T. Yoshida and K. Kojima, Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society, Interface Mag, vol.24, issue.2, pp.45-49, 2015.

G. Hénaff, G. Odemer, and A. Tonneau-morel, Environmentally-assisted fatigue crack growth mechanisms in advanced materials for aerospace applications, Int. J. Fatigue, vol.29, issue.9, 1927.

Y. Murakami and S. Matsuoka, Effect of hydrogen on fatigue crack growth of metals, Eng. Fract. Mech, vol.77, issue.11, 1926.

S. P. Lynch, Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work, Metall. Mater. Trans. A, vol.44, issue.3, pp.1209-1229, 2012.

W. H. Johnson, On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids, Proc. R. Soc. London, vol.23, issue.156-163, pp.168-179, 1874.

R. A. Oriani and P. H. Josephic, Testing of the decohesion theory of hydrogen-induced crack propagation, Scr. Metall, vol.6, issue.8, pp.90126-90129, 1972.

R. A. Oriani, A Mechanistic Theory of Hydrogen Embrittlement of Steels, Berichte der Bunsengesellschaft, Technol. Asp, vol.76, issue.8, pp.848-857, 1972.

H. K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, vol.176, issue.1-2, pp.191-202, 1994.

S. P. Lynch and N. E. Ryan, Mechanisms of Hydrogen Embrittlement -Crack Growth in a Low-Alloy Ultra-High-Strength Steel Under Cyclic and Sustained Stresses in Gaseous Hydrogen, Proc. Second Int. Congr. Hydrog. Met, pp.369-376, 1977.

M. Nagumo, Function of hydrogen in embrittlement of high-strength steels, ISIJ Int, vol.41, issue.6, pp.590-598, 2001.

O. Takakuwa, J. Yamabe, H. Matsunaga, S. Matsuoka, and Y. Furuya, Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.48, issue.11, pp.5717-5732, 2017.

I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang et al., Hydrogen Embrittlement Understood, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.46, issue.6, pp.2323-2341, 2015.
DOI : 10.1007/s11663-015-0325-y

URL : https://link.springer.com/content/pdf/10.1007%2Fs11663-015-0325-y.pdf

N. Nanninga, A. Slifka, Y. Levy, and C. White, A review of fatigue crack growth for pipeline steels exposed to hydrogen, J. Res. Natl. Inst. Stand. Technol, vol.115, issue.6, p.437, 2010.

Z. Sun, C. Moriconi, G. Benoit, D. Halm, and G. Henaff, Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency, Metall. Mater. Trans. A, vol.44, issue.3, pp.1320-1330, 2012.

T. J. Marrow, P. J. Cotterill, and J. E. King, Temperature effects on the mechanism of time independent hydrogen assisted fatigue crack propagation in steels, Acta Metall. Mater, vol.40, issue.8, pp.2059-2068, 1992.

S. Matsuoka, N. Tsutsumi, and Y. Murakami, Effects of Hydrogen on Fatigue Crack Growth and Stretch Zone of 0.08mass%C Low Carbon Steel Pipe, Trans. Japan Soc. Mech. Eng. Ser. A, vol.74, issue.748, pp.1528-1537, 2008.

Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka, Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels, Metall. Mater. Trans. A, vol.39, issue.6, pp.1327-1339, 2008.

H. Nishikawa, Y. Oda, and H. Noguchi, Investigation of the Mechanism for BrittleStriation Formation in Low Carbon Steel Fatigued in Hydrogen Gas, J. Solid Mech. Mater. Eng, vol.5, issue.8, pp.370-385, 2011.

H. Nishikawa, Y. Oda, Y. Takahashi, and H. Noguchi, Microscopic Observation of the Brittle-Striation Formation Mechanism in Low Carbon Steel Fatigued in Hydrogen Gas, J. Solid Mech. Mater. Eng, vol.5, issue.4, pp.179-190, 2011.

Y. Takahashi, J. Sakamoto, M. Tanaka, K. Higashida, and H. Noguchi, Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline ironsilicon alloy, Scr. Mater, vol.64, issue.8, pp.721-724, 2011.

Y. Takahashi, M. Tanaka, K. Higashida, and H. Noguchi, Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy, Scr. Mater, vol.61, issue.2, pp.145-148, 2009.

M. L. Martin, P. Sofronis, I. M. Robertson, T. Awane, and Y. Murakami, A microstructural based understanding of hydrogen-enhanced fatigue of stainless steels, Int. J. Fatigue, vol.57, pp.28-36, 2013.

M. L. Martin, I. M. Robertson, and P. Sofronis, Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach, Acta Mater, vol.59, issue.9, pp.3680-3687, 2011.

C. Moriconi, G. Hénaff, and D. Halm, Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals, Int. J. Fatigue, vol.68, pp.56-66, 2014.

G. Bilotta, G. Hénaff, G. Benoit, C. Moriconi, D. Halm et al., Cohesive Zone Modeling Of Hydrogen Assisted Cracking In A 15-5 PH Steel And Comparison With Experiments, pp.1-8, 2015.

C. Moriconi, Modélisation de la propagation de fissure de fatigue assistée par l'hydrogène gazeux dans les matériaux métalliques, 2012.

G. Bilotta, Influence de l'hydrogène gazeux sur la vitesse de propagation d'une fissure de fatigue dans les métaux : approche expérimentale et modélisation, 2016.

G. Bilotta, M. Arzaghi, G. Hénaff, G. Benoit, and D. Halm, Hydrogen Induced Intergranular Failure in Armco Iron Under Fatigue Crack Propagation, vol.6, pp.6-06, 2016.

G. Bilotta, M. Arzaghi, G. Benoit, D. Halm, G. Henaff et al., EnvironmentallyAssisted Fatigue Crack Growth in ARMCO Iron Under High Pressure of Gaseous Hydrogen, Proc. Int. Hydrog. Conf. (IHC 2016, pp.1-10, 2016.

T. Shinko, G. Hénaff, D. Halm, and G. Benoit, Influence of gaseous hydrogen on plastic strain in vicinity of fatigue crack tip in Armco pure iron, MATEC Web Conf, vol.165, p.3006, 2018.

H. Z. Hassan, Energy Analysis and Performance Evaluation of the Adsorption Refrigeration System, ISRN Mech. Eng, vol.2013, pp.1-14, 2013.

S. Serebrinsky, E. A. Carter, and M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, J. Mech. Phys. Solids, vol.52, issue.10, pp.2403-2430, 2004.

W. W. Gerberich, T. L1vne, X. F. Chen, and M. Kaczorowski, Crack growth from internal hydrogen-temperature and microstructural effects in 4340 steel, Metall. Trans. A, vol.19, issue.5, pp.1319-1334, 1988.

J. P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, vol.11, issue.6, pp.861-890, 1980.

D. E. Jiang and E. A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B -Condens. Matter Mater. Phys, vol.70, issue.6, pp.1-9, 2004.

A. Sieverts and W. Krumbhaar, Über die Löslichkeit von Gasen in Metallen und Legierungen, Berichte der Dtsch. Chem. Gesellschaft, vol.43, issue.1, pp.893-900, 1910.

R. Broudeur, J. P. Fidelle, M. Rapin, C. Roux, and P. Tison, Influence de l'hydrogene sur le comportement des metaux, 4 : permeation, diffusion, dissolution du deuterium et du tritium dans les aciers austenitiques Z 5 NCTD 26-15 et Z 3 CN 18-10, Saclay Commis. Energ. At. Cent. Etud, p.188, 1976.

J. C. Li, R. A. Oriani, and L. S. Darken, The Thermodynamics of Stressed Solids, Zeitschrift für Phys. Chemie, vol.49, issue.3_5, pp.271-290, 1966.

P. Sofronis and R. M. Mcmeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids, vol.37, issue.3, pp.90002-90003, 1989.

J. Crank, The mathematics of diffusion, 1975.

C. , S. Marchi, and B. P. Somerday, Technical Reference On Hydrogen Compatibility Of Materials, vol.4001, p.292, 2012.

V. Olden, C. Thaulow, and R. Johnsen, Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Mater. Des, vol.29, issue.10, 1934.

L. Coudreuse, J. Chêne, and A. M. Brass, Fragilisation des aciers par l ' hydrogène : étude et prévention, Corrosion et vieillissement: phénomènes et mécanismes, vol.175, pp.1-24, 2000.

G. M. Pressouyre, A classification of hydrogen traps in steel, Metall. Trans. A, vol.10, issue.10, pp.1571-1573, 1979.

M. Koyama, M. Rohwerder, C. C. Tasan, A. Bashir, E. Akiyama et al., Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation, Mater. Sci. Technol, pp.1-16, 2017.

F. Vucko and ;. Haute-limite-d'elasticite, , 2014.

A. J. Kumnick and H. H. Johnson, Deep Trapping for Hydrogen Iron, Acta Metall, vol.28, pp.33-39, 1980.

A. Metsue, A. Oudriss, and X. Feaugas, Trapping/detrapping kinetic rates of hydrogen around a vacancy in nickel and some consequences on the hydrogen-vacancy clusters thermodynamic equilibrium, Comput. Mater. Sci, vol.151, pp.144-152, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840002

A. Metsue, A. Oudriss, and X. Feaugas, Hydrogen solubility and vacancy concentration in nickel single crystals at thermal equilibrium: New insights from statistical mechanics and ab initio calculations, J. Alloys Compd, vol.656, pp.555-567, 2016.

R. A. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall, vol.18, issue.1, pp.90078-90085, 1970.

I. Moro, Fragilisation par l'oxygène gazeux d'un acier ferrito-perlitique de grade API X80, 2009.

D. Hardie, E. A. Charles, and A. H. Lopez, Hydrogen embrittlement of high strength pipeline steels, Corros. Sci, vol.48, issue.12, pp.4378-4385, 2006.

S. P. Trasatti, E. Sivieri, and F. Mazza, Susceptibility of a X80 steel to hydrogen embrittlement, Mater. Corros, vol.56, issue.2, pp.111-117, 2005.

H. J. Cialone and J. H. Holbrook, Sensitivity of Steels to Degradation in Gaseous Hydrogen, Hydrogen Embrittlement: Prevention and Control, vol.100, pp.134-134, 2959.

V. G. Gavriljuk, V. N. Shivanyuk, and J. Foct, Diagnostic experimental results on the hydrogen embrittlement of austenitic steels, Acta Mater, vol.51, issue.5, pp.1293-1305, 2003.

H. Matsui, H. Kimura, and S. Moriya, The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation, Mater. Sci. Eng, vol.40, issue.2, pp.90191-90196, 1979.

S. Moriya, H. Matsui, and H. Kimura, The effect of hydrogen on the mechanical properties of high purity iron II. Effect of quenched-in hydrogen below room temperature, Mater. Sci. Eng, vol.40, issue.2, pp.217-225, 1979.

H. Matsui, H. Kimura, and A. Kimura, The effect of hydrogen on the mechanical properties of high purity iron III. The dependence of softening in specimen size and charging current density, Mater. Sci. Eng, vol.40, issue.2, pp.90193-90202, 1979.

P. S. Lam, R. L. Sindelar, A. J. Duncan, and T. M. Adams, Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels, J. Press. Vessel Technol, vol.131, issue.4, p.41408, 2009.

D. G. Ulmer and C. J. Altstetter, Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations, Acta Metall. Mater, vol.39, issue.6, pp.1237-1248, 1991.

Y. Murakami and H. Matsunaga, The effect of hydrogen on fatigue properties of steels used for fuel cell system, Int. J. Fatigue, vol.28, issue.11, pp.1509-1520, 2006.

G. Bilotta, M. Arzaghi, G. Hénaff, G. Benoit, C. Moriconi et al., Hydrogen Assisted Fatigue Crack Growth in a Precipitation-Hardened Martensitic Stainless Steel Under Gaseous Hydrogen, Materials and Fabrication, vol.6, pp.6-06, 2014.

Z. Sun, G. Benoit, C. Moriconi, F. Hamon, D. Halm et al., Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel, Int. J. Hydrogen Energy, vol.36, issue.14, pp.8641-8644, 2011.

H. Nishikawa, Y. Oda, and H. Noguchi, Loading-Frequency Effects On Fatigue Crack Growth Behavior Of A Low Carbon Steel JIS S10C In Hydrogen Gas Environment, J. Solid Mech. Mater. Eng, vol.5, issue.2, pp.104-116, 2011.

R. L. Amaro, E. S. Drexler, and A. J. Slifka, Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen, Int. J. Fatigue, vol.62, pp.249-257, 2014.

Y. Murakami, T. Kanezaki, and Y. Mine, Hydrogen Effect against Hydrogen Embrittlement, Metall. Mater. Trans. a-Physical Metall. Mater. Sci, vol.41, issue.10, pp.2548-2562, 2010.

T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka, and Y. Murakami, Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels, Int. J. Hydrogen Energy, vol.33, issue.10, pp.2604-2619, 2008.

K. Kawamoto, K. Ochi, Y. Oda, and H. Noguchi, Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel, J. Solid Mech. Mater. Eng, vol.3, issue.1, pp.72-83, 2009.

K. Kawamoto, Y. Oda, H. Noguchi, H. Fujii, T. Izumi et al., Investigation of Local Hydrogen Distribution Around Fatigue Crack Tip of a Type 304 Stainless Steel with Secondary Ion Mass Spectrometry and Hydrogen Micro-Print Technique, J. Solid Mech. Mater. Eng, vol.3, issue.6, pp.898-909, 2009.

A. Nagao, C. D. Smith, M. Dadfarnia, P. Sofronis, and I. M. Robertson, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater, vol.60, issue.13-14, pp.5182-5189, 2012.

H. Tanaka, N. Honma, S. Matsuoka, and Y. Murakami, Effect of hydrogen and frequency on fatigue behaviour of SCM435 steel for storage cylinder of hydrogen station, Trans. japan Soc. Mech. Eng, vol.73, pp.1358-1365, 2007.

A. Macadre, M. Artamonov, S. Matsuoka, and J. Furtado, Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70MPa hydrogen filling station, Eng. Fract. Mech, vol.78, issue.18, pp.3196-3211, 2011.

H. Nishikawa, Y. Oda, and H. Noguchi, Investigation of Mechanism for Intergranular Fatigue Crack Propagation of Low Carbon Steel JIS S10C in Hydrogen Gas Environment, J. Solid Mech. Mater. Eng, vol.5, issue.6, pp.263-278, 2011.

J. Kameda and C. J. Mcmahon, Solute segregation and hydrogen-induced intergranular fracture in an alloy steel, Metall. Trans. A, vol.14, issue.4, pp.903-911, 1983.

M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis, and I. M. Robertson, Hydrogeninduced intergranular failure in nickel revisited, Acta Mater, vol.60, issue.6-7, pp.2739-2745, 2012.

R. H. Jones, Analysis of hydrogen-induced subcritical intergranular crack growth of iron and nickel, Acta Metall. Mater, vol.38, issue.9, pp.90013-90020, 1990.

S. Wang, M. L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto et al., Hydrogen-induced intergranular failure of iron, Acta Mater, vol.69, pp.275-282, 2014.

S. Bechtle, M. Kumar, B. P. Somerday, M. E. Launey, and R. O. Ritchie, Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials, Acta Mater, vol.57, issue.14, pp.4148-4157, 2009.

J. Kameda, Microscopic Model of Hydrogen-Induced Intergranular Equilibrium, vol.34, pp.867-882, 1986.

P. Novak, R. Yuan, B. P. Somerday, P. Sofronis, and R. O. Ritchie, A statistical, physicalbased, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, vol.58, issue.2, pp.206-226, 2010.

X. Q. Wu and I. S. Kim, Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel, Mater. Sci. Eng. A, vol.348, issue.1-2, pp.309-318, 2003.

M. L. Martin, J. A. Fenske, G. S. Liu, P. Sofronis, and I. M. Robertson, On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Mater, vol.59, issue.4, pp.1601-1606, 2011.

A. T. Yokobori, The mechanism of hydrogen embrittlement: The stress interaction between a crack, a hydrogen cluster, and moving dislocations, Int. J. Fract, vol.128, issue.1, pp.121-131, 2004.

T. Matsuo, S. Matsuoka, and Y. Murakami, Fatigue crack growth properties of quenched and tempered Cr-Mo steel in 0.7 MPa hydrogen gas, 18th European Conference on Fracture, pp.1-8, 2010.

A. T. Yokobori, Y. Chinda, T. Nemoto, K. Satoh, and T. Yamada, The characteristics of hydrogen diffusion and concentration around a crack tip concerned with hydrogen embrittlement, Corros. Sci, vol.44, issue.3, pp.95-101, 2002.

A. Taha and P. Sofronis, A micromechanics approach to the study of hydrogen transport and embrittlement, Eng. Fract. Mech, vol.68, issue.6, pp.803-837, 2001.

J. K. Tien, R. J. Richards, O. Buck, and H. L. Marcus, Model of dislocation sweep-in of hydrogen during fatigue crack growth, Scr. Metall, vol.9, issue.10, pp.90287-90289, 1975.

M. Dadfarnia, M. L. Martin, A. Nagao, P. Sofronis, and I. M. Robertson, Modeling hydrogen transport by dislocations, J. Mech. Phys. Solids, vol.78, pp.511-525, 2014.
DOI : 10.1016/j.jmps.2015.03.002

J. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards, Hydrogen transport by dislocations, Metall. Trans. A, vol.7, issue.6, pp.821-829, 1976.

N. Saintier, T. Awane, J. M. Olive, S. Matsuoka, and Y. Murakami, Analyses of hydrogen distribution around fatigue crack on type 304 stainless steel using secondary ion mass spectrometry, Int. J. Hydrogen Energy, vol.36, issue.14, pp.8630-8640, 2011.

A. R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Metallogr. Microstruct. Anal, vol.5, issue.6, pp.557-569, 2016.

D. Tromans, On surface energy and the hydrogen embrittlement of iron and steels, Acta Metall. Mater, vol.42, issue.6, pp.90029-90038, 1994.

S. Lynch, Mechanisms of hydrogen assisted cracking-A review, Hydrog. Eff. Mater. Behav. Corros. Deform. Interact, pp.449-466, 2003.

C. D. Beachem, A new model for hydrogen-assisted cracking (hydrogen 'embrittlement'), Metall. Trans, vol.3, issue.2, pp.441-455, 1972.

I. M. Robertson, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech, vol.68, issue.6, pp.671-692, 2001.

P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum, Hydrogen effects on the character of dislocations in high-purity aluminum, Acta Mater, vol.47, issue.10, pp.156-157, 1999.

H. Birnbaum, Mechanisms of hydrogen related fracture of metals, ILLINOIS UNIV URBANA DEPT Mater. Sci. Eng, 1989.

S. Lynch and N. Ryan, Mechanisms of Hydrogen Embrittlement-Crack Growth in a LowAlloy Ultra-High-Strength Steel Under Cyclic and Sustained Stresses in Gaseous Hydrogen, DTIC Document, 1978.

S. P. Lynch, Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals, Scr. Metall, vol.13, issue.11, pp.90202-90205, 1979.

S. P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorptioninduced localised-slip process, Acta Metall, vol.36, issue.10, pp.90113-90120, 1988.

S. P. Lynch, Metallographic contributions to understanding mechanisms of environmentally assisted cracking, Metallography, vol.23, issue.2, pp.90016-90021, 1989.

M. S. Daw and M. I. Baskes, Application of the Embedded Atom Method to Hydrogen Embrittlement, Chemistry and Physics of Fracture, pp.196-218, 1987.

A. Barnoush and H. Vehoff, Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation, Acta Mater, vol.58, issue.16, pp.5274-5285, 2010.

A. Barnoush and H. Vehoff, Hydrogen embrittlement of aluminum in aqueous environments examined by in situ electrochemical nanoindentation, Scr. Mater, vol.58, issue.9, pp.747-750, 2008.

A. Barnoush, Hydrogen embrittlement , revisited by in situ electrochemical nanoindentation, p.288, 2007.

K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Lattice defects dominating hydrogenrelated failure of metals, Acta Mater, vol.56, pp.5158-5167, 2008.

M. Nagumo, M. Nakamura, and K. Takai, Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels, Metall. Mater. Trans. A, vol.32, issue.2, pp.339-347, 2001.

D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe et al., Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake, Acta Mater, vol.156, pp.245-253, 2018.

C. E. Jackson, Metallurgy and Weldability of Steels, 1978.

J. M. Radzikowska, Effect of specimen preparation on evaluation of cast iron microstructures, Mater. Charact, vol.54, issue.4-5, pp.287-304, 2005.

E. Bonnot, A. L. Helbert, F. Brisset, and T. Baudin, Microstructure and texture evolution during the ultra grain refinement of the Armco iron deformed by accumulative roll bonding (ARB), Mater. Sci. Eng. A, vol.561, pp.60-66, 2013.

A. Standard, E112-12:Standard Test Methods for Determining Average Grain Size, ASTM Int, pp.1-27, 2012.

R. Hielscher and H. Schaeben, A novel pole figure inversion method: Specification of the MTEX algorithm, J. Appl. Crystallogr, vol.41, issue.6, pp.1024-1037, 2008.

L. Priester, Grain Boundaries: From Theory to Engineering, vol.172, 2013.

A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou et al., Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater, vol.60, issue.19, pp.6814-6828, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01892728

. Astm-int, Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8 / E8M-13a, pp.1-27, 2013.

J. M. Gere, Mechanics of Materials, 2008.

, ARMCO Pure Iron, Product Information 8-10, pp.1-12

R. W. Armstrong and S. M. Walley, High strain rate properties of metals and alloys, Int. Mater. Rev, vol.53, issue.3, pp.105-128, 2008.

S. Castagnet, J. C. Grandidier, M. Comyn, and G. Benoît, Hydrogen influence on the tensile properties of mono and multi-layer polymers for gas distribution, Int. J. Hydrogen Energy, vol.35, issue.14, pp.7633-7640, 2010.

Z. Sun, G. Benoit, C. Moriconi, F. Hamon, D. Halm et al., Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel, Int. J. Hydrogen Energy, vol.36, issue.14, pp.8641-8644, 2011.

, Foil Strain Gage for Hydrogen Gas Environment

R. J. Fields, T. Weerasooriya, and M. F. Ashby, Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel, Metall. Trans. A, vol.11, issue.2, pp.333-347, 1980.

V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Round Tensile Fracture, Acta Metall, vol.32, issue.1, pp.157-169, 1984.

M. Möser, Fractography with the SEM (Failure Analysis)," in Electron Microscopy in Solid State Physics (Materials Science Monographs, pp.366-385, 1987.

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech, vol.21, issue.1, pp.90052-90061, 1985.

, ISO 2566-1:1999, Steel. Conversion of elongation values. Carbon and low alloy steels, 1999.

H. Matsunaga, M. Yoshikawa, R. Kondo, J. Yamabe, and S. Matsuoka, Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere, Int. J. Hydrogen Energy, vol.40, issue.16, pp.5739-5748, 2015.

I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc et al., Hydrogen embrittlement susceptibility of a high strength steel X80, Mater. Sci. Eng. A, vol.527, issue.27-28, pp.7252-7260, 2010.

S. Wang, S. Ohnuki, N. Hashimoto, and K. Chiba, Hydrogen effects on tensile property of pure iron with deformed surface, Mater. Sci. Eng. A, vol.560, pp.332-338, 2013.

N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson et al., Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments, Corros. Sci, vol.59, pp.1-9, 2012.

S. Matsuoka, J. Yamabe, and H. Matsunaga, Criteria for determining hydrogen compatibility and the mechanisms for hydrogen-assisted, surface crack growth in austenitic stainless steels, Eng. Fract. Mech, vol.153, pp.103-127, 2016.

Y. Katz, N. Tymiak, and W. W. Gerberich, Nanomechanical probes as new approaches to hydrogen/deformation interaction studies, Eng. Fract. Mech, vol.68, issue.6, pp.619-646, 2001.

G. Bertolino, G. Meyer, and J. Perez-ipiña, In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4, J. Nucl. Mater, vol.322, issue.1, pp.57-65, 2003.

Y. Wada and R. Ishigaki, Evaluation of metal materials for hydrogen fuel stations, Proc. Int. Conf. Hydrog. Saf, 2005.

E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, and D. I. Pantelis, Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging, Int. J. Hydrogen Energy, vol.36, issue.19, pp.12626-12643, 2011.

L. Briottet, I. Moro, and P. Lemoine, Quantifying the hydrogen embrittlement of pipeline steels for safety considerations, Int. J. Hydrogen Energy, vol.37, issue.22, pp.17616-17623, 2012.

T. Matsumoto, H. Itoga, S. Hirabayashi, M. Kubota, and S. Matsuoka, Effect of Displacement Velocity on Elastic Plastic Fracture Toughness of SM490B Carbon Steel Plate in 0.7 MPa Hydrogen Gas, Transactions Japan Soc. Mech. Eng. Part A, vol.79, pp.1210-1225, 2013.

T. Matsumoto, M. Kubota, S. Matsuoka, P. Ginet, J. Furtado et al., Threshold stress intensity factor for hydrogen-assisted cracking of CR-MO steel used as stationary storage buffer of a hydrogen refueling station, Int. J. Hydrogen Energy, vol.42, issue.11, pp.7422-7428, 2017.

Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, and S. Matsuoka, Unified evaluation of hydrogen-induced crack growth in fatigue tests and fracture toughness tests of a carbon steel, Int. J. Fatigue, vol.103, pp.223-233, 2017.

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2002.

M. Yoshikawa, T. Matsuo, N. Tsutsumi, H. Matsunaga, and S. Matsuoka, Effects of hydrogen gas pressure and test frequency on fatigue crack growth properties of low carbon steel in 0.1-90 MPa hydrogen gas, Trans. JSME, vol.80, issue.817, pp.254-0254, 2014.

J. Yamabe, M. Yoshikawa, H. Matsunaga, and S. Matsuoka, Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen, Procedia Struct. Integr, vol.2, issue.817, pp.525-532, 2016.

E. Astm, 647 -05: Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2005.

. Elber-w, Fatigue Crack Closure Under Cyclic Tension, Eng. Fract. Mech, vol.2, issue.1, pp.37-45, 1970.

R. Pippan, Threshold and effective threshold of fatigue crack propagation in ARMCO iron I: The influence of grain size and cold working, Mater. Sci. Eng. A, vol.138, issue.1, pp.90671-90680, 1991.

R. Pippan, Threshold and effective threshold of fatigue crack propagation in ARMCO iron II: The influence of environment, Mater. Sci. Eng. A, vol.138, issue.1, pp.15-22, 1991.

P. C. Paris, M. P. Gomez, and W. E. Anderson, A rational analytic theory of fatiuge, The Trend in Engineering, vol.13, issue.4, pp.9-14, 1961.

R. O. Ritchie, Mechanisms of fatigue crack propagation in ductile and brittle solids, Int. J. Fract, vol.100, issue.1, pp.55-83, 1999.

R. M. Pelloux, Crack extension by alternating shear, Eng. Fract. Mech, vol.1, issue.4, pp.90008-90009, 1970.
DOI : 10.1016/0013-7944(70)90008-1

J. Petit, G. Hénaff, and C. Sarrazin-baudoux, Environmentally Assisted Fatigue in the Gaseous Atmosphere, Comprehensive structural integrity, vol.6, pp.211-280, 2003.

A. K. Vasudevan and K. Sadananda, Classification of environmentally assisted fatigue crack growth behavior, Int. J. Fatigue, vol.31, issue.11-12, pp.1696-1708, 2009.

E. S. Drexler, A. J. Slifka, R. L. Amaro, N. Barbosa, D. S. Lauria et al., Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment, Fatigue Fract. Eng. Mater. Struct, vol.37, issue.5, pp.517-525, 2014.

A. J. Slifka, E. S. Drexler, N. E. Nanninga, Y. S. Levy, J. D. Mccolskey et al., Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment, Corros. Sci, vol.78, pp.313-321, 2014.

J. A. Ronevich and B. P. Somerday, Hydrogen Effects on Fatigue Crack Growth Rates in Pipeline Steel Welds, vol.6, pp.6-06, 2016.

K. Tazoe, S. Hamada, and H. Noguchi, Fatigue crack growth behavior of JIS SCM440 steel near fatigue threshold in 9-MPa hydrogen gas environment, Int. J. Hydrogen Energy, vol.42, issue.18, pp.13158-13170, 2017.

D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe et al., Hydrogen-assisted fatigue crack propagation in a pure BCC iron. Part II: Accelerated regime manifested by quasi-cleavage fracture at relatively high stress intensity range values, MATEC Web Conf, vol.165, p.3010, 2018.

J. A. Ronevich, B. P. Somerday, and C. W. San-marchi, Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels, Int. J. Fatigue, vol.82, pp.497-504, 2015.

G. Bilotta, G. Henaff, D. Halm, and M. Arzaghi, Experimental measurement of out-ofplane displacement in crack propagation under gaseous hydrogen, Int. J. Hydrogen Energy, vol.42, issue.15, pp.10568-10578, 2017.

J. Yamabe, M. Yoshikawa, H. Matsunaga, and S. Matsuoka, Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment, Int. J. Fatigue, 2017.

Y. Takeo and S. Kiyoshi, The effect of frequency on fatigue crack propagation rate and striation spacing in 2024-T3 aluminium alloy and SM-50 steel, Eng. Fract. Mech, vol.8, issue.1, pp.90078-90081, 1976.

Y. Ogawa, D. Birenis, H. Matsunaga, A. Thøgersen, Ø. Prytz et al., Multi-scale observation of hydrogen-induced, localized plastic deformation in fatiguecrack propagation in a pure iron, Scr. Mater, vol.140, pp.13-17, 2017.

Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe et al., Hydrogen-assisted fatigue crack propagation in a pure BCC iron. Part I: Intergranular crack propagation at relatively low stress intensities, MATEC Web Conf, vol.165, p.3011, 2018.

J. Yamabe, T. Matsumoto, S. Matsuoka, and Y. Murakami, A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel, Int. J. Fract, vol.177, issue.2, pp.141-162, 2012.

M. Dadfarnia, A. Nagao, S. Wang, M. L. Martin, B. P. Somerday et al., Recent advances on hydrogen embrittlement of structural materials, Int. J. Fract, pp.1-21, 2015.

S. K. Banerji, C. J. Mcmahon, and H. C. Feng, Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen, Metall. Trans. A, vol.9, issue.2, pp.237-247, 1978.

Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe et al., The role of intergranular fracture on hydrogen-assisted fatigue crack propagation in pure iron at a low stress intensity range, Mater. Sci. Eng. A, vol.733, pp.316-328, 2018.

Z. F. Zhang and Z. G. Wang, Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries, Acta Mater, vol.51, issue.2, pp.347-364, 2003.

H. Cai and A. J. Mcevily, On striations and fatigue crack growth in 1018 steel, Mater. Sci. Eng. A, vol.314, issue.1-2, pp.86-89, 2001.

S. Lynch and S. Lynch, Some fractographic contributions to understanding fatigue crack growth, Int. J. Fatigue, vol.104, pp.12-26, 2017.

A. J. Slifka, E. S. Drexler, D. G. Stalheim, R. L. Amaro, D. S. Lauria et al., The Effect of Microstructure on the Hydrogen-Assisted Fatigue of Pipeline Steels, vol.6, pp.6-06, 2013.

B. P. Somerday, P. Sofronis, K. A. Nibur, C. S. Marchi, and R. Kirchheim, Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations, Acta Mater, vol.61, issue.16, pp.6153-6170, 2013.

K. A. Nibur, B. P. Somerday, C. S. Marchi, J. W. Foulk, I. et al., The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas, vol.44, pp.248-269, 2013.

D. Wan, A. Alvaro, V. Olden, and A. Barnoush, Hydrogen-assisted fatigue crack growth in ferritic steels -a fractographic study, MATEC Web Conf, vol.165, p.3004, 2018.

J. Pokluda and J. Siegl, Mixed Fatigue Fracture Morphology of Ferritic Ductile Iron, Fatigue Fract. Eng. Mater. Struct, vol.13, issue.4, pp.375-385, 1990.

M. Koyama, Y. Onishi, and H. Noguchi, Characteristics of hydrogen-assisted intergranular fatigue crack growth in interstitial-free steel: role of plastic strain localization, Int. J. Fract, vol.206, issue.1, pp.123-130, 2017.

Y. Takahashi, K. Yamaguchi, M. Tanaka, K. Higashida, and H. Noguchi, On the micromechanism of hydrogen-assisted cracking in a single-crystalline iron-silicon alloy thin sheet, Scr. Mater, vol.64, issue.6, pp.537-540, 2011.

D. H. Lassila and H. K. Birnbaum, Intergranular fracture of nickel: the effect of hydrogensulfur co-segregation, Acta Metall, vol.35, issue.7, pp.90127-90128, 1987.

S. Matsuoka, H. Tanaka, N. Homma, and Y. Murakami, Influence of hydrogen and frequency on fatigue crack growth behavior of Cr-Mo steel, Int. J. Fract, vol.168, issue.1, pp.101-112, 2011.

H. Matsunaga, T. Nakashima, K. Yamada, T. Matsuo, J. Yamabe et al., Effect of Test Frequency on Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel and Ductile Cast Iron, vol.6, 2016.

H. Matsunaga, O. Takakuwa, J. Yamabe, and S. Matsuoka, Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.375, p.20160412, 2017.

L. Guerra-rosa, C. M. Branco, and J. C. Radon, Monotonic and cyclic crack tip plasticity, Int. J. Fatigue, vol.6, issue.1, pp.90004-90009, 1984.

J. R. Rice, Mechanics of Crack Tip Deformation and Extension by Fatigue, Fatigue Crack Propag, vol.4, pp.247-309, 1967.

R. C. Mcclung, Crack Closure and Plastic Zone Sizes in Fatigue, Fatigue Fract. Eng. Mater. Struct, vol.14, issue.4, pp.455-468, 1991.

R. D. Pfaff, P. D. Washabaugh, and W. G. Knauss, An interpretation of Twyman-Green interferograms from static and dynamic fracture experiments, Int. J. Solids Struct, vol.32, issue.6-7, pp.939-955, 1995.

L. Humbert, V. Valle, and M. Cottron, Experimental determination and empirical representation of out-of-plane displacements in a cracked elastic plate loaded in mode I, Int. J. Solids Struct, vol.37, issue.39, pp.210-213, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00264002

L. D. Paolinelli, G. E. Carr, N. Gubeljak, J. Predan, and M. D. Chapetti, Fracture toughness analysis of a ductile steel by means of 3D surface displacements, Eng. Fract. Mech, vol.98, issue.1, pp.109-121, 2013.

T. Hobson, Talysurf CCI 6000

J. Titchmarsh, Transmission Electron Microscopy, 2009.

E. Zürich, STEM Detectors

K. Saitoh, High-resolution Z-contrast Imaging by the HAADF-STEM Method, Nihon Kessho Gakkaishi, vol.47, issue.1, pp.9-14, 2005.

. Fei, Helios NanoLab G3 -Electron Microscopy Center

S. Suzuki, Features of transmission EBSD and its application, Jom, vol.65, issue.9, pp.1254-1263, 2013.

C. A. Volkert and A. M. Minor, Focused Ion Beam Microscopy and Micromachining, MRS Bull, vol.32, issue.05, pp.389-399, 2007.

B. W. Kempshall, S. M. Schwarz, B. I. Prenitzer, L. A. Giannuzzi, R. B. Irwin et al., Ion channeling effects on the focused ion beam milling of Cu, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.19, issue.3, p.749, 2001.

J. Song and W. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron, Nat. Mater, vol.12, issue.2, pp.145-51, 2013.

S. Taketomi, R. Matsumoto, and N. Miyazaki, Atomistic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron, J. Mater. Res, vol.26, issue.10, pp.1269-1278, 2011.

N. Taketomi, S. Imanishi, S. Matsumoto, and R. Miyazaki, Dislocation dynamics analysis of hydrogen embrittlement in alpha iron based on atomistic investigations, 13th Int. Conf. Fract, pp.16-21, 2013.

T. Hajilou, Y. Deng, B. R. Rogne, N. Kheradmand, and A. Barnoush, In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking, Scr. Mater, vol.132, pp.17-21, 2017.

S. Wang, A. Nagao, P. Sofronis, and I. M. Robertson, Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel, Acta Mater, vol.144, pp.164-176, 2018.

J. Kacher and I. M. Robertson, Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel, Acta Mater, vol.60, issue.19, pp.6657-6672, 2012.

R. Matsumoto, M. Riku, S. Taketomi, N. Miyazaki-;-fe, -. et al., Hydrogen-Grain Boundary Interaction in Fe, Prog. Nucl. Sci. Technol, vol.2, issue.0, pp.9-15, 2011.

S. Wang, M. L. Martin, I. M. Robertson, and P. Sofronis, Effect of hydrogen environment on the separation of Fe grain boundaries, Acta Mater, vol.107, pp.279-288, 2016.

M. Riku, R. Matsumoto, S. Taketomi, and N. Miyazaki, Atomistic simulation study of cohesive energy of grain boundaries in alpha iron under gaseous hydrogen environment, Zair. Soc. Mater. Sci. Japan, vol.59, issue.8, pp.589-595, 2010.

L. Wan, W. Tong, A. Ishii, J. Du, and N. Ishikawa, Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron, Int. J. Plast, pp.1-26, 2018.

R. A. Oriani and P. H. Josephic, Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metall, vol.22, issue.9, pp.90061-90064, 1974.

R. Matsumoto, S. Seki, S. Taketomi, and N. Miyazaki, Hydrogen-related phenomena due to decreases in lattice defect energies -Molecular dynamics simulations using the embedded atom method potential with pseudo-hydrogen effects, Comput. Mater. Sci, vol.92, pp.362-371, 2014.

H. Shoda, H. Suzuki, K. Takai, and Y. Hagihara, Hydrogen Desorption Behavior of Pure Iron and Inconel 625 during Elastic and Plastic Deformation, Tetsu-to-Hagane, vol.95, issue.1, pp.573-581, 2009.

R. Pippan, C. Zelger, E. Gach, C. Bichler, and H. Weinhandl, On the mechanism of fatigue crack propagation in ductile metallic materials, Fatigue Fract. Eng. Mater. Struct, vol.34, issue.1, pp.1-16, 2011.

Q. J. Peng, J. Kwon, and T. Shoji, Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water, J. Nucl. Mater, vol.324, issue.1, pp.52-61, 2004.

M. M. Hall, An alternative to the Shoji crack tip strain rate equation, Corros. Sci, vol.50, issue.10, pp.2902-2905, 2008.