T. X. Widya-ernayati-kosimaningrum, H. Le, Y. Holade, M. Bechelany, S. Tingry et al., Indra Noviandri, Christophe Innocent, and Marc Cretin, Surfactant-and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis, ACS Appl. Mater. Interfaces, vol.9, pp.22476-22489, 2017.

M. Widya-ernayati-kosimaningrum, Y. Ouis, B. Holade, and . Buchari, Indra Noviandri, Marc Cretin, and Christophe Innocent , Platinum Nanoarrays Directly Grown onto a 3D-Carbon Felt as a, Bifunctional Material for Garden Compost Microbial Fuel Cell

B. Widya-ernayati-kosimaningrum and . Buchari, Indra Noviandri, Marc Cretin, and Christophe Innocent, Polypyrrole-Platinum on Carbon felt for Air-Breathing Cathode in Single Chamber Microbial Fuel Cell

B. Widya-ernayati-kosimaningrum and . Buchari, Indra Noviandri, Marc Cretin, and Christophe Innocent, Platinum-Modified Carbon Felt Anode for Garden Compost Microbial Fuel Cell

B. Widya-ernayati-kosimaningrum and . Buchari, Indra Noviandri, Marc Cretin, and Christophe Innocent, Manganese-Oxide-Modified Carbon Felt for Efficient Electrode of Electro-Fenton-Like Process in The Degradation of Azo Dye Compound

Y. Widya-ernayati-kosimaningrum, B. Holade, I. Buchari, M. Noviandri, C. Cretin et al., Single Compartement Microbial Fuel Cells with Air-Breathing Cathode and Platinum-Modified Anode, XXIV International Symposium on Bioelectrochemistry and Bioenergetics, pp.3-7

M. D. Khan, N. Khan, S. Sultana, R. Joshi, S. Ahmed et al., Bioelectrochemical conversion of waste to energy using microbial fuel cell technology, Process Biochem, vol.57, pp.141-158, 2017.

O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev, vol.32, pp.810-853, 2014.

G. Center, Fuel Cells: A Better Energy Source for Earth and Space, p.17, 2018.

, Birth of Electrochemistry, 2018.

K. Scott, E. H. Yu, M. M. Ghangrekar, B. Erable, and N. M. Duteanu, Biological and microbial fuel cells, Compr. Renew. Energy, vol.4, pp.277-300, 2012.

T. X. Le, R. Esmilaire, M. Drobek, M. Bechelany, C. Vallicari et al., Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution, J. Mater. Chem. A, vol.4, pp.17686-17693, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01702696

G. S. Jadhav and M. M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresour. Technol, vol.100, pp.717-723, 2009.

D. Ucar, Y. Zhang, and I. Angelidaki, An overview of electron acceptors in microbial fuel cells, Front. Microbiol, vol.8, pp.1-14, 2017.

K. Watanabe, Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy, vol.106, pp.528-536, 2008.

S. Venkata-mohan, G. Velvizhi, J. Modestra, and S. Srikanth, Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements, Renew. Sustain. Energy Rev, vol.40, pp.779-797, 2014.

Z. Du, H. Li, and T. Gu, A state of the art review on microbial fuel cells : A promising technology for wastewater treatment and bioenergy, vol.25, pp.464-482, 2007.

L. Wei, H. Han, and J. Shen, Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell, Int. J. Hydrogen Energy, vol.37, pp.12980-12986, 2012.

S. Oh and B. Min, Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells, vol.38, pp.4900-4904, 2004.

I. Herrmann, Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel, vol.40, pp.5193-5199, 2006.

H. Liu and B. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environ. Sci. Technol, vol.38, pp.4040-4046, 2004.

M. K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, 2012.

Z. Chen, D. Higgins, H. Tao, R. S. Hsu, and Z. Chen, Highly Active NitrogenDoped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications, pp.21008-21013, 2009.

J. Champavert, S. Ben-rejeb, C. Innocent, and M. Pontié, Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode, J. Electroanal. Chem, vol.757, pp.270-276, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01680915

M. Ouis, M. Kameche, C. Innocent, M. Charef, and H. Kebaili, Electropolymerization of pyrrole on graphite electrode: enhancement of electron transfer in bioanode of microbial fuel cell, Polym. Bull, vol.75, pp.669-684, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01684666

C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review, J. Power Sources, vol.356, pp.225-244, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01900378

Q. Deng, X. Li, J. Zuo, A. Ling, and B. E. Logan, Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell, J. Power Sources, vol.195, pp.1130-1135, 2010.

D. Hidalgo, T. Tommasi, S. Bocchini, A. Chiolerio, A. Chiodoni et al., Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells, Energy, vol.99, pp.193-201, 2016.

Y. Shi and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev, vol.45, pp.1529-1541, 2016.

, The World Energy Council, World Energy Resources

, Global Burden of Air Pollution, 2013.

, Agency for the Assessment and Application of Technology, Agency for the Assessment and Application of Technology, 2017.

, Agency for the Assessment and Application of Technology, 2018.

J. Wee, Contribution of fuel cell systems to CO 2 emission reduction in their application fields, vol.14, pp.735-744, 2010.

P. Lianos, Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: A review of a re-emerging research field, J. Hazard. Mater, vol.185, pp.575-590, 2011.

K. Ren and Y. X. , Advances in Photoelectrochemical Fuel Cell Research, Small-Scale Energy Harvest, pp.3-26, 2012.

C. Y. Chang, C. H. Wang, C. J. Tseng, K. W. Cheng, L. W. Hourng et al., Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, vol.37, pp.13616-13622, 2012.

H. Zhang, J. Xuan, H. Xu, M. K. Leung, H. Wang et al., A theoretical study on photocatalytic fuel cell, Energy Procedia, vol.61, pp.246-249, 2014.

M. Grätzel, Photoelectrochemical cells, Nature, vol.414, p.338, 2001.

K. Park, S. Han, and J. Lee, Photo ( UV ) -enhanced performance of Pt -TiO 2 nanostructure electrode for methanol oxidation, vol.9, pp.1578-1581, 2007.

M. Antoniadou and P. Lianos, Photoelectrochemical oxidation of organic substances over nanocrystalline titania : Optimization of the photoelectrochemical cell, vol.144, pp.166-171, 2009.

M. H. Osman, A. A. Shah, and F. C. Walsh, Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial, Biosens. Bioelectron, vol.26, pp.953-963, 2010.

G. T. Palmore and G. M. Whitesides, Microbial and Enzymatic Biofuel Cells, pp.271-290, 1994.

D. Pant, G. Van-bogaert, L. Diels, and K. Vanbroekhoven, Bioresource Technology A review of the substrates used in microbial fuel cells ( MFCs ) for sustainable energy production, Bioresour. Technol, vol.101, pp.1533-1543, 2010.

V. Sharma and P. P. Kundu, Biocatalysts in microbial fuel cells, Enzyme Microb. Technol, vol.47, pp.179-188, 2010.

A. Habrioux, G. Merle, K. Servat, K. B. Kokoh, C. Innocent et al., Concentric glucose/O2biofuel cell, J. Electroanal. Chem, vol.622, pp.97-102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00332985

U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys, vol.9, pp.2619-2629, 2007.

Y. Chen, P. Gai, J. Zhang, and J. Zhu, Design of an enzymatic biofuel cell with large power output, J. Mater. Chem. A Mater. Energy Sustain, vol.3, pp.11511-11516, 2015.

H. Wang, J. Park, and Z. J. Ren, Practical Energy Harvesting for Microbial Fuel Cells: A Review, Environ. Sci. Technol, vol.49, pp.3267-3277, 2015.

B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller et al., Microbial fuel cells: Methodology and technology, vol.40, pp.5181-5192, 2006.

O. Schaetzle, F. Barrière, and K. Baronian, Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity, Energy Environ. Sci, vol.1, p.607, 2008.

P. Jursthuk, Bacterial Metabolism, 1996.

J. Berg, J. Tymoczko, and S. L. , Glycolysis Is an Energy-Conversion Pathway in Many Organisms, 2002.

J. M. Berg, J. L. Tymoczko, and L. Stryer, The Citric Acid Cycle, 2002.

A. Soult, The Citric Acid Cycle

A. , Chapters/Chapter_15%3A_Metabolic_Cycles/15, vol.2, p.3, 2018.

B. E. Logan, Exoelectrogenic Bacteria That Power Microbial Fuel Cells, Nat. Rev. Microbiol, vol.7, 2009.

L. Fan and S. Xue, Overview on Electricigens for Microbial Fuel Cell, pp.398-406, 2016.

S. A. Patil, F. Harnisch, B. Kapadnis, and U. Schröder, Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance, Biosens. Bioelectron, vol.26, pp.803-808, 2010.

T. Ewing, P. T. Ha, J. T. Babauta, N. T. Tang, D. Heo et al., Scale-up of sediment microbial fuel cells, J. Power Sources, vol.272, pp.311-319, 2014.

B. Yu, J. Tian, and L. Feng, Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community, J. Hazard. Mater, vol.336, pp.110-118, 2017.

M. Toyofuku, T. Inaba, T. Kiyokawa, N. Obana, Y. Yawata et al., Environmental factors that shape biofilm formation, Biosci. Biotechnol. Biochem, vol.80, pp.7-12, 2016.

K. K. Jefferson, What drives bacteria to produce a biofilm?, FEMS Microbiol. Lett, vol.236, pp.163-173, 2004.

D. R. Korber, J. R. Lawrence, and D. E. Caldwell, Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas-Fluorescens in Dual-Dilution Continuous-Culture and Batch Culture Systems 1, Appl. Environ. Microbiol, vol.60, pp.1994-57700004, 1994.

S. A. Patil, C. Hägerhäll, and L. Gorton, Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems, Bioanal. Rev, vol.1, pp.71-129, 2014.

G. Reguera, K. D. Mccarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen et al., Extracellular electron transfer via microbial nanowires, Nature, vol.435, pp.1098-1101, 2005.

Y. A. Gorby, S. Yanina, J. S. Mclean, K. M. Rosso, D. Moyles et al.,

T. J. Dohnalkova, I. S. Beveridge, B. H. Chang, K. S. Kim, D. E. Kim et al., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci, vol.103, pp.11358-11363, 2006.

Y. Qiao, S. Bao, and C. M. Li, Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry, Energy Environ. Sci, vol.3, p.544, 2010.

U. Mardiana, C. Innocent, H. Jarrar, M. Cretin, S. Buchari et al., Electropolymerized neutral red as redox mediator for yeast fuel cell, Int. J. Electrochem. Sci, vol.10, pp.8886-8898, 2015.

M. A. Rodrigo, P. Cañizares, and J. Lobato, Effect of the electron-acceptors on the performance of a MFC, Bioresour. Technol, vol.101, pp.7014-7018, 2010.

K. Kinoshita, Electrochemical Oxygen Technology, 1992.

B. E. Logan, Microbial Fuel Cells, 2007.

A. Rhoads, H. Beyenal, and Z. Lewandowski, Microbial Fuel Cell using Anaerobic Respiration as an Anodic Reaction and Biomineralized Manganese as a Cathodic Reactant, Env. Sci Technol, vol.39, pp.4666-4671, 2005.

B. Zhang, H. Zhao, C. Shi, S. Zhou, and J. Ni, Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells, J Chem Technol Biotechnol, vol.84, pp.1780-1786, 2009.

B. Zhang, C. Feng, J. Ni, J. Zhang, and W. Huang, Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology, J. Power Sources, vol.204, pp.34-39, 2012.

B. Zhang, C. Tian, Y. Liu, L. Hao, Y. Liu et al., Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells, Bioresour. Technol, vol.179, pp.91-97, 2015.

K. J. Kim, M. Park, Y. Kim, J. H. Kim, S. X. Dou et al., A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, J. Mater. Chem. A, vol.3, pp.16913-16933, 2015.

B. Cercado, N. Byrne, M. Bertrand, D. Pocaznoi, M. Rimboud et al., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics, Bioresour. Technol, vol.134, pp.276-84, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878185

M. S. Whittingham, R. F. Savinell, and T. Zawodzinski, Introduction: Batteries and Fuel Cells, Chem. Rev, vol.104, pp.4243-4244, 2004.

X. Yuan and H. Wang, PEM Fuel Cell Electrocatal. Catal. Layer Fundam. Appl, pp.1-79, 2008.

F. Zhao, R. C. Slade, and J. R. Varcoe, Techniques for the study and development of microbial fuel cells: an electrochemical perspective, Chem. Soc. Rev, vol.38, pp.1926-1939, 2009.

Y. Holade, A. Engel, S. Tingry, A. Cherifi, D. Cornu et al., Insights on Hybrid Glucose Biofuel Cells Based on Bilirubin Oxidase Cathode and Gold-Based Anode Nanomaterials, pp.1976-1987
URL : https://hal.archives-ouvertes.fr/hal-01319200

Y. Holade, M. Yuan, R. D. Milton, D. P. Hickey, A. Sugawara et al., Rational Combination of Promiscuous Enzymes Yields a Versatile Enzymatic Fuel Cell with Improved Coulombic Efficiency, J. Electrochem. Soc, vol.164, 2017.

B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray et al., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10, Environ. Sci. Technol, vol.40, pp.2629-2634, 2006.

C. Forrestal, Z. Huang, and Z. J. Ren, Percarbonate as a naturally buffering catholyte for microbial fuel cells, Bioresour. Technol, vol.172, pp.429-432, 2014.

X. Quan, B. Sun, and H. Xu, Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells, Electrochim. Acta, vol.182, pp.815-820, 2015.

H. F. Cui, L. Du, P. B. Guo, B. Zhu, and J. H. Luong, Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for highperformance microbial fuel cell anode, J. Power Sources, vol.283, pp.46-53, 2015.

S. Gupta, A. Yadav, and N. Verma, Simultaneous Cr (VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode, Chem. Eng. J, vol.307, pp.729-738, 2017.

S. Cheng, H. Liu, and B. E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure

, Commun, vol.8, pp.489-494, 2006.

E. Haoyu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources, vol.171, pp.275-281, 2007.

T. Catal, S. Xu, K. Li, H. Bermek, and H. Liu, Electricity generation from polyalcohols in single-chamber microbial fuel cells, Biosens. Bioelectron, vol.24, pp.849-854, 2008.

Q. Wen, S. Wang, J. Yan, L. Cong, Z. Pan et al., MnO 2-graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells, J. Power Sources, vol.216, pp.187-191, 2012.

Y. Yuan, S. Zhou, and L. Zhuang, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells, J. Power Sources, vol.195, pp.3490-3493, 2010.

Y. Feng, Q. Yang, X. Wang, and B. E. Logan, Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells, J. Power Sources, vol.195, pp.1841-1844, 2010.

Y. Ahn, I. Ivanov, T. C. Nagaiah, A. Bordoloi, and B. E. Logan, Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells, J. Power Sources, vol.269, pp.212-215, 2014.

T. Song, D. Wang, H. Wang, X. Li, Y. Liang et al., Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell, Int. J. Hydrogen Energy, vol.40, pp.3868-3874, 2015.

W. E. Kosimaningrum, T. X. Le, Y. Holade, M. Bechelany, S. Tingry et al., Surfactant-and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis, ACS Appl. Mater. Interfaces, vol.9, pp.22476-22489, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680945

H. Liu, Microbial Fuel Cell: Novel Anaerobic Biotechnology for Energy Generation from Wastewater, 2008.

K. Rabaey, N. Boon, S. D. Siciliano, W. Verstraete, and M. Verhaege, Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer, Appl. Environ. Microbiol, vol.70, pp.5373-5382, 2004.

Z. He, S. D. Minteer, and L. T. Angenent, Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell, Environ. Sci. Technol, vol.39, pp.5262-5267, 2005.

K. Rabaey, P. Clauwaert, P. Aelterman, and W. Verstraete, Tubular Microbial Fuel Cells for Efficient Electricity Generation, Environ. Sci. Technol, vol.39, pp.8077-8082, 2005.

Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy, Environ. Sci. Technol, vol.40, pp.5212-5217, 2006.

H. Liu and B. E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environ. Sci. Technol, vol.38, pp.4040-4046, 2004.

B. Logan, S. Cheng, V. Watson, and G. Estadt, Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells, Environ. Sci. Technol, vol.41, pp.3341-3346, 2007.

H. Liu, R. Ramnarayanan, and B. E. Logan, Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell, Environ. Sci. Technol, vol.38, pp.2281-2285, 2004.

B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol, vol.38, pp.5809-5814, 2004.

J. Wei, P. Liang, and X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour. Technol, vol.102, pp.9335-9344, 2011.

M. Zhou, M. Chi, J. Luo, H. He, and T. Jin, An overview of electrode materials in microbial fuel cells, J. Power Sources, vol.196, pp.4427-4435, 2011.

H. Liu, S. Cheng, and B. E. Logan, Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration, Environ. Sci. Technol, vol.39, pp.5488-5493, 2005.

X. I. Wang and S. Cheng, Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells, vol.43, pp.6870-6874, 2009.

H. Liu, S. Cheng, and B. E. Logan, Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell, Environ. Sci. Technol, vol.39, pp.658-662, 2005.

H. O. Mohamed, E. T. Sayed, H. Cho, M. Park, M. Obaid et al.,

. Barakat, Effective strategies for anode surface modification for power harvesting and industrial wastewater treatment using microbial fuel cells, J. Environ. Manage, vol.206, pp.228-235, 2018.

Q. Zhang, J. Hu, and D. Lee, Bioresource Technology Microbial fuel cells as pollutant treatment units : Research updates, Bioresour. Technol, vol.217, pp.121-128, 2016.

D. Paul, M. T. Noori, P. P. Rajesh, M. M. Ghangrekar, and A. Mitra, Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell, Sustain. Energy Technol. Assessments, vol.26, pp.77-82, 2018.

N. Zhu, X. Chen, T. Zhang, P. Wu, P. Li et al., Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes, Bioresour. Technol, vol.102, pp.422-426, 2011.

Z. Lv, D. Xie, X. Yue, C. Feng, and C. Wei, Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications, J. Power Sources, vol.210, pp.26-31, 2012.

Z. Wang, G. D. Mahadevan, Y. Wu, and F. Zhao, Progress of air-breathing cathode in microbial fuel cells, J. Power Sources, vol.356, pp.245-255, 2017.

P. K. Shen, PEM Fuel Cell Electrocatal. Catal. Layer Fundam. Appl, pp.355-374, 2008.

C. R. Rao and D. C. Trivedi, Chemical and electrochemical depositions of platinum group metals and their applications, Coord. Chem. Rev, vol.249, pp.613-631, 2005.

I. Merino-jimenez, C. Santoro, S. Rojas-carbonell, J. Greenman, I. Ieropoulos et al., Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells, Catalysts, vol.6, 2016.

X. Li, G. Liu, F. Ma, S. Sun, S. Zhou et al., Enhanced power generation in a single-chamber dynamic membrane microbial fuel cell using a nonstructural air-breathing activated carbon fiber felt cathode, Energy Convers. Manag, vol.172, pp.98-104, 2018.

A. N. Ghadge and M. M. Ghangrekar, Performance of low cost scalable aircathode microbial fuel cell made from clayware separator using multiple electrodes, Bioresour. Technol, vol.182, pp.373-377, 2015.
DOI : 10.1016/j.biortech.2015.01.115

Z. Wang, C. Cao, Y. Zheng, S. Chen, and F. Zhao, Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells, pp.1813-1821, 2014.
DOI : 10.1002/celc.201402093

R. D. Milton, F. Giroud, A. E. Thumser, S. D. Minteer, and R. C. Slade, Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide, Chem. Commun, vol.50, pp.94-96, 2014.

R. Burkitt, T. R. Whiffen, and E. H. Yu, Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications, Appl. Catal. B Environ, vol.181, pp.279-288, 2016.
DOI : 10.1016/j.apcatb.2015.07.010

URL : https://doi.org/10.1016/j.apcatb.2015.07.010

C. Song and J. Zhang, Electrocatalytic Oxygen Reduction Reaction BT -PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, pp.89-134, 2008.

N. Markovic, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep, vol.45, pp.117-229, 2002.

X. Liu, X. Sun, Y. Huang, G. Sheng, K. Zhou et al., Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater, vol.4, pp.3-10, 2010.

Y. Ernest, The 1985 Berzelius Lecture, J. Mol. Catal, vol.38, pp.5-25, 1986.

G. Gnana-kumar, Z. Awan, K. S. Nahm, and J. S. Xavier, Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells, Biosens. Bioelectron, vol.53, pp.528-534, 2014.

M. Lu, S. Kharkwal, H. Y. Ng, and S. F. Li, Carbon nanotube supported MnO2catalysts for oxygen reduction reaction and their applications in microbial fuel cells, Biosens. Bioelectron, vol.26, pp.4728-4732, 2011.
DOI : 10.1016/j.bios.2011.05.036

F. Shahbazi-farahani, B. Mecheri, M. R. Majidi, M. A. Costa-de-oliveira, A. Epifanio et al., MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes, J. Power Sources, vol.390, pp.45-53, 2018.

M. R. Majidi, F. Farahani, M. Hosseini, and I. Ahadzadeh, Low-cost nanowired ?-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell, Bioelectrochemistry, vol.125, pp.38-45, 2019.
DOI : 10.1016/j.bioelechem.2018.09.004

S. Zhang, W. Su, Y. Wei, J. Liu, and K. Li, Mesoporous MnO 2 structured by ultrathin nanosheet as electrocatalyst for oxygen reduction reaction in aircathode microbial fuel cell, vol.401, pp.158-164, 2018.
DOI : 10.1016/j.jpowsour.2018.08.102

Y. Chen, Z. Lv, J. Xu, D. Peng, Y. Liu et al., Stainless steel mesh coated with MnO 2 /carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials, J. Power Sources, vol.201, pp.136-141, 2012.
DOI : 10.1016/j.jpowsour.2011.10.134

P. Zhang, K. Li, and X. Liu, Carnation-like MnO 2 modified activated carbon air cathode improve power generation in microbial fuel cells, vol.264, pp.248-253, 2014.

V. G. Khomenko, V. Z. Barsukov, and A. S. Katashinskii, The catalytic activity of conducting polymers toward oxygen reduction, Electrochim. Acta, vol.50, pp.1675-1683, 2005.

N. Shaigan, Electrodeposition for Electrochemical Energy Conversion and Storage Devices, Electrodepos. Theory Pract, pp.117-162, 2010.
DOI : 10.1007/978-1-4419-5589-0_3

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

C. R. Rao and D. C. Trivedi, Chemical and electrochemical depositions of platinum group metals and their applications, Coord. Chem. Rev, vol.249, pp.613-631, 2005.

A. G. Tekerlekopoulou, S. Pavlou, and D. V. Vayenas, Removal of ammonium, iron and manganese from potable water in biofiltration units: A review, J. Chem. Technol. Biotechnol, vol.88, pp.751-773, 2013.

W. Wei, X. Cui, W. Chen, and D. G. Ivey, Improved electrochemical impedance response induced by morphological and structural evolution in nanocrystalline MnO 2 electrodes, Electrochim. Acta, vol.54, pp.2271-2275, 2009.

M. Singh, R. Madhu, and R. Awasthi, Polypyrrole Composites : Electrochemical Synthesis , Characterizations and Applications, 2011.

R. N. Singh, Polypyrrole Composites: Electrochemical Synthesis, Characterizations and Applications, 2011.

F. A. Harraz, Porous Silicon and Conductive Polymer Nanostructures via Templating, pp.1-10, 2021.

S. J. Hendel and E. R. Young, Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction, 2016.

I. Streeter, G. G. Wildgoose, L. Shao, and R. G. Compton, Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes, Sensors Actuators, B Chem, vol.133, pp.462-466, 2008.

J. L. Elgrishi, N. Rountree, K. J. Mccarthy, B. D. Rountree, E. S. Eisenhart et al., A Practical Beginner's Guide to Cyclic Voltammetry, J. Chem. Educ, 2017.

D. Kashyap, P. Dewedi, J. Pandey, Y. H. Kim, G. M. Kim et al., Application of electrochemical impedance spectroscopy in bio-fuel cell characterization: A review, Int. J. Hydrogen Energy, vol.39, pp.20159-20170, 2014.

N. S. Ramaraja and . Ramasamy, Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization, J. Microb. Biochem. Technol, 2013.

N. Wagner, Electrochemical Impedance Spectroscopy

, PEM Fuel Cell Diagnostic Tools, 2012.

, Basics of Electrochemical Impedance Spectroscopy, 2018.

A. I. Zia and S. C. Mukhopadhyay, Impedance Spectroscopy and Experimental Setup, 2016.

T. Le, C. Charmette, M. Bechelany, and M. Cretin, Facile Preparation of Porous Carbon Cathode to Eliminate Paracetamol in Aqueous Medium Using Electro-Fenton System, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01680497

K. J. Kim, S. Lee, T. Yim, J. Kim, J. W. Choi et al., A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries, Sci. Rep, vol.4, p.6906, 2014.

X. , Powder Diffraction, vol.10, 2018.

J. Roller and X. Diffraction, PEM Fuel Cell Diagnostic Tools, 2012.

D. A. Skoog, E. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, 2007.

N. H. Turner, B. I. Dunlap, and R. J. Colton, Surface analysis: x-ray photoelectron spectroscopy, Auger electron spectroscopy and secondary ion mass spectrometry, Anal. Chem, vol.56, pp.373-416, 1984.

, June, vol.10, 2018.

V. Gau, S. Ma, H. Wang, J. Tsukuda, J. Kibler et al., Electrochemical molecular analysis without nucleic acid amplification, Methods, vol.37, pp.73-83, 2005.

C. Santoro, Y. Lei, B. Li, and P. Cristiani, Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes, Biochem. Eng. J, vol.62, pp.8-16, 2012.

C. Feng, F. Li, H. Liu, X. Lang, and S. Fan, A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process, Electrochim. Acta, vol.55, pp.2048-2054, 2010.

M. Rahimnejad, G. Bakeri, M. Ghasemi, and A. Zirepour, A review on the role of proton exchange membrane on the performance of microbial fuel cell, Polym. Adv. Technol, vol.25, pp.1426-1432, 2014.

Y. Lee, T. G. Kim, and K. Cho, Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells, J. Biotechnol, vol.211, pp.130-137, 2015.

C. Feng, Q. Wan, Z. Lv, X. Yue, Y. Chen et al., One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh, Biosens. Bioelectron, vol.26, pp.3953-3957, 2011.

A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P. D. Nardo et al., Engineering materials and biology to boost performance of microbial fuel cells: a critical review, Energy Environ. Sci, vol.1, pp.417-429, 2008.

W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu et al., Electrochemical activation of graphite felt electrode for VO 2 + /VO 2+ redox couple application, Electrochim. Acta, vol.89, pp.429-435, 2013.

G. Caballero-manrique, E. Brillas, F. Centellas, J. Garrido, R. Rodríguez et al., Electrochemical Oxidation of the Carbon Support to Synthesize Pt(Cu) and Pt-Ru(Cu) Core-Shell Electrocatalysts for LowTemperature Fuel Cells, Catalysts, vol.5, pp.815-837, 2015.

Y. Shao, G. Yin, J. Zhang, and Y. Gao, Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution, vol.51, pp.5853-5857, 2006.

L. F. Arenas, C. P. De-león, R. P. Boardman, and F. C. Walsh, Electrodeposition of Platinum on Titanium Felt in a Rectangular Channel Flow Cell, vol.164, pp.57-66, 2017.

H. M. Yasin, G. Denuault, and D. Pletcher, Studies of the electrodeposition of platinum metal from a hexachloroplatinic acid bath, J. Electroanal. Chem, vol.633, pp.327-332, 2009.

M. M. Duarte, A. S. Pilla, J. M. Sieben, and C. E. Mayer, Platinum particles electrodeposition on carbon substrates, Electrochem. Commun, vol.8, pp.159-164, 2006.

S. Khilari, S. Pandit, D. Das, and D. Pradhan, Biosensors and Bioelectronics Manganese cobaltite / polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial, Biosens. Bioelectron, vol.54, pp.534-540, 2014.

Y. Garsany, O. A. Baturina, K. E. Swider-lyons, and S. S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem, vol.82, pp.6321-6328, 2010.

T. X. Le, M. Bechelany, A. B. Engel, M. Cretin, and S. Tingry, Gold particles growth on carbon felt for efficient micropower generation in a hybrid biofuel cell, Electrochim. Acta, vol.219, pp.121-129, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01688067

G. Guisbiers, G. Abudukelimu, and D. Hourlier, Size-dependent catalytic and melting properties of platinum-palladium nanoparticles, Nanoscale Res. Lett, vol.6, pp.1-5, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639824

S. Taylor, E. Fabbri, P. Levecque, T. J. Schmidt, and O. Conrad, The Effect of Platinum Loading and Surface Morphology on Oxygen Reduction Activity, Electrocatalysis, pp.287-296, 2016.

Y. Holade, C. Morais, K. Servat, T. W. Napporn, and K. B. Kokoh, Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts, Phys. Chem. Chem. Phys, vol.16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01319220

J. Ma, A. Habrioux, M. Pisarek, A. Lewera, and N. Alonso-vante, Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation, Electrochem. Commun, vol.29, pp.12-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840098

Y. Holade, S. Tingry, K. Servat, T. Napporn, D. Cornu et al., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells, vol.7, p.31, 2017.
DOI : 10.3390/catal7010031

URL : https://hal.archives-ouvertes.fr/hal-01670255

D. Hidalgo, T. Tommasi, S. Bocchini, A. Chiolerio, A. Chiodoni et al., Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells, Energy, vol.99, pp.193-201, 2016.

M. Kodali, R. Gokhale, C. Santoro, A. Serov, K. Artyushkova et al., High Performance Platinum Group Metal-Free Cathode Catalysts for Microbial Fuel Cell (MFC), J. Electrochem. Soc, vol.164, pp.3041-3046, 2017.
DOI : 10.1149/2.0061703jes

URL : http://jes.ecsdl.org/content/164/3/H3041.full.pdf

P. Zhang, K. Li, and X. Liu, Carnation-like MnO 2 modi fi ed activated carbon air cathode improve power generation in microbial fuel cells, J. Power Sources, vol.264, pp.248-253, 2014.
DOI : 10.1016/j.jpowsour.2014.04.098

M. B. Zakaria, C. Li, M. Pramanik, Y. Tsujimoto, M. Hu et al., Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultrahigh efficiency hydrogen peroxide production, J. Mater. Chem. A, vol.4, pp.9266-9274, 2016.

S. Nijjer, J. Thonstad, and G. M. Haarberg, Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid, Electrochim. Acta, vol.46, pp.395-399, 2000.

S. Xi, Y. Zhu, Y. Yang, and Y. Liu, Direct Synthesis of MnO 2 Nanorods on Carbon Cloth as Flexible Supercapacitor Electrode, vol.8, 2017.
DOI : 10.1155/2017/7340961

URL : http://downloads.hindawi.com/journals/jnm/2017/7340961.pdf

Y. Zhang, H. Liu, Z. Zhu, K. Wong, and R. Mi, Electrochimica Acta A green hydrothermal approach for the preparation of graphene / ? -MnO 2 3D network as anode for lithium ion battery, Electrochim. Acta, vol.108, pp.465-471, 2013.

Q. Zhu, H. Hu, G. Li, C. Zhu, and Y. Yu, Electrochimica Acta TiO 2 Nanotube Arrays Grafted with MnO 2 Nanosheets as High-Performance Anode for Lithium Ion Battery, Electrochim. Acta, vol.156, pp.252-260, 2015.
DOI : 10.1016/j.electacta.2015.01.023

R. Subbaraman, D. Tripkovic, K. Chang, D. Strmcnik, A. Paulikas et al., ) hydr(oxy)oxide catalysts, Trends in activity for the water electrolyser reactions on 3d M, vol.11, pp.550-557, 2012.

J. Luo, J. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, Science, vol.345, pp.1593-1596, 2014.

X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev, vol.44, pp.5148-5180, 2015.
DOI : 10.1039/c4cs00448e

J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo, Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials, ACS Catal, vol.4, pp.3957-3971, 2014.
DOI : 10.1021/cs500923c

E. J. Kim, D. Oh, C. S. Lee, J. Gong, J. Kim et al., Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phasedependent behavior, Catal. Today, vol.282, pp.71-76, 2017.
DOI : 10.1016/j.cattod.2016.03.034

A. Özcan, M. A. Oturan, N. Oturan, and Y. ?ahin, Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent, J. Hazard. Mater, vol.163, pp.1213-1220, 2009.

H. Zhao, Y. Sun, L. Xu, and J. Ni, Chemosphere Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor : Removal mechanisms and dye degradation pathway, Chemosphere, vol.78, pp.46-51, 2010.