margin structured learning, Proceedings of the Asian Conference on Computer Vision (ACCV), pp.98-111, 2012.
DOI : 10.1007/978-3-642-37431-9_8

M. Koestinger, M. Hirzer, P. Wohlhart, M. Peter, H. Roth et al., Large scale metric learning from equivalence constraints, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2288-2295, 2012.

M. Kristan, L. Cehovin, R. Pflugfelder, G. Nebehay, G. Fernandez et al., The Visual Object Tracking VOT2013 challenge results, Proceedings of the International Conference on Computer Vision (ICCV) (Workshops), 2013.
DOI : 10.1109/iccvw.2013.20

URL : https://repository.kaust.edu.sa/bitstream/10754/605657/1/Kristan_The_Visual_Object_ICCV_2015_paper.pdf

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin et al., The Visual Object Tracking VOT2014 challenge results, Proceedings of the European Conference on Computer Vision (ECCV) (Workshops), 2014.
DOI : 10.1007/978-3-319-16181-5_14

URL : https://hal.archives-ouvertes.fr/hal-01301090

M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. P. Pflugfelder et al., A novel performance evaluation methodology for single-target trackers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.11, pp.2137-2155, 2016.
DOI : 10.1109/tpami.2016.2516982

URL : http://pure-oai.bham.ac.uk/ws/files/26149101/performance_evaluation_methodology.pdf

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Proceedings of Advances in neural information processing systems (NIPS), pp.1097-1105, 2012.
DOI : 10.1145/3065386

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

C. Kuo and R. Nevatia, How does person identity recognition help multi-person tracking?, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1217-1224, 2011.
DOI : 10.1109/cvpr.2011.5995384

J. Kwon and K. M. Lee, Visual tracking decomposition, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1269-1276, 2010.
DOI : 10.1109/cvpr.2010.5539821

URL : http://cv.snu.ac.kr/publication/conf/2010/VTD_CVPR2010.pdf

J. Kwon and K. M. Lee, Tracking by sampling trackers, Proceedings of the International Conference on Computer Vision (ICCV), pp.1195-1202, 2011.

J. Kwon and . Kyoung-mu-lee, Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

S. R. Langton, R. Watt, and I. Bruce, Do the eyes have it? cues to the direction of social attention, Trends in cognitive sciences, vol.4, issue.2, pp.50-59, 2000.

O. Lanz and R. Brunelli, Joint bayesian tracking of head location and pose from low-resolution video, Multimodal Technologies for Perception of Humans, pp.287-296, 2007.

R. Layne, T. M. Hospedales, S. Gong, and Q. Mary, Person reidentification by attributes, Proceedings of the British Machine Vision Conference (BMVC), vol.2, p.8, 2012.

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. Howard et al., Handwritten digit recognition with a back-propagation network, Advances in Neural Information Processing Systems, vol.2, pp.396-404, 1990.

Y. A. Lecun, L. Bottou, G. B. Orr, and K. Müller, Efficient backprop, Neural networks: Tricks of the trade, pp.9-48, 2012.

G. Lefebvre, S. Berlemont, F. Mamalet, and C. Garcia, BLSTM-RNN based 3D gesture classification, Proceedings of the International Conference on Artificial Neural Networks (ICANN), pp.381-388, 2013.
DOI : 10.1007/978-3-642-40728-4_48

URL : https://hal.archives-ouvertes.fr/hal-01224806

G. Lefebvre and C. Garcia, Learning a bag of features based nonlinear metric for facial similarity, Proceedings of the International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp.238-243, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218768

Y. Lei, N. Scheffer, L. Ferrer, and M. Mclaren, A novel scheme for speaker recognition using a phonetically-aware deep neural network, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.1695-1699, 2014.

B. Leibe, A. Leonardis, and B. Schiele, Combined object categorization and segmentation with an implicit shape model, ECCV worksh. on statist. learning in comp. vis, 2004.

I. Leichter, M. Lindenbaum, and E. Rivlin, A general framework for combining visual trackers -"black boxes" approach, International Journal of Computer Vision, vol.67, issue.3, pp.343-363, 2006.

V. Lepetit and P. Fua, Keypoint recognition using randomized trees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, pp.1465-79, 2006.
DOI : 10.1109/tpami.2006.188

G. Lerman and J. Tyler-whitehouse, On D-dimensional D-semimetrics and simplextype inequalities for high-dimensional sine functions, Journal of Approximation Theory, vol.156, issue.1, pp.52-81, 2009.

A. Li, L. Liu, and S. Yan, Person re-identification by attribute-assisted clothes appearance, Person Re-Identification, pp.119-138, 2014.
DOI : 10.1007/978-1-4471-6296-4_6

D. Li, X. Chen, and K. Huang, Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios, Proceedings of the Asian Conference on Pattern Recognition (ACPR), 2015.

D. Li, X. Chen, Z. Zhang, and K. Huang, Learning deep context-aware features over body and latent parts for person re-identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.384-393, 2017.
DOI : 10.1109/cvpr.2017.782

URL : http://arxiv.org/pdf/1710.06555

H. Li and G. Hua, Hierarchical-PEP model for real-world face recognition, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.4055-4064, 2015.

H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang, Probabilistic elastic matching for pose variant face verification, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3499-3506, 2013.

H. Li, Y. Li, and F. Porikli, DeepTrack : Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, Proceedings of British Machine Vision Conference (BMVC), 2014.

H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, Eigen-pep for video face recognition, Proceedings of the Asian Conference on Computer Vision (ACCV), pp.17-33, 2015.
DOI : 10.1007/978-3-319-16811-1_2

Q. Li, X. Wang, W. Wang, Y. Jiang, Z. Zhou et al., Disagreement-based multi-system tracking, Proceedings of the Asian Conference on Computer Vision (ACCV), vol.7729, pp.320-334, 2012.
DOI : 10.1007/978-3-642-37484-5_27

URL : http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/accv12w.pdf

W. Li and X. Wang, Locally aligned feature transforms across views, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3594-3601, 2013.
DOI : 10.1109/cvpr.2013.461

W. Li, R. Zhao, and X. Wang, Human reidentification with transferred metric learning, ACCV, 2012.
DOI : 10.1007/978-3-642-37331-2_3

W. Li, R. Zhao, T. Xiao, and X. Wang, Deepreid:deep filter pairing neural network for person re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.152-159, 2014.
DOI : 10.1109/cvpr.2014.27

W. Li, X. Zhu, and S. Gong, Person re-identification by deep joint learning of multi-loss classification, International Joint Conference on Artificial Intelligence, 2017.

Y. Li, C. Huang, and R. Nevatia, Learning to associate: HybridBoosted multiple object tracking, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2953-2960, 2009.
DOI : 10.1109/cvpr.2009.5206735

S. Liao, Y. Hu, X. Zhu, and S. Z. Li, Person re-identification by local maximal occurrence representation and metric learning, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2197-2206, 2015.
DOI : 10.1109/cvpr.2015.7298832

URL : http://arxiv.org/pdf/1406.4216

Z. Lin, S. Larry, and . Davis, Learning pairwise dissimilarity profiles for appearance recognition in visual surveillance, International symposium on visual computing, pp.23-34

. Springer, , 2008.

G. Lisanti, I. Masi, and A. D. Bimbo, Matching people across camera views using kernel canonical correlation analysis, Proceedings of the International Conference on Distributed Smart Cameras, p.10, 2014.
DOI : 10.1145/2659021.2659036

G. Lisanti, N. Martinel, A. D. Bimbo, and G. L. Foresti, Group reidentification via unsupervised transfer of sparse features encoding, Proceedings of the IEEE International Conference on International Conference on Computer Vision (ICCV), 2017.

B. Liu, J. Huang, L. Yang, and C. Kulikowsk, Robust tracking using local sparse appearance model and k-selection, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1313-1320, 2011.
DOI : 10.1109/cvpr.2011.5995730

H. Liu, J. Feng, M. Qi, J. Jiang, and S. Yan, End-to-end comparative attention networks for person re-identification, IEEE Transactions on Image Processing, 2017.
DOI : 10.1109/tip.2017.2700762

URL : http://arxiv.org/pdf/1606.04404

J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, V. Vasudevan et al., Accelerometer-based personalized gesture recognition and its applications, International Conference on Pervasive Computing and Communications, pp.1-9, 2009.
DOI : 10.1016/j.pmcj.2009.07.007

X. Liu, M. Song, D. Tao, X. Zhou, C. Chen et al., Semisupervised coupled dictionary learning for person re-identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3550-3557, 2014.
DOI : 10.1109/cvpr.2014.454

Z. Liu, P. Luo, X. Wang, and X. Tang, Deep learning face attributes in the wild, Proceedings of the International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/iccv.2015.425

URL : http://arxiv.org/pdf/1411.7766

G. David and . Lowe, Object recognition from local scale-invariant features. In Computer vision, The proceedings of the seventh IEEE international conference on, vol.2, pp.1150-1157, 1999.

G. David and . Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.

J. Lu, X. Zhou, Y. Tan, Y. Shang, and J. Zhou, Neighborhood repulsed metric learning for kinship verification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.2, pp.331-345, 2014.

L. Lu, Z. Zhang, H. Shum, Z. Liu, and H. Chen, Model and exemplar-based robust head pose tracking under occlusion and varying expression, Proceedings of the IEEE Workshop on Models versus Exemplars in Computer Vision (CVPR-MECV), 2001.

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 1981.

B. Ma, Y. Su, and F. Jurie, Local descriptors encoded by fisher vectors for person re-identification, Proceedings of the European Conference on Computer Vision (ECCV), pp.413-422, 2012.
DOI : 10.1007/978-3-642-33863-2_41

URL : https://hal.archives-ouvertes.fr/hal-00806066

C. Ma, J. Huang, X. Yang, and M. Yang, Hierarchical convolutional features for visual tracking, Proceedings of International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/iccv.2015.352

L. Ma, X. Yang, and D. Tao, Person re-identification over camera networks using multi-task distance metric learning, IEEE Transactions on Image Processing, vol.23, issue.8, pp.3656-3670, 2014.

L. Ma, H. Liu, L. Hu, C. Wang, and Q. Sun, Orientation driven bag of appearances for person re-identification, 2016.

J. J. Magee, M. Betke, J. Gips, M. R. Scott, and B. Waber, A human-computer interface using symmetry between eyes to detect gaze direction, IEEE Transactions on Systems, Man, and Cybernetics. Part A, vol.38, issue.6, pp.1248-1261, 2008.
DOI : 10.1109/tsmca.2008.2003466

E. Maggio, M. Taj, and A. Cavallaro, Efficient multi-target visual tracking using random finite sets. IEEE Transactions on Circuits and Systems for Video Technology, vol.18, pp.1016-1027, 2008.
DOI : 10.1109/tcsvt.2008.928221

E. Maggio and A. Cavallaro, Learning scene context for multiple object tracking, IEEE Transactions on Image Processing, vol.18, issue.8, pp.1873-1884, 2009.
DOI : 10.1109/tip.2009.2019934

A. Mansouri, Region tracking via level set PDEs without motion computation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.947-961, 2002.
DOI : 10.1109/tpami.2002.1017621

M. E. Maresca and A. Petrosino, Matrioska: A multi-level approach to fast tracking by learning, Proceedings of the International Conference on Image Analysis and Processing, pp.419-428, 2013.
DOI : 10.1007/978-3-642-41184-7_43

J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber, Multimodal Similarity-Preserving Hashing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.4, pp.824-830, 2014.
DOI : 10.1109/tpami.2013.225

URL : http://arxiv.org/pdf/1207.1522

J. Matas, M. Hamouz, K. Jonsson, J. Kittler, Y. Li et al., Comparison of face verification results on the XM2VTFS database, Proceedings of International Conference on Pattern Recognition (ICPR), vol.4, pp.858-863, 2000.

T. Matsukawa and E. Suzuki, Person re-identification using cnn features learned from combination of attributes, Pattern Recognition (ICPR), 2016 23rd International Conference on, pp.2428-2433, 2016.
DOI : 10.1109/icpr.2016.7900000

N. Mclaughlin, J. Martinez-del-rincon, and P. Miller, Person reidentification using deep convnets with multitask learning, IEEE Transactions on Circuits and Systems for Video Technology, vol.27, pp.525-539, 2017.

X. Mei and H. Ling, Robust visual tracking and vehicle classification via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.11, pp.2259-72, 2011.

A. Mignon and F. Jurie, PCCA: A new approach for distance learning from sparse pairwise constraints, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2666-2672, 2012.
DOI : 10.1109/cvpr.2012.6247987

URL : https://hal.archives-ouvertes.fr/hal-00806007

D. Mikami, K. Otsuka, and J. Yamato, Memory-based particle filter for face pose tracking robust under complex dynamics, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.999-1006, 2009.
DOI : 10.1109/cvprw.2009.5206661

D. Mikami, K. Otsuka, and J. Yamato, Memory-based particle filter for tracking objects with large variation in pose and appearance, Proceedings of European Conference on Computer Vision (ECCV), vol.3, pp.215-228, 2010.
DOI : 10.1007/978-3-642-15558-1_16

A. Milan, S. Roth, and K. Schindler, Continuous energy minimization for multitarget tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.1, pp.58-72, 2014.
DOI : 10.1109/tpami.2013.103

C. Morimoto and M. Mimica, Eye gaze tracking techniques for interactive applications, Computer Vision and Image Understanding, vol.98, pp.4-24, 2005.
DOI : 10.1016/j.cviu.2004.07.010

S. Moujtahid, Exploiting scene context for on-line object tracking in unconstrained environments, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01783935

P. Moutafis, M. Leng, and . Kakadiaris, An overview and empirical comparison of distance metric learning methods, IEEE Transactions on Cybernetics, 2016.

S. Munder, C. Schnorr, and D. M. Gavrila, Pedestrian detection and tracking using a mixture of view-based shape-texture models, IEEE Transactions on Intelligent Transportation Systems, vol.9, issue.2, 2008.

J. Munkres, Algorithms for the assignment and transportation problems, Journal of the Society for Industrial & Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

URL : http://www.eecs.umich.edu/%7Epettie/matching/Munkres-variant-of-Hungarian-alg.pdf

E. Murphy-chutorian and M. Trivedi, Head pose estimation in computer vision: a survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.4, pp.607-626, 2009.
DOI : 10.1109/tpami.2008.106

V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, Proceedings of the International Conference on Machine Learning (ICML), pp.807-814, 2010.

H. Nam and B. Han, Learning multi-domain convolutional neural networks for visual tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/cvpr.2016.465

URL : http://arxiv.org/pdf/1510.07945

S. S. Nejhum, J. Ho, and M. Yang, Visual tracking with histograms and articulating blocks, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

S. Nowlan and J. Platt, A convolutional neural network hand tracker, Advances in Neural Information Processing Systems, pp.8-10, 1995.

J. Odobez and P. Bouthemy, Robust multiresolution estimation of parametric motion models, Journal of Visual Communication and Image Representation, vol.6, issue.4, pp.348-365, 1995.

J. Odobez, D. Gatica-perez, and S. Ba, Embedding motion in modelbased stochastic tracking, IEEE Transactions on Image Processing, vol.15, issue.11, pp.3514-3530, 2006.

F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, Berkeley MHAD: A comprehensive multimodal human action database, IEEE Workshop on Applications of Computer Vision (WACV), pp.53-60, 2013.
DOI : 10.1109/wacv.2013.6474999

S. Oh, S. Russell, and S. Sastry, Markov Chain Monte Marlo data association for multitarget tracking, IEEE Transactions on Automatic Control, vol.54, issue.3, pp.481-497, 2009.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern recognition, vol.29, issue.1, pp.51-59, 1996.

K. Okuma, A. Taleghani, N. Freitas, J. J. Little, and D. G. Lowe, A boosted particle filter: Multitarget detection and tracking, Proceedings of European Conference on Computer Vision (ECCV), pp.28-39, 2004.
DOI : 10.1007/978-3-540-24670-1_3

A. Oliva and A. Torralba, Modeling the shape of the scene: A holistic representation of the spatial envelope, International Journal of Computer Vision, vol.42, issue.3, pp.145-175, 2001.

K. Otsuka and J. Yamato, Conversation scene analysis with dynamic bayesian network based on visual head tracking, Proceedings of the International Conference on Multimedia and Expo, pp.949-952, 2006.

J. Ou, S. R. Lui-min-oh, T. Fussell, J. Blum, and . Yang, Predicting visual focus of attention from intention in remote collaborative tasks, IEEE Transactions on Multimedia, vol.10, issue.6, pp.1034-1045, 2008.

A. Ouamane, B. Messaoud, A. Guessoum, A. Hadid, and M. Cheriet, Multi scale multi descriptor local binary features and exponential discriminant analysis for robust face authentication, Proceedings of the International Conference on Image Processing (ICIP), pp.313-317, 2014.

N. Paragios and R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.3, pp.266-280, 2000.

S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, Local fisher discriminant analysis for pedestrian re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3318-3325, 2013.
DOI : 10.1109/cvpr.2013.426

P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, Color-based probabilistic tracking, Proceedings of European Conference on Computer Vision (ECCV), vol.1, pp.661-675, 2002.

P. Pérez, J. Vermaak, and A. Blake, Data fusion for visual tracking with particles, vol.92, pp.495-513, 2004.

F. Pernici and A. D. Bimbo, Object tracking by oversampling local features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.12, pp.2538-2551, 2014.
DOI : 10.1109/tpami.2013.250

F. Perronnin and C. Dance, Fisher kenrels on visual vocabularies for image categorizaton, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
DOI : 10.1109/cvpr.2007.383266

C. Peters, S. Asteriadis, and K. Karpouzis, Investigating shared attention with a virtual agent using a gaze-based interface, Journal on Multimodal User Interfaces, vol.3, issue.1-2, pp.119-130, 2009.
DOI : 10.1007/s12193-009-0029-1

H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, Globally-optimal greedy algorithms for tracking a variable number of objects, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1201-1208, 2011.

C. Plagemann, D. Fox, and W. Burgard, Efficient failure detection on mobile robots using particle filters with gaussian process proposals, Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI), 2007.
DOI : 10.1007/11681120_8

URL : http://www.cs.washington.edu/ai/Mobile_Robotics/postscripts/gp-error-models-ijcai-07.pdf

F. Porikli, Inter-camera color calibration by correlation model function, Proceedings. 2003 International Conference on, vol.2, p.133, 2003.
DOI : 10.1109/icip.2003.1246634

H. Possegger, T. Mauthner, and H. Bischof, In defense of color-based modelfree tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2113-2120, 2015.

J. Bryan, W. Prosser, S. Zheng, T. Gong, Q. Xiang et al., Person re-identification by support vector ranking, BMVC, vol.2, p.6, 2010.

T. Pylvänäinen, Accelerometer Based Gesture Recognition Using Continuous HMMs Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, chapter, vol.3522, pp.413-430, 2005.

A. M. Qamar, E. Gaussier, J. P. Chevallet, and J. H. Lim, Similarity learning for nearest neighbor classification, Proceedings of the International Conference on Data Mining (ICDM), pp.983-988, 2008.
DOI : 10.1109/icdm.2008.81

URL : https://hal.archives-ouvertes.fr/hal-00953867

Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, Tracking deforming objects using particle filtering for geometric active contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.8, pp.1470-1475, 2007.
DOI : 10.1109/tpami.2007.1081

URL : http://europepmc.org/articles/pmc3663080?pdf=render

D. Reid, An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, vol.24, pp.843-854, 1979.

X. Shaoqing-ren, Y. Cao, J. Wei, and . Sun, Face alignment at 3000 fps via regressing local binary features, Proceedings of Computer Vision and Pattern Recognition (CVPR), pp.1685-1692, 2014.

X. Ren and J. Malik, Tracking as repeated figure/ground segmentation, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2007.
DOI : 10.1109/cvpr.2007.383177

URL : http://www.cs.berkeley.edu/~xren/publication/xren_cvpr07_tracking.pdf

D. A. Reynolds, Speaker identification and verification using gaussian mixture speaker models, Speech Communication, vol.17, issue.1, pp.91-108, 1995.
DOI : 10.1016/0167-6393(95)00009-d

E. Ricci and J. Odobez, Learning large margin likelihoods for realtime head pose tracking, Proceedings of International Conference on Image Processing (ICIP), pp.2593-2596, 2009.
DOI : 10.1109/icip.2009.5413994

URL : http://www.idiap.ch/~odobez/publications/RicciOdobez-icip2009.pdf

M. Richardson and P. Domingos, Markov logic networks, Machine Learning, vol.62, pp.885-6125, 2006.
DOI : 10.1007/s10994-006-5833-1

D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision, vol.77, pp.125-141, 2008.
DOI : 10.1007/s11263-007-0075-7

A. B. Carsten-rother and V. Kolmogorov, Grabcut: Interactive foreground extraction using iterated graph cuts, ACM Transactions on Graphics, 2004.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.115, issue.3, pp.211-252, 2015.
DOI : 10.1007/s11263-015-0816-y

URL : http://arxiv.org/pdf/1409.0575

A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, Online multi-class LPBoost, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3570-3577, 2010.
DOI : 10.1109/cvpr.2010.5539937

A. Saffari and C. Leistner, On-line random forests, Proceedings of International Conference on Computer Vision (ICCV) (Worksh. on Online Comp. Vis.), 2009.
DOI : 10.1109/iccvw.2009.5457447

C. Sanderson, C. Brian, and . Lovell, Multi-region probabilistic histograms for robust and scalable identity inference, Advances in Biometrics, pp.199-208, 2009.
DOI : 10.1007/978-3-642-01793-3_21

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-01793-3_21.pdf

J. Santner, . Leistner, T. Saffari, and . Pock, PROST: Parallel robust online simple tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.723-730, 2010.
DOI : 10.1109/cvpr.2010.5540145

URL : http://www.ymer.org/papers/files/2010-PROST.pdf

A. Saquib-sarfraz, Y. Schumann, R. Wang, and . Stiefelhagen, Deep viewsensitive pedestrian attribute inference in an end-to-end model, Proceedings of the British Machine Vision Conference (BMVC, 2017.

T. Schoenemann and D. Cremers, A combinatorial solution for model-based image segmentation and real-time tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.7, pp.1153-1164, 2009.

F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition and clustering, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.815-823, 2015.
DOI : 10.1109/cvpr.2015.7298682

URL : http://arxiv.org/pdf/1503.03832

A. Schumann and R. Stiefelhagen, Person re-identification by deep learning attribute-complementary information, Computer Vision and Pattern Recognition Workshops (CVPRW), pp.1435-1443, 2017.
DOI : 10.1109/cvprw.2017.186

W. Schwartz and L. Davis, Learning discriminative appearance-based models using partial least squares, Conference on Computer Graphics and Image Processing (SIBGRAPI), pp.322-329, 2009.
DOI : 10.1109/sibgrapi.2009.42

URL : http://www.umiacs.umd.edu/users/lsd/papers/paperSibgrapi09.pdf

H. J. Seo and P. Milanfar, Face verification using the LARK representation, IEEE Transactions on Information Forensics and Security, vol.6, issue.4, pp.1275-1286, 2011.
DOI : 10.1109/tifs.2011.2159205

URL : http://www.soe.ucsc.edu/%7Emilanfar/publications/journal/TIFS_Final.pdf

L. Sevilla-lara and E. , Learned-Miller. Distribution fields for tracking, Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp.1910-1917, 2012.

Y. Shen, W. Lin, J. Yan, M. Xu, J. Wu et al., Person re-identification with correspondence structure learning, Proceedings of the IEEE International Conference on Computer Vision, pp.3200-3208, 2015.
DOI : 10.1109/iccv.2015.366

URL : http://arxiv.org/pdf/1504.06243

H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei et al., Embedding deep metric for person re-identification: A study against large variations, European Conference on Computer Vision, pp.732-748, 2016.

J. Shi and C. Tomasi, Good features to track, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.593-600, 1994.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Andrew Blake, and Xbox Incubation. Real-time human pose recognition in parts from single depth images, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

C. Siagian and L. Itti, Rapid biologically-inspired scene classification using features shared with visual attention, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.2, pp.300-312, 2007.
DOI : 10.1109/tpami.2007.40

K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman, Fisher vector faces in the wild, Proceedings of the British Machine Vision Conference (BMVC), vol.1, p.7, 2013.

S. Singh and M. Markou, An approach to novelty detection applied to the classification of image regions, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.4, pp.396-407, 2004.

M. Siracusa, L. Morency, K. Wilson, J. Fisher, and T. Darrell, A multi-modal approach for determining speaker location and focus, ICMI, pp.77-80, 2003.

K. Smith, D. Gatica-perez, J. Odobez, and S. Ba, Evaluating multi-object tracking, IEEE Conference on Computer Vision and Pattern Recognition -Workshop on Empirical Evaluation Methods in Computer Vision, p.36, 2005.
DOI : 10.1109/cvpr.2005.453

K. Smith, O. Sileye, J. Ba, D. Odobez, and . Gatica-perez, Tracking the visual focus of attention for a varying number of wandering people, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.7, pp.1212-1229, 2008.

B. Song, T. Jeng, E. Staudt, and A. K. Roy-chowdhury, A stochastic graph evolution framework for robust multi-target tracking, Proceedings of European Conference on Computer Vision (ECCV), vol.1, pp.605-619, 2010.
DOI : 10.1007/978-3-642-15549-9_44

S. Song and J. Xiao, Tracking revisited using RGBD camera: Unified benchmark and baselines, Proceedings of the International Conference on Computer Vision (ICCV), 2013.
DOI : 10.1109/iccv.2013.36

S. Stalder, H. Grabner, and . Van-gool, Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition, Proceedings of International Conference on Computer Vision (ICCV) (Worksh. on Online Comp. Vis.), 2009.

C. Stauffer and W. Grimson, Learning patterns of activity using real time tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, pp.747-767, 2000.

B. Stenger, T. Woodley, and R. Cipolla, Learning to track with multiple observers, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.2647-2654, 2009.

R. Stiefelhagen and J. Zhu, Head orientation and gaze direction in meetings, Proceedings of the ACM Conference on Human Factors in Computing Systems, 2002.
DOI : 10.1145/506621.506634

R. Stiefelhagen, J. Yang, and A. Waibel, Modeling focus of attention for meeting indexing based on multiple cues, IEEE Transactions on Neural Networks, vol.13, issue.4, pp.928-938, 2002.

R. Stiefelhagen, J. Yang, and A. Waibel, Modeling focus of attention for meeting indexing, Proceedings of the ACM Multimedia, 1999.

R. Stiefelhagen, J. Yang, and A. Waibel, Tracking focus of attention for humanrobot communication, IEEE-RAS International Conference on Humanoid RobotsHumanoids, 2001.
DOI : 10.1109/icmi.2002.1167006

C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian, Deep attributes driven multi-camera person re-identification, European Conference on Computer Vision, pp.475-491, 2016.
DOI : 10.1007/978-3-319-46475-6_30

URL : http://arxiv.org/pdf/1605.03259

A. Subramaniam, M. Chatterjee, and A. Mittal, Deep neural networks with inexact matching for person re-identification, Advances in Neural Information Processing Systems, pp.2667-2675, 2016.

P. Sudowe, H. Spitzer, and B. Leibe, Person attribute recognition with a jointly-trained holistic cnn model, Proceedings of the IEEE International Conference on Computer Vision Workshops, pp.87-95, 2015.
DOI : 10.1109/iccvw.2015.51

Y. Sun, Y. Chen, X. Wang, and X. Tang, Deep learning face representation by joint identification-verification, Proceedings of Advances in Neural Information Processing Systems (NIPS), pp.1988-1996, 2014.

Y. Sun, X. Wang, and X. Tang, Deep learning face representation from predicting 10,000 classes, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1891-1898, 2014.
DOI : 10.1109/cvpr.2014.244

URL : http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf

Y. Sun, L. Zheng, W. Deng, and S. Wang, Svdnet for pedestrian retrieval, Proceedings of the IEEE International Conference on International Conference on Computer Vision (ICCV), 2017.
DOI : 10.1109/iccv.2017.410

URL : http://arxiv.org/pdf/1703.05693

Z. Sun, H. Yao, S. Zhang, and X. Sun, Robust visual tracking via context objects computing, Proceedings of the International Conference on Image Processing (ICIP), pp.509-512, 2011.
DOI : 10.1109/icip.2011.6116564

J. S. Supancic and D. Ramanan, Self-paced learning for long-term tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

D. T. , G. Gordon, M. Harville, and J. Woodfill, Integrated person tracking using stereo, color, and pattern detection, International Journal of Computer Vision, pp.175-185, 2000.

Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, Deepface: Closing the gap to humanlevel performance in face verification, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1701-1708, 2014.
DOI : 10.1109/cvpr.2014.220

C. Tian, X. Gao, W. Wei, and H. Zheng, Visual tracking based on the adaptive color attention tuned sparse generative object model, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5236-5248, 2015.
DOI : 10.1109/tip.2015.2479409

A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin, Context-based vision system for place and object recognition, Proceedings of the International Conference on Computer Vision (ICCV), pp.1023-1029, 2003.
DOI : 10.1109/iccv.2003.1238354

K. Toyama and A. Blake, Probabilistic tracking with exemplars in a metric space, International Journal of Computer Vision, vol.48, issue.1, pp.9-19, 2002.
DOI : 10.1109/iccv.2001.937599

J. Triesch and C. V. Malsburg, Democratic integration: Self-organized integration of adaptive cues, Neural Computation, vol.13, issue.9, pp.2049-2074, 2001.
DOI : 10.1162/089976601750399308

. A. Ma, A. P. Turk, and . Pentland, Face recognition using eigenfaces, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.586-591, 1991.

O. Tuzel, F. Porikli, and P. Meer, Region covariance: A fast descriptor for detection and classification, European conference on computer vision, pp.589-600
DOI : 10.1007/11744047_45

URL : http://www.merl.com/reports/docs/TR2005-111.pdf

. Springer, , 2006.

N. Ukita, Y. Moriguchi, and N. Hagita, People re-identification across non-overlapping cameras using group features. Computer Vision and Image Understanding, vol.144, pp.228-236, 2016.
DOI : 10.1016/j.cviu.2015.06.011

A. Daniel, . Vaquero, S. Rogerio, D. Feris, L. Tran et al., Attribute-based people search in surveillance environments, Proceedings of Workshop on Applications of Computer Vision (WACV), pp.1-8, 2009.

M. Rahul-rama-varior, G. Haloi, and . Wang, Gated siamese convolutional neural network architecture for human re-identification, Proceedings of the IEEE International Conference on European Conference on Computer Vision (ECCV), pp.791-808

. Springer, , 2016.

B. Rahul-rama-varior, J. Shuai, D. Lu, G. Xu, and . Wang, A siamese long short-term memory architecture for human re-identification, Proceedings of the European Conference on Computer Vision (ECCV), pp.135-153, 2016.

G. C. Vasconcelos, M. C. Fairhurst, and D. L. Bisset, Investigating the recognition of false patterns in backpropagation networks, Proceedings of the International Conference on Artificial Neural Networks (ICANN), pp.133-137, 1993.

M. Luka?ehovin, A. Kristan, and . Leonardis, Robust visual tracking using an adaptive coupled-layer visual model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.4, pp.941-953, 2013.

A. Verma, R. Hebbalaguppe, and L. Vig, Swagat Kumar, and Ehtesham Hassan. Pedestrian detection via mixture of cnn experts and thresholded aggregated channel features, Proceedings of the IEEE International Conference on Computer Vision Workshops, pp.163-171, 2015.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

M. Voit and R. Stiefelhagen, Tracking head pose and focus of attention with multiple far-field cameras, Proceedings of the IEEE International Conference on Multimodal Interfaces (ICMI), pp.281-286, 2006.

M. Voit and R. Stiefelhagen, Deducing the visual focus of attention from head pose estimation in dynamic multi-view meeting scenarios, Proceedings of ICMI, pp.173-180, 2008.

M. Voit and R. Stiefelhagen, 3D user-perspective, voxel-based estimation of visual focus of attention in dynamic meeting scenarios, Proceedings of the ICMI-MLMI, 2010.

T. Vojir, J. Matas, and J. Noskova, Online adaptive hidden markov model for multi-tracker fusion, Computer Vision and Image Understanding, vol.153, pp.109-119, 2016.
DOI : 10.1016/j.cviu.2016.05.007

URL : http://arxiv.org/pdf/1504.06103

T. Vojí? and J. Matas, Robustifying the flock of trackers, Computer Vision Winter Workshop, pp.91-97, 2011.

D. Wang, H. Lu, and C. Bo, Fast and robust object tracking via probability continuous outlier model, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5166-5176, 2015.
DOI : 10.1109/tip.2015.2478399

F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang, Joint learning of single-image and cross-image representations for person re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1288-1296, 2016.

J. Wang and E. Sung, Study on eye gaze estimation, IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, vol.32, pp.332-350, 2002.

J. Wang, E. Sung, and R. Venkateswarlu, Eye gaze estimation from a single image of one eye, Proceedings of the International Conference on Computer Vision (ICCV), pp.136-143, 2003.

J. Wang, Z. Wang, C. Gao, N. Sang, and R. Huang, Deeplist: Learning deep features with adaptive listwise constraint for person reidentification, IEEE Transactions on Circuits and Systems for Video Technology, vol.27, pp.513-524, 2017.

L. Wang, W. Ouyang, X. Wang, and H. Lu, STCT: Sequentially training convolutional networks for visual tracking, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/cvpr.2016.153

N. Wang and D. Yeung, Learning a deep compact image representation for visual tracking, Proceedings of Advances in Neural Information Processing Systems (NIPS), pp.1-9, 2013.

N. Wang and D. Yeung, Ensemble-based tracking: Aggregating crowdsourced structured time series data, Proceedings of the International Conference on Machine Learning (ICML), vol.32, pp.1107-1115, 2014.

S. Wang, H. Lu, F. Yang, and M. Yang, Superpixel tracking, Proceedings of International Conference on Computer Vision (ICCV), 2011.

X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu, Shape and appearance context modeling, Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp.1-8, 2007.
DOI : 10.1109/iccv.2007.4409019

L. Wei, K. Shishir, and . Shah, Subject centric group feature for person re-identification, CVPR Workshops, pp.28-35, 2015.
DOI : 10.1109/cvprw.2015.7301280

U. Weidenbacher, G. Layher, P. Bayerl, and H. Neumann, Detection of head pose and gaze direction for human-computer interaction. Perception and Interactive Technologies, vol.4021, pp.9-19, 2006.

K. Weinberger, J. Blitzer, and L. Saul, Distance metric learning for large margin nearest neighbor classification, Proceedings of Advances in Neural Information Processing Systems (NIPS), vol.18, p.1473, 1998.

Q. Kilian, L. Weinberger, and . Saul, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, vol.10, pp.207-244, 2009.

L. Wen, Z. Cai, Z. Lei, D. Yi, and S. Li, Robust online learned spatiotemporal context model for visual tracking, IEEE Transactions on Image Processing, vol.23, issue.2, pp.785-796, 2014.
DOI : 10.1109/tip.2013.2293430

URL : http://www.cbsr.ia.ac.cn/users/lywen/papers/TIP2014_SpatioTemporalTracker.pdf

L. Wen, D. Du, Z. Lei, Z. Stan, M. Li et al., JOTS : Joint Online Tracking and Segmentation, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/cvpr.2015.7298835

D. H. Wilson and A. Wilson, Gesture recognition using the xwand, 2004.

L. Wolf, T. Hassner, and Y. Taigman, Descriptor based methods in the wild, Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00326729

C. Wren, A. Zarbayejani, and A. Pentland, Pfinder: Real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.7, pp.780-785, 1997.

J. Wu, G. Pan, D. Zhang, G. Qi, and S. Li, Gesture recognition with a 3-D accelerometer, Ubiquitous Intelligence and Computing, pp.25-38, 2009.
DOI : 10.1007/978-3-642-02830-4_4

URL : https://hal.archives-ouvertes.fr/hal-00792994

Y. Wu, T. Yu, and G. Hua, Tracking appearances with occlusions, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.789-795, 2003.

F. Xia, T. Liu, J. Wang, W. Zhang, and H. Li, Listwise approach to learning to rank: theory and algorithm, International Conference on Machine Learning (ICML), pp.1192-1199, 2008.

Y. Xiang, A. Alahi, and S. Savarese, Learning to track: Online multi-object tracking by decision making, Proceedings of International Conference on Computer Vision (ICCV), 2015.

J. Xiao, R. Stolkin, and A. Leonardis, An enhanced adaptive coupled-layer lgtracker++, 2013.
DOI : 10.1109/iccvw.2013.24

J. Xiao, R. Stolkin, and A. Leonardis, Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/cvpr.2015.7299132

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, Distance metric learning with application to clustering with side-information, Proceedings of Advances in Neural Information Processing Systems (NIPS), pp.521-528, 1998.

X. Xiong and F. De-la-torre, Supervised descent method and its applications to face alignment, Proceedings of Computer Vision and Pattern Recognition (CVPR), 2013.
DOI : 10.1109/cvpr.2013.75

URL : http://www.ri.cmu.edu/pub_files/2013/5/main.pdf

C. Yang, R. Duraiswami, and L. Davis, Fast multiple object tracking via a hierarchical particle filter, Proceedings of International Conference on Computer Vision (ICCV), pp.212-219, 2005.

F. Yang, H. Lu, and M. Yang, Robust superpixel tracking, IEEE Transactions on Image Processing, vol.23, issue.4, pp.1639-1651, 2014.

M. Yang, Y. Wu, and G. Hua, Context-aware visual tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.7, pp.1195-1209, 2009.

M. Yang, S. Belongie, and B. Babenko, Robust object tracking with online multiple instance learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, pp.1619-1632, 2010.

Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi et al., Salient color names for person re-identification, European conference on computer vision, pp.536-551, 2014.
DOI : 10.1007/978-3-319-10590-1_35

URL : http://www.cbsr.ia.ac.cn/users/jjyan/ECCV2014_yy.pdf

J. Yao and J. Odobez, Multi-camera multi-person 3D space tracking with MCMC in surveillance scenarios, European Conference on Computer Vision, workshop on Multi Camera and Multi-modal Sensor Fusion Algorithms and Applications (ECCV-M2SFA2), 2008.
URL : https://hal.archives-ouvertes.fr/inria-00326747

D. Yi, Z. Lei, and S. Z. Li, Towards pose robust face recognition, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.3539-3545, 2013.
DOI : 10.1109/cvpr.2013.454

D. Yi, Z. Lei, S. Liao, and S. Z. Li, Deep metric learning for person reidentification, Proceedings of International Conference on Pattern Recognition (ICPR), pp.34-39, 2014.

D. Yi, Z. Lei, S. Liao, and S. Z. Li, Deep metric learning for person reidentification, Proceedings of the IEEE International Conference on International Conference on Pattern Recognition (ICPR), pp.34-39, 2014.

K. Wen-tau-yih, J. C. Toutanova, C. Platt, and . Meek, Learning discriminative projections for text similarity measures, Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pp.247-256, 2011.

A. Yilmaz, X. Li, and M. Shah, Object contour tracking using level sets, Proceedings of Asian Conference on Computer Vision (ACCV), 2004.

Z. Yin, F. Porikli, and R. T. Collins, Likelihood map fusion for visual object tracking, IEEE Workshop on Applications of Computer Vision, pp.1-7, 2008.
DOI : 10.1109/wacv.2008.4544036

URL : http://www.merl.com/publications/docs/TR2008-008.pdf

Y. Ying and P. Li, Distance metric learning with eigenvalue optimization, Journal of Machine Learning Research, vol.13, issue.1, pp.1-26, 2012.

J. You, A. Wu, X. Li, and W. Zheng, Top-push video-based person reidentification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1345-1353, 2016.
DOI : 10.1109/cvpr.2016.150

URL : http://arxiv.org/pdf/1604.08683

J. Yu, X. Yang, F. Gao, and D. Tao, Deep multimodal distance metric learning using click constraints for image ranking, IEEE Transactions on Cybernetics, 2016.
DOI : 10.1109/tcyb.2016.2591583

R. Yu, Z. Zhou, S. Bai, and X. Bai, Divide and fuse: A re-ranking approach for person re-identification, Proceedings of the British Machine Vision Conference (BMVC), 2017.
DOI : 10.5244/c.31.135

URL : http://arxiv.org/pdf/1708.04169

C. Zhang and Y. Rui, Robust visual tracking via pixel classification and integration, Proceedings of International Conference on Pattern Recognition (ICPR), pp.37-42, 2006.

H. Zhang, L. Toth, W. Deng, J. Guo, and J. Yang, Monitoring visual focus of attention via local discriminant projection, Proceeding of the International Conference on Multimedia Information Retrieval, 2008.
DOI : 10.1145/1460096.1460101

J. Zhang, S. Ma, and S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, Proceedings of European Conference on Computer Vision (ECCV), 2014.
DOI : 10.1007/978-3-319-10599-4_13

URL : http://cs-people.bu.edu/jmzhang/MEEM/MEEM-eccv-preprint.pdf

K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M. Yang, Fast visual tracking via dense spatio-temporal context learning, Proceedings of the European Conference on Computer Vision (ECCV), vol.8693, pp.127-141, 2014.
DOI : 10.1007/978-3-319-10602-1_9

URL : http://www4.comp.polyu.edu.hk/~cslzhang/paper/conf/STC_eccv14.pdf

L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li, Face detection based on multi-block lbp representation, Advances in Biometrics, pp.11-18, 2007.
DOI : 10.1007/978-3-540-74549-5_2

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-540-74549-5_2.pdf

L. Zhang, Y. Li, and R. Nevatia, Global data association for multi-object tracking using network flows, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-8, 2008.

L. Zhang, T. Xiang, and S. Gong, Learning a discriminative null space for person re-identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1239-1248, 2016.

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, Robust visual tracking via structured multi-task sparse learning, International Journal of Computer Vision, 2012.
DOI : 10.1007/s11263-012-0582-z

Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, Sample-specific svm learning for person re-identification, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp.1278-1287, 2016.
DOI : 10.1109/cvpr.2016.143

H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan et al., Spindle net: Person re-identification with human body region guided feature decomposition and fusion, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1077-1085, 2017.
DOI : 10.1109/cvpr.2017.103

L. Zhao, X. Li, J. Wang, and Y. Zhuang, Deeply-learned part-aligned representations for person re-identification, Proceedings of the IEEE International Conference on International Conference on Computer Vision (ICCV, 2017.
DOI : 10.1109/iccv.2017.349

URL : http://arxiv.org/pdf/1707.07256

R. Zhao, W. Ouyang, and X. Wang, Unsupervised salience learning for person re-identification, Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp.3586-3593, 2013.
DOI : 10.1109/cvpr.2013.460

URL : http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhao_Unsupervised_Salience_Learning_2013_CVPR_paper.pdf

L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang et al., Scalable person re-identification: A benchmark, Computer Vision, IEEE International Conference on, 2015.
DOI : 10.1109/iccv.2015.133

L. Zheng, Triangular similarity metric learning : A siamese architecture approach. Thesis, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01314392

W. Zheng, S. Gong, and T. Xiang, Associating groups of people, BMVC, 2009.

W. Zheng, S. Gong, and T. Xiang, Person re-identification by probabilistic relative distance comparison, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), pp.649-656, 2011.
DOI : 10.1109/cvpr.2011.5995598

URL : http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_CVPR2011.pdf

Z. Zheng, L. Zheng, and Y. Yang, A discriminatively learned cnn embedding for person reidentification, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol.14, p.13, 2017.
DOI : 10.1145/3159171

URL : http://arxiv.org/pdf/1611.05666

Z. Zheng, L. Zheng, and Y. Yang, Unlabeled samples generated by gan improve the person re-identification baseline in vitro, Proceedings of the IEEE International Conference on International Conference on Computer Vision (ICCV, 2017.

W. Zhong, H. Lu, and M. Yang, Robust object tracking via sparse collaborative appearance model, IEEE Transactions on Image Processing, vol.23, issue.5, pp.2356-2368, 2014.

Z. Zhong, L. Zheng, D. Cao, and S. Li, Re-ranking person re-identification with k-reciprocal encoding, Proceedings of the International Conference on Computer Vision (ICCV), 2017.
DOI : 10.1109/cvpr.2017.389

URL : https://opus.lib.uts.edu.au/bitstream/10453/118077/4/6FE4BDE0-2335-4423-BA25-603F4FFF0AF2.pdf

J. Zhu, S. Liao, Z. Lei, D. Yi, and S. Li, Pedestrian attribute classification in surveillance: Database and evaluation, Proceedings of the International Conference on Computer Vision (ICCV) Workshops, pp.331-338, 2013.

J. Zhu, S. Liao, Z. Lei, and S. Z. Li, Improve pedestrian attribute classification by weighted interactions from other attributes, Asian Conference on Computer Vision, pp.545-557, 2014.
DOI : 10.1007/978-3-319-16634-6_40

J. Zhu, S. Liao, D. Yi, Z. Lei, and S. Z. Li, Multi-label cnn based pedestrian attribute learning for soft biometrics, Proceedings of the International Conference on Biometrics(ICB), pp.535-540, 2015.

J. Zhu, S. Liao, Z. Lei, and S. Z. Li, Multi-label convolutional neural network based pedestrian attribute classification, Image and Vision Computing, vol.58, pp.224-229, 2017.
DOI : 10.1016/j.imavis.2016.07.004

B. Zhuang, H. Lu, Z. Xiao, and D. Wang, Visual tracking via discriminative sparse similarity map, IEEE Transactions on Image Processing, vol.23, issue.4, pp.1872-1881, 2014.