S. Tissot, Chez PF Didot le jeune, vol.1, 1784.

J. H. Jackson and J. Taylor, Selected writings of John Hughlings Jackson, p.1890, 1932.

W. Penfield and E. Boldrey, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain. Citeseer, vol.60, issue.4, pp.389-443, 1937.

. Penfield-w and H. Jasper, Epilepsy and the functional anatomy of the human brain, 1954.

J. Talairach and P. Tournoux, Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging, 1988.

J. Talairach, J. Bancaud, A. Bonis, G. Szikla, and P. Tournoux, Functional stereotaxic exploration of epilepsy, SFN. Karger Publishers, vol.22, issue.3-5, pp.328-359, 1962.

F. Lopes-da-silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski et al., Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity, Epilepsia, vol.44, pp.72-83, 2003.

H. Gastaut, Classification of the epilepsies: proposal for an international classification, Epilepsia, vol.10, pp.14-21, 1969.

J. Bancaud, O. Henriksen, F. Rubio-donnadieu, M. Seino, F. E. Dreifuss et al., Commission on classification and terminology of the international league against epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures, Epilepsia, vol.22, issue.4, pp.489-501, 1981.

, Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy, Epilepsia, vol.30, issue.4, pp.389-99, 1989.

I. E. Scheffer, S. Berkovic, G. Capovilla, M. B. Connolly, J. French et al., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology, vol.58, pp.512-533, 2017.

K. Patrick and B. , Early Identification of Refractory Epilepsy, pp.1-6, 2000.

P. Kwan, A. Arzimanoglou, A. T. Berg, M. J. Brodie, A. Hauser et al., Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies, Epilepsia, vol.51, issue.6, pp.1069-77, 2009.

J. Bancaud, J. Talirach, and A. Bonis, La stéréo-électroencéphalographie dans l"épilepsie: informations neurophysiopathologiques apportées par l"investigation foncitonnelle stérotaxique. Mason & Cie, 1965.

J. P. Mullin, M. Shriver, S. Alomar, I. Najm, J. Bulacio et al., Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications, Epilepsia, vol.57, issue.3, pp.386-401, 2016.

L. Jehi, D. Friedman, C. Carlson, G. Cascino, S. Dewar et al., The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Epilepsia, vol.56, issue.10, pp.1526-1559, 2015.

C. J. Stam and E. Van-straaten, The organization of physiological brain networks, Clinical Neurophysiology. International Federation of Clinical Neurophysiology, pp.1-21, 2012.

F. Bartolomei, S. Lagarde, F. Wendling, A. Mcgonigal, V. Jirsa et al., Defining epileptogenic networks: Contribution of SEEG and signal analysis, Epilepsia, vol.58, issue.7, pp.1131-1178, 2017.
DOI : 10.1111/epi.13791

URL : https://hal.archives-ouvertes.fr/hal-01618932

F. Wendling, P. Chauvel, A. Biraben, and F. Bartolomei, From Intracerebral EEG Signals to Brain Connectivity: Identification of Epileptogenic Networks in Partial Epilepsy, Front Syst Neurosci, vol.4, pp.1-13, 2010.

M. Guye, F. Bartolomei, and J. Ranjeva, Imaging structural and functional connectivity: towards a unified definition of human brain organization?, Curr Opin Neurol, vol.21, issue.4, pp.393-403, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337926

S. S. Spencer, Neural networks in human epilepsy: evidence of and implications for treatment, Epilepsia, vol.43, issue.3, pp.219-246, 2002.

H. Stefan and F. H. Lopes-da-silva, Epileptic neuronal networks: methods of identification and clinical relevance, Front Neurol. Frontiers, 2013.
DOI : 10.3389/fneur.2013.00008

URL : https://www.frontiersin.org/articles/10.3389/fneur.2013.00008/pdf

F. Bartolomei, P. Chauvel, and F. Wendling, Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, vol.131, pp.1818-1848, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00291170

O. Grinenko, J. Li, J. C. Mosher, I. Z. Wang, J. C. Bulacio et al., A fingerprint of the epileptogenic zone in human epilepsies, Brain, vol.141, issue.1, pp.117-148, 2018.

F. Panzica, G. Varotto, F. Rotondi, R. Spreafico, and S. Franceschetti, Identification of the Epileptogenic Zone from Stereo-EEG Signals: A Connectivity-Graph Theory Approach. Front Neurol. Frontiers, vol.4, pp.1-6, 2013.

M. Brázdil, M. Pail, J. Halámek, F. Ple?inger, J. Cimbalnik et al., Very high frequency oscillations: Novel biomarkers of the epileptogenic zone, Ann Neurol, pp.1-30, 2017.

M. Shamas, P. Benquet, I. Merlet, M. Khalil, F. El et al., On the origin of epileptic High Frequency Oscillations observed on clinical electrodes, Clinical Neurophysiology. International Federation of Clinical Neurophysiology, vol.129, issue.4, pp.829-870, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740202

P. Jiruska, C. Alvarado-rojas, C. A. Schevon, R. Staba, W. Stacey et al., Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders, Epilepsia, vol.98, pp.250-260, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618937

H. Laufs, Functional imaging of seizures and epilepsy, Curr Opin Neurol, vol.25, issue.2, pp.194-200, 2012.
DOI : 10.1097/wco.0b013e3283515db9

F. Pittau, P. Mégevand, L. Sheybani, E. Abela, F. Grouiller et al., Mapping epileptic activity: sources or networks for the clinicians?, Front Neurol. Frontiers, issue.5, p.218, 2014.
DOI : 10.3389/fneur.2014.00218

URL : https://www.frontiersin.org/articles/10.3389/fneur.2014.00218/pdf

J. Talairach, J. Bancaud, and . Lesion, Irritative" Zone and Epileptogenic Focus. SFN. Karger Publishers, vol.27, issue.1-3, pp.91-95, 1966.

H. O. Lüders, I. Najm, D. Nair, P. Widdess-walsh, and W. Bingman, The epileptogenic zone: general principles, Epileptic Disord, vol.8, issue.2, pp.1-9, 2006.

F. Rosenow and H. Lüders, Presurgical evaluation of epilepsy, Brain, vol.124, pp.1683-700, 2001.

L. Jehi, The Epileptogenic Zone: Concept and Definition, Epilepsy Curr, vol.18, issue.1, pp.12-18, 2018.
DOI : 10.5698/1535-7597.18.1.12

URL : https://journals.sagepub.com/doi/pdf/10.5698/1535-7597.18.1.12

T. Proix, F. Bartolomei, M. Guye, and V. K. Jirsa, Individual brain structure and modelling predict seizure propagation, Brain, vol.140, issue.3, pp.641-54, 2017.
DOI : 10.1016/j.neurol.2018.02.047

URL : https://hal.archives-ouvertes.fr/hal-01657966

F. Hutchings, C. E. Han, S. S. Keller, B. Weber, P. N. Taylor et al., Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations, PLoS Comput Biol, vol.11, issue.12, pp.1004642-1004666, 2015.
DOI : 10.1371/journal.pcbi.1004642

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004642&type=printable

D. S. Rosenberg, F. Mauguière, G. Demarquay, P. Ryvlin, J. Isnard et al., Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures, Epilepsia. Blackwell Science Inc, vol.47, issue.1, pp.98-107, 2006.

M. Guye, J. Régis, M. Tamura, F. Wendling, A. Mcgonigal et al., The role of corticothalamic coupling in human temporal lobe epilepsy, Brain, vol.129, pp.1917-1945, 2006.

J. Hh, A. Rasmussen, and T. , Evaluation of EEG and cortical electrographic studies for prognosis of seizures following surgical excision of epileptogenic lesions, Epilepsia, vol.2, pp.130-137, 1961.

F. Wendling, P. Benquet, F. Bartolomei, and V. Jirsa, Computational models of epileptiform activity, Journal of Neuroscience Methods. Elsevier B, pp.1-19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139992

P. Perucca, F. Dubeau, and J. Gotman, Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology, Brain, vol.137, issue.1, pp.183-96, 2013.
DOI : 10.1093/brain/awt299

URL : https://academic.oup.com/brain/article-pdf/137/1/183/13796630/awt299.pdf

S. Lagarde, F. Bonini, A. Mcgonigal, P. Chauvel, M. Gavaret et al., Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes, Epilepsia, vol.57, issue.9, pp.1426-1461, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01431292

O. David, T. Blauwblomme, A. Job, S. Chabardès, D. Hoffmann et al., Imaging the seizure onset zone with stereo-electroencephalography, Brain, vol.134, issue.10, pp.2898-911, 2011.
DOI : 10.1093/brain/awr238

URL : https://hal.archives-ouvertes.fr/inserm-00640161

V. Gnatkovsky, M. De-curtis, C. Pastori, F. Cardinale, R. Lo et al., Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis, Epilepsia, vol.55, issue.2, pp.296-305, 2014.
DOI : 10.1111/epi.12507

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.12507

K. Friston, Functional integration and inference in the brain, Progress in Neurobiology, vol.68, issue.2, pp.113-156, 2002.

K. J. Friston, Functional and Effective Connectivity: A Review, Brain Connectivity, vol.1, issue.1, pp.13-36, 2011.

H. Johansen-berg and M. Rushworth, Using Diffusion Imaging to Study Human Connectional Anatomy, Annu Rev Neurosci, vol.32, issue.1, pp.75-94, 2009.
DOI : 10.1146/annurev.neuro.051508.135735

G. L. Gerstein and D. H. Perkel, Simultaneously Recorded Trains of Action Potentials: Analysis and Functional Interpretation, Science. American Association for the Advancement of Science, vol.164, issue.3881, pp.828-858, 1969.
DOI : 10.1126/science.164.3881.828

R. Srinivasan, P. L. Nunez, and R. B. Silberstein, Spatial filtering and neocortical dynamics: estimates of EEG coherence, IEEE Trans Biomed Eng, vol.45, issue.7, pp.814-840, 1998.
DOI : 10.1109/10.686789

F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG, Clinical Neurophysiology, vol.112, issue.7, pp.1201-1219, 2001.

F. Bartolomei, F. Wendling, J. J. Bellanger, J. Regis, and P. Chauvel, Neural networks involving the medial temporal structures in temporal lobe epilepsy, Clinical Neurophysiology, vol.112, issue.9, pp.1746-60, 2001.

C. Granger, Some recent development in a concept of causality, Journal of Econometrics, vol.39, issue.1-2, pp.199-211, 1988.

B. Horwitz, The elusive concept of brain connectivity, NeuroImage, vol.19, issue.2, pp.466-70, 2003.

A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura et al., Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality, National Academy of Sciences, vol.101, issue.26, pp.9849-54, 2004.
DOI : 10.1073/pnas.0308538101

URL : http://www.pnas.org/content/101/26/9849.full.pdf

P. J. Franaszczuk and G. K. Bergey, Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures, Brain Topogr, vol.11, issue.1, pp.13-21, 1998.

Y. Li, X. Ye, Q. Liu, J. Mao, P. Liang et al., Localization of epileptogenic zone based on graph analysis of stereo-EEG, Epilepsy Research, vol.128, pp.149-57, 2016.

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat Rev Neurosci, vol.10, issue.3, pp.186-98, 2009.

D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks. Nature, vol.393, pp.440-442, 1998.

S. C. Ponten, F. Bartolomei, and C. J. Stam, Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures, Clinical Neurophysiology, vol.118, issue.4, pp.918-945, 2007.

J. Yelnik, Functional anatomy of the basal ganglia, Mov Disord

S. Haber and N. R. Mcfarland, The place of the thalamus in frontal cortical-basal ganglia circuits, Neuroscientist, vol.7, issue.4, pp.315-339, 2001.

A. Parent and L. Hazrati, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop, Brain Research Reviews, vol.20, issue.1, pp.91-127, 1995.

G. A. Bishop, H. T. Chang, and S. T. Kitai, Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat, NEUROSCIENCE, vol.7, issue.1, pp.179-91, 1982.

G. A. Graveland and M. Difiglia, The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum, Brain Res, vol.327, issue.1-2, pp.307-318, 1985.

P. Somogyi, J. P. Bolam, S. Totterdell, and A. D. Smith, Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones, Brain Res, vol.217, issue.2, pp.245-63, 1981.

H. Kimura, P. L. Mcgeer, F. Peng, and E. G. Mcgeer, Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry, Science, vol.208, issue.4447, pp.1057-1066, 1980.
DOI : 10.1126/science.6990490

B. D. Bennett and C. J. Wilson, Synaptic regulation of action potential timing in neostriatal cholinergic interneurons, Journal of Neuroscience, vol.18, issue.20, pp.8539-8588, 1998.

J. P. Bolam, D. J. Clarke, A. D. Smith, and P. Somogyi, A type of aspiny neuron in the rat neostriatum accumulates [3H]gamma-aminobutyric acid: combination of Golgistaining, autoradiography, and electron microscopy, J Comp Neurol, vol.213, issue.2, pp.121-155, 1983.

J. M. Tepper, F. Tecuapetla, T. Koós, and O. Ibáñez-sandoval, Heterogeneity and diversity of striatal GABAergic interneurons, Front Neuroanat, vol.4, p.150, 2010.

B. D. Bennett and J. P. Bolam, Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. NEUROSCIENCE. Pergamon, vol.62, pp.707-726, 1994.

M. Sidibe and Y. Smith, Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. NEUROSCIENCE. Pergamon, vol.89, pp.1189-208, 1999.

S. Ramanathan, J. J. Hanley, J. Deniau, and J. P. Bolam, Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum, J Neurosci, vol.22, issue.18, pp.8158-69, 2002.

H. B. Parthasarathy and A. M. Graybiel, Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey, Journal of Neuroscience, vol.17, issue.7, pp.2477-91, 1997.

N. Mallet, L. Moine, C. Charpier, S. Gonon, and F. , Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo, J Neurosci, vol.25, issue.15, pp.3857-69, 2005.

Y. Kubota, S. Inagaki, S. Kito, and J. Y. Wu, Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum, Brain Res, vol.406, issue.1-2, pp.147-56, 1987.
DOI : 10.1016/0006-8993(87)90779-7

M. D. Bevan, P. A. Booth, S. A. Eaton, and J. P. Bolam, Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat, Journal of Neuroscience, vol.18, issue.22, pp.9438-52, 1998.

Y. Kawaguchi, C. J. Wilson, and P. C. Emson, Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin, Journal of Neuroscience, vol.10, issue.10, pp.3421-3459, 1990.

R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends in Neurosciences, vol.12, issue.10, pp.366-75, 1989.

O. Aizman, H. Brismar, P. Uhlén, E. Zettergren, A. I. Levey et al., Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons, Nat Neurosci, vol.3, issue.3, pp.226-256, 2000.
DOI : 10.1038/72929

S. M. Nicola, D. J. Surmeier, and R. C. Malenka, Dopaminergic Modulation of Neuronal Excitability in the Striatum and Nucleus Accumbens, vol.10139, pp.185-215, 2003.

T. Wichmann, H. Bergman, and M. R. Delong, The primate subthalamic nucleus. I. Functional properties in intact animals, J Neurophysiol, vol.72, issue.2, pp.494-506, 1994.

D. Plenz and S. T. Kital, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, vol.400, pp.677-82, 1999.
DOI : 10.1038/23281

L. N. Hazrati, A. Parent, S. Mitchell, and S. N. Haber, Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study, Brain Res, vol.533, issue.1, pp.171-176, 1990.

M. C. Chen, L. Ferrari, M. D. Sacchet, L. C. Foland-ross, M. Qiu et al., Identification of a direct GABAergic pallidocortical pathway in rodents, European Journal of Neuroscience, vol.41, issue.6, pp.748-59, 2015.

J. W. Aldriege, S. Gilman, and G. W. Dauth, Spontaneous neuronal unit activity in the primate basal ganglia and the effects of precentral cerebral cortical ablations, Brain Res, vol.516, issue.1, pp.46-56, 1990.

P. A. Starr, T. Subramanian, R. A. Bakay, and T. Wichmann, Electrophysiological localization of the substantia nigra in the parkinsonian nonhuman primate, Journal of Neurosurgery, vol.93, issue.4, pp.704-714, 2000.

S. N. Haber, The primate basal ganglia: parallel and integrative networks, Journal of Chemical Neuroanatomy, vol.26, issue.4, pp.317-347, 2003.
DOI : 10.1016/j.jchemneu.2003.10.003

S. N. Haber and R. Calzavara, The cortico-basal ganglia integrative network: The role of the thalamus, Brain Research Bulletin, vol.78, issue.2-3, pp.69-74, 2009.

S. M. Sherman, Functioning of Circuits Connecting Thalamus and Cortex. Compr Physiol, vol.7, pp.713-752, 2017.

A. V. Kravitz, B. S. Freeze, P. Parker, K. Kay, M. T. Thwin et al., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, vol.466, pp.622-628, 2010.

J. W. Mink and W. T. Thach, Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes, J Neurophysiol, vol.65, issue.2, pp.273-300, 1991.

J. W. Mink, The Basal Ganglia and Involuntary Movements: Impaired Inhibition of Competing Motor Patterns, Arch Neurol. American Medical Association, vol.60, issue.10, pp.1365-1373, 2003.

G. Cui, S. B. Jun, J. X. Pham, M. D. Vogel, S. S. Lovinger et al., Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, vol.494, pp.238-280, 2013.
DOI : 10.1038/nature11846

URL : http://europepmc.org/articles/pmc4039389?pdf=render

P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, D. Filippo et al., Direct and indirect pathways of basal ganglia: a critical reappraisal, vol.17, pp.1022-1052, 2014.

G. E. Alexander, M. R. Delong, and P. L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu Rev Neurosci, vol.9, issue.1, pp.357-81, 1986.
DOI : 10.1146/annurev.neuro.9.1.357

A. Parent, Extrinsic connections of the basal ganglia, Trends in Neurosciences, vol.13, issue.7, pp.254-262, 1990.

C. Karachi, C. François, K. Parain, E. Bardinet, D. Tandé et al., Threedimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity, Journal of Comparative Neurology, vol.450, issue.2, pp.122-156, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00615628

F. Middleton, Basal ganglia and cerebellar loops: motor and cognitive circuits, Brain Research Reviews, vol.31, issue.2-3, pp.236-50, 2000.
DOI : 10.1016/s0165-0173(99)00040-5

A. M. Graybiel, Habits, Rituals, and the Evaluative Brain, Annu Rev Neurosci, vol.31, issue.1, pp.359-87, 2008.
DOI : 10.1146/annurev.neuro.29.051605.112851

A. M. Graybiel, Network-level neuroplasticity in cortico-basal ganglia pathways, Parkinsonism & Related Disorders, vol.10, issue.5, pp.293-299, 2004.
DOI : 10.1016/j.parkreldis.2004.03.007

O. Hikosaka and M. Isoda, Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms, Trends in Cognitive Sciences. Elsevier Current Trends, vol.14, issue.4, pp.154-61, 2010.
DOI : 10.1016/j.tics.2010.01.006

URL : http://europepmc.org/articles/pmc2847883?pdf=render

B. W. Balleine, M. R. Delgado, and O. Hikosaka, The Role of the Dorsal Striatum in Reward and Decision-Making, Journal of Neuroscience. Society for Neuroscience, vol.27, issue.31, pp.8161-8166, 2007.

P. Cisek and J. F. Kalaska, Neural Mechanisms for Interacting with a World Full of Action Choices, Annual Reviews, vol.33, issue.1, pp.269-98, 2010.

J. A. Grahn, J. A. Parkinson, and A. M. Owen, The cognitive functions of the caudate nucleus, Progress in Neurobiology. Pergamon, vol.86, issue.3, pp.141-55, 2008.

S. M. Nicola, The nucleus accumbens as part of a basal ganglia action selection circuit, Psychopharmacology, vol.191, issue.3, pp.521-50, 2006.

J. Goodman and M. G. Packard, Memory Systems of the Basal Ganglia, Handbook of Basal Ganglia Structure and Function, vol.24, pp.725-765, 2016.

A. Benabid, Neuroscience: spotlight on deep-brain stimulation, Nature, vol.519, issue.7543, pp.299-300, 2015.

H. Meeren, G. Van-luijtelaar, L. Da-silva, F. Coenen, and A. , Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory, Arch Neurol. American Medical Association, vol.62, issue.3, pp.371-377, 2005.

M. J. Iadarola and K. Gale, Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid, Science. American Association for the Advancement of Science, vol.218, issue.4578, pp.1237-1277, 1982.
DOI : 10.1126/science.7146907

D. S. Garant and K. Gale, Lesions of substantia nigra protect against experimentally induced seizures, Brain Res, vol.273, issue.1, pp.156-61, 1983.

A. Depaulis, M. Vergnes, C. Marescaux, B. Lannes, and J. Warter, Evidence that activation of GABA receptors in the substantia nigra suppresses spontaneous spikeand-wave discharges in the rat, Brain Res, vol.448, issue.1, pp.20-29, 1988.

C. Deransart, B. Hellwig, M. Heupel-reuter, J. Léger, D. Heck et al., Singleunit analysis of substantia nigra pars reticulata neurons in freely behaving rats with genetic absence epilepsy, Epilepsia, vol.44, issue.12, pp.1513-1533, 2003.

J. T. Paz, M. Chavez, S. Saillet, J. M. Deniau, and S. Charpier, Activity of Ventral Medial Thalamic Neurons during Absence Seizures and Modulation of Cortical Paroxysms by the Nigrothalamic Pathway, Journal of Neuroscience, vol.27, issue.4, pp.1-13, 2007.

S. J. Slaght, On the Activity of the Corticostriatal Networks during Spike-and-Wave Discharges in a Genetic Model of Absence Epilepsy, Journal of Neuroscience, vol.24, issue.30, pp.1-10, 2004.

C. Deransart, L. Vercueil, C. Marescaux, and A. Depaulis, The role of basal ganglia in the control of generalized absence seizures. Epilepsy Research, vol.32, pp.213-236, 1998.

J. T. Paz, J. Deniau, and S. Charpier, Rhythmic bursting in the cortico-subthalamopallidal network during spontaneous genetically determined spike and wave discharges, J Neurosci, vol.25, issue.8, pp.2092-101, 2005.

C. Deransart, V. Riban, B. T. Lê, V. Hechler, C. Marescaux et al., Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat, Neurosci Lett, vol.265, issue.2, pp.131-135, 1999.

C. Deransart, V. Riban, B. Lê, C. Marescaux, and A. Depaulis, Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat, NEUROSCIENCE, vol.100, issue.2, pp.335-379, 2000.

S. N. Haber, E. Lynd, C. Klein, and H. J. Groenewegen, Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study, Journal of Comparative Neurology, vol.293, issue.2, pp.282-98, 1990.

I. Kahn and D. Shohamy, Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans

E. W. Lothman, J. M. Hatlelid, and C. F. Zorumski, Functional mapping of limbic seizures originating in the hippocampus: a combined 2-deoxyglucose and electrophysiologic study, Brain Res, vol.360, issue.1-2, pp.92-100, 1985.

L. Turski, E. A. Cavalheiro, Z. A. Bortolotto, C. Ikonomidou-turski, Z. Kleinrok et al., Dopamine-sensitive anticonvulsant site in the rat striatum, Journal of Neuroscience. Society for Neuroscience, vol.8, issue.11, pp.4027-4064, 1988.

H. Cheng, Y. Kuang, Y. Liu, Y. Wang, Z. Xu et al., Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and antiictogenic actions in rats, Acta Pharmacologica Sinica, vol.36, issue.8, pp.957-65, 2015.

E. Cleeren, E. Premereur, C. Casteels, K. Goffin, P. Janssen et al., The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys, NeuroImage: Clinical. The Authors, vol.12, pp.252-61, 2016.

L. Turski, E. A. Cavalheiro, L. S. Calderazzo-filho, Z. A. Bortolotto, T. Klockgether et al., The basal ganglia, the deep prepyriform cortex, and seizure spread: bicuculline is anticonvulsant in the rat striatum, Proc Natl Acad Sci, vol.86, issue.5, pp.1694-1701, 1989.

E. A. Cavalheiro, Z. A. Bortolotto, and L. Turski, Microinjections of the ?-aminobutyrate antagonist, bicuculline methiodide, into the caudate-putamen prevent amygdalakindled seizures in rats, Brain Res, vol.411, issue.2, pp.370-372, 1987.

C. Deransart, B. Lê, C. Marescaux, and A. Depaulis, Role of the subthalamo-nigral input in the control of amygdala-kindled seizures in the rat, Brain Res, vol.807, issue.1-2, pp.78-83, 1998.

J. O. Mcnamara, M. T. Galloway, L. C. Rigsbee, and C. Shin, Evidence implicating substantia nigra in regulation of kindled seizure threshold, Journal of Neuroscience. Society for Neuroscience, vol.4, issue.9, pp.2410-2417, 1984.

C. Freichel, U. Ebert, H. Potschka, and W. Löscher, Amygdala-kindling does not induce a persistent loss of GABA neurons in the substantia nigra pars reticulata of rats, Brain Res, vol.1025, issue.1-2, pp.203-212, 2004.

M. Sabatino, G. Gravante, G. Ferraro, N. Vella, G. L. Grutta et al., Striatonigral suppression of focal hippocampal epilepsy, Neurosci Lett, vol.98, issue.3, pp.285-90, 1989.

W. Poggio-gf, A. Ae, and . Oj, The Propagation of Cortical-AfterDischarge Through Subcortical Structures, AMA Arch Neurol Psychiatry. American Medical Association, vol.75, issue.4, pp.350-61, 1956.

E. J. Neafsey, C. M. Chuman, and A. A. Ward, Propagation of focal cortical epileptiform discharge to the basal ganglia, Experimental Neurology, vol.66, issue.1, pp.97-108, 1979.

T. E. Kaniff, C. M. Chuman, and E. J. Neafsey, Substantia nigra single unit activity during penicillin-induced focal cortical epileptiform discharge in the rat, Brain Research Bulletin, vol.11, issue.1, pp.11-14, 1983.

S. Hosokawa, T. Iguchi, W. F. Caveness, M. Kato, R. R. O'neill et al., Effects of manipulation of the sensorimotor system on focal motor seizures in the monkey, Ann Neurol, vol.7, issue.3, pp.222-259, 1980.

J. C. Oakley and G. A. Ojemann, Effects of chronic stimulation of the caudate nucleus on a preexisting alumina seizure focus, Experimental Neurology, vol.75, issue.2, pp.360-367, 1982.

A. Devergnas, B. Piallat, S. Prabhu, N. Torres, L. Benabid et al., The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials, Brain, vol.135, pp.2263-76, 2012.

S. Prabhu, S. Chabardès, A. Sherdil, A. Devergnas, S. Michallat et al., Effect of Subthalamic Nucleus Stimulation on Penicillin Induced Focal Motor Seizures in Primate. Brain Stimulation, vol.8, pp.177-84, 2015.

R. A. Hayne, L. Belinson, and F. A. Gibbs, Electrical activity of subcortical areas in epilepsy, Electroencephalography and Clinical Neurophysiology, vol.1, issue.4, pp.437-482, 1949.

I. Rektor, R. Kuba, M. Brázdil, J. Halámek, and P. Jurák, Ictal and peri-ictal oscillations in the human basal ganglia in temporal lobe epilepsy, Epilepsy & Behavior, vol.20, issue.3, pp.512-519, 2011.

I. Rektor, R. Kuba, and . Br, Interictal and Ictal EEG Activity in the Basal Ganglia: An SEEG Study in Patients with Temporal Lobe Epilepsy, Epilepsia, vol.43, issue.3, pp.1-10, 2002.

. Kotagal-p, H. Lüders, H. H. Morris, D. S. Dinner, E. Wyllie et al., Dystonic posturing in complex partial seizures of temporal lobe onset: A new lateralizing sign, Neurology, vol.39, issue.2, pp.196-202, 1989.

M. R. Newton, S. F. Berkovic, M. C. Austin, D. C. Reutens, W. J. Mckay et al.,

, Dystonia, clinical lateralization, and regional blood flow changes in temporal lobe seizures, Neurology, vol.42, issue.2, pp.371-378, 1992.

M. Mizobuchi, K. Matsuda, Y. Inoue, K. Sako, Y. Sumi et al., Dystonic posturing associated with putaminal hyperperfusion depicted on subtraction SPECT, Epilepsia. Blackwell Science Inc, vol.45, issue.8, pp.948-53, 2004.
DOI : 10.1111/j.0013-9580.2004.45403.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0013-9580.2004.45403.x

S. Dupont, F. Semah, M. Baulac, and Y. Samson, The underlying pathophysiology of ictal dystonia in temporal lobe epilepsy: An FDG-PET study, Neurology, vol.51, issue.5, pp.1289-92, 1998.

R. Kuba, I. Rektor, and M. Brázdil, Ictal limb dystonia in temporal lobe epilepsy. an invasive video-EEG finding, Eur J Neurol, vol.10, issue.6, pp.641-650, 2003.

M. Vidailhet, Paroxysmal dyskinesias as a paradigm of paroxysmal movement disorders, Curr Opin Neurol, vol.13, issue.4, p.457, 2000.
DOI : 10.1097/00019052-200008000-00015

C. T. Lombroso and A. Fischman, Paroxysmal non-kinesigenic dyskinesia: pathophysiological investigations. Epileptic Disord, vol.1, pp.187-93, 1999.

E. Hirsch, F. Sellal, B. Maton, L. Rumbach, and C. Marescaux, Nocturnal paroxysmal dystonia: a clinical form of focal epilepsy, Neurophysiologie Clinique / Clinical Neurophysiology, vol.24, issue.3, pp.207-224, 1994.

C. T. Lombroso, Paroxysmal choreoathetosis: An epileptic or non-epileptic disorder?, Ital J Neuro Sci, vol.16, issue.4, pp.271-278, 1995.

P. Szepetowski, J. Rochette, P. Berquin, C. Piussan, G. M. Lathrop et al., Familial Infantile Convulsions and Paroxysmal Choreoathetosis: A New Neurological Syndrome Linked to the Pericentromeric Region of Human Chromosome 16, The American Journal of Human Genetics. Cell Press, vol.61, issue.4, pp.889-98, 1997.

A. Thiriaux, A. De-st-martin, L. Vercueil, F. Battaglia, J. P. Armspach et al., Co-Occurrence of infantile epileptic seizures and childhood paroxysmal choreoathetosis in one family: Clinical, EEG, and SPECT characterization of episodic events, Mov Disord. Wiley-Blackwell, vol.17, issue.1, pp.98-104, 2002.

H. Braakman, M. J. Vaessen, J. Jansen, M. Debeij-van-hall, A. De-louw et al., Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy, Epilepsia, vol.54, issue.3, pp.446-54, 2012.

E. Výtvarová, R. Mare?ek, J. Fousek, O. Strý?ek, and I. Rektor, Large-scale corticosubcortical functional networks in focal epilepsies: The role of the basal ganglia, NeuroImage: Clinical. The Authors, vol.14, pp.28-36, 2017.

L. Dong, P. Wang, R. Peng, S. Jiang, B. Klugah-brown et al., Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study, Epilepsy Research, vol.128, pp.12-20, 2016.

G. Schaltenbrand and W. Wahren, Atlas for Stereotaxy of the Human Brain. Thieme, 1977.

F. Wendling and F. H. Lopes-da-silva, Dynamic of EEGs as signal of neuronal populations: models and theoretical considerations, Niedermeyers Electroencephalography Basic Principles, Clinical Applications, and Related Fields, 2017.

E. Evangelista, C. Bénar, F. Bonini, R. Carron, B. Colombet et al., Does the Thalamo-Cortical Synchrony Play a Role in Seizure Termination? Front Neurol, vol.6, pp.194-204, 2015.

H. Meeren, J. Pijn, E. Van-luijtelaar, A. Coenen, L. Da-silva et al., Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats, J Neurosci, vol.22, issue.4, pp.1480-95, 2002.
DOI : 10.1523/jneurosci.22-04-01480.2002

URL : http://www.jneurosci.org/content/22/4/1480.full.pdf

S. N. Haber, Corticostriatal circuitry. Dialogues in clinical neuroscience, pp.1-15, 2016.
DOI : 10.1007/978-1-4939-3474-4_135

URL : http://europepmc.org/articles/pmc4826773?pdf=render

J. Aupy, A. Kheder, J. Bulacio, P. Chauvel, and J. Gonzalez-martinez, Is the caudate nucleus capable of generating seizures? Evidence from direct intracerebral recordings, Clin Neurophysiol, vol.129, issue.5, pp.931-934, 2018.

L. Vercueil and E. Hirsch, Seizures and the basal ganglia: a review of the clinical data, Epileptic Disord, vol.4, issue.3, pp.47-54, 2002.

J. Aupy, I. Noviawaty, B. Krishnan, P. Suwankpakdee, J. Bulacio et al., Insulo-opercular cortex generates oroalimentary automatisms in temporal seizures, Epilepsia, vol.59, issue.3, pp.583-94, 2018.
DOI : 10.1111/epi.14011

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.14011

X. Jin, F. Tecuapetla, and R. M. Costa, Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences, vol.17, pp.423-453, 2014.

L. Topolnik, M. Steriade, and I. Timofeev, Partial cortical deafferentation promotes development of paroxysmal activity, Cerebral Cortex, vol.13, issue.8, pp.883-93, 2003.

I. Timofeev and M. Steriade, Neocortical seizures: initiation, development and cessation, NEUROSCIENCE, vol.123, issue.2, pp.299-336, 2004.
DOI : 10.1016/j.neuroscience.2003.08.051

S. J. Schiff, T. Sauer, R. Kumar, and S. L. Weinstein, Neuronal spatiotemporal pattern discrimination: the dynamical evolution of seizures, NeuroImage, vol.28, issue.4, pp.1043-55, 2005.

K. Schindler, H. Leung, C. E. Elger, and K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain, vol.130, issue.1, pp.65-77, 2006.

T. Koos and J. M. Tepper, Inhibitory control of neostriatal projection neurons by GABAergic interneurons, Nat Neurosci, vol.2, issue.5, pp.467-72, 1999.

A. Sharott, C. Moll, G. Engler, M. Denker, S. Grun et al., Different Subtypes of Striatal Neurons Are Selectively Modulated by Cortical Oscillations, Journal of Neuroscience, vol.29, issue.14, pp.4571-85, 2009.

T. Arakaki, S. Mahon, S. Charpier, A. Leblois, and D. Hansel, The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures, J Neurosci. Society for Neuroscience, vol.36, issue.37, pp.9618-9650, 2016.

S. J. Slaght, On the Activity of the Corticostriatal Networks during Spike-and-Wave Discharges in a Genetic Model of Absence Epilepsy, Journal of Neuroscience, vol.24, issue.30, pp.6816-6841, 2004.

A. H. Gittis, A. B. Nelson, M. T. Thwin, J. J. Palop, and A. C. Kreitzer, Distinct roles of GABAergic interneurons in the regulation of striatal output pathways, J Neurosci. Society for Neuroscience, vol.30, issue.6, pp.2223-2257, 2010.

A. R. Crossman, I. J. Mitchell, M. A. Sambrook, and A. Jackson, Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex. The site of drug action and a hypothesis for the neural mechanisms of chorea, Brain, vol.111, pp.1211-1244, 1988.

P. Tarsy-d, M. Cj, . Bs, and . Marsden-cd, FOCAL CONTRALATERAL MYOCLONUS PRODUCED BY INHIBITION OF GABA ACTION IN THE CAUDATE NUCLEUS OF RATS, Brain, vol.101, issue.1, pp.1-20, 2005.

M. Marsden-cd, . Bs, C. Pycock, and . Tarsy-d, Focal myoclonus produced by injection of picrotoxin into the caudate nucleus of the rat, J Physiol (Lond), vol.246, issue.2, pp.96-96, 1975.

O. Darbin and T. Wichmann, Effects of striatal GABA A-receptor blockade on striatal and cortical activity in monkeys, J Neurophysiol, vol.99, issue.3, pp.1294-305, 2008.

K. W. Mccairn, M. Bronfeld, and K. Belelovsky, Bar-Gad I. The neurophysiological correlates of motor tics following focal striatal disinhibition, Brain, vol.132, pp.2125-2163, 2009.

Y. Worbe, N. Baup, D. Grabli, M. Chaigneau, S. P. Mounayar et al., Behavioral and Movement Disorders Induced by Local Inhibitory Dysfunction in Primate Striatum, Cerebral Cortex, vol.19, issue.8, pp.1-13, 2009.

A. H. Gittis, D. K. Leventhal, B. A. Fensterheim, J. R. Pettibone, J. D. Berke et al., Selective Inhibition of Striatal Fast-Spiking Interneurons Causes Dyskinesias, Journal of Neuroscience, vol.31, issue.44, pp.1-5, 2011.

J. Szabo and W. M. Cowan, A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis), J Comp Neurol, vol.222, issue.2, pp.265-300, 1984.

S. Frey, R. Comeau, B. Hynes, S. Mackey, and M. Petrides, Frameless stereotaxy in the nonhuman primate, NeuroImage, vol.23, issue.3, pp.1226-1260, 2004.

B. H. Westerink, D. Vries, and J. B. , A method to evaluate the diffusion rate of drugs from a microdialysis probe through brain tissue, Journal of Neuroscience Methods, vol.109, issue.1, pp.53-61, 2001.

M. Yoshida, Y. Nagatsuka, S. Muramatsu, and K. Niijima, Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists, Neuroscience Research, vol.10, issue.1, pp.34-51, 1991.

R. J. Racine, Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology, vol.32, pp.281-94, 1972.
DOI : 10.1016/0013-4694(75)90204-7

J. C. Bachiega, M. M. Blanco, P. Perez-mendes, S. M. Cinini, L. Covolan et al., Behavioral characterization of pentylenetetrazol-induced seizures in the marmoset, Epilepsy & Behavior, vol.13, issue.1, pp.70-76, 2008.

P. Perez-mendes, M. M. Blanco, M. E. Calcagnotto, S. M. Cinini, J. Bachiega et al., Modeling epileptogenesis and temporal lobe epilepsy in a non-human primate, Epilepsy Research. Elsevier B, vol.96, issue.1-2, pp.45-57, 2011.

J. L. Fudge and S. N. Haber, Defining the caudal ventral striatum in primates: cellular and histochemical features, J Neurosci, vol.22, issue.23, pp.10078-82, 2002.
DOI : 10.1523/jneurosci.22-23-10078.2002

S. N. Haber and N. R. Mcfarland, The concept of the ventral striatum in nonhuman primates, Ann N Y Acad Sci, vol.877, pp.33-48, 1999.

M. Inase, S. T. Sakai, and J. Tanji, Overlapping corticostriatal projections from the supplementary motor area and the primary motor cortex in the macaque monkey: An anterograde double labeling study, Journal of Comparative Neurology, vol.373, issue.2, pp.283-96, 1996.

A. W. Flaherty and A. M. Graybiel, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J Neurophysiol, vol.66, issue.4, pp.1249-63, 1991.
DOI : 10.1152/jn.1991.66.4.1249

A. Nambu, Somatotopic organization of the primate Basal Ganglia, Front Neuroanat. Frontiers, vol.5, p.26, 2011.

S. Miyachi, X. Lu, M. Imanishi, K. Sawada, A. Nambu et al., Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex, Neuroscience Research, vol.56, issue.3, pp.300-308, 2006.
DOI : 10.1016/j.neures.2006.07.012

D. Grabli, Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain, vol.127, pp.2039-54, 2004.

R. K. Wong, R. Miles, and R. D. Traub, Local circuit interactions in synchronization of cortical neurones, Journal of Experimental Biology. The Company of Biologists Ltd, vol.112, issue.1, pp.169-78, 1984.

U. Mitzdorf, Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena, Physiological Reviews, vol.65, issue.1, pp.37-100, 1985.

G. M. Mckenzie and K. Viik, Chemically induced choreiform activity: Antagonism by GABA and EEG patterns, vol.46, pp.229-272, 1975.

Y. Kawaguchi, Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum, Journal of Neuroscience. Society for Neuroscience, vol.13, issue.11, pp.4908-4931, 1993.

T. Koos, Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum, Journal of Neuroscience, vol.24, issue.36, pp.7916-7938, 2004.

J. M. Tepper and J. P. Bolam, Functional diversity and specificity of neostriatal interneurons, Curr Opin Neurobiol. Elsevier Current Trends, vol.14, issue.6, pp.685-92, 2004.

A. Quartarone and A. Pisani, Abnormal plasticity in dystonia: Disruption of synaptic homeostasis, Neurobiology of Disease, vol.42, issue.2, pp.162-70, 2011.

F. Bonini, A. Mcgonigal, A. S. Tr-buchon, M. Gavaret, F. Bartolomei et al., Frontal lobe seizures: From clinical semiology to localization, Epilepsia, vol.55, issue.2, pp.264-77, 2013.
DOI : 10.1111/epi.12490

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.12490

A. Mcgonigal and P. Chauvel, Prefrontal seizures manifesting as motor stereotypies, Mov Disord, vol.29, issue.9, pp.1181-1186, 2013.

A. Franzini, G. Messina, C. Marras, F. Villani, R. Cordella et al., Deep brain stimulation of two unconventional targets in refractory non-resectable epilepsy, SFN, vol.86, issue.6, pp.373-81, 2008.

J. Vesper, B. Steinhoff, R. S. Wille, C. Bilic, S. Nikkhah et al., Chronic HighFrequency Deep Brain Stimulation of the STN/SNr for Progressive Myoclonic Epilepsy, Epilepsia, vol.48, issue.10, pp.1984-1993, 2007.

C. Wille, B. J. Steinhoff, D. M. Altenmüller, A. M. Staack, S. Bilic et al., Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood-Report of five cases, Epilepsia, vol.52, issue.3, pp.489-96, 2011.

S. Chabardès, P. Kahane, L. Minotti, A. Koudsie, E. Hirsch et al., Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus, Epileptic Disord, vol.4, issue.3, pp.83-93, 2002.

L. Grutta, V. Sabatino, M. Gravante, G. Morici, G. Ferraro et al., A study of caudate inhibition on an epileptic focus in the cat hippocampus, Arch Int Physiol Biochim, vol.96, issue.2, pp.113-133, 1988.

S. A. Chkhenkeli and I. S. Chkhenkeli, Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy, SFN. Karger Publishers, vol.69, issue.1-4, pp.221-225, 1997.

A. B. Kowski, J. Voges, H. Heinze, F. Oltmanns, M. Holtkamp et al., Nucleus accumbens stimulation in partial epilepsy--a randomized controlled case series, Epilepsia, vol.56, issue.6, pp.78-82, 2015.
DOI : 10.1111/epi.12999

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.12999

Y. Smith, A. Galvan, T. J. Ellender, N. Doig, R. M. Villalba et al., The thalamostriatal system in normal and diseased states, Front Syst Neurosci. Frontiers, vol.8, p.5, 2014.
DOI : 10.3389/fnsys.2014.00005

URL : https://www.frontiersin.org/articles/10.3389/fnsys.2014.00005/pdf

F. Velasco, M. Velasco, C. Ogarrio, and G. Fanghanel, Electrical Stimulation of the Centromedian Thalamic Nucleus in the Treatment of Convulsive Seizures: A Preliminary Report, Epilepsia, vol.28, issue.4, pp.421-451, 1987.

R. S. Fisher, S. Uematsu, G. L. Krauss, B. J. Cysyk, R. Mcpherson et al., Placebo-Controlled Pilot Study of Centromedian Thalamic Stimulation in Treatment of Intractable Seizures, Epilepsia, vol.33, issue.5, pp.841-51, 1992.

A. L. Velasco, F. Velasco, F. Jiménez, M. Velasco, G. Castro et al., Neuromodulation of the Centromedian Thalamic Nuclei in the Treatment of Generalized Seizures and the Improvement of the Quality of Life in Patients with Lennox-Gastaut Syndrome, Epilepsia, vol.47, issue.7, pp.1203-1215, 2006.

A. Valentín, E. G. Navarrete, R. Chelvarajah, C. Torres, M. Navas et al., Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies, Epilepsia

R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry et al., Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy, Epilepsia, vol.51, issue.5, pp.899-908, 2010.

M. De-curtis and M. Avoli, GABAergic networks jump-start focal seizures, Epilepsia, vol.57, issue.5, pp.679-87, 2016.

C. A. Schevon, S. A. Weiss, G. Mckhann, . Jr, R. R. Goodman et al., Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications, vol.3, p.1060, 2012.

W. Truccolo, O. J. Ahmed, M. T. Harrison, E. N. Eskandar, G. R. Cosgrove et al., Neuronal ensemble synchrony during human focal seizures, J Neurosci. Society for Neuroscience, vol.34, issue.30, pp.9927-9971, 2014.
DOI : 10.1523/jneurosci.4567-13.2014

URL : http://www.jneurosci.org/content/34/30/9927.full.pdf

Y. Oran and I. Bar-gad, Loss of Balance between Striatal Feedforward Inhibition and Corticostriatal Excitation Leads to Tremor, J Neurosci. Society for Neuroscience, vol.38, issue.7, pp.1699-710, 2018.