
HAL Id: tel-02155271
https://theses.hal.science/tel-02155271

Submitted on 13 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network topologies for cost reduction and QoS
improvement in massive data centers

Zina Chkirbene

To cite this version:
Zina Chkirbene. Network topologies for cost reduction and QoS improvement in massive data centers.
Other [cs.OH]. Université Bourgogne Franche-Comté, 2017. English. �NNT : 2017UBFCK002�. �tel-
02155271�

https://theses.hal.science/tel-02155271
https://hal.archives-ouvertes.fr

UNIVERSITY OF BURGUNDY

U.F.R. SCIENCES ET TECHNIQUE
ECOLE DOCTORAL SPIM

THESIS

Presented by:

Zina Chkirbene

Submitted in fulfilment of the requirements
for the degree of:

DOCTOR OF THE UNIVERSITY OF BURGUNDY

NETWORK TOPOLOGIES FOR COST REDUCTION AND QOS

IMPROVEMENT IN MASSIVE DATA CENTERS

TOPOLOGIES RÉSEAU POUR LA RÉDUCTION DES COÛTS

ET L'AMÉLIORATION DE LA QUALITÉ DU SERVICE DANS LES

CENTRES DE DONNÉES MASSIVES.

Defended on 29-06-2017

Jury :

M. Ahmed LBATH, Professeur, Université Grenoble Alpes, Rapporteur

Mme. Salima BENBERNOU, Professeur, Université Paris Descartes, Rapporteur

M. Olivier TOGNI, Professeur, Université de Bourgogne, Examinateur

Mme. Tara Ali -YAHIYA, Maître de conférences HDR, Université Paris Sud 11, Examinateur

M. Sebti FOUFOU, Professeur, Université de Bourgogne, Directeur de thèse

M. Ridha HAMILA, Professeur, Université de Qatar, Co-encadrant

Acknowledgements

I would like to express my sincere gratitude to Prof. Sebti Foufou for

the continuous support of my Ph.D study and related research, for his

patience, motivation, and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis.

I would like to express my very special gratitude to Prof. Ridha

Hamila for being always available to help me with any necessary tech-

nical information thanks to his vast knowledge and skills in many ar-

eas. I am very thankful to Dr. Rachid Hadjidj who was abundantly

helpful and offered invaluable assistance, support and guidance.

Prof. Salima Benbernou and Prof. Ahmed Lbath have made me hon-

ored by reviewing my thesis and I would like to thank them for their

time and efforts taken to review this report. I would like also to thank

Prof. Olivier Togni and Dr. Tara Ali-Yahiya for being members of

my Jury.

I would like to show my gratitude to my dear parents Sadok and

Chwikha, my parents-in-law Mohamed and Hayet, my sister Mari-

ouma, my brother Youx and my two best friends Emna and Abir for

their love and kindness.

Special words for my husband Ala and my daughter Line. Thank you

for the support and company during late nights of work.

Abstract

Data centers (DC) are being built around the world to provide vari-

ous cloud computing services. One of the fundamental challenges of

existing DC is to design a network that interconnects massive num-

ber of nodes (servers)1 while reducing DC’ cost and energy consump-

tion. Several solutions have been proposed (e.g. FatTree, DCell and

BCube), but they either scale too fast (i.e., double exponentially) or

too slow. Efficient DC topologies should incorporate high scalability,

low latency, low Average Path Length (APL), high Aggregated Bot-

tleneck Throughput (ABT) and low cost and energy consumption.

Therefore, in this dissertation, different solutions have been proposed

to overcome these problems. First, we propose a novel DC topology

called LCT (Linked Cluster Topology) as a new solution for building

scalable and cost effective DC networking infrastructures. The pro-

posed topology reduces the number of redundant connections between

clusters of nodes, while increasing the numbers of nodes without af-

fecting the network bisection bandwidth. Furthermore, in order to

reduce the DCs cost and energy consumption, we propose first a new

static energy saving topology called VacoNet (Variable Connection

Network) that connects the needed number of servers while reducing

the unused materials (cables, switches). Also, we propose a new ap-

proach that exploits the correlation in time of internode communica-

tion and some topological features to maximize energy saving without

too much impacting the average path length.

keywords: Cloud computing services, data center network, average

path length, energy consumption, infrastructure cost.

1In this document we will use the words ”node” and ”server” interchangeably.

Résumé

L’expansion des services en ligne, l’avènement du big data, favorisé

par l’internet des objets et les terminaux mobiles, a entrâıné une crois-

sance exponentielle du nombre de centres de données qui fournissent

des divers services de cloud computing. Par conséquent, la topolo-

gie du centre de données est considérée comme un facteur d’influence

sur la performance du centre de données. En effet, les topologies des

centres de données devraient offrir une latence faible, une longueur

de chemin moyenne réduite avec une bande passante élevée. Ces ex-

igences augmentent la consommation énergétique dans les centres de

données. Dans cette dissertation, différentes solutions ont été pro-

posées pour surmonter ces problèmes. Tout d’abord, nous proposons

une nouvelle topologie appelée LCT (Linked Cluster Topology) qui

augmente le nombre de nœuds, améliore la connexion réseau et opti-

mise le routage des données pour avoir une faible latence réseau. Une

nouvelle topologie appelée VacoNet (Variable connexion Network) a

été également présentée. VacoNet offre un nouveau algorithme qui

définit le exact nombre de port par commutateur pour connecter le

nombre de serveurs requis tout en réduisant l’énergie consommée et les

matériaux inutilisés (câbles, commutateurs). En outre, nous étudions

une nouvelle technique pour optimiser la consumation d’énergie aux

centres de données. Cette technique peut périodiquement estimer la

matrice de trafic et gérer l’état des ports de serveurs tout en main-

tenant le centre de données entièrement connecté. La technique pro-

posée prend en considération le trafic réseau dans la décision de ges-

tion des ports.

Mot clés: centre de données, topologies, cloud computing, consom-

mation d’énergie, le coût de l’infrastructure

Contents

Contents v

List of Figures ix

List of Tables xii

Acronyms xiii

Introduction xiv

0.1 Problem statement . xiv

0.2 Contributions . xv

0.3 Outline . xvi

1 Literature Review 1

1.1 Introduction . 1

1.2 An overview of DCs . 1

1.2.1 Hardware of DC networks 2

1.2.2 Example of DCs . 3

1.3 Green DCs . 3

1.3.1 Dynamic energy saving approach 4

1.3.2 Static energy saving approach 5

1.4 Topologies of DC networks . 7

1.4.1 Fixed topologies: Tree-based Topologies 7

1.4.1.1 FatTree . 7

1.4.1.2 VL2 . 7

1.4.2 Fixed topologies: Recursive Topologies 8

v

CONTENTS

1.4.2.1 DCell . 8

1.4.2.2 BCube . 8

1.4.2.3 FiConn . 9

1.4.2.4 FlatNet . 11

1.4.2.5 HyperBcube . 11

1.4.3 Flexible topologies . 12

1.4.3.1 DOS . 12

1.4.3.2 c-Through . 12

1.5 Comparisons of topologies . 13

1.5.1 Comparison criteria . 13

1.5.2 Performance comparison 15

1.6 Conclusion . 18

2 Enhancing QoS of Dc 20

2.1 Introduction . 20

2.2 Physical structure . 20

2.2.1 Fault free routing scheme 24

2.2.2 Fault tolerant routing scheme 29

2.3 LCT key features . 32

2.3.1 Network latency . 32

2.3.2 Fault tolerance . 33

2.3.3 Throughput . 33

2.3.4 Aggregate bottleneck throughput 34

2.4 Specialization of LCT . 34

2.4.1 Flat recursive topologies 34

2.4.1.1 HyperFlatNet: LCT (m = n2, k = 2) 34

2.4.1.2 ScalNet: LCT (m = n3

2
, k = 2) 36

2.4.1.3 ScalNet Vs HyperFlatNet 39

2.4.2 Layered recursive topologies 40

2.4.2.1 LaCoDa: LCT (m = n2, k ≥ 1) 40

2.4.2.2 LaScaDa: LCT (m = n3

2
, k ≥ 1) 44

2.4.2.3 LaScaDa Vs LaCoDa 49

2.5 Conclusion . 50

vi

CONTENTS

3 Reducing DC cost and energy consumption 52

3.1 Introduction . 52

3.2 Static energy saving . 53

3.2.1 Physical structure . 53

3.2.2 Controlled VacoNet . 53

3.2.3 Performance evaluation . 55

3.2.3.1 Power consumption 55

3.2.3.2 Simulation results 57

3.3 Dynamic energy saving . 60

3.3.1 Problem statement . 60

3.3.1.1 Closing links strategy 60

3.3.1.2 Routing strategy 61

3.3.1.3 Problem formulation 62

3.3.2 System model . 63

3.3.2.1 Network traffic model 63

3.3.2.2 Activating and deactivating links 66

3.3.2.3 Network topology 67

3.3.3 Closing ports management algorithm 68

3.3.3.1 Critical link classification algorithms 68

3.3.3.2 Critical non cluster links 69

3.3.3.3 Links deactivation algorithm 69

3.3.3.4 Routing algorithm 71

3.3.4 System performance . 71

3.3.4.1 Period study . 71

3.3.4.2 Energy consumption 75

3.3.5 Performance evaluation . 76

3.3.5.1 Traffic pattern 76

3.3.5.2 Simulations results 76

3.4 Cost reduction . 82

3.4.1 Switches cost . 82

3.4.2 Cabling cost . 83

3.4.3 Performance evaluation 84

3.4.3.1 Simulation results 84

vii

CONTENTS

3.5 Conclusion . 87

4 Conclusion and Future Research 88

4.1 Conclusion . 88

4.2 Future research . 89

5 Publications 90

5.1 Journal Paper . 90

5.2 Conference papers . 91

Bibliography 92

viii

List of Figures

1.1 Maps of Microsoft, Google and Amazon DCs. 4

1.2 A Fat-Tree structure . 7

1.3 A DCell structure . 9

1.4 A BCube structure. 10

1.5 Ficonn structure . 10

1.6 A FlatNet network for n=4 . 11

1.7 A HyPaC structure. 13

1.8 Link types in a DC network . 17

2.1 1-layer LCT topology with n=2. 21

2.2 2-layer LCT topology (m = n2 and m = n3

2
). 23

2.3 LCT network for n=2 and k=2. 24

2.4 LCT network for n=2 and k=3. 25

2.5 Case (a) when (Sk −Dk) mod m ∈ Ω. 29

2.6 Case (b) when (Sk −Dk) mod m /∈ Ω. 29

2.7 Routing in a k-layer (k > 1) LCT with multiple link failures. . . . 31

2.8 HyperFlatNet network using 4-port switches 35

2.9 The APL of HyperFlatNet compared to DCell, BCube, FatTree

for 1000 servers. 36

2.10 The performance of a 1000-server FlatNet/HyperFlatnet with dif-

ferent values of MaxLifeTime. 37

2.11 ScalNet network for n=4 and k=2. 38

2.12 The number of nodes of ScalNet, FlatNet, DCell and BCube under

different port count switches configuration. 38

ix

LIST OF FIGURES

2.13 Percentage of number of nodes gain of ScalNet compared to Flat-

net, BCube and DCell under different port count switches config-

urations. 39

2.14 ScalNet Vs HyperFlatNet performance comparison. 40

2.15 Average path length of LaCoDa under different configurations. . . 43

2.16 Path length distribution for (n = 6, k = 4). 44

2.17 Aggregated bottleneck throughput of LaCoDa under different con-

figurations. 46

2.18 Average path length of LaScaDa under different configurations. . 47

2.19 Network diameter of various layered topologies. 48

2.20 Scalability length distribution under different port switch and node

degree configurations. 48

2.21 The number of nodes of LaScaDa, HyperBCube, Ficonn, Flecube,

DCell and BCube under different port count switches configuration

and k=3. 49

2.22 The number of nodes of LaScaDa, FlatNet, DCell and Bcube under

different port count switches configurations. 50

2.23 LaScaDa Vs LaCoDa performance comparison. 51

3.1 A 36-server 2-layer VacoNet constructed using 3-port switches. . . 54

3.2 Average path length of VacoNet compared with FlatNet, BCube,

FatTree and ScalNet. 58

3.3 APL Vs the number of switches and n-port switch in VacoNet. . . 58

3.4 Network capacity of VacoNet compared with FlatNet, BCube, Fat-

Tree and ScalNet. 59

3.5 Power consumption of VacoNet compared with FlatNet, BCube,

FatTree and ScalNet. 60

3.6 Example of network where cluster 4 communicates with cluster 2. 61

3.7 Example of a matrix moving average with a subset a. 63

3.8 Example of the matrix correlation under different subset a 64

3.9 Case where the maximum links to be activated is CNCL=2. . . . 67

3.10 Example of a network with 20 nodes with threshold γ = 1. 67

3.11 HyperFlatNet links classification. 69

x

LIST OF FIGURES

3.12 HyperFlatNet critical non cluster links. 71

3.13 Example of nc and nup. 73

3.14 The consumed and saved energy during a period T 74

3.15 The energy consumption of the tested network under different cor-

relation values (a) compared to the original system HyperFlatNet

with a varied λ . 77

3.16 The energy consumption of the tested network under different cor-

relation values (a) compared to the original system HyperFlatNet

with a varied network load. 78

3.17 Effect of the period T on the energy consumption. 78

3.18 Effect of γ on the system energy consumption. 79

3.19 Effect of γ on the system energy consumption (3D) for T=2 . . . 80

3.20 The APL of the tested network under different correlation values

a, compared with the original HyperFlatNet network for different

values of λ . 81

3.21 The APL of the tested network under different correlation values

a compared with the original HyperFlatNet network with a varied

network traffic . 81

3.22 The APL of the tested network for different values of λ and corre-

lation values a, when T=2 . 82

3.23 Effect of γ on the APL of tested network (T=10, a=100) 83

3.24 Switch Cost of VacoNet compared with FlatNet, BCube, FatTree

and ScalNet. 85

3.25 Cabling Cost of VacoNet compared with FlatNet, BCube, FatTree

and ScalNet. 85

3.26 The histogram of the total cost for VacoNet compared with Flat-

Net, BCube, FatTree and ScalNet for 10000 servers. 86

xi

List of Tables

1.1 Comparison of topologies supporting 2 layers only. 15

1.2 Comparison of layered topologies. 16

1.3 Categories of different DC network topologies according to their

scalability. 16

1.4 Number of nodes under different configurations. 16

1.5 Cost comparison between different topologies 18

2.1 Nomenclatures table used in LCT key features computation . . . 30

2.2 Cost comparison between LCT, DCell and BCube. 33

2.3 Performance analysis under different network configurations . . . 41

2.4 Number of nodes under different configurations 42

2.5 The performance of HyperBcube and LaScaDa under different con-

figurations (Fault-Free). 45

2.6 The performance of BCube and DCell under different configura-

tions (Fault-Free). 45

3.1 Nomenclatures table . 55

xii

Acronyms

DC Data Center

DCN Data Center Networks

APL Average Path Length

ABT Aggregate Bottleneck Throughput

QoS Quality of Service

MDCs Modular Data Center

AWS Amazon Web Service

SDN Software Defined Networking

FPGA Field Programmable Gate Array

PCPG Per Core Power Gating

DVFS Dynamic Voltage and Frequency Scaling

SV Server Virtualisation

MA Moving Average

ToR Top of Rack

VLB Valiant Load Balancing

NIC Network Interface Card

DOS Data center Optical Switch

AWGR Arrayed Waveguide Grating Router

xiii

Introduction

Data centers are being built around the world to provide various cloud computing

services including search (e.g., Google, Bing), video content hosting and distri-

bution (e.g., YouTube, Netflix), social networking (e.g., Facebook, Twitter), and

large-scale computations (e.g., data mining, indexing) [1; 2; 3; 4]. Microsoft, IBM,

Google, Amazon, Yahoo and eBay are running Data Centers with at least 50,000

nodes for each one of them [5; 6]. Consequently, the Data Centers infrastructure

must be well designed to maintain the consumed energy and the cost of both

deployment and maintenance at an acceptable level [7]. In addition, data avail-

ability and scalability are considered as critical criteria in the design of a Data

Center topology because of their big impact on the infrastructure cost. Hence,

the topology of the Data Center is regarded as the most significant factor, since it

does not only determine the reliability of a Data Centers, but also plays a control

role in network capacity, fault tolerance, latency, cost and routing efficiency.

0.1 Problem statement

Data Centers topologies should provide high scalability, low latency, small av-

erage path length, low cost and high bisection bandwidth. However, existing

topologies as FatTree [8], FiConn [9], DCell [10], BCube [11], and SprintNet

[12] have some limitations, as they either scale too fast (i.e. double exponen-

tially) or too slow; they suffer from performance bottlenecks, and they are costly

to implement. Moreover, the energy consumption is a critical problem in Data

Centers [13]. In 2010 the total energy consumed by Data Centers around the

world amounts for 1.5% of the global electrical power consumption. According

to [14], Data Centers’ energy consumption was estimated to be about 120 billion

xiv

0. Introduction

Kilowatts in 2012, which is about 2.8% of the total electricity bill in the USA.

Also, the use of traditional routing algorithms in some topologies increases the

energy consumption in Data Centers. Basically, traditional routing algorithms

forward packets to destinations without taking into account energy consumption

[15]. Since only a subset of the network infrastructure (switches and links) is

involved when forwarding data packets to their destinations, a significant amount

of energy can be saved if only involved network resources are turned on while the

other are put in sleep mode or turned off altogether.

0.2 Contributions

The main purpose of this work is to propose new scalable and cost-effective

Data Centers networking infrastructures that combines the advantages of ex-

isting topologies while avoiding their limitations and reducing the Data Centers’

cost and energy consumption.

Our first contribution is to propose a new Data Center topology, called LCT

(Linked Cluster Topology) that combines the advantages of previous topologies

while avoiding their limitations. The proposed topology uses a small node degree

that matches the physical restriction for servers. Furthermore, LCT interconnects

a large number of servers while reducing the wiring complexity. This strategy in-

creases the number of directly connected clusters per layer and avoids redundant

cluster connections. As a result, we get a good quality of nodes in terms of

bisection bandwidth and aggregated bottleneck throughput. LCT forwards pack-

ets between nodes using a new hierarchical row-based routing algorithm. Based

on the modular difference between the source and destination coordinates, the

algorithm constructs the route to the source.

The second contribution is the design of a new Data Center networking topol-

ogy called VacoNet (Variable Connection Network) that reduces the cost, the

energy consumption and the APL compared to the existing topologies. VacoNet

inspires its connection from LCT topology to avoid the redundant clusters con-

nection towards a low latency and APL. In addition, we propose a new approach

to reduce energy consumption in Data Centers for better performance. By ex-

ploiting the correlation in time of the network traffic, the proposed approach uses

xv

0. Introduction

the traffic matrix of the current network state, and manages the state of switch

ports (on/off) at the beginning of each period, while making sure to keep the

Data Center fully connected. During the rest of each time period, the network

must be able to forward its traffic through the active ports.

0.3 Outline

This work will be presented through three chapters:

• In the first chapter, we give an overview of Data Centers. We also introduce

the hardware used in DCN’s and present the energy saving aspects in green

Data Centers. Then, we analyze the topologies designs of DCN’s from

various aspects.

• In the second chapter, we present the LCT topology and its new physical

structure and routing algorithms to interconnect nodes and transmit data.

• In the third chapter, we present the proposed dynamic and static approaches

for green Data Centers.

• Chapter four gives the general conclusion and presents few ideas of future

extensions of this work.

xvi

Chapter 1

Literature Review

1.1 Introduction

In this chapter, we give an overview about DCs and provide both a qualitative

and quantitative analysis of their features. In this context, we present a perfor-

mance comparisons between typical topologies designs, connectivity discussion

on average degree, bandwidth calculation, and diameter estimation, as well as

capacity enhancement of DCs. This chapter is organized as follows: In section

1.2, we present an overview about DCs and study existing techniques for green

DCs in section 1.3. In section 1.4, We start with a discussion about various

representative DC topologies, then compare them in section 1.5 from different

perspectives to highlight the advantages and disadvantages of each topology.

1.2 An overview of DCs

A DC is regarded as a physical centralized repository for computation, storage,

management, and dissemination of information and data. A typical DC consists

of computers, switches, racks of servers. In this section, we present a detailed

description of DC hardware and give some examples of DC.

1

1.2.1. Hardware of DC networks

1.2.1 Hardware of DC networks

• Switches

Switches are the backbone of DCs’ implementations. Generally, six types of

switches are used in cloud DCs. Four categories of core switches, namely:

Cisco Nexus 7000 Series DC switches [16], Huawei Cloud Engine 12 800 Se-

ries switches [17], Ruijie RG-N18000 Series switches [18], and Arista 7500E

Series switches [19], and categories of Top Of Rack (ToR) switches, namely:

Cisco Nexus 3064 Series [20] and Arista 7050QX Series switches [21]. Core

switches are characterized by their high performance compared with the

ToR switches. On the other hand, optical switches have gained great at-

tention in recent years. An optical switch enables signals in optical fibers

or integrated optical circuits to be selectively switched from one circuit to

another.

• Servers

Servers (nodes) are the core physical components of in DC network (DCN).

Servers analyze, store, process and send massive data. They directly de-

termine the performance of Data Centes. Servers can be divided into three

categories: tower servers, rack servers (ThinkServer RD630 [22], IBM Sys-

tem x3650 M4 Server [23]), and blade servers (Huawei Tecal BH640 V2

Blade Server [24] and PowerEdge M820 Blade Server [25]).

• Racks

Racks are essential in DCNs since they facilitate the management of DCs

and allow to save space. Racks support switches, servers and storage devices

and can be divided in two types: cabinet and open racks which are easy

to install, configure, and manage. In contrast to open racks, cabinets are

more secure and stable.

• Cables

Cables interconnect components (switches, servers and storage devices) and

transport electrical or optical signals. Cables are generally categorized as

copper and fiber according to the medium. It is crucial to choose proper

cables for different applications. The considerations include: the required

2

1.2.2. Example of DCs

useful life of cables, the DC size, the cabling system capacity, and recom-

mendations or specifications of vendors’ equipment.

1.2.2 Example of DCs

Large IT companies construct several production DCs to support their business.

• Google owns 36 production DCs globally, 19 of which are in America, 12

in Europe, 3 in Asia, 1 in Russia, and 1 in South America [26]. These DCs

support Google services, such as searching, Gmail, and Google Maps. In

2016-2017, Google DCs will be constructed in Oregon USA, Tokyo Japan

and other ten countries and regions.

• Microsoft owns production DCs in America, Europe and Asia [27]. It built

Washington Quincy DC on an area of 75 acres in 2007. Quincy Modular

DC was online in 2011, covers 93,023 square feet and utilizes green tech-

nologies. In late 2013, Microsoft approved a corporate budget of 11 million

to purchase a 200 acre land in Quincy to build a large-scale DCs.

• Dublin DC [28] is the biggest oversea DCs of Microsoft. It covers 303,000

square feet, and achieves cooling by natural wind for saving energy. It was

expanded with a new 112,000 square feet to place modular DCs (MDCs).

Boydton MDC with 316,300 square feet can quickly meet customer demands

for cloud services [28].

• Amazon owns DCs globally, which not only support e-commerce busi-

nesses, but also the services for worldwide enterprises, governments, and

startup companies by Amazon Web Service (AWS) [29].

Figure 1.1 shows the maps of Microsoft, Google and Amazon DCs.

1.3 Green DCs

Energy consumption is becoming a serious issue for DCs as they grow bigger

and bigger. Many researches have been recently conducted to tackle the issue

3

1.3.1. Dynamic energy saving approach

(a) Map of Microsoft DCs.

(b) Map of Google DCs.

(c) Map of Amazon DCs.

Figure 1.1: Maps of Microsoft, Google and Amazon DCs.

of energy saving in DCs, and can classify in to two categories: Dynamic energy

saving approaches and Static energy saving approaches.

1.3.1 Dynamic energy saving approach

In this category, several topologies have been proposed, such as: Merge Networks

[30], Elastic Tree [31], Energy-aware Routing Model[32].

• Merge Networks was proposed in [30]. Its aim it to reduce switch power

consumption by combining N low traffic links into K high traffic links

(K < N), and powering off remaining ports or putting them in low power

mode.

4

1.3.2. Static energy saving approach

• Authors in [31] proposed Elastic Tree. The key idea is to find the minimum-

power network subsets and shutting down the unused network elements.

This approach used three modules: optimizer, routing and power control.

The optimizer aims to find the minimum network subset to satisfy all traffic.

The routing module calculates the paths of flows. The power control module

manages the states of network devices. Although this approach improves

energy saving, it requires complete knowledge of the traffic matrix at each

instant t.

• Energy-aware Routing Model is proposed in [32]. By using few switches and

a predefined throughput threshold, this approach tries to satisfy a given traf-

fic matrix while reducing energy consumption. To do that, a basic routing

and basic throughput have to be computed by taking into consideration all

the possible switches. After that, the routing is recomputed and switches

eliminated until the throughput reaches the predefined threshold. The final

routing will be used, while switches not involved in the routing are powered

off for more energy saving.

Energy-aware Routing model takes several seconds to calculate a non-optimal

power-aware routing paths for thousands of flows. It takes even hours to

calculate a near optimal solution, which has a big impact on computation

efficiency and latency.

• Willow [33] is a flow scheduling algorithm for energy saving in network-

limited flows DCs. The key contribution is to consider both the number

of used switches and the active running duration of switches for network

energy saving, then use an SDN based approach to schedule the flows.

However, there are still many critical issues that still need to be addressed,

such as the computing complexity, the impact on network reliability, and

the impact on network performance caused by powering off devices.

1.3.2 Static energy saving approach

• A better management of data storage in DCs increases energy saving. So,

the idea is to use less storage to reduce energy consumption by using new

5

1.3.2. Static energy saving approach

storage resource management tools such as Automated Storage Provision-

ing, Data Compression and RAID Level [34].

• The use of renewable sources of energy such as wind, water, solar energy and

heat pumps, reduces energy consumption. GreenHadoop [35], GreenStar

Network Testbed [36], and Net-Zero Energy DCs [37] are using green and

renewable sources of energy. However, these topologies are very costly, in

addition to the many considerations that need to be taken into account,

such as: the climate, the location of the DCs and weather conditions.

• Purchasing More Energy-Efficient hardware is another solution for energy

saving. Basically, new servers use more efficient hardware as power sup-

plies, better DC voltage regulators, processors that consume less power,

and cooling fans that are more energy-efficient. Some contributions in this

context are: Low Energy Switch Block for FPGAs [38], Powernap [39], En-

ergy Management for Commercial Servers [40], Thread Motion [41], PCPG

(per-core power gating) [42], and Memory Power Management via DVFS

[43].

• AdyNet[44], Proteus [45], Pcube [46] are DCs network architectures de-

signed with energy efficiency in mind. These alternative approaches are

attractive, but still need to make their proofs in real settings.

• Server virtualization (SV) was proposed to consolidate servers and reduce

energy consumption by running multiple different workloads on one physical

host server. GreenCloud [47], TRP/VCS [48] and VPTCA [49] leverage such

technology. Virtualization combines the processing power onto some servers

that operate at higher total utilization rates, instead of operating many

servers at lower utilization rates. Servers in SV are assigned depending on

the characteristics of the applications and the network topology to improve

the traffic. However, at the same time this technology brings about some

additional costs induced by migrating VMs over the long-term, such as the

extra time to complete the migration and the large amount of generated

traffic between source and destination servers during VM migration, which

is very bandwidth greedy.

6

1.4.1. Fixed topologies: Tree-based Topologies

1.4 Topologies of DC networks

1.4.1 Fixed topologies: Tree-based Topologies

Tree-based topologies use intelligent switches for a smart routing of packets in a

DC. Some DCs topologies in this category are VL2 [50] and FatTree [8].

1.4.1.1 FatTree

FatTree is a fixed topology defined as extension of tree topology (Figure 1.2).

Each n-port switch in the edge tier is connected to n
2

servers, and it has n
2

ag-

gregated switches. The n
2

aggregation-level switches, the n
2

edge-level switches,

and the servers are connected to the edge switches form a basic cell of a fat tree,

which is called a pod. There are (n/2)2 n-port switches and this topology is simple

to implement. Unlike tree topologies, all the three levels use the same type of

switches. High-performance switches are not necessary in the aggregate and core

levels. However, the number of servers in FatTree is limited by the number of

switch ports.

Figure 1.2: A Fat-Tree structure

1.4.1.2 VL2

VL2 overcomes some of the critical issues in conventional DCs (e.g. over-

7

1.4.2. Fixed topologies: Recursive Topologies

subscription, agility and fault tolerance) by exploiting a uniform high capacity

from server to server. Furthermore, it supports virtual machine migration from

server to server without breaking the TCP connection and keeping the same

address. Hence, VL2 topology enhances the availability and reliability of the

network, especially in the presence of link or hardware failures. VL2 however

uses valiant load balancing (VLB), which randomly selects an intermediate switch

before forwarding a packet. This was found to be impractical in the case where

two hosts, connected to the same edge switch, want to communicate.

1.4.2 Fixed topologies: Recursive Topologies

Several topologies are using parallelism to interconnect servers in date center (e.g.

as DCell [10], BCube [11], HyperBcube[51], FiConn [9] and Portland [52]).

1.4.2.1 DCell

DCell is a recursive structure whose basic element called DCell0. Each server

in a DCell0 is connected to the switch in the same DCell0. In a DCellk, each

server will eventually have k + 1 links: the first link (or level0 link) is connected

to a switch when forming a DCell0, and leveli link is connected to a server in

the same DCelli (Figure 1.3). Most of DCell servers act as routers: they are

equipped with multiple interface cards (NICs), and only computational servers

are considered as routers. As a result, DCell topology scales double exponentially

because of additional and lengthy wiring communication links between switches

and servers.

1.4.2.2 BCube

BCube is a server-centric network structure, where a BCube1 is constructed

from n BCube0 and n-port switches. It makes use of more switches when con-

structing a higher level topology. It requires n switches to construct a BCube1

and connects one server in each BCube0. Hence, a BCube1 contains n BCube0

and n extra switches (Figure 1.4). Thus, a BCubek is built from n BCubek−1 and

nk extra n-port switches. These extra switches are connected to exactly one server

in each BCubek−1. BCube requires more switches when constructing higher level

8

1.4.2. Fixed topologies: Recursive Topologies

Figure 1.3: A DCell structure

structures, and DCell uses only level0 n-port switches. However, both require

servers to have (k+1) NICs. The implication is that servers will be involved in

switching more packets in DCell than in BCube.

1.4.2.3 FiConn

FiConn is a recursive structure: a high-level FiConn is built using low-level

FiConn/s. FiConn uses only the existing backup port on each server for in-

terconnection, and no other hardware cost is introduced. This topology provides

improvements to FatTree. First, it uses the interconnection intelligence on servers

rather than on switches, and hence it reduces the number of used switches (Fig-

ure 1.5). Indeed, if we denote by N the total number of servers connected using

n-port switches, then the number of switches needed in FatTree is 5N
n

(2 edges, 2

9

1.4.2. Fixed topologies: Recursive Topologies

Figure 1.4: A BCube structure.

aggregated and 1 core for each pod), while FiConn requires only N
n

switches.

Figure 1.5: Ficonn structure

10

1.4.2. Fixed topologies: Recursive Topologies

1.4.2.4 FlatNet

FlatNet is recursive topology. The first layer of the FlatNet contains n servers

and one n-port switch and the second layer consists of n2 1-layer FlatNet. A two

layers FlatNet can be considered as an n2 ∗ n matrix so it can be regarded as

having n columns where each column contains exactly n2 servers which belong

to n2 1-layer FlatNet. A column-based connection is used to connect the n2

servers located at the same column by using exactly n n-port switches. Hence,

every n servers (denoted by cluster) are directly connected to an ”external” server

and these clusters are connected using the connection pattern proposed in [53].

Figure 1.6 shows an example of FlatNet network for n=4.

Figure 1.6: A FlatNet network for n=4

1.4.2.5 HyperBcube

HyperBcube is a recursive topology [51]. The first layer of the HyperBcube

contains n servers and one n-port switch. Starting from the second layer (k ≥
2), HyperBcube can be considered as an n2 ∗ n(2×k−3) matrix having n(2×k−3)

columns, where each column contains exactly n2 servers which belong to a n2

(k-1)-layer HyperBcube. A column-based connection is used to connect the n2

11

1.4.3. Flexible topologies

servers located at the same column by using exactly n n-port switches. However,

the connection pattern in HyperBcube is inefficient since it results in redundant

cluster connections. In fact, if two clusters do not have any intermediate switch,

8 hops are needed to connect servers in these clusters.

1.4.3 Flexible topologies

1.4.3.1 DOS

DC Optical Switch (DOS) [54] is based on an all-optical switching fabric called

Arrayed Waveguide Grating Router (AWGR). AWGR allows different inputs to

reach the same output simultaneously by using different wavelengths. This char-

acteristic allows DOS to outperform existing DC interconnects in terms of the

bandwidth and the size of the switching fabric compared to electronic switches.

1.4.3.2 c-Through

HyPaC also called C-Through [55] is a hybrid network topology that makes

use of both electrical packet switching network and optical circuit switching net-

work [55]. It is composed of two parts: the first part is a tree-based electrical

network which maintains connectivity between each pair of top of rack (ToR)

switches; the second part is a reconfigurable optical network which offers high

bandwidth interconnection between certain racks. Both HyPaC and DOS are

optical circuit-switched networks. Although, they have the advantages of high

bandwidth and low cost, they suffer from considerable reconfiguration time. In

fact, the scheduling algorithms have to be well designed to avoid frequent circuit

reconfiguration and minimize the reconfiguration time. In addition, high-speed

packet buffers need to be designed to support large capacity, multiple queues

and provide short response times, so as to accommodate packets temporarily and

avoid unnecessary drops during the period of reconfiguration, which are as diffi-

cult as designing the DC interconnection network itself. Figure 1.7 shows HyPaC

structure.

12

1.5.1. Comparison criteria

Figure 1.7: A HyPaC structure.

1.5 Comparisons of topologies

1.5.1 Comparison criteria

• Degree of the servers: It is the number of network ports on the servers

in the DC. For the tree based topologies, only one port is needed on each

server. However, in the recursive topologies, the number of ports varies

according to the levels required.

• Scalability: It is the number of servers in a network. In order to meet the

increasing demands for services and better performance, the physical struc-

ture must have good scalability enabling incremental expansion without

affecting the existing servers.

• Diameter: Given the shortest distances between all pairs of nodes, the

diameter is defined as the maximum of these distances. A smaller diameter

leads to more effective routing, and lower transmission latency in practice.

• Latency: It consists of queuing/buffering delay at each hop, propagation

delay and transmission delay.

13

1.5.1. Comparison criteria

• Network capacity: DC should provide high network capacity to support

the high volumes of traffic generated by many online infrastructure services.

• Fault tolerance: A fault-tolerant architecture allows the system to con-

tinue with its current task even in the presence of failures.

• The aggregate bottleneck throughput: It measures the overall network

capacity under the all-to-all traffic pattern, where every server connects with

all other servers.

• Bisection bandwidth: It is the minimum number of links cut when a

network is partitioned into two equal halves over all partitions.

• Average Path length: It measures the efficiency of packet transmission

in a network. Hence, this is considered as one of the most important metric

to evaluate network topologies.

• Bandwidth: It is used to characterize data transfer rate, i.e. the amount

of data that can be carried from one point to another. There are four types

of data bandwidths that can occur under different traffic patterns:

– One-to-One bandwidth: Represents the maximum bandwidth that the

topology offers when one arbitrary node sends data to another arbi-

trary node.

– One-to-All bandwidth: Occurs when updating some software on all

nodes.

– One-to-Several bandwidth: Occurs when the file system is making

replicas.

• The cost: It includes hardware cost (server, switch racks) and energy cost.

• Energy consumption (power consumption): It has a high importance

for DCs. [7].

14

1.5.2. Performance comparison

1.5.2 Performance comparison

Some quantitative structural properties of existing topologies are presented

in Table 1.1 and Table 1.2. Table 1.3 shows a classification of some existing

topologies based on their scalability where k is the number of ports per

node, n is the number of ports per switch, and c is an arbitrary constant

associated with some hardware limitations. Table 1.3 reveals that topologies

with a scalability O(c) and O(nc) have physical limitations such as the size

of the optical switching fabric and the port count per switch. In fact,

VL2 (even with a three-layer network) can only connect n3

4
nodes, which

is an insufficient number of nodes for a large-scale DC. Moreover, DCell

and BCube provide good scalability. However, DCell has a high wiring

complexity and BCube requires more than three layers to scale up to a large

size. For instance, with a 4-port switch, we need five layers to build a DC

with 45 = 1024 nodes. A 5-layer BCube network needs five interface cards

per node, which is obviously expensive and difficult to manage in practice.

Hence, BCube has scalability issues when employing cost-effective small

degree node and small-port-count switches. Table 1.4 shows also that both

DCell and HyperBcube provide bigger number of nodes than BCube and

Tree based topologies.

VL2 FatTree

Nodes Number (n−2)n2

4
n3

4

Link Number (n+2)n2

4
3n

3

4

Per Node (n+2)
(n−2) 3

Switches Number 3n
2

+ n2

4
5n

2

4

Per Node (n+6)
(6n−2n)

5
n

Network Diameter 6 6

Table 1.1: Comparison of topologies supporting 2 layers only.

A DC network consists of switches, nodes and links [56]. As shown in

Figure 1.8, there are three types of links in a DC network: α (linking

two nodes), β (linking a node and a switch) and γ (linking two switches).

15

1.5.2. Performance comparison

HyperBcube DCell BCube
Nodes Number n2k−1 a1 = n(k = 1) nk

ak = ak−1(ak−1 + 1)(k ≥ 2)
Node degree k k k
Link Number kn2k−1 (k + 1)ak

2
knk

Switches Number kn2k−2 ak
n

knk−1

Table 1.2: Comparison of layered topologies.

c-Through VL2 DCell Ficonn BCube HyperBcube

Scalability O(c) O(nc) O(n2(k−1)
) O(n2(k−1)

) O(nk) O(n ∗ an(k−1))

Table 1.3: Categories of different DC network topologies according to their scal-
ability.

n Tree-based Topology k Recursive Topology
Basic
Tree

Fat
Tree

Clos
Net-
work

DCell BCube Ficonn HyperBcube

4 9 3 3 2 20 16 16 64
3 420 64 32 1024
4 176820 252 64 16384

6 64 16 8 2 42 36 81 216
3 1806 216 822 7776
4 3×106 1269 42×106 823543

8 216 54 36 2 72 64 256 512
3 5252 512 8192 32768
4 27×106 4096 4×106 2×106

16 512 128 96 2 272 256 4096 4096
3 74256 4096 2×106 1×106

4 5514×106 65536 274×106 268×106

Table 1.4: Number of nodes under different configurations.

16

1.5.2. Performance comparison

A DCell network has both α and β links, whereas a BCube network has

only β links. However, BCube has scalability issues and DCell has a high

wiring complexity [57]. FatTree and Clos-based networks are built using

mainly γ links. Since γ links connects only switches, their intensive use

has a negative impact on scalability [8]. An α link is the most simple

and direct connection between a pair of nodes. Without any intermediate

buffering, communication efficiency and maximal allowed bandwidth can

be high. In contrast, a β link requires an additional intermediate switch

for communication, but provides multiple non-blocking paths that allow

multiple pairs of nodes to share their communication channels. As a result,

a good tradeoff between cost and performance would be to use β links and

small-port-count switches.

Node Link Switch

ϒ Type β Type α Type

Figure 1.8: Link types in a DC network

For the bandwidth, the One-to-One, One-to-Several and One-to-All band-

widths are limited by the number of ports on each node (nodes degree k).

So, for a tree-based topology, the bandwidth equal 1, while for a recursive

topology the bandwidth equals k. Consequently, the basic tree topology has

the smallest All-to-All bandwidth because of the limited number of switch

ports at the root. In addition, this indicates that recursive topologies offers

a great bandwidth performance under any traffic configuration (k > 2).

Furthermore, existing topologies are rigid, in the sense that if we need a

specific number of nodes for our DC, the adopted topology will force us to

use a generally much higher number of nodes that is statically defined given

the number of ports per switch and the degree of each node. For large-scale

17

1.5.2. Performance comparison

BCube HyperBcube FatTree

Nodes Wn Weg Wc Wn Weg Wc Wn Weg Wc

45 4 84 3550 19 192 7300 9 72 4950

450 34 528 23200 62 192 13400 100 156 10850

4500 124 1632 73600 413 4896 679200 420 5184 530400

45000 369 5112 228600 1659 19872 4.6×106 1299 15732 2×106

Table 1.5: Cost comparison between different topologies

DCs, as the number of nodes increases, we need to increase the number of

layers and the number of ports per switches, which increases the number of

links. Table.1.5 presents the estimated wasted cost for different topologies

with different needed numbers of servers. We assume a price of 450 USD

for an Ethernet switch port, 50 USD for each inter rack cable, and 12 watt

energy consumption per switch port [58]. We denote by Wn the number

of additional unneeded nodes imposed by the adopted topology, Weg the

wasted energy in Watts, and Wc the wasted cost in USD. The results in

Table.1.5 show that the illustrated topologies have a physical limitation and

their scalability relies entirely on increasing the number of ports per switch.

For instance, for 4500 nodes, HyperBcube connects 4913. This results in

413 extra nodes and 46, 000 waste in cost, which is very high even for a

small number of nodes.

All the above limitations have been considered in the design of new DC

topologies to enhance the DC quality of service (QoS), enabling only β

links and small port-count switches to provide the required performance

while reducing the overall cost and energy.

1.6 Conclusion

In this chapter, we provide a comprehensive survey on the features, topolo-

gies, and hardware of DCN’s. We first give an overview of DCs. Next,

18

1.5.2. Performance comparison

we introduce the hardware of DCN’s, including switches, servers, racks and

cables used in industries, which are highly essential for designing DCN

topologies. And then we thoroughly analyze the architectures of DCN’s

from various aspects and network characteristics.

19

Chapter 2

Enhancing QoS of Dc

2.1 Introduction

Mega DCs provide the core support infrastructure for the cloud and amounts

for up to 45% of the total implementation cost. Consequently, the DC in-

frastructure must be well designed to improve the network performance [7].

In this chapter, we present a novel DC topology called LCT. While using

the same number of links and switches per node as HyperBcube and BCube,

LCT outperforms these topologies in terms of Scalability, APL, Bisection

bandwidth and ABT.

This chapter is organized as follows: In section 2.2, the physical structure

and routing algorithms of proposed topology LCT are presented. The key

features are presented in section 2.3. The specialization of LCT is given in

section 2.4.Finally, we conclude in section 2.5.

2.2 Physical structure

A 1-layer LCT network is basically composed of n nodes interconnected

with one n-port switch (see Figure 2.1). A 2-layer LCT is composed of

m 1-layer LCT (cluster) numbered from 1 to m, interconnected with m

20

2. Enhancing QoS of Dc

n-port switches numbered from 1 to m we qualify as internal switches. The

interconnection is represented as a m × n matrix L (see Figure 2.2) such

that L(i, j) (∀i ∈ {1..m} and ∀j ∈ {1..n}) is the number of the internal

switch to witch node (i, j) (node j in cluster number i) is connect to.

2-layer LaScaDa

1 2 3 4

2,1 3,1 4,1 4,2 1,2 2,2 3,2 1,1

1 2 3 4

1

1,2 1,1

Switch Server link

1

2 1

Figure 2.1: 1-layer LCT topology with n=2.

To generate matrix L we need first to generate its first row L1, then we

complete it as follows:

∀i ∈ {2..m}, ∀j ∈ {1..n} L(i, j) = (L(i− 1, j) + 1) mod m.

To generate L1, we propose a novel algorithm we call Linked Clusters

Maximization (LCM) (see Algorithm (1)). This algorithm maximizes the

number of directly connected clusters, which leads to a reduction in the

number of intermediate hops needed to transmit a packet to its destination

(i.e., reduces the APL).

In Algorithm (1), the first element of vector L1 is initialized to 1, then ∀i ∈
{2..n}, the best internal switch to be connected to node (1, i) is selected by

computing the size of the linked clusters set for each possible switch j (j =

1..m). The internal switch S∗ maximizing the number of connected clusters

is selected for node (1, i) by setting L1(i) = S∗. Note that when using

n-port switches, the highest number of clusters a cluster can be connected

to is equal to n(n− 1). This is due to the fact that a cluster has n nodes,

each one of which can be connected to one distinct internal switch, which

in turn can connect to (n− 1) different clusters. In Algorithm (1) we adopt

a greedy approach to find the best internal switch. So there is no need to

check all possible internal switches ∀j ∈ {1..m} all the time to find the best

one to connect to. In fact, at step i (∀i ∈ {2..n}), if an internal switch that

21

2. Enhancing QoS of Dc

Algorithm 1 Maximization Of The Linked Clusters Set

procedure LCM(n)
jselected is the index of the selected internal switch.
D is the Connectivity vector.
Input:
n is the column number in the matrix L.
Output:
L1 is the first line of the matrix L.

L1[1]←1 , jselected ← 0;
for i← 2 to n do

D[]← ∅
for j ← 1 to m do

L1(i)← L1(i− 1) + j
D(j)← LinkedClusters(i,L1)
if D(j)← i(i− 1) then

Break
end if

end for
jselected ← argmax(D)
L1(i)← L1(i− 1) + jselected

end for
end procedure
function LinkedClusters(p,L1)

Input:
L1 is the first line of the matrix L.
p is the internal switch index
Output:
LC is the connected cluster vector.

LC[]← ∅
for i← p downto 1 do

for j ← 1to(i− 1) do
LC ← [LC L1(i)− L1(i− j)]
Ω← Add (LC, Ω)

end for
end for
LC ← unique(([LC m− LC]) mod m))
Ω← uniqueΩ
return (Length(LC)) ;

end function

22

2. Enhancing QoS of Dc

…

…

…

…

…

…

…

…

…

…

 m
 1

-la
y

e
r L

C
T

 𝑛

 1-layer

 1-layer

 1-layer

 1-layer

…

…

…

…

…

…

…

In
te

rn
a

l
s
w

it
c
h

e
s

Figure 2.2: 2-layer LCT topology (m = n2 and m = n3

2
).

connects a number of clusters equal to the highest number of clusters using

i-port switches is found (i.e., i(i − 1)), then it is directly selected without

the need to check further internal switches. After L1 is totally generated,

the set Ω of linked clusters distances is computed as stated in function

LinkedClusters. The set Ω is such that ∀i ∈ {1..m} and ∀j ∈ Ω, cluster i

and cluster (i+ j) mod m are directly connected.

Figure 2.3 shows the network topology of LCT built using 2-port switches.

To connect 8 nodes based on LCT topology, 4 internal and 4 external 2-port

switches are used.

For a k-layer LCT network with k > 2, the total number of connected nodes

is n(m)k−1. Its connection pattern follows the same pattern as a 2-layer

LCT network. In fact, a 2-layer LCT connects m 1-layer LCT following the

pattern computed in matrix L. Similarly, a 3-layer LCT connects m 2-layer

LCT following the same pattern in matrix L. In general, a k-layer LCT

23

2.2.1. Fault free routing scheme

2 3

1

1

2

3

4

2,1

3,1

4,1

4,2

1,2 2,2

3,2

4

1,1

Figure 2.3: LCT network for n=2 and k=2.

connects m (k− 1)-layer LCT following the pattern in matrix L. Following

this recursive structure, the label of a node in the k-layer LCT network

is built from its label in the (k − 1)-layer LCT network where it appears,

prefixed with the number of that (k − 1)-layer LCT network. So, node

labeled (Ck−1, .., C1) in the (k − 1)-layer LCT network number Ck, will be

relabeled (Ck, Ck−1, .., C1).

Algorithm 2 shows how to construct a k-layer LCT network using m (k−1)-

layer LCT networks numbered from 1 to m.

Figure 2.4 shows an example of a LCT network where n = 2, k = 3. The

network is divided into four 2-layer LCT connected by the intermediate of

16 switches.

2.2.1 Fault free routing scheme

To forward a packet from a source (Sk, Sk−1, . . . , S1) to a destination (Dk, Dk−1, . . . , D1),

we propose a hierarchical row-based routing algorithm. A path P can be

established using the following k steps, where only one coordinate is used

in each step:

P = (Sk, Sk−1, . . . , S1)→ (Dk, ?, . . . , ?)→ (Dk, Dk−1, . . . , ?)→ . . .

→ (Dk, Dk−1, . . . , D2, ?)→ (Dk, Dk−1, . . . , D2, D1)

24

2.2.1. Fault free routing scheme

2-layer LCT number 1 2-layer LCT number 2

2-layer LCT number 3
2-layer LCT number 4

2,1

1,1

4,1

3,1

2 3

1 4

1

2

3

4

1,1,2

1,1,1

1,4,2

1,4,1

1,3,2

1,3,1

1,2,2

1,2,1

2 3

1 4

1

2

3

4

2,1,2

2,1,1

2,4,2

2,4,1

2,3,2

2,3,1

2,2,2

2,2,1

2 3

1 4

1

2

3

4

3,1,2

3,1,1

3,4,2

3,4,1

3,3,2

3,3,1

3,2,2

3,2,1

2 3

1 4

1

2

3

4

4,1,2

4,1,1

4,4,2

4,4,1

4,3,2

4,3,1

4,2,1

4,2,2

2,4

1,4

4,4

3,4

2,3

1,3

4,3

3,3

2,2

1,2

4,2

3,2

Figure 2.4: LCT network for n=2 and k=3.

25

2.2.1. Fault free routing scheme

Algorithm 2 Layered Linked Clusters Maximization

procedure Layered LCT(L)
k is the network degree.
Input:
L is the connection matrix.
m (k − 1)-layer LCT networks numbered from 1 to m
Output:
k-layer LCT network

/∗ Connect nodes/∗
for each tuple (Ck, Ck−1, .., Ci, .., C1) ∈ {1, ..,m}k−1 × {1, .., n} do

Connect node (Ck−1, .., Ci, .., C1) in the Ck−1-layer LCT network number
Ck to the internal switch number (Ck−1, .., C2, L(Ck, C1)).

end for
/∗ Relabel nodes/∗
for each tuple (Ck, Ck−1, .., Ci, .., C1) ∈ {1, ..,m}k−1 × {1, .., n} do

Change the label of node (Ck−1, .., Ci, .., C1) in the Ck−1-layer LCT net-
work number Ck to (Ck, Ck−1, .., Ci, .., C1) .

end for
end procedure

26

2.2.1. Fault free routing scheme

where ”?” denotes unknown/don’t care value.

For k = 2, to forward packets from node (S2, S1) to (D2, D1), we propose

a cluster based fault free routing scheme as shown in Algorithm 3. If the

source and destination have the same second coordinate, they are in the

same cluster and therefore are directly connected via an external switch.

However, if the modular difference between the source and destination clus-

ters belong to Ω (i.e. (D2 − S2) mod m) ∈ Ω), then an internal switch can

be used to connect the nodes with a maximum of 3 hops. If the modular

difference does not belong to Ω, then 2 or 3 internal switches have to be

used to forward the packet with up to 5 hops.

Thanks to the incremental nature of the links matrix L, the route used to

forward a packet from (S2, S1) to (D2, D1) can be directly deduced from the

route used to forward the packet from (1, S1) to ((D2 − S2) mod m,D1) by

adding D2 to the second coordinate of each node in the route. For instance,

if (1, S1) is connected to (D2, D1) via the intermediate nodes (T 1
2 , T

1
1) and

(T 2
2 , T

2
1) , i.e., via the path (1, S1) → (T 1

2 , T
1
1) → (T 2

2 , T
2
1) → (D2, D1),

then (S2, S1) is connected to ((D2−S2) mod m,D1) via the path (d, S1)→
((T 1

2 + d) mod m, T 1
1) → ((T 2

2 + d) mod m, T 2
1) → ((D2 + d) mod m,D1),

where d = (D2−S2) mod ,m. Hence, the algorithm (3) constructs the route

the nodes of the first cluster to the other nodes, while the other routes can

be directly deduced.

For k > 2, Algorithm 3 can be generalized for multi-layer LCT with two

different cases as shown in Figure 2.5 and Figure 2.6. In case (a) (see

Figure 2.5) when (Sk − Dk) mod m ∈ Ω, Dk and Sk are directly con-

nected to a common switch. Thus, a path of (..., Sk, . . .) → (..., Dk, . . .)

exists. Given a random position in the source row, one additional tran-

sition through the 1-layer LCT may be required, leading to a maximum

path length of two in the worst case. In case (b) (see Figure 2.6) when

(Sk −Dk) mod m /∈ Ω, there is no direct connection between Dk and Sk ,

thus a path of (..., Sk, . . .)→ (..., Ik, . . .)→ (..., Dk, . . .) is taken, where Ik

denotes a common intermediate row between Dk and Sk. Accordingly, the

path length is increased, leading to a maximum length of 3 intermediate

27

2.2.1. Fault free routing scheme

Algorithm 3 Fault Free Routing algorithm

1: procedure FaultFreeRouting((S2, S1), (D2, D1),Ω)
2: Input:
3: Ω is the vector of directly connected clusters
4: (S2, S1) is the source coordinates
5: (D2, D1) is the destination coordinates
6: Output:
7: Path is the path from the source to the destination

8: if S2 = D2 then
9: /∗The source and the destination are in the same cluster and are di-

rectly connected via an external switch/∗
10: Path← (S2, S1)→ (D2, D1)
11: else
12: if (S2 −D2) mod m ∈ Ω then
13: /∗The source and the destination are directly connected/∗
14: Find T 1

2 and T 1
1 such that P ← (S2, S1)→ (S2, T

1
1)→ (D2, T

1
2)→

(D2, D1).
15: else if (S2 −D2) mod m /∈ Ω then
16: /∗The source and the destination are not directly connected and

are linked only by the intermediate of 2 switches/∗
17: Find T 1

1 , T 1
2 , T 2

1 and T 2
2 such that P ← (S2, S1) → (T i2, T

i
1) →

(T j2 , T
j
1)→ (D2, D1) where (i, j) is an arrangement of {1,2}

18: else
19: /∗The source and the destination are not directly connected and

are linked only by the intermediate of 3 switches/∗
20: Find T 1

1 , T 1
2 , T 2

1 , T 2
2 , T 3

1 and T 3
2 such that P ← (S2, S1) →

(T i2, T
i
1) → (T j2 , T

j
1) → (T k2 , T

k
1) → (D2, D1) where (i, j, k) is an arrangement

of {1,2,3}.
21: end if
22: end if
23: Path← P
24: end procedure

28

2.2.2. Fault tolerant routing scheme

(… , Sk, … , S2, S1)
1-layer LCT

(… , Sk, … , S2, S1
′)

(… , Dk, … , S2, S1
′)

(… , Sk, … , S2, S1)

(… , Dk, … , S2, S1
′)

1-layer LCT
(… , S𝑘

′ ,… , S2, S1)

(… , 𝐷𝑘 ,… , S2, S1
′)

Figure 2.5: Case (a) when (Sk −Dk) mod m ∈ Ω.

(… , Sk, … , S2, S1)
1-layer LCT

(… , Sk, … , S2, S1
′)

(… , Dk, … , S2, S1
′)

(… , Sk, … , S2, S1)

(… , Dk, … , S2, S1
′)

1-layer LCT
(… , S𝑘

′ ,… , S2, S1)

(… , 𝐷𝑘 ,… , S2, S1
′)

Figure 2.6: Case (b) when (Sk −Dk) mod m /∈ Ω.

switches in the worst case.

2.2.2 Fault tolerant routing scheme

If some links are in failure, we propose a real time fault tolerant rout-

ing algorithm to change the routing tables of some nodes. We define the

MaxLifeT ime as the maximum length of a route to forward a packet to a

destination. As shown in Algorithm 4, if no route can be found using the

fault free routing algorithm, the fault tolerant algorithm allows the system

to find a reachable node to resume the routing.

Figure 2.7 presents an example with multiple link failures, where a feasible

path can still be established.

29

2.2.2. Fault tolerant routing scheme

Algorithm 4 Fault Tolerant Routing Algorithm

1: procedure FaultTolerantRouting(MaxlifeT ime)
2: NHops is the used number of hops
3: Intput:
4: MaxLifeT ime is maximum number of hops

5: NHops=0
6: while Routing failed and NHops<MaxlifeTime do
7: Find nearby severs in a radius of NHops and try routing by supposing

the selected node as new source
8: Select only Routes shorter than MaxlifeT ime
9: NHops=NHops+1

10: end while
11: end procedure

Table 2.1: Nomenclatures table used in LCT key features computation

Latencyi,j The latency between node i and node j
dqb−SR The queuing/buffering delays related to servers
dqb−SW The queuing/buffering delays related to switches
dT The transmission delays on one link
dP The propagation delays on one link

N i,j
Lk The number of links

N i,j
SR The total number of servers

N i,j
SW The total number of switches

PLi,j The path length between node i and node j
Tavg The average throughput
δi The size of the transmitted packet i
di The transmission delay of a packet i
nf The total number of the transmitted packets
ρi Status of reception of the packet i
NLinks The total of two-way communication links
NCPABT The proportion of the overall network capacity that the

aggregate bottleneck throughput can reach

30

2.2.2. Fault tolerant routing scheme

1-layer LCT 1-layer LCT (… , Sk, … , S2, S1) (… , Sk, … , S2, S 1
′) (… , Sk, … , S2

′ , S1)

(… , 𝐷k,… , S2
′ , S1

′)

(… , Sk, … , S2
′ , S1

′)

k-layer LCT k-layer LCT

(… , 𝐷k,… , S2, S1
′)

2-layer LCT

i-layer LCT (i<k)

(… , Sk ,… , Si
′ … , S2, S 1) 1-layer LCT (… , Sk ,… , Si

′ … , S2, S 1
′) k-layer LCT

(… , Dk, … , Si
′ … , S2, S 1

′)

k-layer LCT

(… , Sk
′ , … , S2, S 1

′) 1-layer LCT (… , Sk
′ , … , S2, S 1

′) k-layer LCT

(… , Dk,… , S2, S 1
′)

Figure 2.7: Routing in a k-layer (k > 1) LCT with multiple link failures.

31

2.3.1. Network latency

2.3 LCT key features

2.3.1 Network latency

When a node i is transmitting data to node j, the latency is expressed as

follows:

Latencyi,j = dqb−SRN
i,j
SR + dqb−SWN

i,j
SW + dTN

i,j
Lk + dP

(2.1)

where dqb−SR and dqb−SW are the queuing/buffering delays related to servers

and switches, dT and dP denote the transmission and propagation delays

on one link respectively (Table 2.1). For the path linking the nodes i and

j, Ni,j
Lk denote the number of links, servers and switches used to forward the

data from i to j. Ni,j
SR and Ni,j

SW represent the total number of servers and

switches. We have the followings:

N i,j
SW = N i,j

SR = PLi,j (2.2)

Nlinks = 2PLi,j (2.3)

where PLi,j denote the path length between node i and node j. Thus,

Eq. 2.1 becomes:

Latencyi,j = dqb−SR.PLi,j + dqb−SW .PLi,j + dT .2PLi,j + dP

= PLi,j(dqb−SR + +dqb−SW + 2dT) + dP (2.4)

According to Eq. 2.4 the average latency is equal to

Latency = APL(dqb−SR + +dqb−SW + 2dT) + dP (2.5)

Eq. 2.5 shows that the average latency is an increasing function of APL.

32

2.3.3. Throughput

2.3.2 Fault tolerance

Table 2.2 shows that LCT has k parallel node-disjoint paths, which is sim-

ilar to DCell and BCube, FatTree has no node-disjoint paths. Hence, with

same number of switch per server as BCube (k
n
), LCT increases the net-

work performance since it has a multiple alternative paths which reduce the

connection failure rate even with high link failure rate.

LCT DCell BCube
Node degree k k k
Switches Number kn2k−2 ak

n
knk−1

Per Server k
n

ak
n(ak−1(ak−1+1))

k
n

Node-disjoint Paths k k k

Table 2.2: Cost comparison between LCT, DCell and BCube.

2.3.3 Throughput

The throughput models the number of messages successfully delivered per

unit time and this can be expressed as follows:

Tavg =
1

nf

nf∑
i=1

(
ρi ∗ δi
di

) (2.6)

where, δi is the size of the transmitted packet i, di represents the transmis-

sion delay of a packet i, nf is the total number of the transmitted packets

(Table 2.1) and ρi ∈ [0, 1]:

ρi =

{
1 Successful reception of the packet i

0 failure reception of the packet i
(2.7)

Hence, assuming that the data rate of the channel is fixed for all the topolo-

gies, the average throughput depends on the latency and the successful rate

of the transmitted messages over a communication channel. LCT achieves

low latency so it has low throughput.

33

2.4.1. Flat recursive topologies

2.3.4 Aggregate bottleneck throughput

LCT is a symmetric structure. Each node has exactly one link to the j-th

layer which makes the number of total link number of different layers the

same. In this way, LCT avoids bottlenecks and increases the ABT.

2.4 Specialization of LCT

2.4.1 Flat recursive topologies

Flat DC topologies simplify the DCs architecture and segment the network

into simple partitions leading to a low routing complexity.

2.4.1.1 HyperFlatNet: LCT (m = n2, k = 2)

HyperFlatNet characteristic [59]

In order to improve the DCs in terms of APL, we propose HyperFlatNet

(LCT (m = n2, k = 2)). HyperFlatNet scales similar to FlatNet while re-

ducing the number of non-connected clusters and consequently reducing the

APL and increasing the bisection bandwidth while using the same number

of servers and switches as FlatNet.

Figure 2.8 shows an example of the HyperFlatNet network using 4-port

switches.

HyperFlatNet simulation results

Figure 2.9 shows the APL of HyperFlatNet compared to DCell, BCube,

FatTree for 1000 servers. The number of servers is varied from 1 to 1000.

First, we remark that HyperFlatNet and FlatNet achieve lower APL than

DCell, BCube and FlatTree. Note also that the APL of FlatNet starts to

increase from 2.8 for 64 nodes to reach 3.25 for 1000 nodes. However, the

APL of HyperFlatnet is less than 2.9 even when n=12. i.e. the APL in a

1728 nodes, HyperFlatnet network (n=12) is smaller than the APL of a 216

nodes, FlatNet network. This means that HyperFlanet can connect more

34

2.4.1. Flat recursive topologies

1

2

3

4

5

6
7

8
9

10
11

12
13141516171819

20
21

22
23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40
41

42
43

44
45 46 47 48 49 50 51

52
53

54
55

56
57

58

59

60

61

62

63

64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

1

2

3

4

5

6

7

8
9

10
11

12
13141516171819

20
21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42
43

44
45 46 47 48 49 50 51

52
53

54
55

56

57

58

59

60

61

62

63

64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

External Switch

Internal Switch

Server

Figure 2.8: HyperFlatNet network using 4-port switches

than 8 times the number of nodes in FlatNet without increasing the APL.

Thus, the proposed architecture reduces largely the latency compared to

FlatNet since the latency is an increasing function of the APL.

Figure 2.10 presents the connection failure rate as a function of the link

failure rate of HyperFlatNet compared to FlatNet with different values of

MaxLifeTime. Furthermore, we varied the link failure from 0.02 to 0.27 and

the maxlifetime between 4, 5 and 6 hops and the number of servers is fixed

to 1000. First, we can remark that when the MaxlifeTime = 4 hops (equal

to the diameter), the difference between the two topologies can be seen even

for small link failure rates. In fact, the number of linked clusters in Hyper-

Flatnet is bigger than FlatNet which increases the number of alternative

links in case of failure. Thus, we notice that for Maxlifetime=4hops, the

new topology always outperforms FlatNet. By increasing the maxlifetime

to 5 hops, HyperFlatnet still outperforms FlatNet in terms of connection

35

2.4.1. Flat recursive topologies

1 100 200 300 400 500 600 700 800 900 1000
2.5

3

3.5

4

4.5

5

Number of servers

A
ve

ra
g

e
 p

a
th

 le
n

g
th

BCube
HyperFlatNet
DCell
FatTree

Figure 2.9: The APL of HyperFlatNet compared to DCell, BCube, FatTree for
1000 servers.

failure rate but with a smaller gap. However, when MaxLifeTime=6, there

is approximately no difference between the two techniques. In fact, for a

link failure rate smaller than 0.27, 5 hops is enough to find a route between

any nodes that are not totally disconnected, hence using FlatNet or Hyper-

Flatnet does not change a lot since 5 hops is largely enough to find routes.

Consequently, Figure 2.10 proves that HyperFlatnet is more resistant than

FlatNet to link failures.

2.4.1.2 ScalNet: LCT (m = n3

2
, k = 2)

ScalNet characteristic [60]

ScalNet is proposed to increase the flat network scalability; it scales faster

than FlatNet, BCube and DCell with only two layers of network.

Figure 2.11 shows the network topology of ScalNet designed by using 4-port

switches. To connect 128 servers based on ScalNet architecture, 32 internal

and 32 external 4-port switches are used. However, for clarity reasons, only

the connections of the internal switches number 1 and 32 and few external

36

2.4.1. Flat recursive topologies

0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Link Failure Rate

C
o

n
n

e
c
ti
o

n
 F

a
ilu

re
 R

a
te

MaxLifeTime=4 hops

MaxLifeTime=5 hops

MaxLifeTime=6 hops

HyperFlatnet

Flatnet

Figure 2.10: The performance of a 1000-server FlatNet/HyperFlatnet with dif-
ferent values of MaxLifeTime.

switches are presented. While using the same number of switches and wires

per server compared to Flatnet, the proposed architecture increases the

network scalability from O(n3) to O(n4). For example, when k = 2, n

= 16, ScalNet can connect 32768 servers (700% and 12700% compared

to Flatnet and BCube respectively). Furthermore, ScalNet reduces the

number of non-connected clusters and consequently maintains low APL

and network latency. Moreover, the proposed architecture achieves high

bisection bandwidth and high aggregate bottleneck throughput.

The diameter of a ScalNet is 5 hops. It is slightly bigger than FlatNet and

HyperFlatNet. However, this difference is still acceptable given its lower

average cost and its larger scale.

ScalNet results

Figure 2.12 shows the number of nodes of ScalNet, FlatNet, DCell and

BCube under different port count switches configuration. The switches

port-count is varied from 4 to 12. Note that the number of nodes starts

to increase from 128 when n=4 to reach 10368 when n=12 for ScalNet.

However, the number of servers is 1728, 144, 156 for FlatNet, BCube and

37

2.4.1. Flat recursive topologies

External Switch

 Server

128

114

Internal Switch

32

32 1

100

127 31

30

29
26

25

126
125

122

119

1

1

26,1

25,1

1,1

32,4 32,3 32,2
32,1

31,2

30,2

Figure 2.11: ScalNet network for n=4 and k=2.

DCell, respectively when n=12. Thus, ScalNet increases largely the number

of nodes compared to all the previous architectures.

4 5 6 7 8 9 10 11 12

10
2

10
3

10
4

n−port−switch

n
u

m
b

e
r

o
f

n
o

d
e

s

ScalNet
FlatNet
Dcell
Bcube

Figure 2.12: The number of nodes of ScalNet, FlatNet, DCell and BCube under
different port count switches configuration.

Figure 2.13 proves that the percentage of number of nodes gain in ScalNet

38

2.4.1. Flat recursive topologies

compared to FlatNet, BCube and DCell is increasing in function of the

port count switch. It can be seen that for n=12, the percentage reaches

even 3100% , 2744%and 300% compared to DCell, BCube and Flatnet

respectively. In fact, by using identical n-port switches, ScalNet can host
n4

2
servers which are approximately n

2
times that of a FlatNet and n2

2
times

that of a DCell/BCube.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

500

1000

1500

2000

2500

3000

3500

X: 8
Y: 300

P
e

rc
e

n
ta

g
e

 o
f
N

u
m

b
e

r
o

f
n

o
d

e
s

g
a

in

n−port−switch

X: 8
Y: 2744

X: 8
Y: 3100Compared to FlatNet

Compared to Bcube
Compared to Dcell

Figure 2.13: Percentage of number of nodes gain of ScalNet compared to Flatnet,
BCube and DCell under different port count switches configurations.

2.4.1.3 ScalNet Vs HyperFlatNet

Figure 2.14 shows a comparison between ScalNet and HyperFlatNet. First,

in terms of time transmission, HyperFlatNet achieves low APL compared

with ScalNet. However in terms of scalability, ScalNet scales faster than

HyperFlatNet. In fact, HyperFlaNet has more directly connected clusters

compared with ScalNet which reduces the APL and the network diame-

ter. However, ScalNet is able to connect n
2

more nodes compared with

HyperFlatNet. bigger than HyperFlatNet. So, topologies can be selected

according to the network requirements ScalNet or HyperFlatNet.

39

2.4.2. Layered recursive topologies

200 400 600 800 1000

3

4

5

6

Number of servers

A
P

L

0 5 10 15
10

0

10
5

Switch degree (n)

N
u
m

b
e
r

o
f
s
e
rv

e
rs

4 6 8 10 12
10

1

10
2

10
3

Switch degree (n)

b
is

e
c
ti
o
n
 b

a
n
d
w

id
th

2 4 6 8 10
0

10

20

30

40

Node degree(k)

D
ia

m
e
te

r

0.1 0.15 0.2
0

2

4

6

8

Link Failure Rate

C
o
n
n
e
c
ti
o
n
 F

a
ilu

re
 R

a
te

 (
%

)

4 5 6 7 8
0

500

1000

1500

2000

Switch degree(n)

A
B

T

ScalNet HyperFlatNet

Figure 2.14: ScalNet Vs HyperFlatNet performance comparison.

2.4.2 Layered recursive topologies

2.4.2.1 LaCoDa: LCT (m = n2, k ≥ 1)

LaCoDa characteristic [61]

LaCoDa is an extension of HyperFlatNet, where k ≥ 1. It scales the entire

network to millions of servers using nodes with small degrees as well as

switches with small port counts. We identified and evaluated different con-

nection patterns between nodes and determined their effects on the prop-

erties of the overall topology (e.g., diameter, bisection bandwidth, APL,

Latency).

LaCoDa results

Table 2.3 shows the performance under different network configurations.

Both DCell and LaCoDa provide a much higher ABT than BCube. On

the other hand, with smaller node degree, LaCoDa still offers equivalent

scalability to ABT per link performance, leading to a more cost-effective

40

2.4.2. Layered recursive topologies

topology for large-scale DCs.

DCell BCube LaCoDa
n=4
k=2

Nodes 20 16 64

Links 30 32 128
ABT 14.6 20 101.1
APL 2.26 1.6 2.53

n=4
k=3

Nodes 420 64 1024

Links 840 192 3072
ABT 161 84 1417
APL 5.16 2.29 4.33

n=4
k=4

Nodes 176820 256 16384

Links 442050 1024 65536
ABT 33589 340 21340
APL 11.29 3.01 6.14

n=6
k=2

Nodes 42 36 216

Links 63 72 432
ABT 27 42 316.6
APL 2.46 1.71 2.8

n=6
k=3

Nodes 1806 216 7776

Links 3612 648 23328
ABT 592 258 1003
APL 5.73 2.51 4.76

Table 2.3: Performance analysis under different network configurations

Table 2.3 and Table 2.4 depict the number of nodes under different configu-

rations. Both DCell and LaCoDa provide a much higher ABT than BCube.

On the other hand, with smaller node degree, LaCoDa still offers equivalent

scalability to ABT per link performance, leading to a more cost-effective

topology for large-scale DCs. With only 4-port or 6-port switches, the num-

ber of nodes of the entire network could be of millions for both topologies.

So, k does not need to be large to scale up.

Figure 2.15 depicts the APL of LaCoDa under different configurations. The

switches port-count is varied from 4 to 10 and the node degree is varied

41

2.4.2. Layered recursive topologies

n k DCell BCube LaCoDa
4 2 20 16 64

3 420 64 1024
4 176820 256 16384

6 2 42 36 216
3 1806 216 7776
4 3263442 7776 279936

8 2 72 64 512
3 5256 512 32768
4 27630792 4096 2097152

16 2 272 256 4096
3 74256 4096 1048576

Table 2.4: Number of nodes under different configurations

from 2 to 4. First, one can notice that LaCoDa’s APL increases linearly

to the node degree k, and additionally a larger sized LaCoDa holds longer

APLs. Furthermore, APL takes values from 2.79 for 64 nodes (k=2,n=4)

to 6.89 for 10 Million-node (k=2,n=10). So, even the number of server

increases by 156250 times, APL does not exceed 7 and it also increases

only by 2.46 times. Specifically, LaCoDa increases the number of directly

connected clusters and reduces the number of intermediate hops during

packet transmission. As a result, APL extents small values and it does not

reach the maximum value (i.e diameter equal to 10).

Figure 2.16 depicts the distribution of path length with the configuration

of 6-port switches and a node degree of 4. The results show that 94% of

paths is between 2 and 7, and only 6% of paths reaches the maximum of

10. This explains why APL value is only 6.57 for 279936 nodes.

Figure 2.17 shows LaCoDa’s aggregated bottleneck throughput under dif-

ferent configurations. The switches port-count varies between 4 to 10, and

the node degree has a value between 2 to 4. The results show that LaCoDa’s

ABT increases when the node degree k increases. With 10-port switches

and a node degree of 4, ABT of this 10 million-node DC is 11 × 106. If

NLinks denotes the total of two-way communication links and NCPABT rep-

42

2.4.2. Layered recursive topologies

2 3 4
2

3

4

5

6

7

8

9

10

Node degree(k)

A
ve

ra
ge

 P
at

h
Le

ng
th

 A
P

L

4−port switch
6−port switch
8−port switch
10−port switch
3k−2

Figure 2.15: Average path length of LaCoDa under different configurations.

resents the proportion of the overall network capacity that the aggregate

bottleneck throughput can reach[12], then we have the followings:

NLinks = kn2k−1 = 4.107 (2.8)

NCPABT = ABT/2Nlinks

= 11.106/8.107 = 13.75% (2.9)

This result is very close to theoretical values, namely NCPABT=1/APL =

43

2.4.2. Layered recursive topologies

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Path Length

P
ro

p
o
rt

io
n

6−port switch,k=4

Figure 2.16: Path length distribution for (n = 6, k = 4).

1/6.9 = 14.49%. Thus LaCoDa has very good performance for the aggregate

bottleneck throughput.

2.4.2.2 LaScaDa: LCT (m = n3

2
, k ≥ 1)

LaScaDa characteristic

LaScaDa is an extension of ScalNet, it is capable of scaling the entire net-

work bigger than LaCoDa in cost of APL.

LaScaDa simulation results

According to Table 2.5 and Table 2.6, LaScaDa provides a higher scalability

and a much lower APL than the others topologies, even with small node

degree (k = 2). In addition, by increasing k, the proposed topology still

44

2.4.2. Layered recursive topologies

HyperBcube LaScaDa
Nodes n k APL Nodes n k APL
100 5 2 5.4 128 4 2 3.55
512 8 2 6 648 6 2 4.13
1331 11 2 6.1 2048 8 2 4.41
4096 16 2 6.34 32768 16 2 4.51
13824 24 2 6.36 80000 20 2 4.61

Table 2.5: The performance of HyperBcube and LaScaDa under different config-
urations (Fault-Free).

BCube DCell
Nodes n k APL Nodes n k APL
100 10 2 3.55 110 10 2 4.25
625 25 2 3.75 600 24 2 4.7
1225 35 2 4 1260 35 2 4.8
4096 4 6 4.5 1806 6 3 5.73
16384 4 7 5.25 176820 4 4 11.29

Table 2.6: The performance of BCube and DCell under different configurations
(Fault-Free).

45

2.4.2. Layered recursive topologies

2 3 4
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Node degree(k)

A
g
g
re

g
a
te

 B
o
tt
le

n
e
c
k
 T

h
o
u
g
h
p
u
t
A

B
T

4−port switch
6−port switch
8−port switch
10−port switch

Figure 2.17: Aggregated bottleneck throughput of LaCoDa under different con-
figurations.

provides low average path length even for a massive DC. For example, for

n = 8, k = 6, the APL of this 8.8 × 1010 nodes network is only 18 (See

Figure 2.18).

Figure 2.18 presents the APL of LaScaDa under different configurations.

Switches port-count is varied from 4 to 8, while the node degree is varied

from 2 to 6. First, it can be seen that the APL increases proportionally

to the node degree k. So, a larger size LaScaDa has longer APL. However,

we can see that by increasing the number of nodes, the APL takes values

from 3.8 for 128 nodes (k=2, n=4), to 14.9 for 134×106-node (k=6, n=4).

So, even if the number of nodes has increased by more than one million

times, APL did not exceed 15, and increased only by 3.9 times. In fact,

thanks to its physical structure and routing algorithms, LaScaDa increases

the number of directly connected clusters while reducing the number of

intermediate hops during packet transmission. Hence, the APL has small

values and does not reach the maximum value.

46

2.4.2. Layered recursive topologies

2 3 4 5 6
2

4

6

8

10

12

14

16

18

20

Node degree(k)

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

4 port switch
6port switch
8 port switch

nodes=8.79
1012

nodes=8.8
1010

nodes=1.3
108

Figure 2.18: Average path length of LaScaDa under different configurations.

LaScaDa connects a greater number of nodes compared with all others

topologies, it has the lowest diameter when compared with Ficonn and

Flecube (See Figure 2.19). For a large value of k, the diameter of LaScaDa

is approximately equal to the diameter of HyperBcube and BCube. In fact,

thanks to its routing algorithm, LaScaDa reduces the APL even for a big

number of nodes.

Figure 2.20 shows the scalability of LaScaDa under different port switch

and node degree configurations. The figure shows that by using a small

port count switch n and high node degree k, the scalability of the topology

increases much faster than when using a big n and a small k. As a result,

a good tradeoff between cost and performance would be to use only small-

port-count switches and a high node degree.

Figure 2.21 shows the number of nodes of LaScaDa, HyperBCube, Ficonn,

Flecube, DCell and BCube for switches with different port-counts and a

node degree of 3. First, it can be seen that for LaScaDa the number of

nodes starts to increase from 4096 when n = 4 to reach 6.99×1011 when

47

2.4.2. Layered recursive topologies

6 6.5 7 7.5 8 8.5 9 9.5 10
0

100

200

300

400

500

600

700

800

Node degree(k)

D
ia

m
e

te
r

Bcube
Dcell
LaScaDa
HyperBcube
Flecube
Ficonn

Figure 2.19: Network diameter of various layered topologies.

Node degree(k)

S
w

ith
c

d
e
g
re

e
(n

)

2 3 4 5 6 7 8
4

5

6

7

8

9

10

4

6

8

10

12

14

16

18

1014

1012

1016

1010

104

106

108

1018

(a) 2D.

2 3 4 5 6 7 8
4

6

8

10

12

10
0

10
5

10
10

10
15

10
20

N
um

be
r

of
 s

er
ve

rs

Node degree

n−port switch

(b) 3D

Figure 2.20: Scalability length distribution under different port switch and node
degree configurations.

n = 60. However, the number of nodes is 7.77×108, 1.34×107, 3.46×106 and

2.16×105 for HyperBcube, Flecube, DCell, Ficonn and BCube, respectively

48

2.4.2. Layered recursive topologies

10 20 30 40 50 60
10

0

10
5

10
10

10
15

Switch degree (n)

n
u

m
b

e
r

o
f

s
e

rv
e

rs

Flecube
BCube
Ficonn
LaScaDa
HyperBcube
DCell

node degree=3

Figure 2.21: The number of nodes of LaScaDa, HyperBCube, Ficonn, Flecube,
DCell and BCube under different port count switches configuration and k=3.

when n = 60, k = 3. Hence, LaScaDa allows for larger numbers of nodes

compared with all other topologies.

Figure 2.22 depicts the distribution of the number of nodes under different

configurations. Switches port-count is varied from 4 to 12, while node degree

is equal to 2. First we can see that LaScaDa and HyperBcube support larger

number of nodes compared with all other topologies. Besides, results show

that by increasing the switch degree n, the difference between LaScaDa and

all other topologies greatly increases. For instance, the number of nodes

increases by 133% for n = 12. This shows the outperformance of LaScaDa

in terms of scalability.

2.4.2.3 LaScaDa Vs LaCoDa

Figure 2.23 shows a comparison between LaScaDa and LaCoDa. We re-

mark that LaCoDa achieves low APL compared with LaScaDa. However,

49

2.4.2. Layered recursive topologies

2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

Switch degree (n)

N
u

m
b

e
r

o
f

s
e

rv
e

rs

Ficonn
Bcube
Dcell
Flecube
HyperBcube
LaScaDa

Figure 2.22: The number of nodes of LaScaDa, FlatNet, DCell and Bcube under
different port count switches configurations.

LaScaDa connects bigger number of nodes than LaCoDa. So, LaScaDa and

LaCoDa can be selected according to the network requirements.

2.5 Conclusion

In this chapter, we proposed and evaluated a novel topology for DCs called

LCT. The proposed topology scales DCs to large sizes without a noticeable

loss in performance compared to existing topologies. By using β links and

small port-count switches, LCT scales up a DC to millions of nodes while

preserving a good quality of service. LCT is characterized by its high Scal-

ability, high Aggregate Bottleneck Throughput, a good Fault-Tolerance, a

low Average Path Length and a high Bisection Bandwidth. Thanks to its

special connections pattern and routing algorithms, LCT connects the high-

est number of directly connected clusters. Simulation results confirm the

efficiency and outperformance of our proposed topology.

50

2.4.2. Layered recursive topologies

2 3 4 5 6
0

10

20

Node degree(k)

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

LaCoDa LaScaDa

2 3 4
2

3

4

5

6

7

8

9

10

11

12

Node degree(k)

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

4 port switch 6port switch 8 port switch

2 3 4

10
2

10
4

10
6

10
8

Node degree (k)

N
u
m

b
e
r

o
f
s
e
rv

e
rs

Figure 2.23: LaScaDa Vs LaCoDa performance comparison.

51

Chapter 3

Reducing DC cost and energy

consumption

3.1 Introduction

Reducing the cost and the energy consumption is becoming a growing con-

cern for DCs designers, operators and users. In this chapter, we introduce

two techniques for green DCs. The first one is called VacoNet which per-

forms static energy saving by allowing the exact number of nodes to be

connected based on a novel DCs ’s topology. This technique reduces the

DCs s cost in terms of used switch and cables. We also propose a dynamic

energy saving scheme that powers off the unused links and ports. This re-

quires coordination among all nodes to ensure that the traffic packets will

not take any path that would cross an inactive link. This chapter is orga-

nized as follows: In section 3.2, the proposed topology VacoNet is presented.

The dynamic energy saving scheme is presented in section 3.3. Then, the

cost reduction and its parameters are investigated in section 3.4. Finally,

the conclusions are drawn in section 3.5.

52

3.2.2. Controlled VacoNet

3.2 Static energy saving

3.2.1 Physical structure

VacoNet connects nserv servers using nsw switches and n1-port switch. The

proposed topology is composed by two layers. The first layer of VacoNet

network, denoted 1-layer, is basically composed of n1 nodes interconnected

with one n1-port switch. The second layer, denoted 2-layer, contains n2 1-

layer interconnected with n2 n1-port switches numbered from 1 to n2 (The

detailed algorithm for the computation of n1 and n2 is presented in section

3.2.2).

The total number of servers and switches in VacoNet are given by:

nserv = n1 × n2 (3.1)

nsw = 2× n2 (3.2)

To interconnect the nodes, VacoNet uses the Maximization Of The Linked

Clusters Set (LCC) of LCT topology (presented in section 2.2) with the

parameters (n1, n2). Figure 3.1 shows the network topology of VacoNet

built using 3-port switches.

3.2.2 Controlled VacoNet

In order to build a network with a specific number of nodes, the size of L

can be adjusted according to the operator’s requirements (from m × n to

n2×n1). Given the needed number of nodes nserv, we propose Algorithm 5

that initializes the n-port switch n1 to Floor(3
√
nserv) and the number of

external switches n2 to Ceil(nserv

n1
), then the algorithm iteratively computes

n1 and n2 based on their previous values.

If the number of rows n2 in the matrix L is bigger than
n3
1

2
, the n-port switch

n1will be increase by 1, which increases the total number of switches and

53

3.2.2. Controlled VacoNet

v

External Switch

 Server

1,2
1,2

128

116

114

113

Internal Switch

32

32 1

100

127 31

30

29
26

25

126
125

122

119

1

1

115

104

19

20

10 11

10

11

12

1

2

3

9

8

7

6

5

4

10 11

12

1

2

3

4 5
6

7

8

9

External Switch

Internal Switch

 Server

Figure 3.1: A 36-server 2-layer VacoNet constructed using 3-port switches.

Algorithm 5 n-port switch(nserv)

1: n1 is the number of column in the matrix L.
2: n2 is the number of row number in the matrix L.
3: n1 ← Floor(3

√
nserv)

4: n2 ← Ceil(nserv

n2
)

5: if Or(n2 >
n3
1

2
, n2 < n2

1) then
6: n1 ← n1 + 1
7: n2 ← n2

1

8: end if
9: return n1, n2

54

3.2.3. Performance evaluation

Table 3.1: Nomenclatures table

Egsw The energy consumption per switch sw
Egβsw The total energy consumed by β switches
pi The ith port
G The number of groups of switches
SMs Master server
Egc The energy consumption per cluster
N The total number of nodes
Mt The transmission matrix at time t
T The system period
Mo The total number of nodes
a The fixed subset size of the moving average
λ The rate parameter of the inter-arrival times of Mt

λ
′

The rate parameter of the inter-arrival times of Mv

λ
′′

The rate parameter of the inter-arrival times of Mo

µ The auto correlation factor
R The connection matrix
γ The communication threshold
Mo The total number of nodes
P The consumed energy for an active port
τd The required time for closing a port
τup The required time for activation a port
la The maximum links to be activate per port
nd The number of ports being closed
nc The number of times closing for ports in a period T
nup The number of times activating for ports in a period T

rows in L (i.e. n2 = n2
1). Otherwise, the number of rows n2 increases by 1,

which means that the number of switches is increased by 1 while keeping

the same number of n-port switch (n1).

3.2.3 Performance evaluation

3.2.3.1 Power consumption

DCs s are some of the fastest growing infrastructures requiring lots of elec-

trical power for their operation. Hence, reducing power consumption is im-

55

3.2.3. Performance evaluation

portant to reduce both operation cost and the impact on the environment.

VacoNet physical structure is based on a connection algorithm that connect

close to the exact number of needed nodes. The energy consumption per

switch Eg can be written as:

Eg =
n∑
i=1

pi (3.3)

where pi is the energy consumed by switch port number i. The total energy

consumed by M switches EgM is:

EgM = M ×
(n∑
i=1

pi
)

(3.4)

If VacoNet reduces the number of used switches from M to G, then the

consumed energy EgG can be computed as:

EgG = G×
(n∑
i=1

pi
)

(3.5)

We can estimate the gain in energy consumption of VacoNet compared with

existing topologies as follows:

56

3.2.3. Performance evaluation

Gain =
EgM − EgG

EgM

=

(
M
∑n

i=1 pi −G
∑n

i=1 pi
)

M
(∑n

i=1 pi
)

= 1−
G
(∑n

i=1 pi
)

M
(∑n

i=1 pi
)

= 1− δ (3.6)

where

δ =
G
(∑n

i=1 pi
)

M
(∑n

i=1 pi
) (3.7)

Obviously, the numberG of used switches in VacoNet is always much smaller

than M . Therefore Gain is always bigger than 1, which shows that the

proposed topology can significantly reduce energy consumption compared

with existing topologies by using only the needed number of servers.

3.2.3.2 Simulation results

Figure 3.2 shows the average path length of VacoNet compared with Flat-

Net, BCube, FatTree and ScalNet. The number of servers is varied from 0

to 1000. We can see that both VacoNet and FlatNet outperform FatTree,

ScalNet and BCube by yielding a much shorter APL for a small number of

nodes. For a larger DCs , the APL of VacoNet is less than 3, even when

the number of servers reaches 1000. In addition, the APL in a 1000 nodes

VacoNet network is smaller than the APL of an 83 nodes FlatNet network,

a 23 nodes FlatTree network, and an 11 nodes BCube or ScalNet networks.

This means that VacoNet can connect more than 12 times the number of

nodes in FlatNet without increasing the APL. Thus, the proposed topology

reduces largely the latency compared with ScalNet, BCube, FlatNet and

FatTree since the latency increases with the APL.

57

3.2.3. Performance evaluation

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of servers

A
ve

ra
g
e
 P

a
th

 L
e
n
g
th

FlatNet
VacoNet
BCube
FatTree
ScalNet

Figure 3.2: Average path length of VacoNet compared with FlatNet, BCube,
FatTree and ScalNet.

200 400 600 800 1000
1

200

Number of servers

N
u

m
b

e
r

o
f

s
w

it
c
h

e
s

200 400 600 800 1000

5

10

Number of servers

n
−

p
o

rt
 s

w
it
c
h

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

Number of servers

A
P

L

Figure 3.3: APL Vs the number of switches and n-port switch in VacoNet.

58

3.2.3. Performance evaluation

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of servers

 N
e
tw

o
rk

 c
a
p
a
ci

ty
(

A
g
g
re

g
a
te

 b
o
tt
le

n
e
ck

 t
h
ro

u
g
h
p
u
t
ca

n
 r

e
a
ch

)

FlatNet
VacoNet
BCube
FatTree
ScalNet

Figure 3.4: Network capacity of VacoNet compared with FlatNet, BCube, FatTree
and ScalNet.

Figure 3.3 shows the APL vs the number of switches and the and the number

of ports per switch (n-port) in VacoNet. The number of servers is varied

from 0 to 1000. We can see that the APL for 123 nodes is less than the APL

for 729 nodes. In fact for 123 nodes, the number of switches per servers is

1.98 . However, for 749 nodes it is equal to 4.45. By increasing the number

of switches per server, we get more alternatives paths and the transmission

of packets to the destination will be faster, which reduces the APL.

Figure 3.4 shows the network capacity of the aggregate bottleneck through-

put that VacoNet can reach compared with FlatNet, BCube, FatTree and

ScalNet. The number of servers is varied between 1 to 1000. We can re-

mark that the network capacity for a 1000 nodes VacoNet is almost equal to

the network capacity of a 220 nodes FlatNet, 10 nodes BCube and 1 node

ScalNet. This means that VacoNet can connect more than 4 times the num-

ber of nodes in FlatNet, and 100 times the number of nodes in DCell and

BCube with the same network capacity, which reveals the outperformance

of VacoNet in terms of network capacity.

Figure 3.5 shows the power consumption of VacoNet compared with Flat-

59

3.3.1. Problem statement

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6
x 10

5

Number of serves

P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

FlatNet
VacoNet
BCube
FatTree
ScalNet

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 10
5

P
ow

er
 c

on
su

m
pt

io
n

(w
at

ts
)

FlatNet
VacoNet
Bcube
FatTree
ScalNet

Figure 3.5: Power consumption of VacoNet compared with FlatNet, BCube, Fat-
Tree and ScalNet.

Net, BCube, FatTree and ScalNet. The number of servers is varied from 0

to 10000. It can be seen that VacoNet outperforms the other topologies in

terms of power consumption. In fact, for 8200 nodes, BCube, FlatNet and

FatTree exhibit high levels of power consumption reaching 5.4× 105 watts

for FatTree, 3.34× 105 watts for BCube, 2.22× 105 watts for FlatNet and

2.5 × 105 watts for ScalNet. On the other hand, VacoNet consumes only

1.96× 105 watts.

3.3 Dynamic energy saving

3.3.1 Problem statement

3.3.1.1 Closing links strategy

In order to meet the quality of service requirements while increasing the

total energy saving in a DCs, our approach reduces the number of active

ports in the network, and increases the average link utilization. Links are

divided into three types:

60

3.3.1. Problem statement

– Critical cluster links (CCL): These are links connecting nodes to

their clusters.

– Critical non cluster links (CNCL): These are links that are not

CCLs, but affect the connectedness of the network if they are closed.

– Uncritical links (UL): these are links that do not affect the con-

nectedness of the network if closed.

In the proposed approach, both CCLs and CNCLs are kept active in order to

guarantee good performance. We deactivate a subset of ULs by deactivating

the end ports of each one of them to save energy, while avoiding the problem

of having disconnected nodes (see Figure 3.6).

2 3

1

1

2

3

4

2,1

3,1

4,1

4,2

1,2 2,2

3,2

4

1,1

Critical link Unused link

Used link Server Switch

Figure 3.6: Example of network where cluster 4 communicates with cluster 2.

3.3.1.2 Routing strategy

Servers will also be classified into two categories:

– Outreach server (denoted by Sout): A node in this category has an

active port other than the one that connects it to its cluster. Such a

node can be involved in routing traffic outside the cluster.

– Non outreach server: The only active port of a node in this category

is the one that connects it to its cluster.

61

3.3.1. Problem statement

3.3.1.3 Problem formulation

Links and ports can be deactivated to save energy without too much affect-

ing system performance. Hence, to reduce energy consumption, we propose

to reduce the number of active ports in each cluster. So, for n ports per

switch and k ports per server, the energy consumption per cluster Egc can

be written as:

Egc = swc
n∑
i=1

pi + serc
k∑
j=1

pj (3.8)

= serc
(

1

n

n∑
i=1

pi +
k∑
j=1

pj

)

Given that k and n are not fixed as they depend on the DCs configuration

chosen by the operator, the Egc expression becomes:

Egc = serc
(

1

n

min(n,k)∑
i=1

pi +

max(n,k)∑
j=min(n,k)

pj

)
(3.9)

where swc is the switch number in cluster c, serc is the number of servers,

and pi presents the active port for node i.

The objective is to find a set of optimal routing paths that minimizes the

total number of active ports:

Minimize:
∑min(n,k)

i=1 pi +
∑max(n,k)

j=min(n,k) pj

Hence, reducing the total energy consumption in the network.

62

3.3.2. System model

3.3.2 System model

3.3.2.1 Network traffic model

Given an N nodes network, let Mt = (Mt(i, j), ..,Mt(N,N)) be the trans-

mission matrix at time t, where Mt(i, j) is the number of transmitted mes-

sages from node i to node j at time t. We assume that Mt(i, j) fellows a

Poisson distribution where inter-arrival times are exponentially distributed

with rate parameter (λ). We assume that the system can perfectly estimate

the traffic matrix M(T) periodically with period T . We also assume that

the network changes the number of active nodes smoothly in time using

a moving average (MA) model with a fixed subset size equals to a (Fig-

ure 3.7). So, given M(T) and a, the a first element of M(t+ 1) are equal to

the a last elements of M(t). Then, the rest of elements (N − a) will be re-

generated. The bigger is a, the more correlated system will be (Figure 3.8).

This process is repeated at the beginning of each period T .

N

N

𝜆′

𝜆′

𝜆′

𝜆′

M(t)

Figure 3.7: Example of a matrix moving average with a subset a.

For t = t0

63

3.3.2. System model

0 100 200 300 400
0

1

2

3

4

a=20

Number of iterations

N
um

be
r o

f p
ac

ke
ts

Traffic of Server number 1
Traffic of Server number 2
Traffic of Server number 3
Traffic of Server number 4
Knowing Traffic of Server number 1
Knowing Traffic of Server number 2
Knowing Traffic of Server number 3
Knowing Traffic of Server number 4

0 100 200 300 400
0

1

2

3

4

5

6

a=5

Number of iterations

N
um

be
r o

f p
ac

ke
ts

0 100 200 300 400
0

1

2

3

4

a=100

Number of iterations

N
um

be
r o

f p
ac

ke
ts

Figure 3.8: Example of the matrix correlation under different subset a

∀i ∈ {1..N},

∀j ∈ {1..N},

Mt0 =

{
0 If (i = j)∑t0+a

t=t0
Mt0(i, j, t) If (i 6= j).

(3.10)

where Mo is the application traffic matrix.

Mo(i, j, k) = L (3.11)

Meaning that applications transmit L packets from node i to node j from

time t to time t+k. We assume that Mo(i, j, t) fellows a Poisson distribution

with an exponentially distributed inter-arrival times with a rate parameter

(λ
′
) such as (λ

′
= λ

a
) to satisfy that M will be generated with λ. So, if we

denote by Mv(i) the number of transmitted and received message for node

i

64

3.3.2. System model

Mv(i) =
N∑
j=1

M(i, j) +
N∑
j=1

M(j, i) (3.12)

Mv(i) fellows a Poisson distribution with an exponentially distributed inter-

arrival times with a rate parameter (λ
′′
) = 2(N − 1)λ. M is correlated in

time, with auto correlation factor µx,y. So if we denote by:

X = Mt0(i, j)

=

t=t0+a∑
t=t0

Mo(i, j, t) =

t=t0+a∑
t=t0

z(t) (3.13)

(3.14)

Y = Mt0+1(i, j)

=

t=t0+a+1∑
t=t0+1

Mo(i, j, t) =

t=t0+a+1∑
t=t0+1

z(t) (3.15)

(3.16)

the auto correlation factor µx,y can be written as:

µx,y = corr(X, Y)

=
cov(X, Y)

E(|X|2)E(|Y |2)
(3.17)

65

3.3.2. System model

or

E(|X|2) = E(|Y |2)

= λ (3.18)

So , µx,y becomes:

µx,y =
E(XY)

E(X)E(Y)
λ2

=
E(XY)− λ2

λ2

(3.19)

where E(XY) is equal to:

E(XY) = E
(t=t0+a∑

t=t0

z(t)

t=t0+a+1∑
t=t0+1

z(t)
)

= E
(t1=t0+a∑

t1=t0

t2=t0+a+1∑
t2=t0+1

z(t1)z(t2)
)

= (a− 1)E(|z(t)|2) + (a2 − (a− 1))E(z(t1)z(t2))

= (a− 1)λ
′
+ (a2 − a+ 1)λ

′2 (3.20)

µx,y =
(a− 1)λ

′
+ (a2 − a+ 1)λ

′2 − λ2

λ2
(3.21)

3.3.2.2 Activating and deactivating links

At the beginning of each time period T , we estimate the traffic matrix

M(T) and use it to decide which links to activate or deactivate. Using

M(T), we compute for each node i, its communication rate Mv(i). If this

rate is smaller than the threshold γ, the Uncritical links connected to the

66

3.3.2. System model

node are deactivated, otherwise they are activated. Figure 3.9 shows a case

where the maximum links to be activate is CNCL=2.

Cluster Active link Internal switch

Figure 3.9: Case where the maximum links to be activated is CNCL=2.

The value of γ is defined based on the network load, the inter-arrival rate λ

and according to the DCs requirements (time/energy). Figure 3.10 presents

an example of a network with 20 nodes with the vector of number of trans-

mitted & received message by nodes (Mv). In this example, nodes number

3, 8, 9, 10, 16, 17, 18, 19 did not receive or transmit any communication

at instant t. However, nodes number 1, 6, 7, 14, 15, 20 have only one com-

munication. So if, we initialize γ to 1, the uncriticle links connected to of

servers 3, 8, 9, 10, 16, 17, 18, 19 and 1, 6, 7, 14, 15, 20 will be closed.

 1 0 0 3 2 1 1 0 0 0 4 2 2 1 1 0 0 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.10: Example of a network with 20 nodes with threshold γ = 1.

3.3.2.3 Network topology

The proposed energy saving technique can be applied for any network topol-

ogy where a server has two or more links (recursive topologies), namely

flat recursive topologies (FlatNet [53], HyperFlatNet [59]), layered recur-

sive topologies(DCell [10], BCube [11], HyperBcube [51], LaCoDa [61]).

These topologies can significantly increase the number of servers due to

their recursive structures. Also, servers can be considered as computation

67

3.3.3. Closing ports management algorithm

units and packet-forwarding devices. To avoid the problem of disconnected

server while keeping a good network performance, the idea is to keep at

least one active ports per server.

Without loss of generality, we use this approche on HyperFlatNet proposed

in [59] (presented in section 2.4.1.1). HyperFlatNet network can suffer

from high energy consumption as all ports are activated [62]. The authors

in [62] proved that the HyperFlatNet topology is relatively stable compared

with other topologies. However, HyperFlatNet has n times more links than

BCube and DCell topologies, which leads to more energy consumption com-

pared with existing topologies.

3.3.3 Closing ports management algorithm

3.3.3.1 Critical link classification algorithms

Critical links are defined as links used within the same cluster. Let nd1 be a

node and nd2 be a switch. To find if an intermediate link (nd1, nd2) between

a node and a switch is within the same cluster, we define the function

GetCommunPrefix in algorithm Algorithm 6 to return the common prefix

of node n1 and switch n2. Let l1 be the level of nd1 and l2 be the level of

nd2. Algorithm 6 tests if the common prefix of a node and a switch is equal

to their level, which means that they are in the cluster.

Algorithm 6 Critical cluster links((nd1, nd2))

pref ← GetCommunPrefix(nd1, nd2)
i← length(pref)
if i = l1 and i = L2 then

Then nd1 and nd2 are known to be in the same cluster
The links (nd1, nd2) is a critical links
Lc ← (nd1, nd2)

end if
return Lc

Figure 3.11 presents an example of HyperFlatNet links classification.

68

3.3.3. Closing ports management algorithm

The two nodes have the same
level (1): link between them is
classified as critical

The two nodes have the different
level (15,16): link between them is
classified as non-critical

Figure 3.11: HyperFlatNet links classification.

3.3.3.2 Critical non cluster links

Let R be the connection matrix for a given network, and c be the set of

its clusters c = {c1, c2, .., cct}, where ct is the total number of clusters in

the network. The idea of Algorithm 7 is to find the intermediate links that

connect each cluster with its next neighbor. GetLink computes the link

that interconnects two neighbor clusters. Figure 3.12 presents an example

of HyperFlatNet critical non cluster links .

Algorithm 7 Critical non cluster links (R)

for ci →1 to cct do
l← Getlink(ci, ci+1)
Nc ← [Nc l]

end for
return Nc

3.3.3.3 Links deactivation algorithm

LetR be the connection matrix for a given network and n the number of port

per switch. Algorithm 8 deactivates links from the Uncritical links of each

cluster (denoted by Ld), and generates the updated matrix of deactivated

links (denoted by Rd).

69

3.3.3. Closing ports management algorithm

Algorithm 8 Dynamic closing ports

function DeactivateLinks(Mk,R,n,γ)
Input:
R is the network connection matrix.
γ is the number of communication per threshold.
Output:
Nc is the critical non cluster links
Lc is the critical cluster links
Rup the updated connection matrix.
Mv the communication vector
Ld links deactivate

Nc ← GetCriticalNonClusterLinks(R)
Lc ← GetCriticalClusterLinks(R)
Rup ← poweron(Nc, Lc)
for each period T do

for each node i do
Mv(i) =

∑N
j=1M(i, j) +

∑N
j=1M(j, i)

Find (Mv(i) ≤ γ)
end for
Ld = sum(Mv ≤ γ)

end for
Rup ← poweroff(Ld)
return (Rup)

end function

70

3.3.4. System performance

Figure 3.12: HyperFlatNet critical non cluster links.

3.3.3.4 Routing algorithm

The routing Algorithm 11 is proposed for packets transmission in the new

network. We propose linkState and IntraRouting (Algoritm 9) for intra-

clusterk, and localRout for inter-clusterb routing. In a clusterk, the switch

cluster knows the status of all the outgoing/incoming links in its clusterk

. k is the number of layers in the network. For example, when k is 1 or

2 and n = 10 a HyperF latnetk has 10 or 1000 servers. In the case of a

disabled link, Algorithm 10 proposes function GetOutreachServer to find

the nearest outreach server Sout which becomes a new source to forward the

packet Snew. Then, it uses function IntraRouting to forward the packets

to destinations.

3.3.4 System performance

3.3.4.1 Period study

Let nT be the total number of ports in a network, na is the total number

of active ports, nd is the number of ports being closed, nc is the number

of deactivation times and nup is the number of activation times for ports

in a period T . Figure 3.13 shows an example, where nc is the number of

71

3.3.4. System performance

Algorithm 9 IntraRouting algorithm

1: procedure IntraRouting((S2, S1),(D2, D1))
2: Input:
3: Ω is the vector of directly connected clusters
4: (S2, S1) is the source coordinates
5: (D2, D1) is the destination coordinates
6: Output:
7: P is the path from the source to the destination

8: pref ← GetCommunPrefix(nd1, nd2)
9: if nd1 and nd2 have the same pref then

10: nd1 and nd2 are known to be in the same cluster
11: Path← localRout((S2, S1), (D2, D1))
12: else
13: if nd1 and nd2 have the different pref then
14: Then nd1 and nd2 are in the different cluster
15: S1new ← GetOutreachServer
16: P ← IntraRouting((S2, S1new), (D2, D1))
17: end if
18: end if
19: end procedure

Algorithm 10 GetOutreachServer ((R,Cs,S2, S1),(D2, D1)

1: V is the source row
2: Input:
3: R is the matrix connection
4: Cs is the source cluster
5: Output:

6: SMs is the set of outreach server
7: Cs ← GetSourceCluster
8: Cs = R(S2, :)
9: for i = 1 to length Cs do

10: Find the set of outreach server in Cs
11: Sout = (Cs(i)! = 0))
12: Souts i = Sout

13: end for
14: return (Souts)

72

3.3.4. System performance

Algorithm 11 IntraRouting algorithm

1: function IntraRouting((R, Souts , Nc))
2: Input:
3: R is the matrix connection
4: Souts is the set of outreach server
5: Output:
6: Path is the path from the source to the destination
7: while (Pref = null) do
8: Pref ← GetCommunPrefix(Souts , Nc)
9: end while

10: l← Getlink(Souts , P ref)
11: Path← [l, Nc(Pref,D2)]
12: return (Path)
13: end function

transitions from 1 to 0, nup is the number of transitions from 0 to 1. na is

the number of 1 and nd is the number of 0. In this example, we have nc=

2, nup=1 ,nd=5, na=5

1 1 0 0 0 1 1 1 0 0

P

P 𝜏𝑢𝑝 𝜏𝑑

𝑇

0

Figure 3.13: Example of nc and nup.

PT is the total energy consumption for the original system. P ′T is the total

energy consumption for the proposed model (the green area presents the

consumed energy and the red area is the saved energy). P is the energy

consumed by an active port. τd and τup are the required time for activation

and deactivating a ports (as provided by the manufacturer) (Figure 3.14).

PT = P × T × nT (3.22)

73

3.3.4. System performance

0 1 0 1 1 0 0 1

𝜏𝑢𝑝 𝜏𝑑 𝑇

𝑃

Figure 3.14: The consumed and saved energy during a period T .

P ′T = P × T × na +
(
nc(

τd
2

) + nup(
τup
2

)
)

(3.23)

So, the saving energy denoted by Seg is

Seg = PT − P ′T
= P × T × nd − P ×

(
nc(

τd
2

) + nup(
τup
2

)
)

(3.24)

Seg > 0 means that

T
nd
nc

>
τd
2

+
τup
2

(3.25)

For a large number of nodes and periods, we assume that nc ≈ nup,

Seg = P ×
(
T × nd − (nc(

τd
2

) + (
τup
2

)
)

(3.26)

So, to save energy the period T should such that:

74

3.3.4. System performance

T >
nc
nd

(
τd
2

+
τup
2

) (3.27)

3.3.4.2 Energy consumption

The energy consumption in the network as presented in Figure 3.14 for one

period is:

P ′T = P × T × na +
(
nc(

τd
2

) + nup(
τup
2

)
)

(3.28)

So, the total energy consumed over time can be written as:

Eg =
∑

P ′T (3.29)

For instance, for HyperFlatNet, the total number of ports that should be

kept active to avoid the problem of disconnect nodes is (n3 + la). So, the

energy consumed in one period is:

Eg
′
=
∑

P ′T + 2(n3 + la)P × T (3.30)

For the original HyperFlatNet, the total number of active ports is 2n3. So,

the total energy consumption is:

Eg = 2P × T × (2n3) (3.31)

If we compare the two systems we get:

75

3.3.5. Performance evaluation

ESaving = Eg − Eg′

= PT (4n3 − la)−
(
nc(

τd
2

) + nup(
τup
2

)
)

(3.32)

For a big time period T , the number of nc, nup ,nd and na will be negligible,

witch mean an increasing in energy saving.

3.3.5 Performance evaluation

3.3.5.1 Traffic pattern

We use HyperFlatNet network with 1000 servers to evaluate the impacts

of power savings under different network loads, using All-to-All traffic pat-

tern. The traffic matrix fellows a Poisson distribution with an exponentially

distributed inter-arrival times with a rate parameter λ.

3.3.5.2 Simulations results

Energy saving

Figure 3.15 shows the energy consumption by the tested network under

different correlation values a, and compare the results with the original

HyperFlatNet. λ is varied from 10−2 and 102. Figure 3.16 on the other

hand depicts the energy consumption where the network load is varied

from 1 to 100 %. We remark that for a long period T , the tested net-

work consumes less energy than HyperFlaNet. However, for a short period

T , the correlation has a big impact on energy consumption. For instance,

for (T = 2, a = 2, λ = 1), the consumed energy for the tested network

is 5.2 × 104. For (T = 10, a = 20/100, λ = 1), the consumed energy

is 4.2 × 104, while the original HyperFlatNet consumes 4.7 × 104. This

means that HyperFlatNet consumes 5 × 103 less than the tested network

for (T = 2, a = 2, λ = 1). For a small period T , the energy consumption

76

3.3.5. Performance evaluation

10
−2

10
−1

10
0

10
1

10
2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

λ

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

10
−0.4

10
−0.1

3

3.5

4
x 10

4

a=2 a=20 a=100 Original system

10
−2

10
−1

10
0

10
1

10
2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

λ

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

0 50 100
2

3

4

5
x 10

4

T=2 T=10 T=20

10
−2

10
−1

10
0

10
1

10
2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

λ

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

Figure 3.15: The energy consumption of the tested network under different cor-
relation values (a) compared to the original system HyperFlatNet with a varied
λ

induced by port status changing overpasses the energy saving. Addition-

ally, a small period induces more delays for traffic to reach its destination.

Hence, the length of period T is a critical parameter for a less traffic cor-

related system. Moreover, by increasing λ, the energy consumption of the

tested network starts increasing from 2.8 × 104 when λ = 0.01 to attain

4.7× 104when λ = 100. Also, when the network load increases, the energy

consumption increases too. Consequently, for a traffic correlated system,

the period T has less impact on energy saving than for a not correlated

system.

Figure 3.17 shows the effect of period T on the energy consumption under

different correlation values a compared with the original HyperFlatNet. The

network load is varied from 1 to 100 %, while the period is fixed to 2, 10 and

20. We can observe that the period does not impact energy consumption

for a large correlation value a, contrary to a system with a small correlation

value a.

Figure 3.18 shows the energy consumption of the tested network under

77

3.3.5. Performance evaluation

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
n

e
rg

y
 c

o
n
s
u

m
p
ti
o
n

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
n
e

rg
y
 c

o
n

s
u
m

p
ti
o
n

0 50 100
2

3

4

5

6
x 10

4

a=2 a=20 a=100 Original system

0 50 100
2

3

4

5
x 10

4

T=2 T=10 T=20

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
n
e
rg

y
 c

o
n
s
u

m
p

ti
o
n

Figure 3.16: The energy consumption of the tested network under different cor-
relation values (a) compared to the original system HyperFlatNet with a varied
network load.

0 50 100
2.5

3

3.5

4

4.5

5
x 10

4

0 50 100
2.5

3

3.5

4

4.5

5
x 10

4

1 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

4.5

5
x 10

4

Network load

E
ne

rg
y

co
ns

um
pt

io
n

T=2 T=10 T=20

a=20 a=100 Original system

Figure 3.17: Effect of the period T on the energy consumption.

78

3.3.5. Performance evaluation

0 50 100
2.5

3

3.5

4

4.5

5
x 10

4

a=2 a=20 a=100 Original system

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
ne

rg
y

co
ns

um
pt

io
n

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
ne

rg
y

co
ns

um
pt

io
n

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network load

E
ne

rg
y

co
ns

um
pt

io
n

γ=0 γ=2 γ=5

Figure 3.18: Effect of γ on the system energy consumption.

different correlation values a compared with the original HyperFlatNet. γ

is varied between 0, 2, and 5. The network load is varied from 1 to 100%.

We observe that the energy consumption deceases when γ increases. For

example, for (network load=60%, a=2, γ = 2) the energy is 3.5 × 104 and

2.8× 104 for (network load=60%, a=2, γ = 5). This means that the larger

γ is the more is the energy saving.

Figure 3.19 proves the big impact of γ in the energy saving.

Average path length

Figure 3.20 shows the APL of the tested network for different correlation

values a compared to the original system HyperFlatNet. λ is varied from

0 to 100. Figure 3.21 on the other hand depicts the APL of the tested

network under different correlation values a compared with HyperFlatNet.

The network load is varied from 1 to 100 %. We observe that whatever a

is, for a long period T , the tested network has long APL than for a short

period. For example, for (T = 2, a = 2, λ = 10−2), the APL of the tested

network is 7.5, while for (T = 10, a = 100, λ = 0.01) the APL is 4.2. In

79

3.3.5. Performance evaluation

0 25 50 75 1000

50

100
2.5

3

3.5

4

4.5

5

x 10
4

Network load

a

E
n

e
rg

y
co

n
su

m
p

tio
n

γ=2

γ=5

γ=0

Figure 3.19: Effect of γ on the system energy consumption (3D) for T=2

fact, for a small period T , the state of ports follows closely the traffic state

(ports will be disabled for a low traffic and activated for a high traffic).

The same situation happens with large traffic correlation values a even for

a long T . Similarly for λ, when the network load increases, the APL

of the tested network decreases too. In fact, for a high traffic load, the

tested network reduces the number of closed ports, and converges to the

original HyperFlaNet . Consequently, its APL gets closer to the APL of

HyperFlatNet.

Figure 3.22 shows the effect of the correlation on APL. We can see that

for the same period, the correlation reduces largely the APL. In fact, for

a correlated system, traffic matrices during a time period do not change

much from the traffic matrix at the beginning of the period. Consequently,

the APL will not highly increase compared with HyperFlatNet.

Figure 3.23 shows the effect of γ on the APL in the tested network. Al-

though, γ improves energy saving as it increases, it also increases the APL.

In fact, a larger γ results in a higher number of closed ports in HyperFlaNet,

consequently resulting in more energy saving. However, for a small γ, the

number of active ports increases and the APL decreases.

80

3.3.5. Performance evaluation

10
−2

10
0

10
2

0

20

40

10
−2

10
−1

10
0

10
1

10
2

2

5

10

15

20

25

λ

A
P

L

10
−2

10
−1

10
0

10
1

10
2

2.5

3

3.5

4

4.5

5

5.5

6

λ

A
P

L

10
−2

10
0

10
2

0

20

40

10
−2

10
−1

10
0

10
1

10
2

2

5

10

15

20

25

λ

A
P

L

T=2 T=10

a=20 a=2 a=100 Original system

Figure 3.20: The APL of the tested network under different correlation values a,
compared with the original HyperFlatNet network for different values of λ

1 20 40 60 80 100
0

5

10

15

20

Network load

A
P

L

1 20 40 60 80 100
2.5

3

3.5

4

4.5

5

5.5

6

Network load

A
P

L10
−2

10
0

10
2

0

20

40

T=2 T=10

10
−2

10
0

10
2

0

20

40

a=20 a=2 a=100 Original system

1 20 40 60 80 100
0

5

10

15

20

25

Network load

A
P

L

Figure 3.21: The APL of the tested network under different correlation values a
compared with the original HyperFlatNet network with a varied network traffic

81

3.4.1. Switches cost

10
−2

10
0

10
2

0

20

40

a=20 a=2 a=100 Original system

10
−2

10
−1

10
0

10
1

10
2

2

4

6

8

10

12

14

16

18

20

λ

A
P

L

Figure 3.22: The APL of the tested network for different values of λ and correla-
tion values a, when T=2

3.4 Cost reduction

The cost is one of the most critical parameters in designing DCs topologies.

The proposed VacoNet presents a very interesting solution for companies

thanks to its physical structure algorithm and the number of ports per

switch selection algorithm. VacoNet increases the efficiency and improves

asset utilization.

3.4.1 Switches cost

The cost of switches can be computed as:

Cost(switches) =
n∑
i=1

pi ×Nsw

= n×Nsw (3.33)

where Nsw denotes the total number of switches. Thanks to its special

structure which optimizes the usage of switches, only the needed number of

82

3.4.2. Cabling cost

10
0

10
1

10
2

2

3

4

5

6

7

8

λ

A
P

L

65 70 75 80 85 90 95 100
2

3

4

5

6

7

8

Network load
A

P
L

γ=5 γ=2 γ=0

Figure 3.23: Effect of γ on the APL of tested network (T=10, a=100)

servers will be used, which reduces largely the network’s cost. If we assume

that the price of a switch in proportional to number of its port, according

to Figure 3.24, for 3500 servers, the cost of switches would be 3.15×106 for

VacoNet, 3.686 × 106 for FlatNet, 5.53 × 106 for BCube , and 8.789 × 106

for FatTree. This means that VacoNet decreases the cost of switches by

14.27%, 43% and 64.15% respectively.

3.4.2 Cabling cost

The cabling cost can be estimated as:

Cost(Cables) = Ncb × Ccb (3.34)

where Ccb and Ncb denote the cost per cable and the total number of cables

respectively. The total number of used cables is computed as:

83

3.4.3. Performance evaluation

Ncb = n×Nsw (3.35)

Hence, the total cost CostT of a topology can be expressed as:

CostT = Cost(Cables) + Cost(switches) (3.36)

= Ncb × Ccb + n×Nsw

= n× Ccb ×Nsw + n×Nsw

= n×Nsw(Ccb + 1)

So, the total cost is proportional to the number of switches. VacoNet re-

duces the number of switches compared with all existing topologies. Ac-

cording to Figure 3.24, VacoNet decreases switches cost by 14.66% , 43.19%

65.35%compared with FlatNet, BCube and FatTree, respectively.

3.4.3 Performance evaluation

3.4.3.1 Simulation results

Figure 3.24 shows switches cost for VacoNet compared with FlatNet, BCube,

FatTree and ScalNet, where the number of servers is varied from 0 to 10000.

It can be seen that VacoNet reduces largely this cost compared with the

other topologies. In fact for 8200 servers, the switches cost for VacoNet is

7.32× 106, where as for FlatNet it is 8.34× 106, for BCube it is 1.08× 107,

for FatTree it is 0.9× 107, and for FatTree it is 1.67× 107, which represents

more than 1020000 USD in cost saving for VacoNet.

Figure 3.25 shows the cabling cost of VacoNet compared with FlatNet,

BCube, FatTree and ScalNet. The number of servers is varied from 0 to

84

3.4.3. Performance evaluation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5
x 10

7

Number of servers

S
w

itc
h
e
s

C
o
st

 U
S

D

FlatNet
VacoNet
BCube
FatTree
ScalNet

Figure 3.24: Switch Cost of VacoNet compared with FlatNet, BCube, FatTree
and ScalNet.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5
x 10

6

Number of serves

C
a
b
lin

g
 C

o
st

 U
S

D

FlatNet
VacoNet
BCube
FatTree
ScalNet

Figure 3.25: Cabling Cost of VacoNet compared with FlatNet, BCube, FatTree
and ScalNet.

85

3.4.3. Performance evaluation

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

7

T
o
ta

l
C

o
s
t(

C
a
b

lin
g
+

s
w

it
c
h
)U

S
D

FlatNet
VacoNet
Bcube
FatTree
ScalNet

Figure 3.26: The histogram of the total cost for VacoNet compared with FlatNet,
BCube, FatTree and ScalNet for 10000 servers.

10000. It can be seen that VacoNet reduces largely the cabling cost com-

pared with the other topologies. In fact, for 8200 servers, cabling cost for

VacoNet is 8.02 × 105, while it is 9.26 × 105 for FlatNet, 1.38 × 106 for

BCube, and 2.24× 106 for FatTree.

Figure 3.26 shows the total cost (including switches and cabling costs)

for configurations of up to 10000 servers (for clarity, the number of nodes

is scaled down by a factor of 1000 in the figure). As it can be seen, the

difference between the different topologies is clear. In fact, the cost increases

considerably as the number of servers increases, reaching 2.55× 107, 1.52×
107, 1.01×107, 9.51×106, 9.85×106 for FatTree, BCube, FlatNet, VacoNet

and ScalNet respectively when the number of servers reaches 10000. Note

that the difference between FlatNet and VacoNet is small compared with

the other topologies, but still significant.

86

3.4.3. Performance evaluation

3.5 Conclusion

In this chapter, we proposed two approaches for static and dynamic energy

saving DCs. Fisrt, we propose new topology called VacoNet that improves

the DCs energy consumption and the cost by reducing largely the unused

number of nodes and cables compared with the existing topologies. In

addition, a new approach for DC recurssive topology has been proposed

to maximize the energy saving. Our approach dynamically controls the

number of active communication links by turning off and on ports in the

network (switches ports and nodes ports). Simulation results prove the

efficiency and feasibility of the proposed techniques for DCs.

87

Chapter 4

Conclusion and Future

Research

4.1 Conclusion

Large-scale data centers form the core infrastructure support for the ever

expanding cloud based services. However, the advantages of cloud com-

puting come at a cost, the huge amount of energy data centers consume

yearly. In this dissertation, we focused on enhancing the QoS and reducing

cost and the energy consumption in Data Center. First, in chapter 2, a

new efficient data center topology, called LCT is proposed combining the

advantages of previous topologies while avoiding their limitations. LCT

scales a data center to a mega level with only small-port count switches

and small node degree. It strikes a compromise between the excessive scal-

ability of DCell and high cost of BCube. Given an equal sized data center,

the cost of LCT in terms of number of links and switches is roughly 1
2

that

of BCube, while still providing comparable overall performance. LCT is

also fault-tolerant and load-balancing in nature due to its special structure

design and the low-time-complexity routing protocol on top of its network

topology. Moreover, we analyzed the Data Centers energy consumption

and infrastructure cost in chapter 3. We proposed new topology called Va-

88

4. Conclusion and Future Research

coNet. It is a new variable connection topology that connects any needed

number of servers while reducing the unused materials. Detailed results

with different configurations have proved that VacoNet can reduce the cost

and the power respectively while providing a high network performance.

Furthermore, new appraoch for dynamic energy saving is proposed. Our

approach powers on and off network resources (switch ports) depending on

the level of their involvement in the network traffic. The decision to close

or open a port is based on a threshold value γ, such that the port is closed

if the sum of the traffic generated by its connected node is less than γ, and

opened otherwise. Simulation results proved the efficiency and feasibility

of the proposed approaches.

4.2 Future research

Many perspectives may be taken into consideration in future works.

First, and with the rapid increasing number of cloud users and the quantity

of data stored on cloud, greater security risks will be generated, especially

on public cloud which sells services to anyone on the Internet. We will

consider the problem of secure public cloud so that cloud users can access

safely the resources of computing, storage and network by renting from

cloud providers.

In the other hand, learning-based methods for security applications and

traffic prediction are gaining popularity in the literature with the advents

in machine learning techniques. We will consider these methods in obtaining

traffic information to manage the port changing management for more DCs

energy saving. Also, we will explore this information to secure the data of

cloud users.

89

Chapter 5

Publications

5.1 Journal Paper

Accepted journal papers

1. Zina Chkirbene, Sebti Foufou , Ridha Hamila, Z Tari, AY Zomaya ” La-

CoDa: Layered connected topology for massive data centers,” published in

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2017.01.020

Submitted journal papers

1. Zina Chkirbene, Rachid Hadjidj, Sebti Foufou, Ridha Hamila, Ibrahim

Khalil ”VacoNet: Varied Connected Topology For High Energy Efficient

and Cost Reduction In Data Center Networks,” submitted to Journal of

Network and Computer Applications.

2. Zina Chkirbene, Rachid Hadjidj, Sebti Foufou, Ridha Hamila, ”LaScaDa: A

Novel Scalable Topology for Data Center Network based on Layered Linked

Clusters Maximization Algorithm,” Submitted to IEEE/ACM Transactions

on Networking.

3. Zina Chkirbene, Ala Gouissem, Rachid Hadjidj, Sebti Foufou, Ridha Hamila,

” Energy Saving for Data Centers Topologies Using Time Traffic Correlation

and Port Activation management,” to be submitted.

90

5. Publications

5.2 Conference papers

Accepted conference papers

1. Zina Chkirbene, Sebti Foufou, Ridha Hamila, Mounir Hamdi and Ridha

Hamila, ”Hyper-Flatnet: A novel network architecture for data centers,”

2015 IEEE International Conference on Communication Workshop (ICCW),

London, 2015, pp. 1877-1882.doi : 10.1109/ICCW.2015.7247454

2. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”ScalNet: A Novel Network

Architecture for Data Centers,” 2015 IEEE Globecom Workshops (GC Wk-

shps), San Diego, CA, 2015, pp. 1-6. doi: 10.1109/GLOCOMW.2015.7414092

3. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”VacoNet: Variable and con-

nected architecture for data center networks,” 2016 IEEE Wireless Com-

munications and Networking conference, Doha, 2016, pp. 1-6.

doi: 10.1109/WCNC.2016.7564867

4. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”Adaptative Network Topol-

ogy for Data Centers,” Accepted in ARC 2016: First winner in the ICT

pillar.

5. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”Integrating Variability Man-

agement in Data Center Networks,” accepted in 2017 IEEE Wireless Com-

munications and Networking Conference

Submitted conference papers

1. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”A Novel Cluster-Based En-

ergy Efficient Routing for Data Centers Network,” to be submitted.

2. Zina Chkirbene, Sebti Foufou, Ridha Hamila, ”Optimization on Ports Ac-

tivation towards Energy Efficient Data Center Networks”, to be submitted.

3. Zina Chkirbene, Ala Gouissem, Sebti Foufou, Ridha Hamila, ”Reducing

Energy Consumption for Data center Network,” to be submitted.

———————————————————————-

91

Bibliography

[1] A. Carter, “Do it green: media interview with michael manos.”

http://edge.technet.com/Media/Doing-IT-Greel. xiv

[2] L. Rabbe, “Powering the yahoo! network’.”

http://yodel.yahoo.com/2006/11/27/powering-the-yahoo-networl. xiv

[3] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,

Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”

Communications Surveys Tutorials, IEEE, vol. 15, pp. 909–928, Second 2013.

xiv

[4] T. Wang., Z. Su., Y. Xia., J. Muppala., and M. H. ., “Designing efficient

high performance server-centric data center network architecture ,” computer

networks, January 2015. xiv

[5] P. Ruiu, A. Bianco, C. Fiandrino, P. Giaccone, and D. Kliazovich, “Power

comparison of cloud data center architectures,” in 2016 IEEE International

Conference on Communications (ICC), pp. 1–6, May 2016. xiv

[6] E. Baccour, S. Foufou, and R. Hamila, “Ptnet: A parameterizable data

center network,” in 2016 IEEE Wireless Communications and Networking

Conference, pp. 1–6, April 2016. xiv

[7] S. Stroh., G. Schröder., and F. Gröne., “Keeping the Data Center Compet-

itive Six Levers for Boosting Performance, Reducing Costs, and Preparing

for an On-Demand World,” nov 2012. xiv, 14, 20

92

Bibliography

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” SIGCOMM 2008 conference on Data commu-

nication, pp. 63–74, August 2009. xiv, 7, 17

[9] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “Ficonn: Using backup

port for server interconnection in data centers,” in INFOCOM 2009, IEEE,

pp. 2276–2285, April 2009. xiv, 8

[10] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, , and S. Lu, “Dcell: A scalable

and fault-tolerant network structure for data centers,” SIGCOMM 2008 on

Data communication, pp. 75–86, August 2008. xiv, 8, 67

[11] C. Guo, H. Wu, K. Tan, K. Shi, Y. Zhang, and S. Lu, “Bcube: A high

performance, server-centric network architecture for modular data centers,”

SIGCOMM 2009 on Data communication, pp. 63–74, August 2009. xiv, 8,

67

[12] T. Wang, Z. Su, Y. Xia, Y. Liu, J. Muppala, and M. Hamdi, “Sprintnet:

A high performance server-centric network architecture for data centers,” in

Communications (ICC), 2014 IEEE International Conference on, pp. 4005–

4010, June 2014. xiv, 43

[13] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya, “A taxonomy and

survey of energy-efficient data centers and cloud computing systems,” CoRR,

vol. abs/1007.0066, 2010. xiv

[14] R. Buyya, A. Beloglazov, and J. H. Abawajy, “Energy-efficient management

of data center resources for cloud computing: A vision, architectural ele-

ments, and open challenges,” CoRR, vol. abs/1006.0308, 2010. xiv

[15] E. Baccour, S. Foufou, R. Hamila, and M. Hamdi, “wflatnet: Introducing

wireless in flatnet data center network,” in 2015 IEEE Globecom Workshops

(GC Wkshps), pp. 1–6, Dec 2015. xv

[16] “Cisco, Cisco Nexus 7000 Series Switches.” http://www.cisco.com/c/en/

us/products/collateral/switches/nexus-7000-10-slot-switch/Data Sheet C78-

437762.html, 2013. 2

93

Bibliography

[17] Huawei, “ CloudEngine 12800 Series High-Performance Core Switches, .”

http://www.huaweienterpriseusa.com/products/network/switches/. 2

[18] Ruijie, “Ruijie RG-N18000 Series Data Center Switch.” http://www.ruijie.

com.cn/product/Switches/data-center-switch/RG-N18000, 2013. 2

[19] Arista, “ Arista 7500 series data center switch.” http://www. aristanet-

works.com/media/system/pdf/Datasheets/7500 Datasheet.pdf, 2014. 2

[20] “ Cisco Nexus 3064 Series Switches.” ”http://www.cisco.com/c/en/

us/products/collateral/switches/nexus-3000-series-switches/data sheet c78-

651097.htm. 2

[21] Arista, “ Arista 7050QX series data center switch.”

http://www.arista.com/assets/data/pdf/7050QX QuickLook.pdf, 2016.

2

[22] Lenovo, “ThinkServer RD630 Rack Server.” http://shop.lenovo.com/us/

en/servers/thinkserver/racks/rd630/, 2013. 2

[23] IBM, “IBM System x3650 M4.” http://www.redbooks.ibm.com/abstracts/

tips0850.html, 2014. 2

[24] Huawei, “Tecal BH640 V2 Blade Server.” http://enterprise.huawei.com/

en/products/itapp/server/e-series-blade-server/hw-149397.htm, 2013. 2

[25] Dell, “PowerEdge M820 Blade Server.” http://www.dell.com/us/

business/p/poweredge-m820/pd, 2013. 2

[26] E. Schonfeld, “Where are all the google data centers? .”

http://techcrunch.com/2008/04/11/where-are-all-the-google-datacenters/,

2008. 3

[27] “ How Microsoft Manages Its Cloud Infrastructure at a Huge

Scale.” ”http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/

COS211. 3

94

Bibliography

[28] Microsoft, “ Microsoft Data Centers.” http://www.globalfoundationservices.com,

2014. 3

[29] R. LeMay, “Amazon confirms Sydney CDN node.” http://delimiter.com.

au/2012/06/20/amazon-confirms-sydney-cdn-node/, 2012. 3

[30] A. Carrega, S. Singh, R. Bolla, and R. Bruschi, “Applying traffic merging

to datacenter networks,” in Proceedings of the 3rd International Conference

on Future Energy Systems: Where Energy, Computing and Communication

Meet, e-Energy ’12, (New York, NY, USA), pp. 3:1–3:9, ACM, 2012. 4

[31] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center

networks,” in Proceedings of the 7th USENIX Conference on Networked Sys-

tems Design and Implementation, NSDI’10, (Berkeley, CA, USA), pp. 17–17,

USENIX Association, 2010. 4, 5

[32] Y. Shang, D. Li, and M. Xu, “Energy-aware routing in data center network,”

in Proceedings of the First ACM SIGCOMM Workshop on Green Network-

ing, Green Networking ’10, (New York, NY, USA), pp. 1–8, ACM, 2010. 4,

5

[33] D. Li, Y. Yu, W. He, K. Zheng, and B. He, “Willow: Saving data center

network energy for network-limited flows,” IEEE Transactions on Parallel

and Distributed Systems, vol. 26, pp. 2610–2620, Sept 2015. 5

[34] “https://www.energystar.gov/products/low carbon it campaign/12 ways

save energy data center.” 6

[35] I. n. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini,

“Greenhadoop: Leveraging green energy in data-processing frameworks,” in

Proceedings of the 7th ACM European Conference on Computer Systems,

EuroSys ’12, (New York, NY, USA), pp. 57–70, ACM, 2012. 6

[36] K. K. Nguyen, M. Cheriet, M. Lemay, M. Savoie, and B. Ho, “Powering a

data center network via renewable energy: A green testbed,” IEEE Internet

Computing, vol. 17, pp. 40–49, Jan 2013. 6

95

Bibliography

[37] M. Arlitt, C. Bash, S. Blagodurov, Y. Chen, T. Christian, D. Gmach,

C. Hyser, N. Kumari, Z. Liu, M. Marwah, A. McReynolds, C. Patel, A. Shah,

Z. Wang, and R. Zhou, “Towards the design and operation of net-zero energy

data centers,” in 13th InterSociety Conference on Thermal and Thermome-

chanical Phenomena in Electronic Systems, pp. 552–561, May 2012. 6

[38] V. George, H. Zhang, and J. Rabaey, “The design of a low energy fpga,” in

Proceedings of the 1999 International Symposium on Low Power Electronics

and Design, ISLPED ’99, (New York, NY, USA), pp. 188–193, ACM, 1999.

6

[39] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating server

idle power,” SIGARCH Comput. Archit. News, vol. 37, pp. 205–216, Mar.

2009. 6

[40] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server clus-

ters,” in Proceedings of the 2Nd International Conference on Power-aware

Computer Systems, PACS’02, (Berlin, Heidelberg), pp. 179–197, Springer-

Verlag, 2003. 6

[41] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: Fine-grained

power management for multi-core systems,” SIGARCH Comput. Archit.

News, vol. 37, pp. 302–313, June 2009. 6

[42] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,

“Power management of datacenter workloads using per-core power gating,”

IEEE Comput. Archit. Lett., vol. 8, pp. 48–51, July 2009. 6

[43] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory

power management via dynamic voltage/frequency scaling,” in Proceedings

of the 8th ACM International Conference on Autonomic Computing, ICAC

’11, (New York, NY, USA), pp. 31–40, ACM, 2011. 6

[44] Z. Chkirbene, S. Foufou, and R. Hamila, “Integrating variability manage-

ment in data center networks,” in 2016 IEEE Wireless Communications and

Networking Conference, pp. 1–6, April 2017. 6

96

Bibliography

[45] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus:

A topology malleable data center network,” in Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, (New York,

NY, USA), pp. 8:1–8:6, ACM, 2010. 6

[46] L. Huang, Q. Jia, X. Wang, S. Yang, and B. Li, “Pcube: Improving power

efficiency in data center networks,” in 2011 IEEE 4th International Confer-

ence on Cloud Computing, pp. 65–72, July 2011. 6

[47] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen,

“Greencloud: A new architecture for green data center,” in Proceedings of

the 6th International Conference Industry Session on Autonomic Computing

and Communications Industry Session, ICAC-INDST ’09, (New York, NY,

USA), pp. 29–38, ACM, 2009. 6

[48] G. Wu, M. Tang, Y.-C. Tian, and W. Li, “Energy-efficient virtual machine

placement in data centers by genetic algorithm,” in Proceedings of the 19th

International Conference on Neural Information Processing - Volume Part

III, ICONIP’12, (Berlin, Heidelberg), pp. 315–323, Springer-Verlag, 2012. 6

[49] T. Yang, Y. C. Lee, and A. Y. Zomaya, “Energy-efficient data center net-

works planning with virtual machine placement and traffic configuration,”

in 2014 IEEE 6th International Conference on Cloud Computing Technology

and Science, pp. 284–291, Dec 2014. 6

[50] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,

P. Patel, and S. Sengupta, “Vl2: a scalable and exible data center network,”

SIGCOMM Computer Communication, pp. 51–62, August 2009. 7

[51] D. Lin, Y. Liu, M. Hamdi, and J. Muppala, “Hyper-bcube: A scalable data

center network,” in 2012 IEEE International Conference on Communications

(ICC), pp. 2918–2923, June 2012. 8, 11, 67

[52] R. Mysore, A. Pamporis, N. Farrington, N. Huang, P. Miri, R. Radhakrish-

nan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable, Fault-Tolerant

Layer 2 Data Center Network Fabric,” SIGCOMM2009 on Data communi-

cation, pp. 39–50, August 2009. 8

97

Bibliography

[53] D. Lin, Y. Liu, M. Hamdi, and J. Muppala, “Flatnet: Towards a flat-

ter data center network,” in Global Communications Conference (GLOBE-

COM), 2012 IEEE, pp. 2499–2504, Dec 2012. 11, 67

[54] X. Yin, S. Yoo, P. Mejia, Proietti.R., and V. Akella, “DOS – A Scalable

Optical Switch for Datacenters,” ACM ANCS’10, pp. 63–74, October 2010.

12

[55] K. Xia, M. Kao, Y.and Yang, and J. Chao, “Petabit Optical Switch for Data

Center Networks,” Technical Report, 2010. 12

[56] Y. Liu., J. Muppla., M. Veeraghavan., D. Lin., and M. Hamdi., “Data center

network.” http://www.amazon.ca/Data - center - Network, 2013. 15

[57] D. Lin., Y. Liu., M. Hamd.i, and J. Muppala., “Hyper-BCube: A Scalable

Data Center Network,” 2012. 17

[58] L. Popa., S. Ratnasamy., G. Iannaccone., A. Krishnamurthy., and I. Stoica.,

“A cost comparison of datacenter network architectures,” in ACM New York,

NY, USA, 2010. 18

[59] Z. Chkirbene, S. Foufou, M. Hamdi, and R. Hamila, “Hyper-flatnet: A novel

network architecture for data centers,” in 2015 IEEE International Confer-

ence on Communication Workshop (ICCW), pp. 1877–1882, June 2015. 34,

67, 68

[60] Z. Chkirbene, S. Foufou, M. Hamdi, and R. Hamila, “Scalnet: A novel

network architecture for data centers,” in 2015 IEEE Globecom Workshops

(GC Wkshps), pp. 1–6, Dec 2015. 36

[61] Z. Chkirbene, S. Foufou, R. Hamila, T. Zahir, and A. Y. Zomaya, “Lacoda:

Layered connected topology for massive data centers,” in Journal of Network

and Computer Applications, Feb 2017. 40, 67

[62] R. Qi, W. Liu, J. Gutierrez, and A. W. Malik, “Crash me if you can: Re-

thinking sustainable data center networking from a topological perspective,”

in 2016 IEEE Conference on Computer Communications Workshops (IN-

FOCOM WKSHPS), pp. 566–571, April 2016. 68

98

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	0.1 Problem statement
	0.2 Contributions
	0.3 Outline

	1 Literature Review
	1.1 Introduction
	1.2 An overview of DCs
	1.2.1 Hardware of DC networks
	1.2.2 Example of DCs

	1.3 Green DCs
	1.3.1 Dynamic energy saving approach
	1.3.2 Static energy saving approach

	1.4 Topologies of DC networks
	1.4.1 Fixed topologies: Tree-based Topologies
	1.4.1.1 FatTree
	1.4.1.2 VL2

	1.4.2 Fixed topologies: Recursive Topologies
	1.4.2.1 DCell
	1.4.2.2 BCube
	1.4.2.3 FiConn
	1.4.2.4 FlatNet
	1.4.2.5 HyperBcube

	1.4.3 Flexible topologies
	1.4.3.1 DOS
	1.4.3.2 c-Through

	1.5 Comparisons of topologies
	1.5.1 Comparison criteria
	1.5.2 Performance comparison

	1.6 Conclusion

	2 Enhancing QoS of Dc
	2.1 Introduction
	2.2 Physical structure
	2.2.1 Fault free routing scheme
	2.2.2 Fault tolerant routing scheme

	2.3 LCT key features
	2.3.1 Network latency
	2.3.2 Fault tolerance
	2.3.3 Throughput
	2.3.4 Aggregate bottleneck throughput

	2.4 Specialization of LCT
	2.4.1 Flat recursive topologies
	2.4.1.1 HyperFlatNet: LCT (m=n2, k=2)
	2.4.1.2 ScalNet: LCT (m=n32, k=2)
	2.4.1.3 ScalNet Vs HyperFlatNet

	2.4.2 Layered recursive topologies
	2.4.2.1 LaCoDa: LCT (m=n2, k1)
	2.4.2.2 LaScaDa: LCT (m=n32, k1)
	2.4.2.3 LaScaDa Vs LaCoDa

	2.5 Conclusion

	3 Reducing DC cost and energy consumption
	3.1 Introduction
	3.2 Static energy saving
	3.2.1 Physical structure
	3.2.2 Controlled VacoNet
	3.2.3 Performance evaluation
	3.2.3.1 Power consumption
	3.2.3.2 Simulation results

	3.3 Dynamic energy saving
	3.3.1 Problem statement
	3.3.1.1 Closing links strategy
	3.3.1.2 Routing strategy
	3.3.1.3 Problem formulation

	3.3.2 System model
	3.3.2.1 Network traffic model
	3.3.2.2 Activating and deactivating links
	3.3.2.3 Network topology

	3.3.3 Closing ports management algorithm
	3.3.3.1 Critical link classification algorithms
	3.3.3.2 Critical non cluster links
	3.3.3.3 Links deactivation algorithm
	3.3.3.4 Routing algorithm

	3.3.4 System performance
	3.3.4.1 Period study
	3.3.4.2 Energy consumption

	3.3.5 Performance evaluation
	3.3.5.1 Traffic pattern
	3.3.5.2 Simulations results

	3.4 Cost reduction
	3.4.1 Switches cost
	3.4.2 Cabling cost
	3.4.3 Performance evaluation
	3.4.3.1 Simulation results

	3.5 Conclusion

	4 Conclusion and Future Research
	4.1 Conclusion
	4.2 Future research

	5 Publications
	5.1 Journal Paper
	5.2 Conference papers

	Bibliography

