D. Jenny, The Status of Transistor Research in Compound Semiconductors, Proc. IRE, vol.46, pp.959-968, 1958.

P. Rinke, M. Scheffler, A. Qteish, M. Winkelnkemper, D. Bimberg et al., Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory, Appl. Phys. Lett, vol.89, p.161919, 2006.
DOI : 10.1063/1.2364469

URL : http://arxiv.org/pdf/cond-mat/0610141

S. Fujita, Wide-bandgap semiconductor materials: For their full bloom, Jpn. J. Appl. Phys, vol.54, p.30101, 2015.
DOI : 10.7567/jjap.54.030101

URL : http://iopscience.iop.org/article/10.7567/JJAP.54.030101/pdf

B. Damilano and B. Gil, Yellow-red emission from (Ga,In)N heterostructures, J. Phys. Appl. Phys, vol.48, p.403001, 2015.
DOI : 10.1088/0022-3727/48/40/403001

URL : https://hal.archives-ouvertes.fr/hal-01206060

M. A. Der-maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations, Phys. Rev. Lett, vol.116, p.27401, 2016.

D. Cherns, S. J. Henley, and F. A. Ponce, Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence, Appl. Phys. Lett, vol.78, p.2691, 2001.
DOI : 10.1063/1.1369610

T. H. Ngo, B. Gil, B. Damilano, K. Lekhal, and P. De-mierry, Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction, Superlattices Microstruct, vol.103, pp.245-251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01490590

S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, Prospects for LED lighting, Nat. Photonics, vol.3, pp.180-182, 2009.

W. Lee, J. Limb, J. Ryou, D. Yoo, T. Chung et al., Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes, J. Electron. Mater, vol.35, pp.587-591, 2006.

E. Papadomanolaki, C. Bazioti, S. A. Kazazis, M. Androulidaki, G. P. Dimitrakopulos et al., Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties, J. Cryst. Growth, vol.437, pp.20-25, 2016.

S. Surender, K. Prabakaran, R. Loganathan, S. Pradeep, S. Singh et al., Effect of growth temperature on InGaN/GaN heterostructures grown by MOCVD, J. Cryst. Growth, 2016.
DOI : 10.1016/j.jcrysgro.2016.11.061

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty et al., Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors, Nat. Mater, vol.5, pp.810-816, 2006.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures, Appl. Phys. Lett, vol.69, pp.4188-4190, 1996.

S. Nakamura, The roles of structural imperfections in InGaN-based blue lightemitting diodes and laser diodes, Science, vol.281, pp.956-961, 1998.

A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow et al., Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN / GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency, Phys. Rev. Lett, vol.95, 2005.

F. C. Massabuau, P. Chen, M. K. Horton, S. L. Rhode, C. X. Ren et al., Carrier localization in the vicinity of dislocations in InGaN, J. Appl. Phys, vol.121, p.13104, 2017.

J. C. Zhang, D. S. Jiang, Q. Sun, J. F. Wang, Y. T. Wang et al., Influence of dislocations on photoluminescence of InGaN?GaN multiple quantum wells, Appl. Phys. Lett, vol.87, p.71908, 2005.

J. Abell and T. D. Moustakas, The role of dislocations as nonradiative recombination centers in InGaN quantum wells, Appl. Phys. Lett, vol.92, p.91901, 2008.

T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi et al., Role of dislocation in InGaN phase separation, Jpn. J. Appl. Phys, vol.37, p.1195, 1998.

M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability, 2017.

Z. Mi and C. Jagadish, III-Nitride Semiconductor Optoelectronics, vol.96, 2017.

F. Bechstedt, U. Grossner, and J. Furthmüller, Dynamics and polarization of group-III nitride lattices: A first-principles study, Phys. Rev. B, vol.62, p.8003, 2000.
DOI : 10.1103/physrevb.62.8003

F. J. Garlick and F. Gibson, The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors

S. Krishnamoorthy, F. Akyol, and S. Rajan, InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes, Appl. Phys. Lett, vol.105, p.141104, 2014.
DOI : 10.1063/1.4897342

URL : http://arxiv.org/pdf/1403.3932

Z. I. Alferov, The double heterostructure: concept and its applications in physics, electronics and technology (Nobel Lecture), 2000.
DOI : 10.1002/1439-7641(20010917)2:8/9<500::aid-cphc500>3.3.co;2-o

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/1439-7641%2820010917%292%3A8/9%3C500%3A%3AAID-CPHC500%3E3.0.CO%3B2-X

S. Nakamura, Background Story of the Invention of Efficient InGaN Blue-LightEmitting Diodes (Nobel Lecture), Angew. Chem. Int. Ed, vol.54, pp.7770-7788, 2015.

Z. Liliental-weber, Structural defects in GaN revealed by transmission electron microscopy, Jpn. J. Appl. Phys, vol.53, p.100205, 2014.
DOI : 10.7567/jjap.53.100205

URL : http://iopscience.iop.org/article/10.7567/JJAP.53.100205/pdf

M. Chen, Y. Cheng, J. Chen, C. Wu, C. C. Yang et al., Effects of silicon doping on the nanostructures of InGaN/GaN quantum wells, J. Cryst. Growth, vol.279, pp.55-64, 2005.

D. Hull and D. J. Bacon, , 2011.

V. Potin, P. Ruterana, G. Nouet, R. C. Pond, and H. Morkoç, Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries, Phys. Rev. B, vol.61, pp.5587-5599, 2000.

A. M. Sanchez, G. P. Dimitrakopulos, and P. Ruterana, Mechanism for pinhole formation in GaN?AlN?Si layers from steps at the substrate surface

, Phys. Lett, vol.86, p.11917, 2005.

C. Stampfl and C. G. Van-de-walle, Energetics and electronic structure of stacking faults in AlN, GaN, and InN, Phys. Rev. B, vol.57, pp.15052-15055, 1998.
DOI : 10.1103/physrevb.57.r15052

H. Blank, P. Delavignette, R. Gevers, and S. Amelinckx, Fault Structures in Wurtzite, Phys. Status Solidi B, vol.7, pp.747-764, 1964.
DOI : 10.1002/pssb.19640070304

Z. Chen, C. L. Tang, J. Y. Shi, L. W. Su, P. Gao et al., AFM Application in IIINitride Materials and Devices, 2012.
DOI : 10.5772/37527

URL : https://www.intechopen.com/citation-pdf-url/33452

D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, vol.2, 2009.

M. Saito, T. Aoyama, T. Hashimoto, and S. Isakozawa, Transmission Electron Microscope Sample Shape Optimization for Energy Dispersive X-Ray Spectroscopy Using the Focused Ion Beam Technique, Jpn. J. Appl. Phys, vol.37, pp.355-359, 1998.
DOI : 10.1143/jjap.37.355

A. Rosenauer, K. Gries, K. Müller, A. Pretorius, M. Schowalter et al., Measurement of specimen thickness and composition in AlxGa1-xN/GaN using high-angle annular dark field images, Ultramicroscopy, vol.109, pp.1171-1182, 2009.

J. M. Lebeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Quantitative Atomic Resolution Scanning Transmission Electron Microscopy, Phys. Rev. Lett, vol.100, 2008.

A. Rosenauer, D. Gerthsen, and V. Potin, Strain state analysis of InGaN/GaNsources of error and optimized imaging conditions, Phys. Status Solidi A, vol.203, pp.176-184, 2006.

M. Schowalter, A. Rosenauer, J. T. Titantah, and D. Lamoen, Temperaturedependent Debye-Waller factors for semiconductors with the wurtzite-type structure, Acta Crystallogr. A, vol.65, pp.227-231, 2009.

T. P. Bartel and C. Kisielowski, A quantitative procedure to probe for compositional inhomogeneities in InxGa ?xN alloys, Ultramicroscopy, vol.108, pp.1420-1426, 2008.
DOI : 10.1016/j.ultramic.2008.04.096

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita et al., Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm, Appl. Phys. Lett, vol.70, pp.981-983, 1997.

N. G. Chew and A. G. Cullis, Iodine ion milling of indium-containing compound semiconductors, Appl. Phys. Lett, vol.44, pp.142-144, 1984.

T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vickers, and C. J. Humphreys, Electron-beam-induced strain within InGaN quantum wells: False indium cluster detection in the transmission electron microscope, Appl. Phys. Lett, vol.83, p.5419, 2003.

J. P. Neill, I. M. Ross, A. G. Cullis, T. Wang, and P. J. Parbrook, Electron-beaminduced segregation in InGaN/GaN multiple-quantum wells, Appl. Phys. Lett, vol.83, pp.1965-1967, 2003.

M. Albrecht, V. Grillo, J. Borysiuk, T. Remmele, H. Strunk et al., Correlating compositional, structural and optical properties of InGaN quantum wells by transmission electron microscopy, Institue of physics conference series, vol.169, 2001.
DOI : 10.1201/9781351074629-56

N. K. Van-der-laak, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Role of gross well-width fluctuations in bright, green-emitting single InGaN?GaN quantum well structures, Appl. Phys. Lett, vol.90, p.121911, 2007.

M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. Mcaleese, D. Zhu et al., Compositional inhomogeneity of a highefficiency In[sub x]Ga[sub ?x]N based multiple quantum well ultraviolet emitter studied by three dimensional atom probe, Appl. Phys. Lett, vol.92, p.41904, 2008.

P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers, J. Appl. Phys, vol.91, p.8979, 2002.
DOI : 10.1063/1.1473666

D. Watson-parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey et al., Carrier localization mechanisms in In x Ga ? x N/GaN quantum wells, Phys. Rev. B, vol.83, 2011.

R. Bierwolf, M. Hohenstein, F. Phillipp, O. Brandt, G. E. Crook et al., Direct measurement of local lattice distortions in strained layer structures by HREM, Ultramicroscopy, vol.49, pp.273-285, 1993.

M. J. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, pp.131-146, 1998.

T. Walther, C. J. Humphreys, M. P. Grimshaw, and A. C. Churchill, Detection of random alloy fluctuations in high-resolution transmission electron micrographs of AlGaAs, Philos. Mag. A, vol.72, pp.1015-1030, 1995.

S. Kret, P. Ruterana, A. Rosenauer, and D. Gerthsen, Extracting quantitative information from high resolution electron microscopy, Phys. Status Solidi B, vol.227, pp.247-295, 2001.
DOI : 10.1002/1521-3951(200109)227:1<247::aid-pssb247>3.0.co;2-f

K. Tillmann, A. Thust, M. Lentzen, P. Swiatek, A. Förster et al., Determination of segregation, elastic strain and thin-foil relaxation in InxGa-1-x As islands on GaAs (001) by high resolution transmission electron microscopy, Philos. Mag. Lett, vol.74, pp.309-315, 1996.

A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory, Phys. Rev. B, vol.64, 2001.

T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter et al., Indium redistribution in an InGaN quantum well induced by electronbeam irradiation in a transmission electron microscope, Appl. Phys. Lett, vol.86, p.241911, 2005.

A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter et al., Composition mapping in InGaN by scanning transmission electron microscopy, Ultramicroscopy, vol.111, pp.1316-1327, 2011.
DOI : 10.1016/j.ultramic.2011.04.009

C. Tsai, Effects of underlying InGaN/GaN superlattice structures on the structural and optical properties of InGaN LEDs, J. Lumin, vol.174, pp.36-41, 2016.

T. Grieb, K. Müller, R. Fritz, M. Schowalter, N. Neugebohrn et al., Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis, Ultramicroscopy, vol.117, pp.15-23, 2012.

M. Herrera, A. Cremades, M. Stutzmann, and J. Piqueras, Electrical properties of pinholes in GaN:Mn epitaxial films characterized by conductive AFM, Superlattices Microstruct, vol.45, pp.435-443, 2009.

C. J. Humphreys, J. T. Griffiths, F. Tang, F. Oehler, S. D. Findlay et al., The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem, Ultramicroscopy, vol.176, pp.93-98, 2017.

T. H. Ngo, N. Chery, P. Valvin, A. Courville, P. De-mierry et al., Internal quantum efficiency in polar and semipolar (11-22) In x Ga 1-x N/In y Ga 1-y N quantum wells emitting from blue to red, Superlattices Microstruct, vol.113, pp.129-134, 2018.

B. Jahnen, M. Albrecht, W. Dorsch, S. Christiansen, H. P. Strunk et al., Pinholes, Dislocations and Strain Relaxation in InGaN, MRS Internet J. Nitride Semicond. Res, vol.3, p.39, 1998.
DOI : 10.1557/s1092578300001113

C. X. Ren, B. Rouet-leduc, J. T. Griffiths, E. Bohacek, M. J. Wallace et al., Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs, Superlattices Microstruct, 2016.

H. Wang, X. Wang, Q. Tan, and X. Zeng, V-defects formation and optical properties of InGaN/GaN multiple quantum well LED grown on patterned sapphire substrate, Mater. Sci. Semicond. Process, vol.29, pp.112-116, 2015.
DOI : 10.1016/j.mssp.2013.11.019

J. Kim, Y. Cho, D. Ko, X. Li, J. Won et al., Influence of V-pits on the efficiency droop in InGaN/GaN quantum wells, Opt. Express, vol.22, p.857, 2014.

H. Tsai, T. Wang, J. Yang, C. Chuo, J. Hsu et al., Observation of V defects in multiple InGaN/GaN quantum well layers, Mater. Trans, vol.48, pp.894-898, 2007.

F. Liu, L. Huang, R. Kamaladasa, Y. N. Picard, E. A. Preble et al., Site-specific comparisons of V-defects and threading dislocations in InGaN/GaN multi-quantum-wells grown on SiC and GaN substrates, J. Cryst. Growth, vol.387, pp.16-22, 2014.

M. C. Johnson, Z. Liliental-weber, D. N. Zakharov, D. E. Mccready, R. J. Jorgenson et al., Investigation of microstructure and V-defect formation in InxGa1-xN/GaN MQW grown using temperaturegradient metalorganic chemical vapor deposition, J. Electron. Mater, vol.34, pp.605-611, 2005.

F. C. Massabuau, L. Trinh-xuan, D. Lodié, S. Sahonta, S. Rhode et al., Towards a better understanding of trench defects in InGaN/GaN quantum wells, J. Phys. Conf. Ser, vol.471, p.12042, 2013.

A. M. Sánchez, P. Ruterana, M. Benamara, and H. P. Strunk, Inversion domains and pinholes in GaN grown over Si(111), Appl. Phys. Lett, vol.82, pp.4471-4473, 2003.

X. Zhou, T. Lu, Y. Zhu, G. Zhao, H. Dong et al., Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier, Nanoscale Res. Lett, vol.12, 2017.
DOI : 10.1186/s11671-017-2115-8

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/s11671-017-2115-8

Y. Lin, K. Ma, C. Hsu, S. Feng, Y. Cheng et al., Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells, Appl. Phys. Lett, vol.77, p.2988, 2000.

M. Shiojiri, C. C. Chuo, J. T. Hsu, J. R. Yang, and H. Saijo, Structure and formation mechanism of V defects in multiple InGaN?GaN quantum well layers, J. Appl. Phys, vol.99, p.73505, 2006.

J. H. Connell, M. E. Lee, J. Westraadt, and J. A. Engelbrecht, Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD, Phys. B Condens. Matter, 2017.

Z. Weber, Y. Chen, S. Ruvimov, and J. Washburn, Formation mechanism of nanotubes in GaN, Phys. Rev. Lett, vol.79, p.2835, 1997.

H. Ben-ammar, A. Minj, M. Chauvat, P. Gamarra, C. Lacam et al., The structure of InAlGaN layers grown by metal organic vapour phase epitaxy: effects of threading dislocations and inversion domains from the GaN template: THE STRUCTURE OF INALGAN LAYERS GROWN BY METAL ORGANIC VAPOUR PHASE EPITAXY, J. Microsc, vol.268, pp.269-275, 2017.

S. J. Henley and D. Cherns, Cathodoluminescence studies of threading dislocations in InGaN/GaN as a function of electron irradiation dose, J. Appl. Phys, vol.93, p.3934, 2003.

T. Mukai, M. Yamada, and S. Nakamura, Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes, Jpn. J. Appl. Phys, vol.38, p.3976, 1999.

Y. Taniyasu, M. Kasu, and T. Makimoto, Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate, J. Cryst. Growth, vol.298, pp.310-315, 2007.
DOI : 10.1016/j.jcrysgro.2006.10.032

J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, Misfit dislocation formation in the AlGaN?GaN heterointerface, J. Appl. Phys, vol.96, pp.7087-7094, 2004.
DOI : 10.1063/1.1812361

C. Bazioti, E. Papadomanolaki, T. Kehagias, T. Walther, J. Smalc-koziorowska et al., Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy, J. Appl. Phys, vol.118, p.155301, 2015.
DOI : 10.1063/1.4933276

URL : http://eprints.whiterose.ac.uk/91482/1/J63_JAP_118_2015_155301.pdf

S. Sahonta, P. Komninou, G. P. Dimitrakopulos, T. Kehagias, J. Kioseoglou et al., Microstructure of defects in InGaN/GaN quantum well heterostructures, J. Phys. Conf. Ser, vol.126, p.12048, 2008.

Y. Yang, X. A. Cao, and C. H. Yan, Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates, Appl. Phys. Lett, vol.94, p.41117, 2009.
DOI : 10.1063/1.3077017

C. Hitzenberger, H. P. Karnthaler, and A. Korner, Contrast Analysis of Intrinsic and Extrinsic Stacking Faults in HCP Cobalt, Phys. Status Solidi A, vol.89, pp.133-146, 1985.

X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller et al., Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3, J. Appl. Phys, vol.80, pp.3228-3237, 1996.

F. Y. Meng, H. Mcfelea, R. Datta, U. Chowdhury, C. Werkhoven et al., Origin of predominantly a type dislocations in InGaN layers and wells grown on (0001) GaN, J. Appl. Phys, vol.110, p.73503, 2011.

J. Smalc-koziorowska, C. Bazioti, M. Albrecht, and G. P. Dimitrakopulos, Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures, Appl. Phys. Lett, vol.108, p.51901, 2016.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie et al., Formation mechanism and relative stability of the ${$112\= 0$}$ stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides, Phys. Rev. B, vol.59, p.15917, 1999.

D. Holec, P. M. Costa, M. J. Kappers, and C. J. Humphreys, Critical thickness calculations for InGaN/GaN, J. Cryst. Growth, vol.303, pp.314-317, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.054

D. Holec, Y. Zhang, D. V. Rao, M. J. Kappers, C. Mcaleese et al., Equilibrium critical thickness for misfit dislocations in III-nitrides, J. Appl. Phys, vol.104, p.123514, 2008.
DOI : 10.1063/1.3033553

H. Ye, P. Lu, Z. Yu, Z. Chen, B. Jia et al., Equilibrium critical thickness for a wurtzite InGaN/GaN heterostructure, Superlattices Microstruct, vol.48, pp.58-65, 2010.
DOI : 10.1016/j.spmi.2010.04.009

W. Lü, D. B. Li, C. R. Li, F. Shen, and Z. Zhang, Effect of critical thickness on structural and optical properties of InxGa ?xN/GaN multiple quantum wells, J. Appl. Phys, vol.95, pp.4362-4366, 2004.

S. Chang, L. Lu, Y. Lin, and S. Li, GaN-Based LightEmitting Diodes With AlGaN Strain Compensation Buffer Layer, J. Disp. Technol, vol.9, pp.910-914, 2013.

H. Zhao, R. A. Arif, Y. Ee, and N. Tansu, Optical gain analysis of straincompensated InGaN-AlGaN quantum well active regions for lasers emitting at 420-500 nm, Opt. Quantum Electron, vol.40, pp.301-306, 2008.
DOI : 10.1109/nusod.2007.4349028

J. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Wavelength Dependence of Internal Electric Field on Local Structure of Green-Yellow InGaN/GaN Quantum Wells, Jpn. J. Appl. Phys, vol.52, pp.8-13, 2013.

T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, and S. Nunoue, Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate, Phys. Status Solidi A, vol.209, pp.473-476, 2012.

S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, InGaN Light-Emitting Diodes on c-Face Sapphire Substrates in Green Gap Spectral Range, Appl. Phys. Express, vol.6, p.111004, 2013.

B. Leung, J. Han, and Q. Sun, Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111): Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111), Phys. Status Solidi C, vol.11, pp.437-441, 2014.

T. Doi, Y. Honda, M. Yamaguchi, and H. Amano, Strain-Compensated Effect on the Growth of InGaN/AlGaN Multi-Quantum Well by Metalorganic Vapor Phase Epitaxy, Jpn. J. Appl. Phys, vol.52, pp.8-14, 2013.

H. Zhao, R. A. Arif, Y. Ee, and N. Tansu, Self-Consistent Analysis of StrainCompensated, 2013.

, AlGaN Quantum Wells for Lasers and LightEmitting Diodes, IEEE J. Quantum Electron, vol.45, pp.66-78, 2009.

R. Czernecki, S. Krukowski, G. Targowski, P. Prystawko, M. Sarzynski et al., Strain-compensated AlGaN?GaN?InGaN cladding layers in homoepitaxial nitride devices, Appl. Phys. Lett, vol.91, p.231914, 2007.
DOI : 10.1063/1.2823587

S. Hussain, T. Zerin, and M. A. Khan, Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode, Front. Optoelectron, vol.10, pp.370-377, 2017.

T. H. Ngo, B. Gil, P. Valvin, B. Damilano, K. Lekhal et al., Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures, Appl. Phys. Lett, vol.107, p.122103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203313

K. Lekhal, B. Damilano, H. T. Ngo, D. Rosales, P. De-mierry et al., )N/GaN multiple quantum wells for improved yellow/amber light emission, Strain-compensated, vol.106, p.142101, 2015.
DOI : 10.1063/1.4917222

URL : https://hal.archives-ouvertes.fr/hal-01238729

P. Horenburg, E. R. Buß, U. Rossow, H. Bremers, F. A. Ketzer et al., Strain dependence of In incorporation in m -oriented GaInN/GaN multi quantum well structures, Appl. Phys. Lett, vol.108, p.102105, 2016.

T. H. Ngo, N. Chery, P. Valvin, A. Courville, P. De-mierry et al., Internal quantum efficiency in polar and semipolar (11-22) In x Ga 1-x N/In y Ga 1-y N quantum wells emitting from blue to red, Superlattices and Microstructures, vol.113, pp.129-134, 2018.

N. Chery, T. H. Ngo, M. P. Chauvat, B. Damilano, A. Courville et al., The microstructure, local indium composition and photoluminescence in green-emitting InGaN/GaN quantum wells, Journal of Microscopy, vol.268, pp.305-312, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691523

N. Chery, T. H. Ngo, M. P. Chauvat, B. Damilano, B. Gil et al., Structural investigation of InGaN/GaN quantum wells for long wavelength emission, ISGN th , International Conference on Growth of IIINitrides, 2018.

N. Chery, M. P. Chauvat, T. H. Ngo, M. Morales, B. Damilano et al., Investigations of green-red emitting InGaN/GaN multiple quantum wells with AlGaN strain compensating layers, ADEPT th , International Conference of Advances in Electronic and Photonic Technologies, 2018.

N. Chery, T. H. Ngo, M. P. Chauvat, A. Minj, B. Damilano et al., The structure of InGaN/GaN quantum wells for long wavelength emission, ICNS-12 th , International Conference on Nitride Semiconductors, 2017.

T. H. Ngo, N. Chery, P. Valvin, A. Courville, P. De-mierry et al., Internal quantum efficiency in InGaN-GaN heterostructures emitting from blue to red, Oral and ICNS-12th, International Conference on Nitride Semiconductors, 2017.

N. Chery, T. H. Ngo, M. P. Chauvat, B. Damilano, B. Gil et al., Local structure and composition versus the optical properties of InGaN/GaN QWs for emission in and past the green gap, MSM 20 th , International Conference of Microscopy of Semiconducting Materials, 2017.