, 157 5.8.1 Transmission Line Construction and Materials, p.159

.. .. Inductance,

.. .. Inductive-reactance,

.. .. Capacitance,

. .. Capacitive-reactance, , p.161

, Skin Effects for ACSR Transmission Lines, p.162

. .. Lines, 164 5.8.11 Time Simulations for Frequency-Dependent Model of Transmission Lines, PGD Results for Constant Parameters Model of Transmission

.. .. Conclusions,

P. Kundur, Power System Stability and Control, p.39, 1994.

M. Reta-hernández, Electric Power Generation, Transmission, and Distribution, p.160, 2012.

S. and M. Amin, Smart Grid: Overview, Issues and Opportunities. Advances and Challenges in Sensing, Modeling, Simulation, Optimization and Control, European Journal of Control, vol.17, issue.5-6, pp.547-567, 2011.

Y. S. Qudaih and Y. Mitani, Power Distribution System Planning for Smart Grid Applications using ANN, Energy Procedia, vol.12, issue.0, p.6, 2011.

M. Fadaeenejad, A. M. Saberian, M. Fadaee, M. A. Radzi, H. Hizam et al., The present and future of smart power grid in developing countries, Renewable and Sustainable Energy Reviews, vol.29, p.6, 2014.

V. Gunderson, Top Markets Report Smart Grid," tech. rep., International Trade Administration, p.6, 2016.

S. Mei and J. Zhu, Mathematical and Control Scientific Issues of Smart Grid and Its Prospects, Acta Automatica Sinica, vol.39, issue.2, p.7, 2013.

T. Ackermann, G. Andersson, and L. Söder, Distributed generation: A definition, Electric Power Systems Research, vol.57, issue.3, p.7, 2001.

R. B. Sharma, Distributed electricity generation in competitive energy markets: A case study in australia, The Energy Journal, vol.18, pp.17-39, 1997.

G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. , Distributed generation: Definition, benefits and issues, Energy Policy, vol.33, issue.6, pp.787-798, 2005.

R. Preece, Improving the Stability of Meshed Power Networks, 2013.

J. Nazarko, , 1993.

S. Khaitan and A. Gupta, High Performance Computing in Power and Energy Systems, 2013.

J. H. Chow, Power System Coherency and Model Reduction, vol.94, p.12, 2013.

R. Podmore, Identification of Coherent Generators for Dynamic Equivalents, IEEE Transactions on Power Apparatus and Systems, vol.9, p.10, 1978.

K. Tanaka and M. Takemura, Development of reduction program for bulk power system stability study, Power System Technology. Proceedings (Cat. No.98EX151), vol.2, p.9, 1998.

J. Yu, M. Zhang, and W. Li, Static Equivalent Method Based on Component Particularity Representation and Sensitivity Consistency, IEEE Transactions on Power Systems, vol.29, p.10, 2014.

A. Debs, Estimation of external network equivalents from internal system data, IEEE Transactions on Power Apparatus and Systems, vol.94, issue.2, p.10, 1975.

B. Stott, O. Alsaç, and A. Monticelli, Studies on power system load flow equivalencing, IEEE Transactions on Power Apparatus and Systems, issue.6, p.10, 1980.

B. Stott, O. Alsaç, and A. Monticelli, Numerical testing of power system load flow equivalents, IEEE Transactions on Power Apparatus and Systems, issue.6, p.10, 1980.

R. Van-amerongen and H. Van-meeteren, A Generalised Ward Equivalent for Security Analysis, IEEE Transactions on Power Apparatus and Systems, p.10, 1982.

V. Müller and D. Nelles, Application of neural networks to static equivalent networks, European Transactions on Electrical Power, vol.12, p.10, 2002.

H. Altalib and P. Krause, Dynamic equivalents by combination of reduced order models of system components, IEEE Transactions on Power Apparatus and Systems, vol.95, p.10, 1976.

H. Rudnick, R. Patino, and A. Brameller, Power-system dynamic equivalents:coherency recognition via the rate of change of kinetic energy, IEE Proceedings C Generation, Transmission and Distribution, vol.128, issue.6, p.10, 1981.

X. Feng, Z. Lubosny, and J. Bialek, Dynamic equivalencing of distribution network with high penetration of distributed generation, 41st International Universities Power Engineering Conference, UPEC 2006, Conference Procedings, vol.2, p.11, 2006.

F. Ma, X. Luo, and V. Vittal, Application of dynamic equivalencing in largescale power systems, IEEE Power and Energy Society General Meeting, p.11, 2011.

J. E. Anderson and A. Chakrabortty, PMU placement for dynamic equivalencing of power systems under flow observability constraints, Electric Power Systems Research, vol.106, p.11, 2014.

A. Chakrabortty, J. H. Chow, and A. Salazar, A measurement-based framework for dynamic equivalencing of large power systems using wide-area phasor measurements, IEEE Transactions on Smart Grid, vol.2, p.11, 2011.

A. Takimoto, Power system dynamic equivalence based on a new model reduction technique, Electrical Engineering in Japan, vol.114, issue.7, p.12, 1994.

T. Singhavilai, O. Anaya-lara, and K. Lo, Identification of the dynamic equivalent of a power system, Proceedings of the 44th International, vol.0, p.11, 2009.

R. Gueddouche and M. Boudour, Nonlinear Estimation of External Power System, Global Journal of Researches in Engineering, vol.12, issue.7, p.11, 2012.

Y. Zhou, K. Wang, Y. Xiong, and B. Zhang, Study of power system online dynamic equivalent based on wide area measurement system, Energy Procedia, vol.16, p.12, 2012.

A. Ahmed and M. Shahid-ullah, Dynamic equivalence of a large power system using power system simulator for engineers ( PSS / E ), Journal of Engineering and Technology, vol.8, issue.2, p.12, 2010.

H. Zhou, P. Ju, H. Yang, and R. Sun, Dynamic equivalent method of interconnected power systems with consideration of motor loads, Science China Technological Sciences, vol.53, issue.4, p.12, 2010.

B. Hong, H. Hu, T. Chen, and Q. Li, Dynamic Equivalent Method of Motor Loads for Power Systems Based on the Weighted, Journal of Power and Energy Engineering, vol.02, issue.04, p.12, 2014.

B. Porkar, M. Vakilian, and R. Feuillet, Frequency-Dependent Network Equivalent for Electromagnetic Transient Studies by Vector Fitting, p.12, 2006.

A. Stankovicc, A. Saric, and M. Milosevic, Identification of nonparametric dynamic power system equivalents with artificial neural networks, IEEE Transactions on Power Systems, vol.18, p.12, 2003.

S. Joo, C. Liu, L. Jones, and J. Choe, Coherency and Aggregation Techniques Incorporating Rotor and Voltage Dynamics, IEEE Transactions on Power Systems, vol.19, p.12, 2004.

M. L. Ourari, L. A. Dessaint, and V. Do, Dynamic equivalent modeling of large power systems using structure preservation technique, IEEE Transactions on Power Systems, vol.21, p.12, 2006.

Z. Bai, P. M. Dewilde, and R. W. Freund, of Handbook of Numerical Analysis, Numerical Methods in Electromagnetics, vol.13, p.44, 2005.

D. Chaniotis and M. A. Pai, Model Reduction in Power Systems Using Krylov Subspace Methods, IEEE Transactions on Power Systems, vol.20, issue.2, p.12, 2005.

P. Parrilo, S. Lall, F. Paganini, G. C. Verghese, B. Lesieutre et al., Model reduction for analysis of cascading failures in power systems, American Control Conference, vol.6, p.62, 1999.

C. Sturk, L. Vanfretti, F. Milano, and H. Sandberg, Structured model reduction of power systems, 2012 American Control Conference (ACC), p.13, 2012.

C. Sturk, L. Vanfretti, Y. Chompoobutrgool, and H. Sandberg, Structured power system model reduction of non-coherent areas, IEEE Power and Energy Society General Meeting, p.13, 2012.

M. Bettayeb and U. M. Al-saggaf, Practical model reduction techniques for power systems, Electric Power Systems Research, vol.25, issue.3, p.13, 1992.

U. M. Al-saggaf and M. Bettayeb, Techniques in optimized model reduction for high dimensional systems, Digital and Numeric Techniques and their Applications in Control Systems, vol.1, p.14, 1993.

A. Cherid and M. Bettayeb, Reduced-order models for the dynamics of a single-machine power system via balancing, Electric Power Systems Research, vol.22, p.14, 1991.

U. M. Al-saggaf, Reduced-order models for dynamic control of a power plant with an improved transient and steady-state behavior, Electric Power Systems Research, vol.26, p.14, 1993.

N. Kashyap, S. Werner, T. Riihonen, and Y. F. Huang, Reduced-order synchrophasor-assisted state estimation for smart grids, 2012 IEEE 3rd International Conference on Smart Grid Communications, p.14, 2012.

B. Wille-haussmann, J. Link, and C. Wittwer, Simulation study of a "Smart Grid" approach: Model reduction, reactive power control, IEEE PES Innovative Smart Grid Technologies Conference Europe, p.14, 2010.

A. Bergen and V. Vittal, Power Systems Analysis, p.41, 1999.

D. Borzacchiello, F. Chinesta, M. Malik, R. García-blanco, and P. Diez, Unified formulation of a family of iterative solvers for power systems analysis, Electric Power Systems Research, vol.140, p.39, 2016.

P. Ladevèze, Nonlinear Computational Structural Mechanics. Mechanical Engineering Series, vol.34, p.49, 1999.

P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose et al., Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, IEEE Transactions on Power Systems, vol.19, p.39, 2004.

Y. Susuki, I. Mezi?, and T. Hikihara, Coherent swing instability of power grids, Journal of Nonlinear Science, vol.21, issue.3, p.93, 2011.

P. Hines, K. Balasubramaniam, and E. Sanchez, Cascading failures in power grids, IEEE Potentials, vol.28, p.43, 2009.

R. Baldick, B. Chowdhury, I. Dobson, Z. Dong, B. Gou et al., Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures, IEEE Power and Energy Society General Meeting -Conversion and Delivery of Electrical Energy in the 21st Century, p.43, 2008.

P. C. Magnusson, The Transient-Energy Method of Calculating Stability, Transactions, vol.66, p.44, 1947.

P. D. Aylett, The energy-integral criterion of transient stability limits of power systems, Proceedings of the IEE -Part C: Monographs, vol.105, p.44, 1958.

P. D. Bai and R. Freund, Reduced-order modeling, Numerical Methods in Electromagnetics (E. t. Schilders, W.Maten, vol.XIII, p.44, 2005.

W. Schilders, Introduction to model order reduction, Model Order Reduction: Theory, Research Aspects and Applications, vol.13, p.44, 2008.

R. Pinnau, Model reduction via proper orthogonal decomposition, Model Order Reduction: Theory, Research Aspects and Applications, vol.13, p.44, 2008.

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto et al., PGD-Based Computational Vademecum for Efficient Design, Optimization and Control, Archives of Computational Methods in Engineering, vol.20, issue.1, p.149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01515083

L. Knockaert and D. D. Zutter, Laguerre-svd reduced-order modeling, IEEE Transactions on Microwave Theory and Techniques, vol.48, p.44, 2000.

D. González, F. Masson, F. Poulhaon, A. Leygue, E. Cueto et al., Proper Generalized Decomposition based dynamic data driven inverse identification, Mathematics and Computers in Simulation, vol.82, issue.9, p.49, 2012.

B. Vandoren, K. De-proft, A. Simone, and L. Sluys, Mesoscopic modelling of masonry using weak and strong discontinuities, Computer Methods in Applied Mechanics and Engineering, vol.255, p.54, 2013.

L. N. Lowes, Finite Element Modeling of Reinforced Concrete Beam-Column Bridge Connections, p.54, 1999.

B. Vandoren, A. Simone, and L. J. Sluys, A constrained Large Time Increment Method for a Gradient-Enhanced Damage Model, 5th European Conference on Computational Mechanics (ECCM V), no. WCCM XI, p.54, 2014.

L. Montier, T. Henneron, S. Clénet, and B. Goursaud, Transient simulation of an electrical rotating machine achieved through model order reduction, vol.3, p.59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01949914

Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee et al., Proper orthogonal decomposition and its applications -part I: Theory, Journal of Sound and Vibration, vol.252, issue.3, p.61, 2002.

G. Kerschen, J. Golinval, A. F. Vakakis, and L. A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dynamics, vol.41, issue.1-3, p.61, 2005.

G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics, vol.25, issue.1, p.61, 1993.

M. N. Albunni, Model Order Reduction of Moving Nonlinear Electromagnetic Devices, vol.77, p.85, 2010.

M. J. Rewie?ski, A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, p.86, 2003.

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, p.78, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021702

S. Chaturantabut and D. C. Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal on Scientific Computing, vol.32, issue.5, p.78, 2010.

Y. Liu, W. Yuan, and H. Chang, A global maximum error controllerbased method for linearization point selection in trajectory piecewiselinear model order reduction, IEEE Transactions on, vol.33, p.85, 2014.

Y. Chen and J. White, A quadratic method for nonlinear model order reduction, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, p.78, 2000.

D. Vasilyev, M. Rewie?ski, and J. White, A tbr-based trajectory piecewiselinear algorithm for generating accurate low-order models for nonlinear analog circuits and mems, Design Automation Conference, p.79, 2003.

L. Qu and P. Chapman, A trajectory piecewise-linear approach to model order reduction for nonlinear stationary magnetic devices, Proceedings. 2004 IEEE Workshop on, p.78, 2004.

M. Rewie?ski and J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Transactions on, vol.22, p.78, 2003.

M. Farooq, L. Xia, F. Hussin, and A. Malik, Automated model generation of analog circuits through modified trajectory piecewise linear approach with cheby shev newton interpolating polynomials, Intelligent Systems Modelling Simulation (ISMS), 2013 4th International Conference on, p.79, 2013.

C. Long, L. Simonson, W. Liao, and L. He, Floorplanning optimization with trajectory piecewise-linear model for pipelined interconnects, Design Automation Conference, p.78, 2004.

M. Farooq and L. Xia, Local approximation improvement of trajectory piecewise linear macromodels through chebyshev interpolating polynomials, Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, p.78, 2013.

D. Maier, On the Use of Model Order Reduction Techniques for the Elastohydrodynamic Contact Problem, p.78, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01234923

M. Rewie?ski and J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE/ACM International Conference on, p.84, 2001.

J. He, J. Saetrom, and L. Durlofsky, Enhanced linearized reduced-order models for subsurface flow simulation, Journal of Computational Physics, vol.230, issue.23, p.79, 2011.

M. Cardoso and L. Durlofsky, Linearized reduced-order models for subsurface flow simulation, Journal of Computational Physics, vol.229, issue.3, p.79, 2010.

D. Gratton, Reduced-order, trajectory piece-wise linear models for nonlinear computational fluid dynamics, p.78, 2004.

W. Xie and C. Theodoropoulos, An off-line model reduction-based technique for on-line linear MPC applications for nonlinear large-scale distributed systems, 20th European Symposium on Computer Aided Process Engineering, vol.28, p.79, 2010.

S. Burgard, O. Farle, D. Klis, and R. Dyczij-edlinger, Order-reduction of fields-level models with affine and non-affine parameters by interpolation of subspaces, IFAC-PapersOnLine, vol.48, issue.1, p.78, 2015.

H. Panzer, J. Mohring, R. Eid, and B. Lohmann, Parametric model order reduction by matrix interpolation, at -Automatisierungstechnik, vol.58, issue.8, p.78, 2010.

H. Yu, X. Liu, H. Wang, and S. Tan, A fast analog mismatch analysis by an incremental and stochastic trajectory piecewise linear macromodel, Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, p.79, 2010.

K. Zong, F. Yang, and X. Zeng, A wavelet-collocation-based trajectory piecewise-linear algorithm for time-domain model-order reduction of nonlinear circuits, IEEE Transactions on, vol.57, p.79, 2010.

E. Acha, V. Agelidis, O. Anaya-lara, and T. Miller, 4 -power flows in compensation and control studies, Power Electronic Control in Electrical Systems, p.87, 2002.

M. H. Malik, D. Borzacchiello, F. Chinesta, and P. Diez, Reduced order modeling for transient simulation of power systems using trajectory piecewise linear approximation, Advanced Modeling and Simulation in Engineering Sciences, vol.3, issue.1, p.102, 2016.

A. Morched and V. Brandwajn, Transmission Network Equivalents for Electromagnetic Transients Studies, IEEE Transactions on Power Apparatus and Systems, vol.104, p.106, 1983.

M. Belhocine and B. Marinescu, A mix balanced-modal truncations for power systems model reduction, Control Conference (ECC), vol.104, p.133, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01421794

M. Belhocine and B. Marinescu, On the connections between used models of power transmission lines, 2013 IEEE Power Energy Society General Meeting, vol.104, p.134, 2013.

S. Lefebvre, Reduced order transmission line models for power system analysis, International Journal of Electrical Power & Energy Systems, vol.21, p.104, 1999.

A. Clerici and L. Marzio, Coordinated Use of TNA and Digital Computer for Switching-Surge Studies: Transient Equivalent of a Complex Network, IEEE Transactions on Power Apparatus and Systems, p.104, 1970.

X. P. Zhang and H. Chen, Analysis and selection of transmission line models used in power system transient simulations, International Journal of Electrical Power and Energy Systems, vol.17, issue.4, p.104, 1995.

R. Ionutiu, S. Lefteriu, and A. C. Antoulas, Comparison of Model Reduction Methods with Applications to Circuit Simulation, Scientific Computing in Electrical Engineering SCEE 2006, vol.11, p.104, 2007.

A. Soysal and A. Semlyen, Reduced order transmission line modeling for improved efficiency in the calculation of electromagnetic transients, IEEE Transactions on Power Systems, vol.9, issue.3, p.104, 1994.

R. F. Remis, An efficient model-order reduction approach to low-frequency transmission line modeling, Progress In Electromagnetics Research, vol.101, p.104, 2010.

Y. Jang, J. Kong, and J. Seo, Balanced model reduction with guaranteed performance in frequency ranges, Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol.3, p.104, 1984.

M. R. Opmeer, Model reduction for distributed parameter systems: A functional analytic view, 2012 American Control Conference (ACC), p.104, 2012.

F. Chinesta, R. Keunings, and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations, SpringerBriefs in Applied Sciences and Technology, p.110, 2014.

F. Chinesta, A. Ammar, A. Leygue, and R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology, Journal of Non-Newtonian Fluid Mechanics, vol.166, issue.11, p.149, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01061441

P. Ladevèze and L. Chamoin, On the verification of model reduction methods based on the proper generalized decomposition, Computer Methods in Applied Mechanics and Engineering, vol.200, p.111, 2011.

E. Pruliere, F. Chinesta, and A. Ammar, On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition, Mathematics and Computers in Simulation, vol.81, issue.4, p.111, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00704427

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, p.111, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004909

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations, Journal of Non-Newtonian Fluid Mechanics, vol.144, issue.2-3, p.111, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01633241

D. Modesto, S. Zlotnik, and A. Huerta, Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation, Computer Methods in Applied Mechanics and Engineering, vol.295, p.111, 2015.

P. Ladevèze, J. Passieux, and D. Néron, The LATIN multiscale computational method and the Proper Generalized Decomposition, Computer Methods in Applied Mechanics and Engineering, vol.199, p.111, 2010.

R. García-blanco, P. Díez, D. Borzacchiello, and F. Chinesta, A reduced order modeling approach for optimal allocation of distributed generation in power distribution systems, 2016 IEEE International Energy Conference (ENERGYCON), p.111, 2016.

R. García-blanco, D. Borzacchiello, F. Chinesta, and P. Díez, Monitoring a pgd solver for parametric power flow problems with goal-oriented error assessment, International Journal for Numerical Methods in Engineering, p.111

A. Bergen and V. Vittal, Power Systems Analysis, vol.121, p.129, 1986.

B. Y. Levin, Lecture on entire functions, p.133, 2001.

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, p.133, 2001.

S. Kurokawa, J. Pissolatofilho, M. Tavares, C. Portela, and A. Prado, Behavior of Overhead Transmission Line Parameters on the Presence of Ground Wires, IEEE Transactions on Power Delivery, vol.20, p.142, 2005.

M. Admane, M. Sorine, and Q. Zhang, Simulation of electric transmission lines with skin effect based on a reduced order differential model, IET Colloquium on Reliability of Electromagnetic Systems, p.145, 2007.

E. C. Da-costa, S. Kurokawa, A. J. Prado, and J. Pissolato, Proposal of an alternative transmission line model for symmetrical and asymmetrical configurations, International Journal of Electrical Power & Energy Systems, vol.33, p.141, 2011.

D. Bormann and H. Tavakoli, Reluctance Network Treatment of Skin and Proximity Effects in Multi-Conductor Transmission Lines, IEEE Transactions on Magnetics, vol.48, p.141, 2012.

J. R. Marti, Accurate Modeling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulations, IEEE Transactions on Power Apparatus and Systems, vol.101, issue.1, p.164, 1982.

C. Nucci, F. Rachidi, and M. Rubinstein, Derivation of telegrapher's equations and field-to-transmission line interaction, Electromagnetic Field Interaction with Transmission Lines, vol.29, p.140, 2008.

H. Igarashi, Semi-Analytical Approach for Finite Element Analysis of Multiturn Coil Considering Skin and Proximity Effects, IEEE Transactions on Magnetics, vol.02, issue.c, p.140, 2016.

V. M. Machado, M. E. Pedro, J. B. Faria, and D. Van-dommelen, Magnetic field analysis of three-conductor bundles in flat and triangular configurations with the inclusion of proximity and skin effects, vol.81, p.141, 2005.

A. Semlyen and A. Dabuleanu, Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions, IEEE Transactions on Power Apparatus and Systems, vol.94, p.141, 1975.

Z. Chu-sun-yen, R. Fazarinc, and . Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines, Proceedings of the IEEE, vol.70, issue.7, p.141, 1982.

K. S. Oh, Accurate transient simulation of transmission lines with the skin effect, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.19, p.145, 2000.

M. Dávila, J. L. Naredo, P. Moreno, and A. Ramirez, Practical implementation of a transmission line model for transient analysis considering corona and skin effects, Power Tech Conference Proceedings, vol.2, p.141, 2003.

W. S. Meyer and H. W. Dommel, Numerical modelling of frequencydependent transmission-line parameters in an electromagnetic transients program, IEEE Transactions on Power Apparatus and Systems, p.142, 1974.

D. Wilcox and M. Condon, COMPEL -The international journal for computation and mathematics in electrical and electronic engineering, vol.16, p.142, 1997.

O. Gatous and J. Pissolato, Frequency-dependent skin-effect formulation for resistance and internal inductance of a solid cylindrical conductor, IEE Proceedings -Microwaves, Antennas and Propagation, vol.151, p.145, 2004.

S. Kim and D. Neikirk, Compact equivalent circuit model for the skin effect, IEEE MTT-S International Microwave Symposium Digest, vol.3, p.141, 1996.

S. Crandall, The role of damping in vibration theory, Journal of Sound and Vibration, vol.11, issue.1, p.143, 1970.

C. Germoso, A. Fraile, E. Alarcon, J. Aguado, and F. Chinesta, From standard to fractional structural visco-elastodynamics: Application to seismic site response, Physics and Chemistry of the Earth, p.143, 2016.

R. A. Chipman, Theory and Problems of Transmission Lines, p.144, 1968.

P. Lucht, Transmission Lines and Maxwell's Equations, p.145, 2014.

J. H. Monteiro, E. C. Costa, A. J. Pinto, S. Kurokawa, O. M. Gatous et al., Simplified skin-effect formulation for power transmission lines, IET Science, Measurement & Technology, vol.8, p.145, 2014.

G. J. Francisco, R. Juan, G. Manuel, and R. J. Roberto, Fractional RC and LC electrical circuits, Ingenierìa, Investigación y Tecnología, vol.15, p.151, 2014.