F. Zhang, P. Zhao, M. Niu, and J. Maddy, The survey of key technologies in hydrogen energy storage, Internations Journal of Hydrogen Energy, vol.41, pp.14535-14552, 2016.

S. Niaz, T. Manzoor, and A. H. Panadith, Hydrogen storage: Materials, methods and perspectives, vol.50, pp.457-469, 2015.
DOI : 10.1016/j.rser.2015.05.011

L. Zhou, Progress and problems in hydrogen storage, Renewable and Sustainable Energy Reviews, vol.9, pp.395-408, 2005.

M. Hirscher, Handbook of hydrogen storage: new materials for future energy storage, pp.978-981, 2010.

D. Mori and K. Hirose, Recent challenges of hydrogen storage technologies for fuel cell vehicles, vol.34, pp.4569-4574, 2009.

P. Bénard and R. Chahine, Storage of hydrogen by physisorption on carbon and nanostructured materials, Scripta Materialia, vol.56, pp.803-808, 2007.

S. K. Bhatia and A. L. Myers, Optimum conditions for adsorptive storage, Langmuir, vol.22, pp.1688-1700, 2006.
DOI : 10.1021/la0523816

P. Benard and R. Chahine, Modeling of adsorption storage of hydrogen on activated carbons, Int. J. Hydrogen Energy, vol.26, pp.849-855, 2001.

B. Panella, M. Hirscher, and S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon, vol.43, pp.2209-2214, 2005.
DOI : 10.1016/j.carbon.2005.03.037

H. K. Chae, D. Y. Siberio-perez, J. Kim, Y. B. Go, M. Eddaoudi et al., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, vol.427, pp.523-527, 2004.

G. E. Froudakis, Hydrogen storage in nanotubes & nanostructures, vol.14, pp.324-328, 2011.
DOI : 10.1016/s1369-7021(11)70162-6

URL : https://doi.org/10.1016/s1369-7021(11)70162-6

U. Stoeck, S. Krause, V. Bon, I. Senkovska, and S. Kaskel, A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake, ChemComm, 2012.

N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim et al., Hydrogen storage in microporous metal-organic frameworks, vol.300, pp.1127-1129, 2003.
DOI : 10.1126/science.1083440

J. L. Rowsell and O. M. Yaghi, Strategies for hydrogen storage in metal-organic frameworks, Angew. Chem., Int. Ed, vol.44, pp.4670-4679, 2005.

H. M. El-kaderi, J. R. Hunt, J. L. Mendoza-cortes, A. P. Cote, R. E. Taylor et al., Designed synthesis of 3D covalent organic frameworks, Science, vol.316, pp.268-272, 2007.
DOI : 10.1126/science.1139915

URL : https://authors.library.caltech.edu/38578/7/El-Kaderi.SOM.revised.pdf

B. Sakintuna, F. Lamari-darkrim, and M. Hirscher, International Journal of Hydrogen Energy, vol.32, pp.1121-1140, 2007.

L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, vol.414, pp.265-270, 2001.
DOI : 10.1038/35104634

J. Li, T. Furuta, H. Goto, T. Ohashi, and Y. Fujiwara, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys, vol.119, issue.4, 2003.

A. Touzik and H. Hermann, Theoretical study of hydrogen adsorption on graphitic materials, vol.416, pp.137-141, 2005.
DOI : 10.1016/j.cplett.2005.09.072

S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine et al., Graphene nanostructures as tunable storage media for molecular hydrogen, vol.102, p.10439, 2005.
DOI : 10.1073/pnas.0501030102

URL : http://www.pnas.org/content/102/30/10439.full.pdf

A. G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino et al., Hydrogen storage in bulk graphene-related materials, vol.210, pp.46-51, 2015.
DOI : 10.1016/j.micromeso.2015.02.017

URL : http://umu.diva-portal.org/smash/get/diva2:819810/FULLTEXT01

V. Tozzini and V. Pellegrini, Prospects for hydrogen storage in graphene, Phys. Chem. Chem. Phys, vol.15, pp.80-89, 2013.
DOI : 10.1039/c2cp42538f

URL : http://arxiv.org/pdf/1207.5703

A. Züttel, P. Sudana, . Ph, T. Maurona, C. Kiyobayashib et al., Hydrogen storage in carbon nanostructures, International Journal of Hydrogen Energy, vol.27, pp.203-212, 2002.

J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Graphane: A two-dimensional hydrocarbon, Phys. Rev. B, vol.75, p.153401, 2007.
DOI : 10.1103/physrevb.75.153401

URL : http://arxiv.org/pdf/cond-mat/0606704

D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B, vol.77, p.35427, 2008.

D. C. Elias, R. R. Nair, T. M. Mohiuddin, S. V. Morozov, P. Blake et al., Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, vol.323, pp.610-613, 2009.

J. Ma, D. Alfè, A. Michaelides, and E. Wang, Stone-Wales defects in graphene and other sp 2 -bonded materials, Phys. Rev. B, vol.80, p.33407, 2009.

M. Terrones, A. R. Botello-méndez, J. Campos-delgadoc, F. López-urías, Y. I. Vegacantúd et al.,

H. Charlier and . Terrones, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today, vol.5, pp.351-372, 2010.

P. S. Branicio, M. H. Jhon, C. K. Gan, and D. J. Srolovitz, Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes, Modelling Simul. Mater. Sci. Eng, vol.19, p.54002, 2011.

Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski et al., Graphene at the edge: stability and dynamics, vol.323, pp.1705-1708, 2009.

K. He, G. Lee, A. W. Robertson, E. Yoon, and J. H. Warner, Hydrogen-free graphene edges, Nature Comm, 2014.
DOI : 10.1038/ncomms4040

URL : https://www.nature.com/articles/ncomms4040.pdf

L. Firlej, B. Kuchta, A. Lazarewicz, and P. Pfeifer, Increased H2 gravimetric storage capacity in truncated carbon slit pores modelled by Grand Canonical Monte Carlo, Carbon, vol.53, pp.208-215, 2013.

A. Hirsch, M. Brettreich, . Fullerenes, -. Wiley, and . Vch, , 2005.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-191, 2007.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalysed disproportionation of carbon monoxide, Chem. Phys. Lett, vol.260, pp.471-475, 1996.

J. Yacaman, M. Miki-yoshida, L. Rendon, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Appl Phys. Lett, vol.62, pp.202-204, 1993.

E. Katz and I. Willner, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, Chem. Phys. Chem, vol.5, pp.1084-1104, 2004.
DOI : 10.1002/cphc.200400193

E. T. Thostensona, Z. Renb, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, pp.1899-1912, 2001.

A. M. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Composites Science and Technology, vol.70, pp.2237-2241, 2010.

A. Allaouia, S. Baia, H. M. Cheng, and J. B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology, vol.62, pp.1993-1998, 2002.

H. Dai, E. W. Wong, and C. M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes, vol.272, pp.523-526, 1996.

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, pp.54-56, 1996.

F. Darkrim and D. Levesque, Monte Carlo simulations of hydrogen adsorption in singlewalled carbon nanotubes, J. Chem. Phys, vol.109, issue.12, 1998.

C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, vol.286, pp.1127-1129, 1999.

Q. Wang and J. Johnson, Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption, J. Phys. Chem. B, vol.103, pp.4809-4813, 1999.

Q. Sun, P. Jena, Q. Wang, and M. Marquez, First-principles study of hydrogen storage on Li12C60, J. Am. Chem. Soc, vol.128, pp.9741-9745, 2006.
DOI : 10.1021/ja058330c

V. B. Parambhath, R. Nagar, K. Sethupathi, and S. Ramaprabhu, Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene, J. Phys. Chem. C, vol.115, pp.15679-15685, 2011.

A. Reyhani, S. Z. Mortazavi, S. Mirershadi, A. Z. Moshfegh, P. Parvin et al., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions, J. Phys. Chem. C, vol.115, pp.6994-7001, 2011.

G. J. Kubas, Metal-dihydrogen and ?-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin ? bonding, Journal of Organometallic Chemistry, vol.635, pp.37-68, 2001.

A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Metallacarboranes: toward promising hydrogen storage Metal Organic Frameworks, J. Am. Chem. Soc, vol.132, pp.14126-14129, 2010.
DOI : 10.1021/ja104544s

Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc, vol.127, pp.14582-14583, 2005.

G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage, Nano Lett, vol.8, pp.3166-3170, 2008.
DOI : 10.1021/nl801417w

URL : https://pubs.acs.org/doi/pdf/10.1021/nl801417w

X. Wu and X. C. Zeng, Periodic Graphene Nanobuds, Nano Lett, vol.9, issue.1, pp.250-256, 2009.
DOI : 10.1021/nl802832m

Z. Ozturk, C. Baykasoglu, and M. Kirca, Sandwiched graphene-fullerene composite: a novel 3-D nanostructured material for hydrogen storage, Int. J. Hydrogen Energy, vol.41, pp.6403-6411, 2016.

B. W. Smith, M. Monthioux, and D. E. Luzzi, Encapsulated C60 in carbon nanotubes, Nature, vol.396, pp.323-324, 1998.
DOI : 10.1038/24521

K. Suenaga and S. Iijima, Fine-structure analysis of Gd M45 near-edge EELS on the valence state of Gd@C82 microcrystals, Phys. Rev. B, vol.62, issue.3, pp.1627-1630, 2000.

J. Lee, H. Kim, S. Kahng, G. Kim, Y. Son et al., Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes, Nature, vol.415, pp.1005-1008, 2002.
DOI : 10.1038/4151005a

B. Kuchta, L. Firlej, . Sz, P. Roszak, and . Pfeifer, A review of boron enhanced nano-porous carbons forhydrogen adsorption: numerical perspective, Adsorption, vol.16, pp.413-421, 2010.

L. Firlej, . Sz, B. Roszak, . P. Kuchta, C. Pfeifer et al., Enhanced hydrogen adsorption in boron substituted carbon nanospaces, J.Chem.Phys, vol.131, p.164702, 2009.
DOI : 10.1063/1.3251788

URL : https://hal.archives-ouvertes.fr/hal-00548881

J. Kouvetakis, R. B. Kaner, M. L. Sattler, and N. Bartlett, A novel graphite-like material of composition BC3, and nitrogen-carbon graphites, J. Chem. Soc., Chem Commun, p.1758, 1986.

C. E. Lowell, Solid solution of boron in graphite, J.Am.Ceram.Soc, vol.50, pp.142-144, 1966.

Y. Lee, D. Han, D. Lee, A. J. Woo, S. H. Lee et al., 11B NMR of borondoped graphite as the negative electrode of a lithium secondary battery, Carbon, vol.40, pp.403-408, 2002.

L. R. Radovic, M. Karra, K. Skokova, and P. Thrower, The role of substitutional boron in carbon oxidation, Carbon, vol.36, pp.1841-1854, 1998.

M. Endo, T. Hayashi, S. H. Hong, J. T. Enoki, and M. S. Dresselhaus, Scanning tunnelling microscope study of boron-doped highly oriented pyrolytic graphite, J. Appl. Phys, vol.90, pp.5670-5674, 2001.

C. T. Hach, L. E. Jones, C. Crossland, and P. A. Thrower, An investigation of vapor deposited boron rich carbon-a novel graphite-like material-part I: the structure of BCx (C6B) thin films, Carbon, vol.37, pp.221-230, 1999.

T. Shirasaki, A. Derre, M. Menetrier, A. Tressaud, and S. Flandrois, Synthesis and characterization of boron-substituted carbons, Carbon, vol.38, pp.1461-1467, 2000.
DOI : 10.1016/s0008-6223(99)00279-1

C. R. Martin, Nanomaterials: a membrane-based synthetic approach, Science, vol.266, pp.1961-1966, 1994.
DOI : 10.1126/science.266.5193.1961

H. J. Ceragioli, C. Peterlevitz, J. C. Quispe, A. Larena, M. P. Pasquetto et al.,

V. Sampaio and . Baranauskas, Synthesis and characterization of boron-doped carbon nanotubes, J. Phys, vol.100, p.52029, 2008.

M. Sankaran and B. Viswanathan, Hydrogen storage in boron substituted carbon nanotubes, Carbon, vol.45, pp.1628-1635, 2007.
DOI : 10.1016/j.carbon.2007.04.011

K. S. Subramanyan, L. S. Panchacarla, A. Govindaraj, and C. N. Rao, Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C, vol.113, pp.4257-4259, 2009.

L. S. Panchacarla, K. S. Subramanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy et al., Synthesis, structure and properties of boron and nitrogen-doped graphite, Adv. Mat, vol.21, pp.4726-4730, 2009.

H. M. Ayrton, Electric arc, 1980.

C. Journet and P. Bernier, Production of carbon nanotubes, Appl. Phys. A, vol.67, pp.1-9, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02063773

Y. Su and Y. Zhang, Carbon nanomaterials synthetized by arc discharge hot plasma, vol.83, pp.90-99, 2015.
DOI : 10.1016/j.carbon.2014.11.023

A. Zahab, Synthese, carcterization et etude physique des fullerenes C60 et C70 et de leurs derives, 1992.

K. Subrahmanyam, L. Panchakarla, and A. Givindaraj, Simple method of preparing graphene flakes by an arc-discharge method, vol.113, pp.4257-4259, 2009.
DOI : 10.1021/jp900791y

D. Gourari, M. Razafinimanana, and M. Monthioux, Synthesis of (B-C-N) nanomaterials by arc discharge using heterogeneous anodes, Plasma Science and Technology, vol.18, issue.5, pp.465-468, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758082

R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanotechnologie. Warszawa: Wydawnictwo Naukowe PWN, p.77, 2008.

G. Dehm, J. M. Howe, and J. Zweck, In-situ Electron Microscopy: Applications in Physics, p.6, 2012.

G. Dehm, J. M. Howe, and J. Zweck, In-situ Electron Microscopy: Applications in Physics, p.30, 2012.

C. Kisielowski, B. Freitag, M. Bischoff, H. Van-lin, S. Lazar et al.,

B. Hartel, D. Kabius, I. Miller, E. A. Petrov, T. Olson et al., Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit, Microsc. Microanal, vol.14, pp.469-477, 2008.

R. F. Egerton, Electron energy-loss spectroscopy in TEM, Rep. Prog. Phys, vol.72, p.16502, 2009.
DOI : 10.1088/0034-4885/72/1/016502

A. K. Cheetham and P. Day, Solid state chemistry techniques, 1987.

J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. Scott et al., Scanning Electron Microscopy and X-Ray Microanalysis, 2018.

F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, 1988.

U. California,

M. Rückert and G. Otting, Alignment of biological marcomolecules in novel non-ionic liquid crystalline media for NMR experiments, J. Am. Chem. Soc, vol.122, pp.7793-7797, 2000.

W. D. Knight, Nuclear Magnetic Resonance shift in metals, Phys. Rev, vol.76, pp.1259-1260, 1949.
DOI : 10.1103/physrev.76.1259.2

URL : https://babel.hathitrust.org/cgi/imgsrv/download/pdf?id=mdp.39015086477828;orient=0;size=100;seq=1;attachment=0

F. Rouquerol, J. Rouquerol, K. S. Sing, P. Llewellyn, and G. Maurin, Adsorption by Powders and Porous Solids -Principles, Methodology and Applications, vol.2, 2014.

A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, and B. Coasne, Validity of the t-plot Method to Assess Microporosity in Hierarchical Micro/Mesoporous Materials, Langmuir, vol.30, pp.13266-13274, 2014.

L. S. Cheng and R. T. Yang, Improved Horvath-Kawazoe equations including spherical pore models for calculating micropore size distribution, Chemical Engineering Science, vol.49, issue.16, pp.2599-2609, 1994.
DOI : 10.1016/0009-2509(94)e0054-t

L. S. Cheng and R. T. Yang, Predicting isotherms in micropores for different molecules and temperatures from a known Isotherm by improved Horvath-Kawazoe equations, Adsorption, vol.1, pp.187-196, 1995.

, Accelerated Surface Area and Porosimetry System, Operator's Manual V4.01, ASAP 2020, 2011.

D. S. Ballantine, J. Robert, M. White, S. J. Martin, A. J. Ricco et al., Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications, 1997.

I. Johansson and P. Somasundaran, Handbook for cleaning/decontamination of surfaces, 2007.

A. Zahab, Synthese, carcterization et etude physique des fullerenes C60 et C70 et de leurs derives, 1992.

C. Journet and P. Bernier, Production of carbon nanotubes, Appl. Phys. A, vol.67, pp.1-9, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02063773

A. B. Belgacem, I. Hinkov, S. B. Yahia, O. Brinza, and S. Farhat, Arc discharge boron nitrogen doping of carbon nanotubes, Materials Today Communications, vol.8, pp.183-195, 2016.

J. Hayashi, A. Kazehaya, K. Muroyama, and A. P. Watkinson, Preparation of activated carbon from lignin by chemical activation, Carbon, vol.38, pp.1873-1878, 2000.

M. Molina-sabio and F. Rodr?guez-reinoso, Role of chemical activation in the development of carbon porosity, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol.241, pp.15-25, 2004.

J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta et al., Nanospace engineering of KOH activated carbon, vol.23, p.15401, 2012.

H. Z. Geng, X. B. Zhang, S. H. Mao, A. Kleinhammes, H. Shimoda et al., Opening and closing of single-wall carbon nanotubes, Chemical Physics Letters, vol.399, pp.109-113, 2004.
DOI : 10.1016/j.cplett.2004.09.150

Y. Chen, N. Shah, F. E. Huggins, and G. P. Huffman, Investigation of the Microcharacteristics of PM2.5 in Residual Oil Fly Ash by Analytical Transmission Electron Microscopy, Environ. Sci. Technol, vol.38, issue.24, pp.6553-6560, 2004.

M. A. Lillo-ródenas, D. Cazorls-amorós, and A. Linares-solano, Understanding chemical reactions between carbons and NaOH and KOH. An insight into the chemical activation mechanism, Carbon, vol.41, pp.267-275, 2003.

T. Otowa, Y. Nojima, and T. Miyazaki, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon, vol.35, pp.1315-1319, 1997.

M. Li, W. Li, and S. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose, Carbohydrate Research, vol.346, pp.999-1004, 2011.

R. Azargohar and A. K. Dalai, Steam and KOH activation of biochar: Experimental and modeling studies, Microporous and Mesoporous Materials, vol.110, pp.413-421, 2008.
DOI : 10.1016/j.micromeso.2007.06.047

F. Wu, R. Tseng, and R. Juang, Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water, Separation and Purification Technology, vol.47, pp.10-19, 2005.

M. Balden, K. U. Klages, W. Jacob, and J. Roth, Oxidative erosion of graphite in air between 600 and 1000 K, Journal of Nuclear Materials, vol.341, pp.31-44, 2005.

P. L. Walker, R. L. Taylor, and J. M. Ranish, An update on the carbon-oxygen reaction, vol.29, pp.411-421, 1991.

, Boron-carbon samples show high hydrogen adsorption energy, up to 9 kJ/mol. The

L. Firlej, . Sz, B. Roszak, P. Kuchta, C. Pfeifer et al., Enhanced hydrogen adsorption in boron substituted carbon nanospaces, J. Chem. Phys, vol.131, 2009.
DOI : 10.1063/1.3251788

URL : https://hal.archives-ouvertes.fr/hal-00548881

N. P. Stadie, E. Billeter, L. Piveteau, K. V. Kravchyk, M. Dobeli et al., Direct synthesis of bulk boron-doped graphitic carbon, Chem. Mater, vol.29, pp.3211-3218, 2017.

S. Turner, Y. Lu, S. D. Janssens, F. Da-pieve, D. Lamoen et al., Local boron environment in B-doped nanocrystalline diamond films, Nanoscale, vol.4, p.5960, 2012.

T. Shirasaki, A. Derré, M. Ménétrier, A. Tressaud, and S. Flandrois, Synthesis and characterization of boron-substituted carbons, Carbon, vol.38, pp.1461-1467, 2000.

J. Narayan and A. Bhauik, Novel phase of carbon, ferromagnetism, and conversion into diamond, Journal of Physics, vol.118, p.215303, 2015.

L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Gobindaraj, H. R. Krishnamurthy et al., Synthesis, structure, and properties of boron-and nitrogendoped graphene, Adv. Mater, pp.4726-4730, 2009.

R. Arenal, F. De-la-pena, O. Stéphan, M. Walls, M. Tencé et al., Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures, Ultramicroscopy, vol.109, pp.32-38, 2008.

, Solid state chemistry techniques, 1978.

F. Najafi, O. Moradi, M. Rajabi, M. Asif, I. Tyagi et al., Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide, Journal of molecular liquids, vol.208, pp.106-113, 2015.

M. Chen, J. W. Mccauley, and K. J. Hemker, Shock-induced localized amorphization in boron carbide, Science, vol.299, pp.1563-1566, 2003.
DOI : 10.1126/science.1080819

H. I. Lee, J. H. Kim, D. J. You, J. E. Lee, J. M. Kim et al., Rational synthesis pathway for ordered mesoporous carbon with controllable 30-to 100-Angtrom pores, Adv. Mater, vol.20, pp.757-762, 2008.
DOI : 10.1002/adma.200702209

A. Braun, M. Batsch, B. Schnyder, R. Kotz, O. Haas et al., X-ray scattering and adsorption studies of thermally oxidized glassy carbon, Journal of NonCrystalline Solids, vol.260, pp.1-14, 1999.
DOI : 10.1016/s0022-3093(99)00571-2

E. J. Kim, Y. Fei, and S. K. Lee, Probing carbon-bearing species and CO2 inclusions in amorphous carbon-MgSiO3 enstatite reaction products at 1.5 GPa: Insights from 13C high resolution solide-state NMR, American Mineralogist, vol.101, pp.1113-1124, 2016.

D. Rohanova, A. R. Boccaccini, D. Horkavcova, P. Bozdechova, P. Bezdicka et al., Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests?, J. Mater. Chem. B, vol.2, p.5068, 2014.

F. Rouquerol, J. Rouquerol, K. S. Sing, P. Llewellyn, and G. Maurin, Adsorption by Powders and Porous Solids -Principles, Methodology and Applications, vol.2, 2014.

S. Kaplan, F. Jansen, and M. Machonkin, Characterization of amorphous carbonhydrogen films by solidstate nuclear magnetic resonance, Applied Physics Letters, vol.47, p.750, 1985.

, that activated carbons containing substitutional boron atoms in the graphene structure are today potentially the best candidates to store hydrogen by physical adsorption