Rôle du striatum dans la physiopathologie des épilepsies focales : un modèle translationnel de l’Homme au primate non-humain

Abstract : Background: Although a number of experimental and clinical studies have pointed out participation or an even more prominent role of basal ganglia in focal seizures, the mode of interaction between cortical and striatal signals remains unclear. In the present thesis, we first we took the opportunity of stereoelectroencephalographic recordings in drug-resistant epilepsy patients, to qualitatively and quantitatively analyse the ictal striatum activity. Secondly, we created a primate model of subcortical focal motor seizures induced by GABAergic antagonist striatal injections First study: Patients and method: eleven patients who underwent SEEG evaluation were prospectively included if they fulfilled two inclusion criteria: i) at least one orthogonal intracerebral electrode contact explored the basal ganglia, in their either putaminal or caudate part, ii) at least two SEEG seizures were recorded. Cortical and subcortical regions of interest were defined and different periods of interest were analysed. SEEG was visually inspected and h2 non-linear correlation analysis performed to study functional connectivity between cortical region of interest and striatum. Results: Two main patterns of striatal activation were recorded: the most frequent was characterised by an early alpha/beta activity that started within the first five second after seizure onset. The second one was characterised by a late slower, theta/delta activity. A significant difference in h2 correlation indexes was observed during the preictal and seizure onset period compared to background for global striatal index, mesio-temporal/striatal index, latero-temporal/striatal index, insular/striatal index, prefrontal/striatal index. In addition, a significant difference in h2 correlation indexes was observed during the seizure termination period compared to all the other periods of interest. Second study: Material and method: Experiments were performed on three fascicularis monkeys. Acute GABAergic antagonist (bicuculine) injections were performed within the sensorimotor part of the striatum. Behavioural modifications were recorded and scored according to a modified Racine’s scale. Electromyography, electroencephalography, basal ganglia local field potentials were recorded during each experiment. A backaveraging analysis was performed for each recorded session. Results: over the 39 Bicuculline injections, 29 (74.3%) produced dramatic reproducible behavioural changes characterised by repetitive and pseudo-periodic myoclonic jerks with generalised tonic-clonic seizures. NaCl injections never produced any behavioural changes. Myoclonic jerks were clearly detectable on the EMG signal as short stereotypical EMG burst concomitant from abnormal epileptic spikes recorded on EEG. Back averaging analysis from EMG myoclonia showed that electrophysiological activity started significantly earlier in the striatum (p < 0.0001), the GPe (p < 0.0003) and the GPi (p < 0.0086) than in the cortex. Conclusion: These changes in synchronisation level between cortical and striatal activity might be part of an endogenous mechanism controlling the duration of abnormal oscillations within the striato-thalamo-cortical loop and thereby their termination. GABAergic fast-spiking interneurones might play a crucial role synchronising the cortico-striato-thalamic network and a drastic GABAergic modification of the striatum can induce focal seizures. The role of the basal ganglia role in strengthening mechanisms underlying cessation of ictal propagation should inspire new rationales for deep brain stimulation in patients with intractable focal epilepsy.
Document type :
Theses
Complete list of metadatas

Cited literature [220 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02157269
Contributor : Abes Star <>
Submitted on : Sunday, June 16, 2019 - 1:03:10 AM
Last modification on : Sunday, June 16, 2019 - 1:11:22 AM

File

AUPY_JEROME_2018.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02157269, version 1

Collections

Citation

Jérôme Aupy. Rôle du striatum dans la physiopathologie des épilepsies focales : un modèle translationnel de l’Homme au primate non-humain. Neurosciences [q-bio.NC]. Université de Bordeaux, 2018. Français. ⟨NNT : 2018BORD0464⟩. ⟨tel-02157269⟩

Share

Metrics

Record views

206

Files downloads

42