. Abkarian, M. Viallat-;-abkarian, and A. Viallat, Vesicles and red blood cells in shear flow, Soft Matter, vol.4, issue.4, pp.653-657, 2008.
DOI : 10.1039/b716612e

URL : https://hal.archives-ouvertes.fr/hal-00321718

. Akbarzadeh, , 2013.

K. , Liposome: classification, preparation, and applications, Nanoscale Res. Lett, vol.8, issue.1, p.102, 2013.

T. M. Allen and P. R. Cullis, Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev, vol.65, issue.1, pp.36-48, 2013.

Y. Ando, J. Ando, and K. Yamamoto, Flow detection and calcium signalling in vascular endothelial cells, Cardiovasc Res, vol.99, issue.2, pp.260-268, 2013.
DOI : 10.1093/cvr/cvt084

URL : https://academic.oup.com/cardiovascres/article-pdf/99/2/260/17878363/cvt084.pdf

. Aouane, Vesicle dynamics in a confined poiseuille flow: From steady state to chaos, Phys. Rev. E, vol.90, issue.3, p.33011, 2014.

. Aouane, Vesicle dynamics in a confined poiseuille flow: From steady state to chaos, Phys. Rev. E, vol.90, p.33011, 2014.

D. Audet and W. Olbricht, The motion of model cells at capillary bifurcations, Microvasc. Res, vol.33, issue.3, pp.377-396, 1987.

P. Balogh and P. Bagchi, Direct numerical simulation of cellular-scale blood flow in 3d microvascular networks, Biophys. J, vol.113, issue.12, pp.2815-2826, 2017.

A. I. Barakat, Blood flow and arterial endothelial dysfunction: Mechanisms and implications, Comptes Rendus Physique, vol.14, issue.6, pp.479-496, 2013.
DOI : 10.1016/j.crhy.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00995143

C. Barbee, J. H. Barbee, and G. R. Cokelet, The fahraeus effect, Microvasc. Res, vol.3, issue.1, pp.6-16, 1971.

[. Barber, Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations, Ann. Biomed. Eng, vol.36, issue.10, pp.1690-1698, 2008.

[. Betz, Atpdependent mechanics of red blood cells, Proc. Natl. Acad. Sci. USA, vol.106, issue.36, pp.15320-15325, 2009.

[. Brust, , 2014.

, The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows, Sci. Rep, vol.4, p.4348

G. Burnstock, Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction, 1999.

, J. Anat, vol.194, issue.3, pp.335-342

I. Cantat and C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow, Phys. Rev. Lett, vol.83, issue.4, p.880, 1999.

[. Chasan, Evidence for direct interaction between actin and the cystic fibrosis transmembrane conductance regulator, Eur Biophys J, vol.30, issue.8, pp.617-624, 2002.

L. Chen, K. Chen, and M. Lai, A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant, J. Comput. Phys, vol.257, pp.1-18, 2014.

[. Chen, Improved treatments for general boundary conditions in the lattice boltzmann method for convection-diffusion and heat transfer processes, Phys. Rev. E, vol.88, issue.3, p.33304, 2013.

[. Chen, Improved treatments for general boundary conditions in the lattice boltzmann method for convection-diffusion and heat transfer processes, Phys. Rev. E, vol.88, issue.3, p.33304, 2013.

D. Chen, S. Chen, and G. D. Doolen, Lattice boltzmann method for fluid flows, Annu. Rev. Fluid Mech, vol.30, issue.1, pp.329-364, 1998.

[. Coupier, Shape diagram of vesicles in poiseuille flow, Phys. Rev. Lett, vol.108, issue.17, p.178106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909427

[. Coupier, , 2008.

, Noninertial lateral migration of vesicles in bounded poiseuille flow, Phys. Fluids, vol.20, issue.11, p.111702

. Crecelius, Mechanisms of atp-mediated vasodilation in humans: modest role for nitric oxide and vasodilating prostaglandins, Am. J Physiol. Heart Circ. Physiol, vol.301, issue.4, pp.1302-1310, 2011.

P. F. Davies, Flow-mediated endothelial mechanotransduction, Physiol. Rev, vol.75, issue.3, pp.519-560, 1995.
DOI : 10.1152/physrev.1995.75.3.519

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053532

[. Dietrich, Red blood cell regulation of microvascular tone through adenosine triphosphate, Am. J. Physiol. Heart Circ. Physiol, vol.278, issue.4, 2000.
DOI : 10.1152/ajpheart.2000.278.4.h1294

[. Doyeux, Spheres in the vicinity of a bifurcation: elucidating the zweifach-fung effect, J. Fluid Mech, vol.674, pp.359-388, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00634262

[. Dubyak, G. R. Dubyak, and C. El-moatassim, Signal transduction via p2-purinergic receptors for extracellular atp and other nucleotides, Am. J. Physiol. Cell Physiol, vol.265, issue.3, pp.577-606, 1993.

B. Duncker, D. J. Duncker, and R. J. Bache, Regulation of coronary blood flow during exercise, Physiol. Rev, vol.88, issue.3, pp.1009-1086, 2008.

[. Ellsworth, Erythrocytes: oxygen sensors and modulators of vascular tone, Physiology, vol.24, issue.2, pp.107-116, 2009.

L. Fahraeus, R. Fahraeus, and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, American Journal of Physiology-Legacy Content, vol.96, issue.3, pp.562-568, 1931.

. Farutin, A. Misbah-;-farutin, and C. Misbah, Symmetry breaking of vesicle shapes in poiseuille flow, Phys. Rev. E, vol.84, issue.1, p.11902, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00908801

. Farutin, A. Misbah-;-farutin, and C. Misbah, Squaring, parity breaking, and s tumbling of vesicles under shear flow, Phys. Rev. Lett, vol.109, issue.24, p.248106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00881101

. Farutin, A. Misbah-;-farutin, and C. Misbah, Analytical and numerical study of three main migration laws for vesicles under flow, Phys. Rev. Lett, vol.110, issue.10, p.108104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881105

. Farutin, A. Misbah-;-farutin, and C. Misbah, Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial poiseuille flow, Phys. Rev. E, vol.89, issue.4, p.42709, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02011320

[. Fedosov, Deformation and dynamics of red blood cells in flow through cylindrical microchannels, Soft Matter, vol.10, issue.24, pp.4258-4267, 2014.

. Feng, Z. Michaelides-;-feng, and E. E. Michaelides, The immersed boundary-lattice boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys, vol.195, issue.2, pp.602-628, 2004.

K. Fischer, T. M. Fischer, and R. Korzeniewski, Threshold shear stress for the transition between tumbling and tank-treading of red blood cells, 2013.

, J. Fluid Mech, vol.736, pp.351-365

[. Fischer, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, issue.4370, pp.894-896, 1978.

[. Fischer, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, issue.4370, pp.894-896, 1978.

D. A. Flormann, La caractérisation physique de l'agrégation des globules rouges, 2017.

[. Forsyth, Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release, Proc. Natl. Acad. Sci. USA, vol.108, issue.27, pp.10986-10991, 2011.
DOI : 10.1073/pnas.1101315108

URL : https://hal.archives-ouvertes.fr/hal-00630755

[. Galie, Fluid shear stress threshold regulates angiogenic sprouting, Proc. Natl. Acad. Sci. USA, vol.111, issue.22, pp.7968-7973, 2014.
DOI : 10.1073/pnas.1310842111

URL : http://europepmc.org/articles/pmc4050561?pdf=render

H. Gebäck, T. Gebäck, and A. Heintz, A lattice boltzmann method for the advection-diffusion equation with neumann boundary conditions, 2014.

, Comm. Comput. Phys, vol.15, issue.2, pp.487-505

S. Gekle, Strongly accelerated margination of active particles in blood flow, Biophys. J, vol.110, issue.2, pp.514-520, 2016.

S. Gekle, Dispersion of solute released from a sphere flowing in a microchannel, J. Fluid Mech, vol.819, pp.104-120, 2017.

[. Ghigliotti, Rheology of a dilute two-dimensional suspension of vesicles, J. Fluid Mech, vol.653, pp.489-518, 2010.

[. Gijsen, The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, J. Biomech, vol.32, issue.6, pp.601-608, 1999.

[. Gorman, Human plasma atp concentration, Clin. Chem, vol.53, issue.2, pp.318-325, 2007.

[. Gov, N. S. Safran-;-gov, and S. A. Safran, Red blood cell membrane fluctuations and shape controlled by atp-induced cytoskeletal defects, Biophys. J, vol.88, issue.3, pp.1859-1874, 2005.
DOI : 10.1529/biophysj.104.045328

URL : https://doi.org/10.1529/biophysj.104.045328

G. Guckenberger, A. Guckenberger, and S. Gekle, A boundary integral method with volume-changing objects for ultrasound-triggered margination of microbubbles, J. Fluid Mech, vol.836, pp.952-997, 2018.

D. S. Hariprasad and T. W. Secomb, Prediction of noninertial focusing of red blood cells in poiseuille flow, Phys. Rev. E, vol.92, issue.3, p.33008, 2015.

[. Hartmannsgruber, , 2007.

, Arterial response to shear stress critically depends on endothelial trpv4 expression, PloS One, vol.2, issue.9, p.827

. He, X. Luo-;-he, and L. Luo, Theory of the lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation, Phys. Rev. E, vol.56, issue.6, p.6811, 1997.

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch. C Bio. Sci, vol.28, pp.693-703, 1973.

[. Hill, Invited review: arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity, Journal of applied physiology, vol.91, issue.2, pp.973-983, 2001.
DOI : 10.1152/jappl.2001.91.2.973

[. Hoge, Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex, Proc. Natl. Acad. Sci. USA, vol.96, issue.16, pp.9403-9408, 1999.

[. Hu, A coupled immersed boundary and immersed interface method for interfacial flows with soluble surfactant, Comput. Fluids, vol.168, pp.201-215, 2018.

. Huang, An immersed boundary method for restricted diffusion with permeable interfaces, J. Comput. Phys, vol.228, issue.15, pp.5317-5322, 2009.

. Huang, Second-order curved boundary treatments of the lattice boltzmann method for convection-diffusion equations, J. Comput. Phys, vol.310, pp.26-44, 2016.

J. Huang and W. Yong, Boundary conditions of the lattice boltzmann method for convection-diffusion equations, J. Comput. Phys, vol.300, pp.70-91, 2015.

. Hyakutake, T. Nagai-;-hyakutake, and S. Nagai, Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations, Microvasc. Res, vol.97, pp.115-123, 2015.

[. Jafarnejad, Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells, Am. J. Physiol. Heart Circ. Physiol, vol.308, issue.7, pp.697-706, 2015.

J. , B. , K. Barakat, and A. I. , Modulation of atp/adp concentration at the endothelial surface by shear stress: effect of flow-induced atp release, Ann. Biomed. Eng, vol.29, issue.9, pp.740-751, 2001.

[. Judy, Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat, Circ. Res, vol.38, issue.6, pp.21-29, 1976.

[. Junk, Asymptotic analysis of the lattice boltzmann equation, J. Comput. Phys, vol.210, issue.2, pp.676-704, 2005.

[. Kabacao?lu, Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions, Phys. Fluids, vol.29, issue.2, p.21901, 2017.

B. Kaoui-;-kaoui, Computer simulations of drug release from a liposome into the bloodstream, Eur. Phys. J. E, vol.41, issue.2, p.20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01734705

[. Kaoui, Why do red blood cells have asymmetric shapes even in a symmetric flow?, Phys. Rev. Lett, vol.103, issue.18, p.188101, 2009.

[. Kaoui, Mechanistic modelling of drug release from multi-layer capsules, Comput. Biol. Med, vol.93, pp.149-157, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01735775

[. Kaoui, Lateral migration of a two-dimensional vesicle in unbounded poiseuille flow, Phys. Rev. E, vol.77, issue.2, p.21903, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674499

[. Kaoui, Complexity of vesicle microcirculation, Phys. Rev. E, vol.84, issue.4, p.41906, 2011.

J. P. Keener and J. Sneyd, Mathematical physiology, vol.1, 1998.
DOI : 10.1007/b98841

B. S. Khakh and G. Burnstock, The double life of atp, Sci. Am, vol.301, issue.6, pp.84-92, 2009.

A. Koller and G. Kaley, Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism, Am. J Physiol. Heart Circ. Physiol, vol.258, issue.3, pp.916-920, 1990.

T. Krüger, Effect of tube diameter and capillary number on platelet margination and near-wall dynamics, Rheol Acta, vol.55, issue.6, pp.511-526, 2016.

[. Krüger, The Lattice Boltzmann Method, 2017.

[. Krüger, Shear stress in lattice boltzmann simulations, Phys. Rev. E, vol.79, issue.4, p.46704, 2009.

G. ;. Kumar, A. Kumar, and M. D. Graham, Mechanism of margination in confined flows of blood and other multicomponent suspensions, Phys. Rev. Lett, vol.109, issue.10, p.108102, 2012.

V. Ladd, A. J. Ladd, and R. Verberg, Lattice-boltzmann simulations of particle-fluid suspensions, J. Stat. Phys, vol.104, issue.5, pp.1191-1251, 2001.

. Lallemand, P. Luo-;-lallemand, and L. Luo, Lattice boltzmann method for moving boundaries, J. Comput. Phys, vol.184, issue.2, pp.406-421, 2003.
DOI : 10.1016/s0021-9991(02)00022-0

[. Lanotte, Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proc. Natl. Acad. Sci. USA, vol.113, issue.47, pp.13289-13294, 2016.
DOI : 10.1073/pnas.1608074113

URL : https://hal.archives-ouvertes.fr/hal-01435953

[. Lee, The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement, J. Comput. Phys, vol.229, issue.13, pp.5208-5227, 2010.

[. Li, Boundary conditions for thermal lattice boltzmann equation method, J. Comput. Phys, vol.237, pp.366-395, 2013.
DOI : 10.1016/j.jcp.2012.11.027

[. Li, Lattice boltzmann models for the convection-diffusion equation: D2q5 vs d2q9, International Journal of Heat and Mass Transfer, vol.108, pp.41-62, 2017.
DOI : 10.1016/j.ijheatmasstransfer.2016.11.092

[. Li, Modeling of trpv4-c1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and atp, Biomech. Model Mechanobiol, vol.14, issue.5, pp.979-993, 2015.

[. Liu, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol, vol.104, issue.3, pp.527-536, 1987.

[. Locovei, Pannexin 1 in erythrocytes: function without a gap, Proc. Natl. Acad. Sci. USA, vol.103, issue.20, pp.7655-7659, 2006.

[. Malek, Hemodynamic shear stress and its role in atherosclerosis, Jama, vol.282, issue.21, pp.2035-2042, 1999.
DOI : 10.1001/jama.282.21.2035

K. Markl, M. Markl, and C. Körner, Free surface neumann boundary condition for the advection-diffusion lattice boltzmann method, J. Comput. Phys, vol.301, pp.230-246, 2015.
DOI : 10.1016/j.jcp.2015.08.033

[. Mauer, Flow-induced transitions of red blood cell shapes under shear, Phys. Rev. Lett, vol.121, issue.11, p.118103, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898170

A. A. Mohamad-;-mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, 2011.

[. Müller, Understanding particle margination in blood flow-a step toward optimized drug delivery systems, Med. Eng. Phys, vol.38, issue.1, pp.2-10, 2016.

[. Needham, A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model, Cancer Res, vol.60, issue.5, pp.1197-1201, 2000.

G. Noguchi, H. Noguchi, and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA, vol.102, issue.40, pp.14159-14164, 2005.

S. Novak, I. L. Novak, and B. M. Slepchenko, A conservative algorithm for parabolic problems in domains with moving boundaries, J. Comput. Phys, vol.270, pp.203-213, 2014.

P. Olla, The lift on a tank-treading ellipsoidal cell in a shear flow, J. Phys, vol.II, issue.10, pp.1533-1540, 1997.
URL : https://hal.archives-ouvertes.fr/jpa-00248531

[. Park, Metabolic remodeling of the human red blood cell membrane, Proc. Natl. Acad. Sci. USA, vol.107, issue.4, pp.1289-1294, 2010.

C. S. Peskin, The immersed boundary method, Acta Numer, vol.11, pp.479-517, 2002.

[. Plank, Atherosclerosis and calcium signalling in endothelial cells, Prog. Biophys. Mol. Biol, vol.91, issue.3, pp.287-313, 2006.
DOI : 10.1016/j.pbiomolbio.2005.07.005

J. ;. Popel, A. S. Popel, and P. C. Johnson, Microcirculation and hemorheology, Annu. Rev. Fluid Mech, vol.37, pp.43-69, 2005.
DOI : 10.1146/annurev.fluid.37.042604.133933

URL : http://europepmc.org/articles/pmc3000688?pdf=render

C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.

[. Prado, Viscoelastic transient of confined red blood cells, Biophys. J, vol.108, issue.9, pp.2126-2136, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01064782

[. Pries, Blood viscosity in tube flow: dependence on diameter and hematocrit, American Journal of Physiology-Heart and Circulatory Physiology, vol.263, issue.6, pp.1770-1778, 1992.

[. Pries, Blood flow in microvascular networks, Circ. Res, vol.67, pp.826-834, 1990.
DOI : 10.1016/b978-0-12-374530-9.00001-2

[. Putney, Mechanisms of capacitative calcium entry, J. Cell Sci, vol.114, issue.12, pp.2223-2229, 2001.

B. Quaife and G. Biros, High-volume fraction simulations of two-dimensional vesicle suspensions, J. Comput. Phys, vol.274, pp.245-267, 2014.

[. Quint, , 2017.

, Appl. Phys. Lett, vol.111, issue.10, p.103701

. [rahimian, Dynamic simulation of locally inextensible vesicles suspended in an arbitrary twodimensional domain, a boundary integral method, Journal of Computational Physics, vol.229, issue.18, pp.6466-6484, 2010.

. Rees, Role of endothelium-derived nitric oxide in the regulation of blood pressure, Proc. Natl, 1989.

, Acad. Sci. USA, vol.86, issue.9, pp.3375-3378

[. Resnick, Fluid shear stress and the vascular endothelium: for better and for worse, Prog. Biophys. Mol. Biol, vol.81, issue.3, pp.177-199, 2003.

W. Risau, On the regulation of the blood-supply of the brain, J. Physiol, vol.386, issue.6626, pp.85-158, 1890.

[. Saotome, Structure of the mechanically activated ion channel Piezo1, Nature, 2017.

[. Scheffer, Atomic force pulling: probing the local elasticity of the cell membrane, Eur. Biophys. J, vol.30, issue.2, pp.83-90, 2001.

C. J. Schwartz, Observations on localization of arterial plaques, Circ. Res, pp.63-73, 1962.

S. S. Segal-;-segal, Regulation of blood flow in the microcirculation, Microcirculation, vol.12, issue.1, pp.33-45, 2005.

U. Seifert, Hydrodynamic lift on bound vesicles, Phys. Rev. Lett, vol.83, issue.4, p.876, 1999.
DOI : 10.1103/physrevlett.83.876

URL : http://arxiv.org/pdf/cond-mat/9901104

[. Sercombe, Advances and challenges of liposome assisted drug delivery, Front. Pharmacol, vol.6, p.286, 2015.

[. Shen, , 2017.

, Interaction and rheology of vesicle suspensions in confined shear flow, Phys. Rev. Fluids, vol.2, issue.10, p.103101

[. Shen, , 2017.

, Interaction and rheology of vesicle suspensions in confined shear flow, Phys. Rev. Fluids, vol.2, p.103101

S. Snyder, G. K. Snyder, and B. A. Sheafor, Red blood cells: centerpiece in the evolution of the vertebrate circulatory system, American zoologist, vol.39, issue.2, pp.189-198, 1999.

[. Sprague, Deformation-induced atp release from red blood cells requires cftr activity, Am. J. Physiol. Heart Circ. Physiol, vol.275, issue.5, pp.1726-1732, 1998.
DOI : 10.1152/ajpheart.1998.275.5.h1726

[. Sprague, Deformation-induced atp release from red blood cells requires cftr activity, Am. J. Physiol. Heart Circ. Physiol, vol.275, issue.5, pp.1726-1732, 1998.

[. Sprague, Atp: the red blood cell link to no and local control of the pulmonary circulation, Am. J. Physiol. Heart Circ. Physiol, vol.271, issue.6, pp.2717-2722, 1996.

[. Subczynski, , 1992.

, Is the mammalian cell plasma membrane a barrier to oxygen transport?, J. Gen. Physiol, vol.100, issue.1, pp.69-87

S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond, 2001.

S. Suga-;-suga, Numerical schemes obtained from lattice boltzmann equations for advection diffusion equations, International Journal of Modern Physics C, vol.17, issue.11, pp.1563-1577, 2006.

[. Sutera, , 1970.

, Capillary blood flow: Ii. deformable model cells in tube flow, Microvasc. Res, vol.2, issue.4, pp.420-433

[. Tahiri, On the problem of slipper shapes of red blood cells in the microvasculature, Microvasc. Res, vol.85, pp.40-45, 2013.

M. Thiébaud, M. Thiébaud, and C. Misbah, Rheology of a vesicle suspension with finite concentration: A numerical study, Phys. Rev. E, vol.88, issue.6, p.62707, 2013.

[. Thiébaud, , 2014.

, Prediction of anomalous blood viscosity in confined shear flow, Phys. Rev. Lett, vol.112, issue.23, p.238304

G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluidics, vol.8, issue.5, p.51501, 2014.

[. Topper, Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress, Proc. Natl. Acad. Sci. USA, vol.93, issue.19, pp.10417-10422, 1996.

[. Topper, G. Jr-;-topper, J. N. Gimbrone, and M. A. , Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype, Mol. Med. Today, vol.5, issue.1, pp.40-46, 1999.

[. Tran, Calcium signalling in endothelial cells, Cardiovasc. Res, vol.48, issue.1, pp.13-22, 2000.

[. Trozzo, , 2015.

, Axisymmetric boundary element method for vesicles in a capillary, J. Comput. Phys, vol.289, pp.62-82

. Tsubota, K. Wada-;-tsubota, and S. Wada, Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell, Phys. Rev. E, vol.81, issue.1, p.11910, 2010.

[. Veerapaneni, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d, J. Comput. Phys, vol.228, issue.7, pp.2334-2353, 2009.

[. Vennemann, In vivo whole-field blood velocity measurement techniques, Exp. Fluids, vol.42, issue.4, pp.495-511, 2007.

G. ;. Vlahovska, P. M. Vlahovska, and R. S. Gracia, Dynamics of a viscous vesicle in linear flows, Phys. Rev. E, vol.75, issue.1, p.16313, 2007.

[. Vlahovska, , 2009.

, Vesicles and red blood cells in flow: From individual dynamics to rheology, Comptes Rendus Phys, vol.10, issue.8, pp.775-789

[. Wan, Dynamics of shear-induced atp release from red blood cells, Proc. Natl. Acad. Sci. USA, vol.105, issue.43, pp.16432-16437, 2008.

[. Wiesner, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, Am. J Physiol. Cell Physiol, vol.270, issue.5, pp.1556-1569, 1996.

[. Wiesner, A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress, Proc. Natl. Acad. Sci. USA, vol.94, issue.8, pp.3726-3731, 1997.

[. Yamamoto, K. Yamamoto, and J. Ando, New molecular mechanisms for cardiovascular disease: blood flow sensing mechanism in vascular endothelial cells, J. Pharmacol. Sci, vol.116, issue.4, pp.323-331, 2011.

[. Yamamoto, Fluid shear stress activates ca2+ influx into human endothelial cells via p2x4 purinoceptors, Circ. Res, vol.87, issue.5, pp.385-391, 2000.

[. Yamamoto, Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J. Appl. Physiol, vol.95, issue.5, pp.2081-2088, 2003.

Y. , A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys, vol.228, issue.20, pp.7821-7836, 2009.

. Yin, Mass and momentum transfer across solid-fluid boundaries in the lattice-boltzmann method, Phys. Rev. E, vol.86, issue.2, p.26701, 2012.

H. Yoshida and M. Nagaoka, Multiplerelaxation-time lattice boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys, vol.229, issue.20, pp.7774-7795, 2010.

D. Zawieja, Lymphatic biology and the microcirculation: past, present and future, Microcirculation, vol.12, issue.1, pp.141-150, 2005.

M. Zhang, H. Zhang, and C. Misbah, Lattice boltzmann simulation of advection-diffusion of chemicals and applications to blood flow: submitted in 2018, Phys. Rev. E, 2018.

[. Zhang, Atp release by red blood cells under flow: Model and simulations: Submitted, Biophys. J, 2018.

[. Zhang, General bounce-back scheme for concentration boundary condition in the lattice-boltzmann method, Phys. Rev. E, vol.85, issue.1, p.16701, 2012.

[. Zhao, Shearinduced particle migration and margination in a cellular suspension, Phys. Fluids, vol.24, issue.1, p.11902, 2012.

. Zhong-can, O. Helfrich-;-zhong-can, and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, vol.39, issue.10, p.5280, 1989.

Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice boltzmann bgk model, Phys. Fluids, vol.9, issue.6, pp.1591-1598, 1997.