C. Bernard, Lectures on the Phenomena of Life Common to Animals and Plants, 1974.

M. E. Csete and J. C. Doyle, Reverse engineering of biological complexity, Science, vol.295, pp.1664-1673, 2002.

H. Kitano, Biological robustness, Nat Rev Genet, vol.5, pp.826-863, 2004.

J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle, and J. Doyle, Robustness of cellular functions, Cell, vol.118, pp.675-85, 2004.

W. B. Cannon, Organization for physiological homeostasis, Physiol Rev, vol.9, pp.399-431, 1929.
DOI : 10.1152/physrev.1929.9.3.399

P. Kourilsky, The natural defense system and the normative self model. F1000Res, vol.5, p.797, 2016.

T. Pradeu, The Limits of the Self: Immunology and Biological Identity, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01343696

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, pp.314-335, 2008.

S. A. Eming, P. Martin, and M. Tomic-canic, Wound repair and regeneration: mechanisms, signaling, and translation, Sci Transl Med, vol.6, pp.265-271, 2014.
DOI : 10.1126/scitranslmed.3009337

URL : http://europepmc.org/articles/pmc4973620?pdf=render

J. V. Cordeiro and J. A. , The role of transcription-independent damage signals in the initiation of epithelial wound healing, Nat Rev Mol Cell Biol, vol.14, pp.249-62, 2013.

M. Demaria, N. Ohtani, S. A. Youssef, F. Rodier, W. Toussaint et al., An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA, Dev Cell, vol.31, pp.722-755, 2014.

M. Karin and H. Clevers, Reparative inflammation takes charge of tissue regeneration, Nature, vol.529, pp.307-322, 2016.

E. S. White and A. R. Mantovani, Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution, J Pathol, vol.229, pp.141-145, 2013.

T. A. Wynn and T. R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat Med, vol.18, pp.1028-1068, 2012.
DOI : 10.1038/nm.2807

URL : http://europepmc.org/articles/pmc3405917?pdf=render

C. Chizzolini, N. C. Brembilla, E. Montanari, and M. Truchetet, Fibrosis and immune dysregulation in systemic sclerosis, Autoimmun Rev, vol.10, pp.276-81, 2011.

M. T. Longaker and G. C. Gurtner, Introduction: wound repair, Semin Cell Dev Biol, vol.23, p.945, 2012.

H. F. Dvorak, Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing, N Engl J Med, vol.315, pp.1650-1659, 1986.

. Laurent, Immune-Mediated Repair: A Matter of Plasticity Frontiers in Immunology | www, vol.8, p.454, 2017.

J. Jameson, K. Ugarte, N. Chen, P. Yachi, E. Fuchs et al., A role for skin gammadelta T cells in wound repair, Science, vol.296, pp.747-756, 2002.

A. Toulon, L. Breton, K. R. Taylor, M. Tenenhaus, D. Bhavsar et al., A role for human skin-resident T cells in wound healing, J Exp Med, vol.206, pp.743-50, 2009.

V. Lafont, F. Sanchez, E. Laprevotte, H. Michaud, L. Gros et al., Plasticity of ?d T cells: impact on the anti-tumor response, Front Immunol, vol.5, p.622, 2014.

B. Silva-santos, K. Serre, and H. Norell, ?d T cells in cancer, Nat Rev Immunol, vol.15, pp.683-91, 2015.

G. Eberl, D. Santo, J. P. Vivier, and E. , The brave new world of innate lymphoid cells, Nat Immunol, vol.16, pp.1-5, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01402712

H. Spits, D. Artis, M. Colonna, A. Diefenbach, D. Santo et al., Innate lymphoid cells -a proposal for uniform nomenclature, Nat Rev Immunol, vol.13, pp.145-154, 2013.
DOI : 10.1038/nri3365

E. Vivier, S. A. Van-de-pavert, M. D. Cooper, and G. T. Belz, The evolution of innate lymphoid cells, Nat Immunol, vol.17, pp.790-794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438153

D. Artis and H. Spits, The biology of innate lymphoid cells, Nature, vol.517, pp.293-301, 2015.

C. Klose and D. Artis, Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis, Nat Immunol, vol.17, pp.765-74, 2016.
DOI : 10.1038/ni.3489

D. Zaiss, W. C. Gause, L. C. Osborne, and D. Artis, Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair, Immunity, vol.42, pp.216-242, 2015.

G. D. Rak, L. C. Osborne, M. C. Siracusa, B. S. Kim, K. Wang et al., IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing, J Invest Dermatol, vol.136, pp.487-96, 2016.
DOI : 10.1038/jid.2015.406

URL : https://doi.org/10.1038/jid.2015.406

Y. Ohne, J. S. Silver, L. Thompson-snipes, M. A. Collet, J. P. Blanck et al., IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity, Nat Immunol, vol.17, pp.646-55, 2016.

J. S. Silver, J. Kearley, A. M. Copenhaver, C. Sanden, M. Mori et al., Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs, Nat Immunol, vol.17, pp.626-661, 2016.

F. F. Almeida and G. T. Belz, Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection, Mucosal Immunol, vol.9, pp.1103-1115, 2016.

K. Zhang, X. Xu, M. A. Pasha, C. W. Siebel, A. Costello et al., Cutting edge: notch signaling promotes the plasticity of group-2 innate lymphoid cells, J Immunol, vol.198, pp.1798-803, 2017.

S. Z. Josefowicz, L. Lu, and A. Y. Rudensky, Regulatory T cells: mechanisms of differentiation and function, Annu Rev Immunol, vol.30, pp.531-64, 2012.

N. Arpaia, J. A. Green, B. Moltedo, A. Arvey, S. Hemmers et al., A distinct function of regulatory T cells in tissue protection, Cell, vol.162, pp.1078-89, 2015.

M. D. Rosenblum, I. K. Gratz, J. S. Paw, K. Lee, A. Marshak-rothstein et al., Response to self antigen imprints regulatory memory in tissues, Nature, vol.480, pp.538-580, 2011.

R. Sanchez-rodriguez, M. L. Pauli, I. M. Neuhaus, S. S. Yu, A. St et al., Memory regulatory T cells reside in human skin, J Clin Invest, vol.124, pp.1027-1063, 2014.

C. Margaroli and R. Tirouvanziam, Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease, Mol Cell Pediatr, vol.3, p.38, 2016.

K. M. Vannella and T. A. Wynn, Mechanisms of organ injury and repair by macrophages, Annu Rev Physiol, vol.79, pp.593-617, 2017.
DOI : 10.1146/annurev-physiol-022516-034356

J. Däbritz, T. Weinhage, G. Varga, T. Wirth, K. Walscheid et al., Reprogramming of monocytes by GM-CSF contributes to regulatory immune functions during intestinal inflammation, J Immunol, vol.194, pp.2424-2462, 2015.

S. D'-alessio, C. Correale, C. Tacconi, A. Gandelli, G. Pietrogrande et al., VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease, J Clin Invest, vol.124, pp.3863-78, 2014.

Y. Ma, A. Yabluchanskiy, R. P. Iyer, P. L. Cannon, E. R. Flynn et al., Temporal neutrophil polarization following myocardial infarction, Cardiovasc Res, vol.110, pp.51-61, 2016.
DOI : 10.1093/cvr/cvw024

URL : https://academic.oup.com/cardiovascres/article-pdf/110/1/51/7454557/cvw024.pdf

M. I. Cuartero, I. Ballesteros, A. Moraga, F. Nombela, J. Vivancos et al., N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPAR? agonist rosiglitazone, Stroke, vol.44, pp.3498-508, 2013.

M. Van-der-plas, A. M. Van-der-does, M. Baldry, H. Dogterom-ballering, C. Van-gulpen et al., Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses, Microbes Infect, vol.9, pp.507-521, 2007.

M. Van-der-plas, J. T. Van-dissel, and P. H. Nibbering, Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type, PLoS One, vol.4, p.8071, 2009.

T. Bjarnsholt, K. Kirketerp-møller, P. Ø. Jensen, K. G. Madsen, R. Phipps et al., Why chronic wounds will not heal: a novel hypothesis, Wound Repair Regen, vol.16, pp.2-10, 2008.
DOI : 10.1111/j.1524-475x.2007.00283.x

URL : http://orbit.dtu.dk/en/publications/why-chronic-wounds-will-not-heal-a-novel-hypothesis(a10e5053-e4d6-4b75-8d7e-610278e0a0d9).html

R. A. Cooper, T. Bjarnsholt, and M. Alhede, Biofilms in wounds: a review of present knowledge, J Wound Care, vol.23, pp.572-574, 2014.

S. L. Percival, Importance of biofilm formation in surgical infection, Br J Surg, vol.104, pp.85-94, 2017.

H. Trøstrup, K. Thomsen, L. J. Christophersen, H. P. Hougen, T. Bjarnsholt et al., Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model, Wound Repair Regen, vol.21, pp.292-301, 2013.

K. T. Nguyen, A. K. Seth, S. J. Hong, M. R. Geringer, P. Xie et al., Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds, Wound Repair Regen, vol.21, pp.833-874, 2013.
DOI : 10.1111/wrr.12109

S. A. Rice, D. Mcdougald, N. Kumar, and S. Kjelleberg, The use of quorum-sensing blockers as therapeutic agents for the control of biofilm-associated infections, Curr Opin Investig Drugs, vol.6, pp.178-84, 2005.

L. J. Van-den-broek, W. M. Van-der-veer, E. H. De-jong, S. Gibbs, and F. B. Niessen, Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation, Exp Dermatol, vol.24, pp.623-632, 2015.

Z. Zhu, J. Ding, Z. Ma, T. Iwashina, and E. E. Tredget, Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertro phic scar formation, Wound Repair Regen, vol.24, pp.644-56, 2016.

D. Pattanaik, M. Brown, B. C. Postlethwaite, and A. E. Postlethwaite, Pathogen esis of systemic sclerosis, Front Immunol, vol.6, p.272, 2015.

A. J. Gilbane, C. P. Denton, and A. M. Holmes, Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells, Arthritis Res Ther, vol.15, p.215, 2013.

A. L. Mathes, R. B. Christmann, G. Stifano, A. J. Affandi, T. R. Radstake et al., Global chemokine expression in systemic sclerosis (SSc): CCL19 expression correlates with vascular inflammation in SSc skin, Ann Rheum Dis, vol.73, pp.1864-72, 2014.

M. Truchetet, N. Brembilla, E. Montanari, P. Lonati, E. Raschi et al., Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement, Arthritis Rheum, vol.65, pp.1347-56, 2013.

F. Bandinelli, D. Rosso, A. Gabrielli, A. Giacomelli, R. Bartoli et al., CCL3 and CCL5 chemokines in systemic sclerosis: the correlation with SSc clinical features and the effect of prostaglandin E1 treatment, Clin Exp Rheumatol, vol.30, pp.44-53, 2012.

N. Higashi-kuwata, M. Jinnin, T. Makino, S. Fukushima, Y. Inoue et al., Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis, Arthritis Res Ther, vol.12, p.128, 2010.

J. E. Allen and T. E. Sutherland, Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin, Semin Immunol, vol.26, pp.329-369, 2014.

. Laurent, Immune-Mediated Repair: A Matter of Plasticity Frontiers in Immunology | www, vol.8, p.454, 2017.

K. R. Jessen, R. Mirsky, and P. Arthur-farraj, The role of cell plasticity in tissue repair: adaptive cellular reprogramming, Dev Cell, vol.34, pp.613-633, 2015.

S. A. Eming, Evolution of immune pathways in regeneration and repair: recent concepts and translational perspectives, Semin Immunol, vol.26, pp.275-281, 2014.

S. A. Eming, M. Hammerschmidt, T. Krieg, and A. Roers, Interrelation of immunity and tissue repair or regeneration, Semin Cell Dev Biol, vol.20, pp.517-544, 2009.
DOI : 10.1016/j.semcdb.2009.04.009

J. W. Godwin, A. R. Pinto, and N. A. Rosenthal, Chasing the recipe for a proregenerative immune system, Semin Cell Dev Biol, vol.61, pp.71-80, 2017.

K. D. Birnbaum, S. Alvarado, and A. , Slicing across kingdoms: regeneration in plants and animals, Cell, vol.132, 2008.
DOI : 10.1016/j.cell.2008.01.040

URL : https://doi.org/10.1016/j.cell.2008.01.040

C. Chizzolini, N. C. Brembilla, E. Montanari, and M. Truchetet, Fibrosis and immune dysregulation in systemic sclerosis, Autoimmun Rev, vol.10, pp.276-81, 2011.

V. Raker, J. Haub, A. Stojanovic, A. Cerwenka, D. Schuppan et al., Early inflammatory players in cutanous fibrosis, J Dermatol Sci, vol.87, pp.228-263, 2017.
DOI : 10.1016/j.jdermsci.2017.06.009

S. Bhattacharyya and J. Varga, Emerging roles of innate immune signaling and tolllike receptors in fibrosis and systemic sclerosis, Curr Rheumatol Rep, vol.17, p.474, 2015.

C. Dowson, N. Simpson, L. Duffy, O. Reilly, and S. , Innate immunity in systemic sclerosis, Curr Rheumatol Rep, vol.19, 2017.

N. Fullard and S. O'reilly, Role of innate immune system in systemic sclerosis, Semin Immunopathol, vol.37, pp.511-518, 2015.

J. J. Chia and T. T. Lu, Update on macrophages and innate immunity in scleroderma, Curr Opin Rheumatol, vol.27, pp.530-536, 2015.

M. E. Johnson, P. A. Pioli, and M. L. Whitfield, Gene expression profiling offers insights into the role of innate immune signaling in SSc, Semin Immunopathol, vol.37, pp.501-510, 2015.

J. N. Taroni, C. S. Greene, V. Martyanov, T. A. Wood, R. B. Christmann et al., A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis, Genome Med, vol.9, p.27, 2017.

J. M. Mahoney, J. Taroni, V. Martyanov, T. A. Wood, C. S. Greene et al., Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms, PLoS Comput Biol, vol.11, 2015.

P. Laurent, V. Jolivel, P. Manicki, L. Chiu, C. Contin-bordes et al., Immune-mediated repair: a matter of plasticity, Front Immunol, vol.8, p.454, 2017.
DOI : 10.3389/fimmu.2017.00454

URL : https://hal.archives-ouvertes.fr/hal-01673335

S. Bhattacharyya and J. Varga, Endogenous ligands of TLR4 promote unresolving tissue fibrosis: implications for systemic sclerosis and its targeted therapy

, Immunol Lett, vol.195, pp.9-17, 2018.

M. Wu and S. Assassi, The role of type 1 interferon in systemic sclerosis, Front Immunol, vol.4, p.266, 2013.

M. D. Ah-kioon, C. Tripodo, D. Fernandez, K. A. Kirou, R. F. Spiera et al., Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8

, Sci Transl Med, vol.10, issue.423, p.8458, 2018.

R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan et al., A Bayesian networks approach for predicting protein-protein interactions from genomic data, Science, vol.302, pp.449-53, 2003.
DOI : 10.1126/science.1087361

URL : http://papers.gersteinlab.org/e-print/intint/all.pdf

S. Hwang, S. Y. Rhee, E. M. Marcotte, and I. Lee, Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network, Nat Protoc, vol.6, pp.1429-1471, 2011.

W. Ju, C. S. Greene, F. Eichinger, V. Nair, J. B. Hodgin et al., Defining cell-type specificity at the transcriptional level in human disease, Genome Res, vol.23, pp.1862-73, 2013.

J. C. Chen, J. E. Cerise, A. Jabbari, R. Clynes, and A. M. Christiano, Master regulators of infiltrate recruitment in autoimmune disease identified through network-based molecular deconvolution, Cell Syst, vol.1, pp.326-363, 2015.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, pp.314-335, 2008.

B. M. Kräling, G. G. Maul, and S. A. Jimenez, Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset

C. P. Denton and D. Khanna, Systemic sclerosis, Lancet, vol.390, pp.1685-99, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02042780

C. Chizzolini, N. C. Brembilla, E. Montanari, and M. E. Truchetet, Fibrosis and immune dysregulation in systemic sclerosis, Autoimmun Rev, vol.10, issue.5, pp.276-81, 2010.

P. Laurent, V. Sisirak, L. E. Richez, C. Duffau, P. Blanco et al., Innate Immunity in Systemic Sclerosis Fibrosis: Recent Advances, Frontiers in immunology, vol.9, p.1702, 2018.

H. Spits, D. Artis, M. Colonna, A. Diefenbach, D. Santo et al., Innate lymphoid cells--a proposal for uniform nomenclature, Nat Rev Immunol, vol.13, issue.2, pp.145-154, 2013.

C. S. Klose and D. Artis, Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis, Nature immunology, vol.17, issue.7, pp.765-74, 2016.

M. G. Constantinides, B. D. Mcdonald, P. A. Verhoef, and A. Bendelac, A committed precursor to innate lymphoid cells, Nature, vol.508, issue.7496, pp.397-401, 2014.
DOI : 10.1038/nature13047

URL : http://europepmc.org/articles/pmc4003507?pdf=render

P. G. Fallon, E. J. Richardson, G. J. Mckenzie, and A. N. Mckenzie, Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent, Journal of immunology, vol.164, issue.5, pp.2585-91, 2000.

T. A. Wynn, Fibrotic disease and the T(H)1/T(H)2 paradigm, Nat Rev Immunol, vol.4, issue.8, pp.583-94, 2004.

E. Hams, M. E. Armstrong, J. L. Barlow, S. P. Saunders, C. Schwartz et al., IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.1, pp.367-72, 2014.
DOI : 10.1073/pnas.1315854111

URL : http://www.pnas.org/content/111/1/367.full.pdf

T. Mchedlidze, M. Waldner, S. Zopf, J. Walker, A. L. Rankin et al.,

, Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis, Immunity, vol.39, issue.2, pp.357-71, 2013.

P. A. Lonati, N. C. Brembilla, E. Montanari, L. Fontao, A. Gabrielli et al., High IL-17E and low IL-17C dermal expression identifies a fibrosis-specific motif common to morphea and systemic sclerosis, PloS one, vol.9, issue.8, p.105008, 2014.
DOI : 10.1371/journal.pone.0105008

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105008&type=printable

M. Manetti, S. Guiducci, C. Ceccarelli, E. Romano, S. Bellando-randone et al., Increased circulating levels of interleukin 33 in systemic sclerosis correlate with early disease stage and microvascular involvement, Ann Rheum Dis, vol.70, issue.10, pp.1876-1884, 2011.

M. E. Truchetet, B. Demoures, E. Guimaraes, J. Bertrand, A. Laurent et al., Platelets Induce Thymic Stromal Lymphopoietin Production by Endothelial Cells: Contribution to Fibrosis in Human Systemic Sclerosis, Arthritis & rheumatology, vol.68, issue.11, pp.2784-94, 2016.
DOI : 10.1002/art.39817

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.39817

Y. Huang, L. Guo, J. Qiu, X. Chen, J. Hu-li et al., 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative, 15. van den Hoogen F, vol.16, pp.1747-55, 2013.

N. Kavian, W. Marut, A. Servettaz, C. Nicco, C. Chereau et al., Reactive oxygen species-mediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis, Arthritis Rheum, vol.64, issue.10, pp.3430-3470, 2012.

A. Servettaz, C. Goulvestre, N. Kavian, C. Nicco, P. Guilpain et al., Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse, Journal of immunology, vol.182, issue.9, pp.5855-64, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00517814

B. Vallentin, V. Barlogis, C. Piperoglou, S. Cypowyj, N. Zucchini et al., Innate Lymphoid Cells in Cancer, Cancer Immunol Res, vol.3, issue.10, pp.1109-1123, 2015.

Y. Ohne, J. S. Silver, L. Thompson-snipes, M. A. Collet, J. P. Blanck et al., IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity, Nature immunology, vol.17, issue.6, pp.646-55, 2016.

M. E. Truchetet, N. C. Brembilla, E. Montanari, P. Lonati, E. Raschi et al.,

, Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement, Arthritis Rheum, vol.65, issue.5, pp.1347-56, 2013.

R. Yagi, C. Zhong, D. L. Northrup, F. Yu, N. Bouladoux et al., The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells, Immunity, vol.40, issue.3, pp.378-88, 2014.

F. Roan, T. A. Stoklasek, E. Whalen, J. A. Molitor, J. A. Bluestone et al.,

, Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis, Journal of immunology, vol.196, issue.5, pp.2051-62, 2016.

T. Wohlfahrt, S. Usherenko, M. Englbrecht, C. Dees, S. Weber et al.,

, Ann Rheum Dis, vol.75, issue.3, pp.623-629, 2016.

M. Nagasawa, K. Germar, B. Blom, and H. Spits, Human CD5(+) Innate Lymphoid Cells Are Functionally Immature and Their Development from CD34(+) Progenitor Cells Is Regulated by Id2, Frontiers in immunology, vol.8, p.1047, 2017.
DOI : 10.3389/fimmu.2017.01047

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2017.01047/pdf

M. Colonna, Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity, Immunity, vol.48, issue.6, pp.1104-1121, 2018.
DOI : 10.1016/j.immuni.2018.05.013

P. Aparicio-domingo, M. Romera-hernandez, J. J. Karrich, F. Cornelissen, N. Papazian et al., Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage, J Exp Med, vol.212, issue.11, pp.1783-91, 2015.
DOI : 10.1083/jcb.2107oia193

URL : http://europepmc.org/articles/pmc4612094?pdf=render

A. Usategui, G. Criado, E. Izquierdo, D. Rey, M. J. Carreira et al., A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis, Ann Rheum Dis, vol.72, issue.12, pp.2018-2041, 2013.
DOI : 10.1136/annrheumdis-2012-202279

R. B. Christmann, A. Mathes, A. J. Affandi, C. Padilla, B. Nazari et al., Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor beta, Arthritis Rheum, vol.65, issue.5, pp.1335-1381, 2013.

A. Das, C. Harly, Q. Yang, and A. Bhandoola, Lineage specification in innate lymphocytes
DOI : 10.1016/j.cytogfr.2018.01.005

, Cytokine & growth factor reviews, 2018.

S. D. Scoville, B. L. Mundy-bosse, M. H. Zhang, L. Chen, X. Zhang et al., A Progenitor Cell Expressing Transcription Factor RORgammat Generates All Human Innate Lymphoid Cell Subsets, Immunity, vol.44, issue.5, pp.1140-50, 2016.
DOI : 10.1016/j.immuni.2016.04.007

URL : https://doi.org/10.1016/j.immuni.2016.04.007

P. Laurent, V. Jolivel, P. Manicki, L. Chiu, C. Contin-bordes et al.,

, Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system, Repair: A Matter of Plasticity, vol.8, pp.45-55, 2017.

Q. Cao, Y. Wang, Z. Niu, C. Wang, R. Wang et al., Potentiating TissueResident Type 2 Innate Lymphoid Cells by IL-33 to Prevent Renal Ischemia-Reperfusion Injury, J Am Soc Nephrol, vol.29, issue.3, pp.961-76, 2018.
DOI : 10.1681/asn.2017070774

Y. Huang and W. E. Paul, Inflammatory group 2 innate lymphoid cells, Int Immunol
DOI : 10.1093/intimm/dxv044

URL : http://europepmc.org/articles/pmc4715228?pdf=render

S. Schwartzkopff, S. Woyciechowski, U. Aichele, T. Flecken, N. Zhang et al.,

, TGF?-beta downregulates KLRG1 expression in mouse and human CD8(+) T cells, Eur J Immunol, vol.45, issue.8, pp.2212-2219, 2015.

R. Lafyatis, Transforming growth factor beta--at the centre of systemic sclerosis, Nature reviews Rheumatology, vol.10, issue.12, pp.706-725, 2014.

K. Nakagome, M. Dohi, K. Okunishi, R. Tanaka, J. Miyazaki et al., In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF?-beta in the lung, Thorax, vol.61, issue.10, pp.886-94, 2006.

W. Mu, X. Ouyang, A. Agarwal, L. Zhang, D. A. Long et al., IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease, J Am Soc Nephrol, vol.16, issue.12, pp.3651-60, 2005.

M. H. Biblio-barros, F. Hauck, J. H. Dreyer, B. Kempkes, and G. Niedobitek, , 2013.

R. B. Christmann, E. Hayes, S. Pendergrass, C. Padilla, G. Farina et al., Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension, Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages, vol.63, pp.1718-1728, 2011.

R. B. Christmann, P. Sampaio-barros, G. Stifano, C. L. Borges, C. R. De-carvalho et al., Association of Interferon-and transforming growth factor ?-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis, Arthritis Rheumatol. Hoboken NJ, vol.66, pp.714-725, 2014.

M. Corbel, J. Lanchou, N. Germain, Y. Malledant, E. Boichot et al., Modulation of airway remodeling-associated mediators by the antifibrotic compound, pirfenidone, and the matrix metalloproteinase inhibitor, batimastat, during acute lung injury in mice, Eur. J. Pharmacol, vol.426, pp.113-121, 2001.

E. E. Creemers, J. P. Cleutjens, J. F. Smits, and M. J. Daemen, Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?, Circ. Res, vol.89, pp.201-210, 2001.

C. P. Denton and D. Khanna, Systemic sclerosis, Lancet Lond. Engl, vol.390, pp.1685-1699, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02042780

C. Frantz, S. Pezet, J. Avouac, A. , and Y. , Soluble CD163 as a Potential Biomarker in Systemic Sclerosis, 2018.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

R. L. Gieseck, M. S. Wilson, and T. A. Wynn, Type 2 immunity in tissue repair and fibrosis, Nat. Rev. Immunol, vol.18, pp.62-76, 2018.

M. Hasegawa, S. Sato, T. Echigo, Y. Hamaguchi, M. Yasui et al., Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis, 2005.

, Ann. Rheum. Dis, vol.64, pp.21-28

N. Higashi-kuwata, M. Jinnin, T. Makino, S. Fukushima, Y. Inoue et al., Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis, Arthritis Res. Ther, vol.12, p.128, 2010.

J. Huang, C. Maier, Y. Zhang, A. Soare, C. Dees et al., Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis, Ann. Rheum. Dis, vol.76, pp.1941-1948, 2017.

J. H. James, F. A. Luchette, F. D. Mccarter, and J. E. Fischer, Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis, Lancet Lond. Engl, vol.354, pp.505-508, 1999.

M. Jinnin, Mechanisms of skin fibrosis in systemic sclerosis, J. Dermatol, vol.37, pp.11-25, 2010.

D. Khanna, C. P. Denton, A. Jahreis, J. M. Van-laar, T. M. Frech et al., Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial, Lancet Lond. Engl, vol.387, pp.2630-2640, 2016.

D. Khanna, C. P. Denton, P. A. Merkel, T. Krieg, F. Le-brun et al., Effect of Macitentan on the Development of New Ischemic Digital Ulcers in Patients With Systemic Sclerosis: DUAL-1 and DUAL-2 Randomized Clinical Trials, JAMA, vol.315, pp.1975-1988, 2016.

K. Kuroda and H. Shinkai, Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metalloproteinases in skin fibroblasts from patients with systemic sclerosis, Arch. Dermatol. Res, vol.289, pp.567-572, 1997.

A. Lescoat, V. Lecureur, M. Roussel, B. L. Sunnaram, A. Ballerie et al., CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis, Clin. Rheumatol, vol.36, pp.1649-1654, 2017.
DOI : 10.1007/s10067-017-3597-6

URL : https://hal.archives-ouvertes.fr/hal-01560150

C. Maier, A. Ramming, C. Bergmann, R. Weinkam, N. Kittan et al., Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages, Ann. Rheum. Dis, vol.76, pp.1133-1141, 2017.

M. Manetti, Deciphering the alternatively activated (M2) phenotype of macrophages in scleroderma, Exp. Dermatol, vol.24, pp.576-578, 2015.

W. Nakayama, M. Jinnin, K. Makino, I. Kajihara, T. Makino et al., Serum levels of soluble CD163 in patients with systemic sclerosis, Rheumatol. Int, vol.32, pp.403-407, 2012.

Y. Ro, C. Hamada, M. Inaba, H. Io, K. Kaneko et al., Inhibitory effects of matrix metalloproteinase inhibitor ONO-4817 on morphological alterations in chlorhexidine gluconate-induced peritoneal sclerosis rats, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.22, pp.2838-2848, 2007.

S. Sato, M. Hasegawa, and K. Takehara, Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis, J. Dermatol. Sci, vol.27, pp.140-146, 2001.

K. Shimizu, F. Ogawa, A. Yoshizaki, Y. Akiyama, Y. Kuwatsuka et al., Increased serum levels of soluble CD163 in patients with scleroderma, Clin. Rheumatol, vol.31, pp.1059-1064, 2012.

G. Stifano, R. B. Christmann, M. Truchetet, B. Demoures, J. Eduardo-guimaraes et al., Platelets Induce Thymic Stromal Lymphopoietin Production by Endothelial Cells: Contribution to Fibrosis in Human Systemic Sclerosis, Arthritis Rheumatol. Hoboken NJ, vol.18, pp.2784-2794, 2016.

R. Vancheeswaran, T. Magoulas, G. Efrat, C. Wheeler-jones, I. Olsen et al., Circulating endothelin-1 levels in systemic sclerosis subsets--a marker of fibrosis or vascular dysfunction?, J. Rheumatol, vol.21, pp.1838-1844, 1994.

J. Varga, A. , and D. , Systemic sclerosis: a prototypic multisystem fibrotic disorder, J. Clin. Invest, vol.117, pp.557-567, 2007.
DOI : 10.1172/jci31139

URL : http://www.jci.org/articles/view/31139/files/pdf

T. A. Wynn and K. M. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis, Immunity, vol.44, pp.450-462, 2016.
DOI : 10.1016/j.immuni.2016.02.015

URL : https://doi.org/10.1016/j.immuni.2016.02.015

A. E. Abdulle, G. F. Diercks, M. Feelisch, D. J. Mulder, and H. Van-goor, The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy, Front. Physiol, vol.9, p.1177, 2018.

D. J. Abraham, R. Vancheeswaran, M. R. Dashwood, V. S. Rajkumar, P. Pantelides et al., Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease, Am. J. Pathol, vol.151, pp.831-841, 1997.

S. K. Agarwal, P. Gourh, S. Shete, G. Paz, D. Divecha et al., Association of Interleukin 23 Receptor Polymorphisms with Anti-Topoisomerase-I Positivity and Pulmonary Hypertension in Systemic Sclerosis, J. Rheumatol, vol.36, pp.2715-2723, 2009.

A. O. Aliprantis, J. Wang, J. W. Fathman, R. Lemaire, D. M. Dorfman et al., Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13, Proc. Natl. Acad. Sci, vol.104, pp.2827-2830, 2007.
DOI : 10.1073/pnas.0700021104

URL : http://www.pnas.org/content/104/8/2827.full.pdf

Y. Allanore, D. Borderie, C. Meune, H. Lemaréchal, S. Weber et al., Increased plasma soluble CD40 ligand concentrations in systemic sclerosis and association with pulmonary arterial hypertension and digital ulcers, Ann. Rheum. Dis, vol.64, pp.481-483, 2005.
DOI : 10.1136/ard.2003.020040

URL : https://ard.bmj.com/content/64/3/481.full.pdf

Y. Allanore, R. Simms, O. Distler, M. Trojanowska, J. Pope et al., Systemic sclerosis, Nat. Rev. Dis. Primer, vol.1, p.15002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02134109

B. S. Andrews, G. J. Friou, M. A. Berman, C. I. Sandborg, G. R. Mirick et al., , 1987.

E. Antiga, P. Quaglino, S. Bellandi, W. Volpi, E. Del-bianco et al., Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea, Br. J. Dermatol, vol.162, pp.1056-1063, 2010.

D. Artis and H. Spits, The biology of innate lymphoid cells, Nature, vol.517, pp.293-301, 2015.

Y. Asano, H. Ihn, K. Yamane, M. Kubo, and K. Tamaki, Increased expression levels of integrin alphavbeta5 on scleroderma fibroblasts, Am. J. Pathol, vol.164, pp.1275-1292, 2004.

Y. Asano, H. Ihn, K. Yamane, M. Jinnin, Y. Mimura et al., Increased expression of integrin alpha(v)beta3 contributes to the establishment of autocrine TGF-beta signaling in scleroderma fibroblasts, J. Immunol. Baltim. Md, vol.175, pp.7708-7718, 1950.

S. Assassi, M. Wu, F. K. Tan, J. Chang, T. A. Graham et al., Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis, Arthritis Rheum, vol.65, pp.2917-2927, 2013.

J. Avouac, N. Cagnard, J. H. Distler, Y. Schoindre, B. Ruiz et al., Insights into the pathogenesis of systemic sclerosis based on the gene expression profile of progenitor-derived endothelial cells, Arthritis Rheum, vol.63, pp.3552-3562, 2011.

S. M. Bal, J. H. Bernink, M. Nagasawa, J. Groot, M. M. Shikhagaie et al., IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs, Nat. Immunol, vol.17, pp.636-645, 2016.

A. Balbir-gurman and Y. Braun-moscovici, Scleroderma -new aspects in pathogenesis and treatment, Best Pract. Res. Clin. Rheumatol, vol.26, pp.13-24, 2012.
DOI : 10.1016/j.berh.2012.01.011

F. Bandinelli, A. Del-rosso, A. Gabrielli, R. Giacomelli, F. Bartoli et al., CCL2, CCL3 and CCL5 chemokines in systemic sclerosis: the correlation with SSc clinical features and the effect of prostaglandin E1 treatment, Clin. Exp. Rheumatol, vol.30, pp.44-49, 2012.

J. Barnes and M. D. Mayes, Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers, Curr. Opin. Rheumatol, vol.24, pp.165-170, 2012.

T. C. Barnes, M. E. Anderson, S. W. Edwards, and R. J. Moots, Neutrophil-derived reactive oxygen species in SSc, Rheumatol. Oxf. Engl, vol.51, pp.1166-1169, 2012.
DOI : 10.1093/rheumatology/ker520

URL : https://academic.oup.com/rheumatology/article-pdf/51/7/1166/5089964/ker520.pdf

K. R. Bartemes, K. Iijima, T. Kobayashi, G. M. Kephart, A. N. Mckenzie et al., , 2012.

, IL-33-Responsive Lineage?CD25+CD44hi Lymphoid Cells Mediate Innate Type 2 Immunity and Allergic Inflammation in the Lungs, J. Immunol, vol.188, pp.1503-1513

J. H. Bernink, C. P. Peters, M. Munneke, A. A. Velde, S. L. Meijer et al., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues, Nat. Immunol, vol.14, pp.221-229, 2013.

J. H. Bernink, L. Krabbendam, K. Germar, E. De-jong, K. Gronke et al., Interleukin-12 and, 2015.

, Control Plasticity of CD127+ Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria, Immunity, vol.43, pp.146-160

C. Beyer, G. Schett, S. Gay, O. Distler, and J. H. Distler, Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis, Arthritis Res. Ther, vol.11, p.220, 2009.

S. Bhattacharyya, J. Wei, and J. Varga, Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities, Nat. Rev. Rheumatol, vol.8, pp.42-54, 2012.

M. Bielecki, K. Kowal, A. Lapinska, L. Chyczewski, and O. Kowal-bielecka, Increased release of soluble CD163 by the peripheral blood mononuclear cells is associated with worse prognosis in patients with systemic sclerosis, Adv. Med. Sci, vol.58, pp.126-133, 2013.

N. C. Brembilla, E. Montanari, M. Truchetet, E. Raschi, P. Meroni et al.,

, Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts, Arthritis Res. Ther, vol.15, p.151

I. Campos, J. A. Geiger, A. C. Santos, V. Carlos, J. et al., Genetic Screen in Drosophila melanogaster Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair, Genetics, vol.184, pp.129-140, 2010.

K. C. Carter, Essays of Robert Koch, 1987.

C. Castelo-branco and I. Soveral, The immune system and aging: a review, Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol, vol.30, pp.16-22, 2014.

M. Cella, A. Fuchs, W. Vermi, F. Facchetti, K. Otero et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity, Nature, vol.457, pp.722-725, 2009.

D. S. Chen and I. Mellman, Elements of cancer immunity and the cancer-immune set point, Nature, vol.541, pp.321-330, 2017.

H. Chifflot, B. Fautrel, C. Sordet, E. Chatelus, and J. Sibilia, Incidence and prevalence of systemic sclerosis: a systematic literature review, Semin. Arthritis Rheum, vol.37, pp.223-235, 2008.

C. Chizzolini, N. C. Brembilla, E. Montanari, and M. Truchetet, Fibrosis and immune dysregulation in systemic sclerosis, Autoimmun. Rev, vol.10, pp.276-281, 2011.

R. B. Christmann, E. Hayes, S. Pendergrass, C. Padilla, G. Farina et al., Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension, Arthritis Rheum, vol.63, pp.1718-1728, 2011.

R. B. Christmann, A. Mathes, A. J. Affandi, C. Padilla, B. Nazari et al., Thymic Stromal Lymphopoietin Is Up-Regulated in the Skin of Patients With Systemic Sclerosis and Induces Profibrotic Genes and Intracellular Signaling That Overlap With Those Induced by Interleukin-13 and Transforming Growth Factor ?, Arthritis Rheum, vol.65, pp.1335-1346, 2013.

R. B. Christmann, P. Sampaio-barros, G. Stifano, C. L. Borges, C. R. De-carvalho et al., Association of Interferon-and transforming growth factor ?-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis, Arthritis Rheumatol. Hoboken NJ, vol.66, pp.714-725, 2014.

A. S. Colwell, M. T. Longaker, and H. P. Lorenz, Fetal wound healing, Front. Biosci. J. Virtual Libr, vol.8, pp.1240-1248, 2003.

M. Corbel, J. Lanchou, N. Germain, Y. Malledant, E. Boichot et al., Modulation of airway remodeling-associated mediators by the antifibrotic compound, pirfenidone, and the matrix metalloproteinase inhibitor, batimastat, during acute lung injury in mice, Eur. J. Pharmacol, vol.426, pp.113-121, 2001.

E. E. Creemers, J. P. Cleutjens, J. F. Smits, and M. J. Daemen, Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?, Circ. Res, vol.89, pp.201-210, 2001.

N. K. Crellin, S. Trifari, C. D. Kaplan, N. Satoh-takayama, J. P. Santo et al., Regulation of Cytokine Secretion in Human CD127+ LTi-like Innate Lymphoid Cells by Toll-like Receptor 2, Immunity, vol.33, pp.752-764, 2010.

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, Immunity, vol.33, pp.375-386, 2010.
DOI : 10.1016/j.immuni.2010.08.012

URL : https://doi.org/10.1016/j.immuni.2010.08.012

C. Dees, A. Akhmetshina, P. Zerr, N. Reich, K. Palumbo et al., Platelet-derived serotonin links vascular disease and tissue fibrosis, J. Exp. Med, vol.208, pp.961-972, 2011.
DOI : 10.1084/jem.20101629

URL : https://hal.archives-ouvertes.fr/inserm-00589662

S. L. Deshmane, S. Kremlev, S. Amini, and B. E. Sawaya, Monocyte Chemoattractant Protein-1 (MCP-1): An Overview, J. Interferon Cytokine Res, vol.29, pp.313-326, 2009.
DOI : 10.1089/jir.2008.0027

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755091

G. Dinc and Y. I. Ulman, The introduction of variolation "A La Turca" to the West by Lady Mary Montagu and Turkey's contribution to this, Vaccine, vol.25, pp.4261-4265, 2007.

J. H. Distler, A. Jüngel, D. Caretto, U. Schulze-horsel, O. Kowal-bielecka et al., Rheum, vol.54, pp.214-225, 2006.

J. H. Distler, C. Beyer, G. Schett, T. F. Lüscher, S. Gay et al., Endothelial progenitor cells: novel players in the pathogenesis of rheumatic diseases, Arthritis Rheum, vol.60, pp.3168-3179, 2009.

O. Distler, T. Pap, O. Kowal-bielecka, R. Meyringer, S. Guiducci et al., Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis, Arthritis Rheum, vol.44, pp.2665-2678, 2001.

T. A. Doherty, N. Khorram, S. Lund, A. K. Mehta, M. Croft et al., Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production, J. Allergy Clin. Immunol, vol.132, pp.205-213, 2013.
DOI : 10.1016/j.jaci.2013.03.048

URL : http://europepmc.org/articles/pmc3704056?pdf=render

D. D. Donaldson, M. J. Whitters, L. J. Fitz, T. Y. Neben, H. Finnerty et al., The Murine IL-13 Receptor ?2: Molecular Cloning, Characterization, and Comparison with Murine IL-13 Receptor ?1, J. Immunol, vol.161, pp.2317-2324, 1998.

M. Elhai, M. Meunier, M. Matucci-cerinic, B. Maurer, G. Riemekasten et al., Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study, Ann. Rheum. Dis, vol.72, pp.1217-1220, 2013.

S. A. Eming, T. A. Wynn, M. , and P. , Inflammation and metabolism in tissue repair and regeneration, Science, vol.356, pp.1026-1030, 2017.
DOI : 10.1126/science.aam7928

G. Farina, D. Lafyatis, R. Lemaire, and R. Lafyatis, A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis, Arthritis Rheum, vol.62, pp.580-588, 2010.
DOI : 10.1002/art.27220

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.27220

M. Ferrarini, V. Steen, T. A. Medsger, and T. L. Whiteside, Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis, Clin. Exp. Immunol, vol.79, pp.346-352, 1990.

S. Fichtner-feigl, W. Strober, K. Kawakami, R. K. Puri, and A. Kitani, IL-13 signaling through the IL-13? 2 receptor is involved in induction of TGF-? 1 production and fibrosis, Nat. Med, vol.12, pp.99-106, 2006.

I. J. Fidler, The organ microenvironment and cancer metastasis, Differentiation, vol.70, pp.498-505, 2002.
DOI : 10.1046/j.1432-0436.2002.700904.x

R. Fleischmajer, The pathophysiology of scleroderma, Int. J. Dermatol, vol.16, pp.310-318, 1977.

A. Forestier, T. Guerrier, M. Jouvray, J. Giovannelli, G. Lefèvre et al., Altered B lymphocyte homeostasis and functions in systemic sclerosis, Autoimmun. Rev, vol.17, pp.244-255, 2018.
DOI : 10.1016/j.autrev.2017.10.015

C. Franceschi, P. Garagnani, G. Vitale, M. Capri, and S. Salvioli, Inflammaging and "Garb-aging, Trends Endocrinol. Metab. TEM, vol.28, pp.199-212, 2017.
DOI : 10.1016/j.tem.2016.09.005

C. Frantz, S. Pezet, J. Avouac, A. , and Y. , Soluble CD163 as a Potential Biomarker in Systemic Sclerosis, Dis. Markers, p.8509583, 2018.
DOI : 10.1155/2018/8509583

URL : http://downloads.hindawi.com/journals/dm/2018/8509583.pdf

S. L. Friend, S. Hosier, A. Nelson, D. Foxworthe, D. E. Williams et al., A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells, Exp. Hematol, vol.22, pp.321-328, 1994.

T. Fukazawa, Y. Naora, T. Kunieda, and T. Kubo, Suppression of the immune response potentiates tadpole tail regeneration during the refractory period, Development, vol.136, pp.2323-2327, 2009.

T. C. Fung, C. A. Olson, and E. Y. Hsiao, Interactions between the microbiota, immune and nervous systems in health and disease, Nat. Neurosci, vol.20, pp.145-155, 2017.
DOI : 10.1038/nn.4476

P. Fuschiotti, A. T. Larregina, J. Ho, C. Feghali-bostwick, and T. A. Medsger, IL-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis, Arthritis Rheum, vol.65, pp.236-246, 2013.
DOI : 10.1002/art.37706

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.37706

M. Galindo, B. Santiago, M. Rivero, J. Rullas, J. Alcami et al., Chemokine expression by systemic sclerosis fibroblasts: abnormal regulation of monocyte chemoattractant protein 1 expression, Arthritis Rheum, vol.44, pp.1382-1386, 2001.

S. J. Galli, N. Borregaard, and T. A. Wynn, Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils, Nat. Immunol, vol.12, pp.1035-1044, 2011.

H. Gardner, J. R. Shearstone, R. Bandaru, T. Crowell, M. Lynes et al., Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts, Arthritis Rheum, vol.54, pp.1961-1973, 2006.

P. Gasse, N. Riteau, R. Vacher, M. Michel, A. Fautrel et al., IL-1 and IL-23 Mediate Early IL-17A Production in Pulmonary Inflammation Leading to Late Fibrosis, PLOS ONE, vol.6, 2011.
DOI : 10.1371/journal.pone.0023185

URL : https://hal.archives-ouvertes.fr/hal-00617000

G. M. Gauvreau, P. M. O'byrne, L. Boulet, Y. Wang, D. Cockcroft et al., Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses, 2014.
DOI : 10.1056/nejmoa1402895

R. L. Gieseck, M. S. Wilson, and T. A. Wynn, Type 2 immunity in tissue repair and fibrosis, Nat. Rev. Immunol, vol.18, pp.62-76, 2018.
DOI : 10.1038/nri.2017.90

J. W. Godwin, A. R. Pinto, and N. A. Rosenthal, Chasing the recipe for a proregenerative immune system, Semin. Cell Dev. Biol, vol.61, pp.71-79, 2017.
DOI : 10.1016/j.semcdb.2016.08.008

URL : http://europepmc.org/articles/pmc5338634?pdf=render

M. J. Gold, F. Antignano, T. Y. Halim, J. A. Hirota, M. Blanchet et al., Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures, J. Allergy Clin. Immunol, vol.133, pp.1142-1148, 2014.
DOI : 10.1016/j.jaci.2014.02.033

S. Gonem, R. Berair, A. Singapuri, R. Hartley, M. F. Laurencin et al., Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial, Lancet Respir. Med, vol.4, pp.699-707, 2016.
DOI : 10.1016/s2213-2600(16)30179-5

URL : https://lra.le.ac.uk/bitstream/2381/38430/2/DP2_ResearchArchiveCopy.pdf

S. Gordon, Alternative activation of macrophages, Nat. Rev. Immunol, vol.3, pp.23-35, 2003.
DOI : 10.1038/nri978

URL : https://hal.archives-ouvertes.fr/hal-00474829

P. Gourh, F. C. Arnett, S. Assassi, F. K. Tan, M. Huang et al., Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations, Arthritis Res. Ther, vol.11, p.147, 2009.
DOI : 10.1186/ar2821

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar2821

B. Granel, C. Chevillard, Y. Allanore, V. Arnaud, S. Cabantous et al., Evaluation of interleukin 13 polymorphisms in systemic sclerosis, Immunogenetics, vol.58, pp.693-699, 2006.
DOI : 10.1007/s00251-006-0135-0

URL : https://hal.archives-ouvertes.fr/hal-01592710

B. Granel, Y. Allanore, C. Chevillard, V. Arnaud, S. Marquet et al., IL13RA2 gene polymorphisms are associated with systemic sclerosis, J. Rheumatol, vol.33, pp.2015-2019, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01592708

B. Granel, C. Chevillard, and A. Dessein, , 2007.

, Rev. Med. Interne, vol.28, pp.613-622

M. B. Greenblatt, A. , and A. O. , The immune pathogenesis of scleroderma: context is everything, Curr. Rheumatol. Rep, vol.15, p.297, 2013.
DOI : 10.1007/s11926-012-0297-8

URL : http://europepmc.org/articles/pmc3539168?pdf=render

M. B. Greenblatt, J. L. Sargent, G. Farina, K. Tsang, R. Lafyatis et al., Interspecies comparison of human and murine scleroderma reveals IL-13 and CCL2 as disease subset-specific targets, Am. J. Pathol, vol.180, pp.1080-1094, 2012.
DOI : 10.1016/j.ajpath.2011.11.024

URL : https://doi.org/10.1016/j.ajpath.2011.11.024

K. Gronke, M. Kofoed-nielsen, and A. Diefenbach, Innate lymphoid cells, precursors and plasticity, Immunol. Lett, vol.179, pp.9-18, 2016.
DOI : 10.1016/j.imlet.2016.07.004

M. S. Gruschwitz, M. Albrecht, G. Vieth, and U. F. Haustein, In situ expression and serum levels of tumor necrosis factor-alpha receptors in patients with early stages of systemic sclerosis, J. Rheumatol, vol.24, pp.1936-1943, 1997.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, pp.314-321, 2008.

T. Y. Halim, R. H. Krauss, A. C. Sun, and F. Takei, , 2012.

T. Y. Halim, C. A. Steer, L. Mathä, M. J. Gold, I. Martinez-gonzalez et al., Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation, Immunity, vol.40, pp.425-435, 2014.

E. Hams, M. E. Armstrong, J. L. Barlow, S. P. Saunders, C. Schwartz et al., IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.367-372, 2014.
DOI : 10.1073/pnas.1315854111

URL : http://www.pnas.org/content/111/1/367.full.pdf

M. Hasegawa, M. Fujimoto, K. Kikuchi, and K. Takehara, Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis, J. Rheumatol, vol.24, pp.328-332, 1997.

M. Hasegawa, S. Sato, M. Fujimoto, H. Ihn, K. Kikuchi et al., Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis, J. Rheumatol, vol.25, pp.308-313, 1998.

M. Hasegawa, S. Sato, T. , and K. , Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1? (MIP-1?) and MIP-1?) in patients with systemic sclerosis: MCP-1 and MIP-1? may be involved in the development of pulmonary fibrosis, Clin. Exp. Immunol, vol.117, pp.159-165, 1999.

M. Hasegawa, S. Sato, T. Echigo, Y. Hamaguchi, M. Yasui et al., Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis, 2005.

, Ann. Rheum. Dis, vol.64, pp.21-28

M. Hasegawa, Y. Hamaguchi, K. Yanaba, J. Bouaziz, J. Uchida et al., B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis, Am. J. Pathol, vol.169, pp.954-966, 2006.
DOI : 10.2353/ajpath.2006.060205

URL : http://europepmc.org/articles/pmc1698806?pdf=render

K. M. Henry, C. A. Loynes, M. K. Whyte, and S. A. Renshaw, Zebrafish as a model for the study of neutrophil biology, J. Leukoc. Biol, vol.94, pp.633-642, 2013.

F. P. De-heredia, S. Gómez-martínez, M. , and A. , Obesity, inflammation and the immune system, Proc. Nutr. Soc, vol.71, pp.332-338, 2012.

N. Higashi-kuwata, M. Jinnin, T. Makino, S. Fukushima, Y. Inoue et al., Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis, Arthritis Res. Ther, vol.12, p.128, 2010.

H. Higley, K. Persichitte, S. Chu, W. Waegell, R. Vancheeswaran et al., , 1994.

, Immunocytochemical localization and serologic detection of transforming growth factor beta 1. Association with type I procollagen and inflammatory cell markers in diffuse and limited systemic sclerosis, morphea, and Raynaud's phenomenon, Arthritis Rheum, vol.37, pp.278-288

D. J. Hilton, J. G. Zhang, D. Metcalf, W. S. Alexander, N. A. Nicola et al., Proc. Natl. Acad. Sci, vol.93, pp.497-501, 1996.

J. Ho, M. Bailey, J. Zaunders, N. Mrad, R. Sacks et al., Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia, Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol, vol.45, pp.394-403, 2015.
DOI : 10.1111/cea.12462

L. V. Hooper, D. R. Littman, and A. J. Macpherson, Interactions between the microbiota and the immune system, Science, vol.336, pp.1268-1273, 2012.

Q. Huang, D. Liu, P. Majewski, L. C. Schulte, J. M. Korn et al., The Plasticity of Dendritic Cell Responses to Pathogens and Their Components, Science, vol.294, pp.870-875, 2001.

Y. Huang, L. Guo, J. Qiu, X. Chen, J. Hu-li et al., IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential "inflammatory" type 2 innate lymphoid cells, Nat. Immunol, vol.16, pp.161-169, 2015.
DOI : 10.1038/ni.3078

URL : http://europepmc.org/articles/pmc4297567?pdf=render

T. K. Hunt, The physiology of wound healing, Ann. Emerg. Med, vol.17, pp.1265-1273, 1988.

M. R. Hussein, H. I. Hassan, E. R. Hofny, M. Elkholy, N. A. Fatehy et al., Alterations of mononuclear inflammatory 72 cells, CD4/CD8+ T cells, interleukin 1?, and tumour necrosis factor ? in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis, J. Clin. Pathol, vol.58, pp.178-184, 2005.

H. Ihn, Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis, J. Dermatol. Sci, vol.49, pp.103-113, 2008.

Y. Imai, K. Yasuda, Y. Sakaguchi, T. Haneda, H. Mizutani et al., Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.13921-13926, 2013.

O. Ishikawa and H. Ishikawa, Macrophage infiltration in the skin of patients with systemic sclerosis, J. Rheumatol, vol.19, pp.1202-1206, 1992.

E. Jenner, An Inquiry Into the Causes and Effects of the Variolae Vaccinae: A Disease Discovered in Some of the Western Counties of England, 1798.

Y. Jia, X. Fang, X. Zhu, C. Bai, L. Zhu et al.,

. Il-13+, Type 2 Innate Lymphoid Cells Correlate with Asthma Control Status and Treatment Response, Am. J. Respir. Cell Mol. Biol

J. Jing, T. T. Dou, J. Q. Yang, X. B. Chen, H. L. Cao et al., Role of endothelin-1 in the skin fibrosis of systemic sclerosis, Eur. Cytokine Netw, vol.26, pp.10-14, 2015.

M. Jinnin, H. Ihn, K. Yamane, and K. Tamaki, Interleukin-13 Stimulates the Transcription of the Human ?2(I) Collagen Gene in Human Dermal Fibroblasts, J. Biol. Chem, vol.279, pp.41783-41791, 2004.

H. Kabata, K. Moro, K. Fukunaga, Y. Suzuki, J. Miyata et al., Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation, Nat. Commun, vol.4, p.2675, 2013.
DOI : 10.1038/ncomms3675

URL : https://www.nature.com/articles/ncomms3675.pdf

M. Kaviratne, M. Hesse, M. Leusink, A. W. Cheever, S. J. Davies et al., IL-13 Activates a Mechanism of Tissue Fibrosis That Is Completely TGF-? Independent, J. Immunol, vol.173, pp.4020-4029, 2004.
DOI : 10.4049/jimmunol.173.6.4020

URL : http://www.jimmunol.org/content/173/6/4020.full.pdf

T. Kawakami, H. Ihn, W. Xu, E. Smith, C. Leroy et al., Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype, J. Invest. Dermatol, vol.110, pp.47-51, 1998.

A. E. Kelly-welch, E. M. Hanson, M. R. Boothby, and A. D. Keegan, Interleukin-4 and Interleukin-13 Signaling Connections Maps, Science, vol.300, pp.1527-1528, 2003.
DOI : 10.1126/science.1085458

K. Khan, S. Xu, S. Nihtyanova, E. Derrett-smith, D. Abraham et al., Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis, Ann. Rheum. Dis, vol.71, pp.1235-1242, 2012.

B. S. Kim, M. C. Siracusa, S. A. Saenz, M. Noti, L. A. Monticelli et al., TSLP Elicits IL-33-Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation, Sci. Transl. Med, vol.5, pp.170-186, 2013.
DOI : 10.1126/scitranslmed.3005374

URL : http://europepmc.org/articles/pmc3637661?pdf=render

D. Kim, A. Peck, D. Santer, P. Patole, S. M. Schwartz et al., Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis, Arthritis Rheum, vol.58, pp.2163-2173, 2008.

E. Y. Kissin, P. A. Merkel, and R. Lafyatis, Myofibroblasts and hyalinized collagen as markers of skin disease in systemic sclerosis, Arthritis Rheum, vol.54, pp.3655-3660, 2006.

R. G. Klein-wolterink, A. Kleinjan, M. Van-nimwegen, I. Bergen, M. De-bruijn et al., Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma, Eur. J. Immunol, vol.42, pp.1106-1116, 2012.

J. A. Knipper, S. Willenborg, J. Brinckmann, W. Bloch, T. Maaß et al., Interleukin-4 Receptor ? Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair, Immunity, vol.43, pp.803-816, 2015.

M. Kodera, M. Hasegawa, K. Komura, K. Yanaba, K. Takehara et al., Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis, Arthritis Rheum, vol.52, pp.2889-2896, 2005.

K. Komura, M. Fujimoto, M. Hasegawa, F. Ogawa, T. Hara et al., Increased serum interleukin 23 in patients with systemic sclerosis, J. Rheumatol, vol.35, pp.120-125, 2008.

O. Kowal-bielecka, M. Bielecki, S. Guiducci, B. Trzcinska-butkiewicz, M. Michalska-jakubus et al., Res. Ther, vol.15, p.69, 2013.

B. M. Kräling, G. G. Maul, and S. A. Jimenez, Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages, Pathobiol. J. Immunopathol. Mol. Cell. Biol, vol.63, pp.48-56, 1995.

S. L. Kunkel, T. Standiford, K. Kasahara, and R. M. Strieter, Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung, Exp. Lung Res, vol.17, pp.17-23, 1991.

K. Kuroda and H. Shinkai, Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metalloproteinases in skin fibroblasts from patients with systemic sclerosis, Arch. Dermatol. Res, vol.289, pp.567-572, 1997.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin et al., Acute inflammation initiates the regenerative response in the adult zebrafish brain, Science, vol.338, pp.1353-1356, 2012.

B. N. Lambrecht, H. , and H. , The immunology of asthma, Nat. Immunol, vol.16, pp.45-56, 2015.

S. Lanone, T. Zheng, Z. Zhu, W. Liu, C. G. Lee et al., Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling, J. Clin. Invest, vol.110, pp.463-474, 2002.

P. Laurent, V. Jolivel, P. Manicki, L. Chiu, C. Contin-bordes et al., Immune-Mediated Repair: A Matter of, Plasticity. Front. Immunol, vol.8, p.454, 2017.
DOI : 10.3389/fimmu.2017.00454

URL : https://hal.archives-ouvertes.fr/hal-01673335

P. Laurent, V. Sisirak, E. Lazaro, C. Richez, P. Duffau et al., Innate Immunity in Systemic Sclerosis Fibrosis: Recent Advances. Front. Immunol. 9, p.1702, 2018.
DOI : 10.3389/fimmu.2018.01702

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2018.01702/pdf

W. E. Lawson, D. Cheng, A. L. Degryse, H. Tanjore, V. V. Polosukhin et al., Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.10562-10567, 2011.
DOI : 10.1073/pnas.1107559108

URL : http://www.pnas.org/content/108/26/10562.full.pdf

C. G. Lee, R. J. Homer, Z. Zhu, S. Lanone, X. Wang et al., Interleukin-13 Induces Tissue Fibrosis by Selectively Stimulating and Activating Transforming Growth Factor ?1, J. Exp. Med, vol.194, pp.809-822, 2001.
DOI : 10.1084/jem.194.6.809

URL : http://jem.rupress.org/content/194/6/809.full.pdf

H. J. Lee, M. K. Kim, W. R. Wee, and J. Y. Oh, Interplay of Immune Cells in Mooren Ulcer, Cornea, vol.34, pp.1164-1167, 2015.
DOI : 10.1097/ico.0000000000000471

S. J. Leibovich, R. , and R. , The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am. J. Pathol, vol.78, pp.71-100, 1975.

E. C. Leroy, Connective Tissue Synthesis by Scleroderma Skin Fibroblasts in Cell Culture, J. Exp. Med, vol.135, pp.1351-1362, 1972.
DOI : 10.1084/jem.135.6.1351

URL : http://jem.rupress.org/content/135/6/1351.full.pdf

E. C. Leroy, Increased Collagen Synthesis by Scleroderma Skin Fibroblasts In Vitro A POSSIBLE DEFECT IN THE REGULATION OR ACTIVATION OF THE SCLERODERMA FIBROBLAST, 1974.

, J. Clin. Invest, vol.54, pp.880-889

E. C. Leroy, C. Black, R. Fleischmajer, S. Jablonska, T. Krieg et al., Scleroderma (systemic sclerosis): classification, subsets and pathogenesis, J. Rheumatol, vol.15, pp.202-205, 1988.

C. Lesch, J. Jo, Y. Wu, G. S. Fish, and M. J. Galko, A Targeted UAS-RNAi Screen in Drosophila Larvae Identifies Wound Closure Genes Regulating Distinct Cellular Processes, Genetics, vol.186, pp.943-957, 2010.
DOI : 10.1534/genetics.110.121822

URL : http://www.genetics.org/content/186/3/943.full.pdf

D. Y. Leung, M. Boguniewicz, M. D. Howell, I. Nomura, and Q. A. Hamid, New insights into atopic dermatitis, J. Clin. Invest, vol.113, pp.651-657, 2004.
DOI : 10.1172/jci200421060c

N. Lewkowicz, P. Lewkowicz, A. Kurnatowska, M. Banasik, E. Glowacka et al., Innate immune system is implicated in recurrent aphthous ulcer pathogenesis, J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol, vol.32, pp.475-481, 2003.
DOI : 10.1034/j.1600-0714.2003.00181.x

D. Li, R. Guabiraba, A. Besnard, M. Komai-koma, M. S. Jabir et al., IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice, J. Allergy Clin. Immunol, vol.134, pp.1422-1432, 2014.

G. Li, A. T. Larregina, R. T. Domsic, D. B. Stolz, T. A. Medsger et al.,

, Skin-Resident Effector Memory CD8+CD28-T Cells Exhibit a Profibrotic Phenotype in Patients with Systemic Sclerosis, J. Invest. Dermatol, vol.137, pp.1042-1050

A. I. Lim, S. Menegatti, J. Bustamante, L. L. Bourhis, M. Allez et al., IL-12 drives functional plasticity of human group 2 innate lymphoid cells, J. Exp. Med, vol.213, pp.569-583, 2016.
DOI : 10.1084/jem.20151750

URL : http://jem.rupress.org/content/213/4/569.full.pdf

X. Liu, N. Gao, M. Li, D. Xu, Y. Hou et al.,

, Elevated Levels of CD4+CD25+FoxP3+ T Cells in Systemic Sclerosis Patients Contribute to the Secretion of IL-17 and Immunosuppression Dysfunction, PLOS ONE, vol.8, p.64531

P. A. Lonati, N. C. Brembilla, E. Montanari, L. Fontao, A. Gabrielli et al., High IL-17E and low IL-17C dermal expression identifies a fibrosis-specific motif common to morphea and systemic sclerosis, PloS One, vol.9, 2014.
DOI : 10.1371/journal.pone.0105008

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105008&type=printable

K. G. Macdonald, N. A. Dawson, Q. Huang, J. V. Dunne, M. K. Levings et al.,

, Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis, J. Allergy Clin. Immunol, vol.135, pp.946-955

K. A. Mace, J. C. Pearson, and W. Mcginnis, An Epidermal Barrier Wound Repair Pathway in Drosophila Is Mediated by grainy head, Science, vol.308, pp.381-385, 2005.
DOI : 10.1126/science.1107573

L. Maggi, G. Montaini, A. Mazzoni, B. Rossettini, M. Capone et al., Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production, J. Allergy Clin. Immunol, vol.139, pp.964-976, 2017.
DOI : 10.1016/j.jaci.2016.06.032

A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J. Pathol, vol.229, pp.176-185, 2013.
DOI : 10.1002/path.4133

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/path.4133

M. Martin, R. E. Schifferle, N. Cuesta, S. N. Vogel, J. Katz et al., Role of the Phosphatidylinositol 3 Kinase-Akt Pathway in the Regulation of IL-10 and IL-12 by Porphyromonas gingivalis Lipopolysaccharide, J. Immunol, vol.171, pp.717-725, 2003.

F. O. Martinez, G. , and S. , The M1 and M2 paradigm of macrophage activation: time for reassessment, 1000.

S. K. Mathai, M. Gulati, X. Peng, T. R. Russell, A. C. Shaw et al., Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype, Lab. Invest, vol.90, pp.812-823, 2010.
DOI : 10.1038/labinvest.2010.73

URL : https://www.nature.com/articles/labinvest201073.pdf

A. Mathian, C. Parizot, K. Dorgham, S. Trad, L. Arnaud et al., Activated and resting regulatory T cell exhaustion concurs with high levels of interleukin-22 expression in systemic sclerosis lesions, Ann. Rheum. Dis, vol.71, pp.1227-1234, 2012.

M. Matsushita, T. Yamamoto, and K. Nishioka, Upregulation of Interleukin-13 and Its Receptor in a Murine Model of Bleomycin-Induced Scleroderma, Int. Arch. Allergy Immunol, vol.135, pp.348-356, 2004.

M. Matucci-cerinic, B. Kahaleh, and F. M. Wigley, Review: evidence that systemic sclerosis is a vascular disease, Arthritis Rheum, vol.65, pp.1953-1962, 2013.
DOI : 10.1002/art.37988

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.37988

B. Maurer, J. Stanczyk, A. Jüngel, A. Akhmetshina, M. Trenkmann et al., MicroRNA-29, a key regulator of collagen expression in systemic sclerosis, Arthritis Rheum, vol.62, pp.1733-1743, 2010.

C. Mavalia, C. Scaletti, P. Romagnani, A. M. Carossino, A. Pignone et al., Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis, Am. J. Pathol, vol.151, pp.1751-1758, 1997.

S. S. Mccoy, T. J. Reed, C. C. Berthier, P. Tsou, J. Liu et al., Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta, Rheumatol. Oxf. Engl, vol.56, pp.1970-1981, 2017.

T. Mchedlidze, M. Waldner, S. Zopf, J. Walker, A. L. Rankin et al., Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis, Immunity, vol.39, pp.357-371, 2013.
DOI : 10.1016/j.immuni.2013.07.018

URL : https://doi.org/10.1016/j.immuni.2013.07.018

A. N. Mckenzie, J. A. Culpepper, R. Malefyt, W. De, F. Brière et al., Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function, Proc. Natl. Acad. Sci, vol.90, pp.3735-3739, 1993.

A. N. Mckenzie, H. Spits, and G. Eberl, Innate lymphoid cells in inflammation and immunity, Immunity, vol.41, pp.366-374, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01402714

M. M. Mentink-kane, A. W. Cheever, R. W. Thompson, D. M. Hari, N. B. Kabatereine et al., IL-13 receptor ? 2 down-modulates granulomatous inflammation and prolongs host survival in schistosomiasis, Proc. Natl. Acad. Sci, vol.101, pp.586-590, 2004.
DOI : 10.1073/pnas.0305064101

URL : http://www.pnas.org/content/101/2/586.full.pdf

P. Mercier and P. Atanasiu, Antirabies vaccination in man and its development, 1985.

, Bull. Acad. Natl. Med, vol.169, pp.779-783

A. L. Mescher and A. W. Neff, Regenerative capacity and the developing immune system, Adv. Biochem. Eng. Biotechnol, vol.93, pp.39-66, 2005.
DOI : 10.1007/b99966

I. I. Metchnikoff, Leçons sur la pathologie comparée de l'inflammation : faites à l'Institut Pasteur en avril et mai 1891 / par Élie Metchnikoff

S. Mi, Z. Li, H. Yang, H. Liu, J. Wang et al., Blocking IL-17A Promotes the Resolution of Pulmonary Inflammation and Fibrosis Via TGF-?1-Dependent and -Independent Mechanisms, J. Immunol, vol.187, pp.3003-3014, 2011.

D. M. Morens and R. J. Littman, Thucydides syndrome" reconsidered: new thoughts on the "Plague of Athens, Am. J. Epidemiol, vol.140, pp.629-631, 1994.

K. Moro, T. Yamada, M. Tanabe, T. Takeuchi, T. Ikawa et al., Innate production of T H 2 cytokines by adipose tissue-associated c-Kit + Sca-1 + lymphoid cells, Nature, vol.463, pp.540-544, 2010.
DOI : 10.1038/nature08636

A. Mortha, A. Chudnovskiy, D. Hashimoto, M. Bogunovic, S. P. Spencer et al., Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis, Science, vol.343, p.1249288, 2014.
DOI : 10.1126/science.1249288

URL : http://europepmc.org/articles/pmc4291125?pdf=render

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.8, pp.958-969, 2008.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, pp.14-20, 2014.
DOI : 10.1016/j.immuni.2014.06.008

URL : https://doi.org/10.1016/j.immuni.2014.06.008

D. R. Nagarkar, J. A. Poposki, B. K. Tan, M. R. Comeau, A. T. Peters et al., , 2013.

T. Nakashima, M. Jinnin, K. Yamane, N. Honda, I. Kajihara et al., Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts, J. Immunol. Baltim. Md, vol.188, pp.3573-3583, 1950.
DOI : 10.4049/jimmunol.1100591

URL : http://www.jimmunol.org/content/188/8/3573.full.pdf

W. Nakayama, M. Jinnin, K. Makino, I. Kajihara, T. Makino et al., Serum levels of soluble CD163 in patients with systemic sclerosis, Rheumatol. Int, vol.32, pp.403-407, 2012.

E. Narni-mancinelli, J. Chaix, A. Fenis, Y. M. Kerdiles, N. Yessaad et al., Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor, Proc. Natl. Acad. Sci, vol.108, pp.18324-18329, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00672199

B. W. Needleman, F. M. Wigley, and R. W. Stair, Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor alpha, and interferon-gamma levels in sera from patients with scleroderma, Arthritis Rheum, vol.35, pp.67-72, 1992.

D. R. Neill, S. H. Wong, A. Bellosi, R. J. Flynn, M. Daly et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, vol.464, pp.1367-1370, 2010.
DOI : 10.1038/nature08900

URL : http://europepmc.org/articles/pmc2862165?pdf=render

D. R. Nelson, G. Y. Lauwers, J. Y. Lau, and G. L. Davis, Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: A pilot trial of interferon nonresponders, Gastroenterology, vol.118, pp.655-660, 2000.

S. A. Nichols, W. Dirks, J. S. Pearse, and N. King, Early evolution of animal cell signaling and adhesion genes, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.12451-12456, 2006.
DOI : 10.1073/pnas.0604065103

URL : http://www.pnas.org/content/103/33/12451.full.pdf

M. Oh, S. Y. Oh, J. Yu, A. C. Myers, W. J. Leonard et al., , 2011.

, IL-13 Induces Skin Fibrosis in Atopic Dermatitis by Thymic Stromal Lymphopoietin, J. Immunol, vol.186, pp.7232-7242

Y. Ohne, J. S. Silver, L. Thompson-snipes, M. A. Collet, J. P. Blanck et al., IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity, Nat. Immunol, vol.17, pp.646-655, 2016.
DOI : 10.1038/ni.3447

Y. Okamoto, M. Hasegawa, T. Matsushita, Y. Hamaguchi, D. L. Huu et al., Potential roles of interleukin-17A in the development of skin fibrosis in mice, Arthritis Rheum, vol.64, pp.3726-3735, 2012.

S. O'reilly, T. Hügle, and J. M. Van-laar, T cells in systemic sclerosis: a reappraisal, Rheumatol. Oxf. Engl, vol.51, pp.1540-1549, 2012.

K. Oshikawa, K. Kuroiwa, K. Tago, H. Iwahana, K. Yanagisawa et al., Elevated Soluble ST2 Protein Levels in Sera of Patients with Asthma with an Acute Exacerbation, Am. J. Respir. Crit. Care Med, 2012.

M. K. Ozbilgin and S. Inan, The roles of Transforming growth Factor Type ?<Subscript>3</Subscript>(TGF-?<Subscript>3</Subscript>) and mast cells in the pathogenesis of scleroderma, Clin. Rheumatol, vol.22, pp.189-195, 2003.

A. Pandey, K. Ozaki, H. Baumann, S. D. Levin, A. Puel et al., Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin, Nat. Immunol, vol.1, pp.59-64, 2000.

K. V. Pandit, J. Milosevic, and N. Kaminski, MicroRNAs in idiopathic pulmonary fibrosis, Transl. Res. J. Lab. Clin. Med, vol.157, pp.191-199, 2011.

J. Pannu, H. Gardner, J. R. Shearstone, E. Smith, and M. Trojanowska, Increased levels of transforming growth factor beta receptor type I and up-regulation of matrix gene program: A model of scleroderma, Arthritis Rheum, vol.54, pp.3011-3021, 2006.

L. Pase, J. E. Layton, C. Wittmann, F. Ellett, C. J. Nowell et al., Neutrophil-Delivered Myeloperoxidase Dampens the Hydrogen Peroxide Burst after Tissue Wounding in Zebrafish, Curr. Biol, vol.22, pp.1818-1824, 2012.

R. P. Penttinen, S. Kobayashi, and P. Bornstein, Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability, Proc. Natl. Acad. Sci, vol.85, pp.1105-1108, 1988.

L. J. Picker, R. J. Martin, A. Trumble, L. S. Newman, P. A. Collins et al., Differential expression of lymphocyte homing receptors by human memory/effector T cells in pulmonary versus cutaneous immune effector sites, Eur. J. Immunol, vol.24, pp.1269-1277, 1994.

J. Plowden, M. Renshaw-hoelscher, C. Engleman, J. Katz, and S. Sambhara, Innate immunity in aging: impact on macrophage function, Aging Cell, vol.3, pp.161-167, 2004.

J. A. Poposki, A. I. Klingler, B. K. Tan, P. Soroosh, H. Banie et al., Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps, Immun. Inflamm. Dis, vol.5, pp.233-243, 2017.

D. Préfontaine, S. Lajoie-kadoch, S. Foley, S. Audusseau, R. Olivenstein et al., Increased Expression of IL-33 in Severe Asthma: Evidence of Expression by Airway Smooth Muscle Cells, J. Immunol, vol.183, pp.5094-5103, 2009.

A. E. Price, H. Liang, B. M. Sullivan, R. L. Reinhardt, C. J. Eisley et al., Systemically dispersed innate IL-13-expressing cells in type 2 immunity, Proc. Natl. Acad. Sci, vol.107, pp.11489-11494, 2010.
DOI : 10.1073/pnas.1003988107

URL : http://europepmc.org/articles/pmc2895098?pdf=render

T. R. Radstake, L. Van-bon, J. Broen, M. Wenink, K. Santegoets et al., , 2009.

T. R. Radstake, L. Van-bon, J. Broen, A. Hussiani, R. Hesselstrand et al., The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes, PloS One, vol.4, p.5903, 2009.

G. A. Ramirez, S. Franchini, P. Rovere-querini, M. G. Sabbadini, A. A. Manfredi et al., The role of platelets in the pathogenesis of systemic sclerosis, Front. Immunol, vol.3, 2012.

A. L. Rankin, J. B. Mumm, E. Murphy, S. Turner, N. Yu et al., IL-33 induces IL-13-dependent cutaneous fibrosis, J. Immunol. Baltim. Md, vol.184, pp.1526-1535, 1950.
DOI : 10.4049/jimmunol.0903306

URL : http://www.jimmunol.org/content/184/3/1526.full.pdf

W. Razzell, W. Wood, M. , and P. , Swatting flies: modelling wound healing and inflammation in Drosophila, Dis. Model. Mech, vol.4, pp.569-574, 2011.
DOI : 10.1242/dmm.006825

URL : http://dmm.biologists.org/content/4/5/569.full.pdf

L. M. Rice, J. Ziemek, E. A. Stratton, S. R. Mclaughlin, C. M. Padilla et al., A longitudinal biomarker for the extent of skin disease in patients with diffuse cutaneous systemic sclerosis, Arthritis Rheumatol. Hoboken NJ, vol.67, pp.3004-3015, 2015.

R. Richardson, K. Slanchev, C. Kraus, P. Knyphausen, S. Eming et al.,

, Adult zebrafish as a model system for cutaneous wound-healing research, J. Invest. Dermatol, vol.133, pp.1655-1665

Y. Ro, C. Hamada, M. Inaba, H. Io, K. Kaneko et al., Inhibitory effects of matrix metalloproteinase inhibitor ONO-4817 on morphological alterations in chlorhexidine gluconate-induced peritoneal sclerosis rats, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.22, pp.2838-2848, 2007.

F. Roan, T. A. Stoklasek, E. Whalen, J. A. Molitor, J. A. Bluestone et al., CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis, J. Immunol. Baltim. Md, pp.2051-2062, 2016.

A. B. Roberts, M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern et al., Type beta transforming growth factor: a bifunctional regulator of cellular growth, Proc. Natl. Acad. Sci, vol.82, pp.119-123, 1985.
DOI : 10.1073/pnas.82.1.119

URL : http://www.pnas.org/content/82/1/119.full.pdf

A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche et al., Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci, vol.83, pp.4167-4171, 1986.

A. B. Roberts, U. I. Heine, K. C. Flanders, and M. B. Sporn, Transforming growth factor-beta. Major role in regulation of extracellular matrix, Ann. N. Y. Acad. Sci, vol.580, pp.225-232, 1990.

A. B. Roberts, A. Russo, A. Felici, and K. C. Flanders, Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta, Ann. N. Y. Acad. Sci, vol.995, pp.1-10, 2003.

B. Roediger, R. Kyle, K. H. Yip, N. Sumaria, T. V. Guy et al., Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells, Nat. Immunol, vol.14, pp.564-573, 2013.
DOI : 10.1038/ni.2584

URL : http://europepmc.org/articles/pmc4282745?pdf=render

S. Rose-john, IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6, Int. J. Biol. Sci, vol.8, pp.1237-1247, 2012.

J. Rosenbloom, S. V. Castro, and S. A. Jimenez, Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies, Ann. Intern. Med, vol.152, pp.159-166, 2010.
DOI : 10.7326/0003-4819-152-3-201002020-00007

A. D. Roumm, T. L. Whiteside, T. A. Medsger, and G. P. Rodnan, Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations, Arthritis Rheum, vol.27, pp.645-653, 1984.

B. Roy, A. Bhattacharjee, B. Xu, D. Ford, A. L. Maizel et al., IL-13 signal transduction in human monocytes: phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats, J. Leukoc. Biol, vol.72, pp.580-589, 2002.

M. H. Rustin, H. A. Bull, S. J. Machin, O. Koro, and P. M. Dowd, Serum from patients with Raynaud's phenomenon inhibits prostacyclin production, J. Invest. Dermatol, vol.89, pp.555-559, 1987.
DOI : 10.1111/1523-1747.ep12461206

URL : https://doi.org/10.1111/1523-1747.ep12461206

S. A. Saenz, M. C. Siracusa, J. G. Perrigoue, S. P. Spencer, J. F. Urban et al., IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses, Nature, vol.464, pp.1362-1366, 2010.
DOI : 10.1038/nature08901

URL : http://europepmc.org/articles/pmc2861732?pdf=render

L. I. Sakkas, I. C. Chikanza, and C. D. Platsoucas, Mechanisms of Disease: the role of immune cells in the pathogenesis of systemic sclerosis, Nat. Clin. Pract. Rheumatol, vol.2, pp.679-685, 2006.

M. Salimi, J. L. Barlow, S. P. Saunders, L. Xue, D. Gutowska-owsiak et al., A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis, J. Exp. Med, vol.210, pp.2939-2950, 2013.

V. Salmon-ehr, H. Serpier, B. Nawrocki, P. Gillery, C. Clavel et al., Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. Potential role in fibrosis, Arch. Dermatol, vol.132, pp.802-806, 1996.

A. R. Saltiel and J. M. Olefsky, Inflammatory mechanisms linking obesity and metabolic disease, J. Clin. Invest, vol.127, pp.1-4, 2017.
DOI : 10.1172/jci92035

URL : http://www.jci.org/articles/view/92035/files/pdf

J. L. Sargent, A. Milano, S. Bhattacharyya, J. Varga, M. K. Connolly et al., A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity, J. Invest. Dermatol, vol.130, pp.694-705, 2010.

S. Sato, M. Hasegawa, and K. Takehara, Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis, J. Dermatol. Sci, vol.27, pp.140-146, 2001.

N. Satoh-takayama, C. A. Vosshenrich, S. Lesjean-pottier, S. Sawa, M. Lochner et al., Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense, Immunity, vol.29, pp.958-970, 2008.
DOI : 10.1016/j.immuni.2008.11.001

URL : https://hal.archives-ouvertes.fr/pasteur-01402754

N. Satoh-takayama, S. Lesjean-pottier, P. Vieira, S. Sawa, G. Eberl et al., IL-7 and IL-15 independently program the differentiation of intestinal CD3?NKp46+ cell subsets from Id2-dependent precursors, J. Exp. Med, vol.207, pp.273-280, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00459092

C. Scaletti, A. Vultaggio, S. Bonifacio, L. Emmi, F. Torricelli et al., Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens, Arthritis Rheum, vol.46, pp.445-450, 2002.

M. Scherlinger, V. Guillotin, M. Truchetet, C. Contin-bordes, V. Sisirak et al., Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets, Autoimmun. Rev, 2018.
DOI : 10.1016/j.autrev.2018.01.012

M. J. Schuijs and T. Y. Halim, Group 2 innate lymphocytes at the interface between innate and adaptive immunity, Ann. N. Y. Acad. Sci, vol.1417, pp.87-103, 2018.
DOI : 10.1111/nyas.13604

G. S. Schultz, M. White, R. Mitchell, G. Brown, J. Lynch et al.,

, Epithelial wound healing enhanced by transforming growth factor-alpha and vaccinia growth factor, Science, vol.235, pp.350-352

J. Schupp, M. Becker, J. Günther, J. Müller-quernheim, G. Riemekasten et al.,

, Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis, Eur. Respir. J, vol.43, pp.1530-1532

P. P. Sfikakis, B. K. Mccune, M. Tsokos, K. Aroni, G. Vayiopoulos et al., , 1993.

, Immunohistological demonstration of transforming growth factor-beta isoforms in the skin of patients with systemic sclerosis, Clin. Immunol. Immunopathol, vol.69, pp.199-204

K. Shimizu, F. Ogawa, A. Yoshizaki, Y. Akiyama, Y. Kuwatsuka et al., Increased serum levels of soluble CD163 in patients with scleroderma, Clin. Rheumatol, vol.31, pp.1059-1064, 2012.

X. Shi-wen, L. Kennedy, E. A. Renzoni, G. Bou-gharios, R. M. Du-bois et al., Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts, Arthritis Rheum, vol.56, pp.4189-4194, 2007.

A. Sica, T. Schioppa, A. Mantovani, A. , and P. , Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy, Eur. J. Cancer, vol.42, pp.717-727, 2006.

E. L. Simpson, T. Bieber, E. Guttman-yassky, L. A. Beck, A. Blauvelt et al., Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis, 2016.

G. Slobodin, M. S. Ahmad, I. Rosner, R. Peri, M. Rozenbaum et al., Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity, Cell. Immunol, vol.261, pp.77-80, 2010.
DOI : 10.1016/j.cellimm.2009.12.009

S. G. Smith, R. Chen, M. Kjarsgaard, C. Huang, J. Oliveria et al., Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia, J. Allergy Clin. Immunol, vol.137, pp.75-86, 2016.

H. Spits, D. Santo, and J. P. , The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nat. Immunol, vol.12, pp.21-27, 2011.

H. Spits, D. Santo, and J. P. , The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nat. Immunol, vol.12, pp.21-27, 2011.

B. M. Stramer, R. Mori, M. , and P. , The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair, J. Invest. Dermatol, vol.127, pp.1009-1017, 2007.
DOI : 10.1038/sj.jid.5700811

URL : https://doi.org/10.1038/sj.jid.5700811

Z. Szekanecz and A. E. Koch, Endothelial cells in inflammation and angiogenesis, Curr. Drug Targets Inflamm. Allergy, vol.4, pp.319-323, 2005.
DOI : 10.2174/1568010054022187

B. Terrier, M. C. Tamby, L. Camoin, P. Guilpain, A. Bérezné et al., Antifibroblast antibodies from systemic sclerosis patients bind to ?-enolase and are associated with interstitial lung disease, Ann. Rheum. Dis, vol.69, pp.428-433, 2010.
DOI : 10.1136/ard.2008.104299

URL : http://ard.bmj.com/cgi/content/short/ard.2008.104299v1

M. S. Tessmer, C. Fugere, F. Stevenaert, O. V. Naidenko, H. J. Chong et al., KLRG1 binds cadherins and preferentially associates with SHIP-1, Int. Immunol, vol.19, pp.391-400, 2007.
DOI : 10.1093/intimm/dxm004

URL : https://academic.oup.com/intimm/article-pdf/19/4/391/2025803/dxm004.pdf

M. Truchetet and T. Pradeu, Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system, Semin. Immunol, vol.36, pp.45-55, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01964548

M. Truchetet, N. C. Brembilla, E. Montanari, Y. Allanore, and C. Chizzolini, Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease, Arthritis Res. Ther, vol.13, p.166, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00643830

M. Truchetet, N. Brembilla, E. Montanari, P. Lonati, E. Raschi et al., Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement, Arthritis Rheum, vol.65, pp.1347-1356, 2013.

M. Truchetet, B. Demoures, J. Eduardo-guimaraes, A. Bertrand, P. Laurent et al., Platelets Induce Thymic Stromal Lymphopoietin Production by Endothelial Cells: Contribution to Fibrosis in Human Systemic Sclerosis, Arthritis Rheumatol. Hoboken NJ, vol.68, pp.2784-2794, 2016.
DOI : 10.1002/art.39817

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.39817

A. Usategui, G. Criado, E. Izquierdo, M. J. Rey, P. E. Carreira et al., A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis, 2013.
DOI : 10.1136/annrheumdis-2012-202279

, Ann. Rheum. Dis, vol.72, pp.2018-2023

J. Varga, A. , and D. , Systemic sclerosis: a prototypic multisystem fibrotic disorder, J. Clin. Invest, vol.117, pp.557-567, 2007.
DOI : 10.1172/jci31139

URL : http://www.jci.org/articles/view/31139/files/pdf

J. Varga and B. Pasche, Transforming growth factor ? as a therapeutic target in systemic sclerosis, Nat. Rev. Rheumatol, vol.5, pp.200-206, 2009.
DOI : 10.1038/nrrheum.2009.26

URL : http://europepmc.org/articles/pmc3959159?pdf=render

K. E. De-visser, A. Eichten, and L. M. Coussens, Paradoxical roles of the immune system during cancer development, Nat. Rev. Cancer, vol.6, pp.24-37, 2006.

E. Vivier, D. Artis, M. Colonna, A. Diefenbach, J. P. Di-santo et al., Innate Lymphoid Cells: 10 Years On, Cell, vol.174, pp.1054-1066, 2018.
DOI : 10.1016/j.cell.2018.07.017

URL : https://hal.archives-ouvertes.fr/pasteur-02101002

C. Vonarbourg, A. Mortha, V. L. Bui, P. P. Hernandez, E. A. Kiss et al., Regulated Expression of Nuclear Receptor ROR?t Confers Distinct Functional Fates to NK Cell Receptor-Expressing ROR?t+ Innate Lymphocytes, Immunity, vol.33, pp.736-751, 2010.
DOI : 10.1016/j.immuni.2010.10.017

URL : https://doi.org/10.1016/j.immuni.2010.10.017

H. H. Walford, S. J. Lund, R. E. Baum, A. A. White, C. M. Bergeron et al., Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness, Clin. Immunol. Orlando Fla, vol.155, pp.126-135, 2014.
DOI : 10.1016/j.jaci.2014.12.1493

URL : http://europepmc.org/articles/pmc4254351?pdf=render

Y. Wang, P. Fan, and B. Kahaleh, Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts, Arthritis Rheum, vol.54, pp.2271-2279, 2006.

Y. Y. Wang, Q. Wang, X. H. Sun, R. Z. Liu, Y. Shu et al., DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis, Br. J. Dermatol, vol.171, pp.39-47, 2014.

C. Weber, K. U. Belge, P. Von-hundelshausen, G. Draude, B. Steppich et al., Differential chemokine receptor expression and function in human monocyte subpopulations, J. Leukoc. Biol, vol.67, pp.699-704, 2000.
DOI : 10.1002/jlb.67.5.699

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1002/jlb.67.5.699

M. L. Whitfield, D. R. Finlay, J. I. Murray, O. G. Troyanskaya, J. Chi et al., Systemic and cell type-specific gene expression patterns in scleroderma skin, Proc. Natl. Acad. Sci, vol.100, pp.12319-12324, 2003.
DOI : 10.1073/pnas.1635114100

URL : http://europepmc.org/articles/pmc218756?pdf=render

S. Willenborg, T. Lucas, G. Van-loo, J. A. Knipper, T. Krieg et al., CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair, Blood, vol.120, pp.613-625, 2012.
DOI : 10.1182/blood-2012-01-403386

URL : http://www.bloodjournal.org/content/120/3/613.full.pdf

M. Wills-karp and F. D. Finkelman, Untangling the Complex Web of IL-4-and IL-13-Mediated Signaling Pathways, Sci. Signal, vol.1, pp.55-55, 2008.
DOI : 10.1126/scisignal.1.51.pe55

URL : http://europepmc.org/articles/pmc4446705?pdf=render

M. S. Wilson, S. K. Madala, T. R. Ramalingam, B. R. Gochuico, I. O. Rosas et al., Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent, J. Exp. Med, vol.207, pp.535-552, 2010.
DOI : 10.1084/jem.20092121

URL : http://jem.rupress.org/content/207/3/535.full.pdf

T. Wohlfahrt, S. Usherenko, M. Englbrecht, C. Dees, S. Weber et al., Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis, Ann. Rheum. Dis, vol.75, pp.623-626, 2016.

E. D. Wojno and D. Artis, Emerging concepts and future challenges in innate lymphoid cell biology, J. Exp. Med, vol.213, pp.2229-2248, 2016.

K. L. Wong, W. H. Yeap, J. J. Tai, S. M. Ong, T. M. Dang et al., The three human monocyte subsets: implications for health and disease, Immunol. Res, vol.53, pp.41-57, 2012.
DOI : 10.1007/s12026-012-8297-3

M. Wu, M. Pedroza, R. Lafyatis, A. George, M. D. Mayes et al., Identification of Cadherin 11 as a Mediator of Dermal Fibrosis and Possible Role in Systemic Sclerosis, Arthritis Rheumatol. Hoboken NJ, vol.66, pp.1010-1021, 2014.

T. A. Wynn, IL-13 effector functions, Annu. Rev. Immunol, vol.21, pp.425-456, 2003.

T. A. Wynn, Fibrotic disease and the T H 1/T H 2 paradigm, Nat. Rev. Immunol, vol.4, pp.583-594, 2004.

T. A. Wynn and T. R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat. Med, vol.18, pp.1028-1040, 2012.

T. A. Wynn and K. M. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis, Immunity, vol.44, pp.450-462, 2016.

S. Xu, S. L. Howat, E. A. Renzoni, A. Holmes, J. D. Pearson et al., Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK, J. Biol. Chem, vol.279, pp.23098-23103, 2004.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation, Immunity, vol.40, pp.274-288, 2014.

T. Yamamoto, B. Eckes, and T. Krieg, High expression and autoinduction of monocyte chemoattractant protein-1 in scleroderma fibroblasts, Eur. J. Immunol, vol.31, pp.2936-2941, 2001.

K. Yanaba, A. Yoshizaki, Y. Asano, T. Kadono, and S. Sato, Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis, Clin. Rheumatol, vol.30, pp.825-830, 2011.

X. Yang, J. Yang, X. Xing, L. Wan, L. et al., Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction, Arthritis Res. Ther, vol.16, p.4, 2014.

M. R. York, T. Nagai, A. J. Mangini, R. Lemaire, J. M. Van-seventer et al., A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists, Arthritis Rheum, vol.56, pp.1010-1020, 2007.

L. Zhou, M. M. Chong, and D. R. Littman, Plasticity of CD4+ T Cell Lineage Differentiation, Immunity, vol.30, pp.646-655, 2009.
DOI : 10.1016/j.immuni.2009.05.001

URL : https://doi.org/10.1016/j.immuni.2009.05.001

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

, Groupe Français de Recherch e sur la Scl erodermie, the Soci et e Française de Rhumatologie, and UCB

M. Truchetet, . Md, P. Phd, . Duffau, . Md et al.,

P. B-eatrice-demoures, . Laurent, . Val-erie-jolivel, I. Phd, ;. Douchet et al., PhD: CNRS-UMR 5164 Immuno ConcEpT, Bordeaux University, vol.2

J. E. Guimaraes,

M. D. Bertrand, J. Seneschal, . Md, M. Phd, M. D. Doutre et al., Demoures, Mr. Guimaraes, and Dr. Bertrand contributed equally to this work, Address correspondence to C ecile Contin-Bordes

F. Bordeaux, vasculopathy: the presence of digital ulcers, scleroderma renal crisis, and/or PAH on right-sided heart catheterization (mean 6 SEM 19, cecile.bordes@chu-bordeaux.fr. Submitted for publication October, vol.9, 2015.

, Results are representative of 5 healthy donors, 8 patients with lcSSc, and 10 patients with dcSSc. Original magnification 3 40. Bottom, Higher-magnification views of immunohistochemical staining for TSLP in the same subjects as in the top panel, showing the perivascular distribution of the TSLP-positive cells. Arrowheads indicate positive TSLP staining. Original magnification 3 100. B, Percentage of TSLP-positive cells among the total number of cells in the analyzed section of the dermis in healthy donors and patients with SSc. Two separate slides for each of 5 healthy donors and 18 SSc patients were analyzed. Symbols represent individual samples; horizontal lines and error bars show the mean 6 SEM. *** 5 P , 0.0001 by unpaired t-test. C, Correlation between percentage of TSLP-expressing dermal cells and the modified Rodnan skin thickness score (MRSS). D, Correlation between the percentage of TSLP-expressing dermal cells and disease duration, Overexpression of TSLP in the skin of SSc patients compared to healthy donors, and correlation of TSLP with fibrosis. A, Immunohistochemical staining to identify ex vivo expression of TSLP in human skin. Top

, TSLP-positive dermal cells was significantly increased in SSc compared to healthy donor skin

, A trend toward a higher percentage of TSLPpositive cells in dcSSc than in lcSSc was observed, Figure 2B)

, Both a-smooth muscle actin (a-SMA)-positive myofibroblasts and CD31-positive ECs stained positively for TSLP in SSc patients and negatively in healthy donors (Figure 3A). Notably, perivascular a-SMA-positive pericytes were negative for TSLP in both SSc patients and healthy donors (Figure 3A). To confirm that ECs are a potent TSLP producer in skin, we cultured HDMECs in vitro and in the presence or absence of profibrotic cytokines, Dermal TSLP expression correlated with skin TSLP, we performed immunofluorescence experiments

T. Il-1b and I. , Only IL-1b any effect, except for LPS, which slightly but reproducibly induced TSLP production (Figure 3B). Taken together, these results demonstrate that HDMECs are potent TSLP producers in SSc and that IL-1b is a main inducer of its secretion. Activated platelets promote the secretion of TSLP by ECs via an IL-1b-and serotonin-dependent mechanism. Among the IL-1b-secreting cells activated in SSc patients, platelets were of significant interest, vol.24, issue.10

P. Tslp, the addition of anti2IL-1b-blocking antibody induced an incomplete inhibition of TSLP production (for a 100:1 ratio of platelets to ECs, mean 6 SEM 173.1 6 0.4 pg/ml in stimulated cells versus 369.6 6 12.7 pg/ml in unstimulated cells; for a 200:1 ratio of platelets to ECs, mean 6 SEM 357.7 6 28.4 pg/ml in stimulated cells versus 648.5 6 13.8 pg/ml in unstimulated cells), SSc FIBROSIS 2789 and a 200:1 ratio of platelets to ECs

, HDMECs were purified from normal skin (obtained from patients undergoing plastic surgery) and stimulated for 24 hours with either cytokines potentially involved in SSc or the Toll-like receptor 4 agonist lipopolysaccharide (LPS) (B) or increasing amounts of IL-1b (0-50 ng/ml) in MV2 complete medium (M) (C). The supernatants were harvested, Figure 3. Endothelial cell (EC) production of TSLP ex vivo in SSc and in vitro. A

, Quantification of TSLP mRNA in IL-1b-activated HDMECs by real-time quantitative polymerase chain reaction. HDMECs were stimulated with 50 ng/ml of IL-1b

, to a lesser extent, serotonin. TSLP induction of fibrosis in humans via ECM production and collagenase inhibition. TSLP has been implicated in the fibrotic process in mouse models, but its role in humans remains unclear (16,17). Therefore, we assessed whether recombinant TSLP directly affects the activation and ECM production of dermal fibroblasts from healthy donors. Healthy donor dermal fibroblasts were stimulated with IL-1b, *** 5 P 5 0.0004 by Kruskal-IL-1b and

, TSLP) production by human dermal microvascular endothelial cells (HDMECs) in an interleukin-1b (IL-1b)-dependent manner. A, TSLP levels in HDMECs cultured in MV2 complete medium with increasing amounts of purified nonactivated platelets (10-200 platelets per HDMEC) (open bars) and in HDMECs stimulated with purified ADP-activated platelets (solid bars). A total of 70,000 HDMECs were cultured for 24 hours in a 24-well culture plate

. ***, 5 P , 0.0001 versus unstimulated cells (except where indicated otherwise), by Kruskal-Wallis nonparametric test followed by multiple comparison post hoc test

B. , TSLP levels in HDMECs stimulated with increasing ratios of ADP-activated platelets alone or with increasing ratios of ADP-activated platelets and an anti-IL-1b-blocking antibody

, Wallis nonparametric test followed by multiple comparison post hoc test. C, TSLP levels in HDMECs stimulated with increasing doses of serotonin (0-90 ng/ml). * 5 P , 0.05 versus unstimulated cells, by paired t-test. D, TSLP levels in HDMECs stimulated with ADP-activated platelets (at a 1:200 ratio of HDMECs to platelets) with or without anti-IL-1b-blocking antibody and with or without 5HT receptor-blocking antibodies (antibodies blocking 5HTR2a and 5HTR2b). The supernatants were harvested, and TSLP content was measured using a dedicated enzyme-linked immunosorbent assay, *** 5 P , 0.0001, without anti-IL-1b antibody versus with anti-IL-1b antibody

A. Gabrielli, E. V. Avvedimento, T. Krieg, and . Scleroderma, N Engl J Med, vol.360, pp.1989-2003, 2009.

D. Pattanaik, M. Brown, B. C. Postlethwaite, and A. E. Postlethwaite, Pathogenesis of systemic sclerosis, Front Immunol, vol.6, p.272, 2015.

R. J. Prescott, A. J. Freemont, C. J. Jones, J. Hoyland, and P. Fielding, Sequential dermal microvascular and perivascular changes in the development of scleroderma, J Pathol, vol.166, pp.255-63, 1992.

M. B. Kahaleh, I. Osborn, and E. C. Leroy, Elevated levels of circulating platelet aggregates and beta-thromboglobulin in scleroderma, Ann Intern Med, vol.96, pp.610-613, 1982.

A. E. Postlethwaite and T. M. Chiang, Platelet contributions to the pathogenesis of systemic sclerosis, Curr Opin Rheumatol, vol.19, pp.574-583, 2007.

A. Solanilla, J. Villeneuve, A. P. Hugues, M. Alioum, A. Lepreux et al., The transport of high amounts of vascular endothelial growth factor by blood platelets underlines their potential contribution in systemic sclerosis angiogenesis, Rheumatology (Oxford), vol.48, pp.1036-1080, 2009.

T. M. Chiang, H. Takayama, and A. E. Postlethwaite, Increase in platelet non-integrin type I collagen receptor in patients with systemic sclerosis, Thromb Res, vol.117, pp.299-306, 2006.
DOI : 10.1016/j.thromres.2005.03.003

N. Maugeri, S. Franchini, L. Campana, M. Baldini, G. A. Ramirez et al., Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis, Autoimmunity, vol.45, pp.584-591, 2012.

L. Van-bon, A. J. Affandi, J. Broen, R. B. Christmann, R. J. Marijnissen et al., Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis, N Engl J Med, vol.370, pp.433-476, 2014.

C. Dees, A. Akhmetshina, P. Zerr, N. Reich, K. Palumbo et al., Platelet-derived serotonin links vascular disease and tissue fibrosis, J Exp Med, vol.208, pp.961-72, 2011.
DOI : 10.1084/jem.20101629

URL : https://hal.archives-ouvertes.fr/inserm-00589662

M. R. Hillen, T. R. Radstake, C. E. Hack, and J. A. Van-roon, Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease, Rheumatology (Oxford), vol.54, pp.1771-1780, 2015.
DOI : 10.1093/rheumatology/kev241

URL : https://academic.oup.com/rheumatology/article-pdf/54/10/1771/9449456/kev241.pdf

E. Lo-kuan and S. F. Ziegler, Thymic stromal lymphopoietin and cancer, J Immunol, vol.193, pp.4283-4291, 2014.

T. Ito, Y. H. Wang, O. Duramad, T. Hori, G. J. Delespesse et al., TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand, J Exp Med, vol.202, pp.1213-1236, 2005.
DOI : 10.1084/jem.20051135

URL : http://jem.rupress.org/content/202/9/1213.full.pdf

A. Pedroza-gonzalez, K. Xu, T. C. Wu, C. Aspord, S. Tindle et al., Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation, J Exp Med, vol.208, pp.479-90, 2011.
DOI : 10.1084/jem.20102131

URL : http://jem.rupress.org/content/208/3/479.full.pdf

A. Datta, R. Alexander, M. G. Sulikowski, A. G. Nicholson, T. M. Maher et al., Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease, J Immunol, vol.191, pp.4867-79, 2013.
DOI : 10.4049/jimmunol.1300588

URL : http://www.jimmunol.org/content/191/9/4867.full.pdf

R. B. Christmann, A. Mathes, A. J. Affandi, C. Padilla, B. Nazari et al., Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor b, Arthritis Rheum, vol.65, pp.1335-1381, 2013.

A. Usategui, G. Criado, E. Izquierdo, M. J. Del-rey, P. E. Carreira et al., A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis, Ann Rheum Dis, vol.72, pp.2018-2041, 2013.
DOI : 10.1136/annrheumdis-2012-202279

F. Van-den-hoogen, D. Khanna, J. Fransen, S. R. Johnson, M. Baron et al., 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative, Arthritis Rheum, vol.65, pp.2737-2784, 2013.

P. Clements, P. Lachenbruch, J. Seibold, B. White, S. Weiner et al., Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis, J Rheumatol, vol.22, pp.1281-1286, 1995.

M. E. Truchetet, N. C. Brembilla, E. Montanari, P. Lonati, E. Raschi et al., Interleukin-17A1 cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement, Arthritis Rheum, vol.65, pp.1347-56, 2013.

N. C. Brembilla, E. Montanari, M. E. Truchetet, E. Raschi, P. Meroni et al., Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts, Arthritis Res Ther, vol.15, p.151, 2013.
DOI : 10.1186/ar4334

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar4334

A. Yoda, Y. Yoda, S. Chiaretti, M. Bar-natan, K. Mani et al., Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia, Proc Natl Acad Sci U S A, vol.107, pp.252-259, 2010.
DOI : 10.1073/pnas.0911726107

URL : https://www.pnas.org/content/pnas/107/1/252.full.pdf

Q. T. Le, G. Gomez, W. Zhao, J. Hu, H. Z. Xia et al., Processing of human protryptase in mast cells involves cathepsins L, B, and C, J Immunol, vol.187, pp.1912-1920, 2011.

H. Loppnow, R. Bil, S. Hirt, U. Schonbeck, M. Herzberg et al., Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells, Blood, vol.91, pp.134-175, 1998.

L. M. Rice, C. M. Padilla, S. R. Mclaughlin, A. Mathes, J. Ziemek et al., Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients, J Clin Invest, vol.125, pp.2795-807, 2015.
DOI : 10.1172/jci77958

URL : http://www.jci.org/articles/view/77958/files/pdf

S. Bhattacharyya, Z. Tamaki, W. Wang, M. Hinchcliff, P. Hoover et al., FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling, Sci Transl Med, vol.6, pp.232-50, 2014.
DOI : 10.1126/scitranslmed.3008264

URL : http://europepmc.org/articles/pmc4414050?pdf=render

T. A. Wynn and T. R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat Med, vol.18, pp.1028-1068, 2012.

M. Manetti, Deciphering the alternatively activated (M2) phenotype of macrophages in scleroderma, Exp Dermatol, vol.24, pp.576-584, 2015.

V. Soumelis, P. A. Reche, H. Kanzler, W. Yuan, G. Edward et al., Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP, Nat Immunol, vol.3, pp.673-80, 2002.
DOI : 10.1038/ni805

URL : https://eprints.ucm.es/9340/1/17.Soumelis_Reche_etal_NI_2002.pdf

E. Volpe, N. Servant, R. Zollinger, S. I. Bogiatzi, P. Hupe et al., A critical function for transforming growth factor-b, interleukin 23 and proinflammatory cytokines in driving and modulating human T H -17 responses, Nat Immunol, vol.9, pp.650-657, 2008.
DOI : 10.1038/ni.1613

B. Zhou, M. R. Comeau, T. De-smedt, H. D. Liggitt, M. E. Dahl et al., Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice, Nat Immunol, vol.6, pp.1047-53, 2005.

E. Boilard, P. Blanco, and P. A. Nigrovic, Platelets: active players in the pathogenesis of arthritis and SLE, Nat Rev Rheumatol, vol.8, pp.534-576, 2012.

B. D. Elzey, J. Tian, R. J. Jensen, A. K. Swanson, J. R. Lees et al., Platelet-mediated modulation of adaptive immunity: a communication link between innate and adaptive immune compartments, Immunity, vol.19, pp.9-19, 2003.

P. Duffau, J. Seneschal, C. Nicco, C. Richez, L. E. Douchet et al., Platelet CD154 potentiates interferon-a secretion by plasmacytoid dendritic cells in systemic lupus erythematosus, Sci Transl Med, vol.2, pp.47-63, 2010.
DOI : 10.1126/scitranslmed.3001001

O. Kowal-bielecka, K. Kowal, A. Lewszuk, A. Bodzenta-lukaszyk, J. Walecki et al., Beta thromboglobulin and platelet factor 4 in bronchoalveolar lavage fluid of patients with systemic sclerosis, Ann Rheum Dis, vol.64, pp.484-490, 2005.