J. G. Betts, P. Desaix, E. Johnson, J. E. Johnson, O. Korol et al., Anatomy and Physiology, vol.26, 2016.

P. D. Vize, A. S. Woolf, and J. B. Bard, The kidney: From normal development to congenital disease, 2003.

D. Schwalb, . Eshghi, . Cord, E. Evans, . Braga et al., The minipig as a practical endourologic model, Journal of Endourology, vol.3, issue.1, pp.85-90, 1989.

A. P. Evan, B. A. Connors, J. E. Lingeman, P. Blomgren, and L. R. Willis, Branching patterns of the renal artery of the pig, The Anatomical Record, vol.246, issue.2, pp.217-223, 1996.

F. J. Sampaio, M. A. Pereira-sampaio, and L. A. Favorito, The pig kidney as an endourologic model: Anatomic contribution, Journal of endourology, vol.12, issue.1, pp.45-50, 1998.

M. A. Pereira-sampaio, L. A. Favorito, and F. J. Sampaio, Pig kidney: Anatomical relationships between the intrarenal arteries and the kidney collecting system. applied study for urological research and surgical training, The Journal of urology, vol.172, issue.5, pp.2077-2081, 2004.

H. J. Bagetti-filho, M. A. Pereira-sampaio, L. A. Favorito, and F. J. Sampaio, Pig kidney: Anatomical relationships between the renal venous arrangement and the kidney collecting system, The Journal of urology, vol.179, issue.4, pp.1627-1630, 2008.

K. U. Köhrmann, W. Back, J. Bensemann, J. Florian, A. Weber et al., The isolated perfused kidney of the pig: New model to evaluate shock wave-induced lesions, Journal of endourology, vol.8, issue.2, pp.105-110, 1994.

A. Arefiev, J. Prat, . Chapelon, and . Tavakkoli, Ultrasoundinduced tissue ablation: Studies on isolated, perfused porcine liver, Ultrasound in medicine & biology, vol.24, issue.7, pp.1033-1043, 1998.

T. Bergsdorf, C. Thüroff, and . Chaussy, The isolated perfused kidney: An in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources, Journal of endourology, vol.19, issue.7, pp.883-888, 2005.

M. Szyrach, M. Paschenda, . Afify, R. Zeng, and . Tolba, Resuscitation of warm ischaemia predamaged porcine kidneys by fibrinolytic preflush with streptokinase: Reduction of animal experiments, Laboratory animals, vol.45, issue.2, pp.63-69, 2011.

C. D. Scales, A. C. Smith, J. M. Hanley, C. S. Saigal, and U. D. In-america-project, Prevalence of kidney stones in the united states, European urology, vol.62, issue.1, pp.160-165, 2012.

J. Uribarri, M. S. Oh, and H. J. Carroll, The first kidney stone, Annals of internal medicine, vol.111, issue.12, pp.1006-1009, 1989.

A. P. Evan, Physiopathology and etiology of stone formation in the kidney and the urinary tract, Pediatric Nephrology, vol.25, issue.5, pp.831-841, 2010.

F. L. Coe, J. H. Parks, and J. R. Asplin, The pathogenesis and treatment of kidney stones, New England Journal of Medicine, vol.327, issue.16, pp.1141-1152, 1992.

O. W. Moe, Kidney stones: Pathophysiology and medical management, The lancet, vol.367, issue.9507, pp.333-344, 2006.

G. C. Curhan, W. C. Willett, E. B. Rimm, and M. J. Stampfer, Family history and risk of kidney stones, Journal of the American Society of Nephrology, vol.8, issue.10, pp.1568-1573, 1997.

, A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones, New England Journal of Medicine, vol.328, issue.12, pp.833-838, 1993.

G. C. Curhan, W. C. Willett, E. B. Rimm, F. E. Speizer, and M. J. Stampfer, Body size and risk of kidney stones, Journal of the American Society of Nephrology, vol.9, issue.9, pp.1645-1652, 1998.

E. N. Taylor, M. J. Stampfer, and G. C. Curhan, Obesity, weight gain, and the risk of kidney stones, Jama, vol.293, issue.4, pp.455-462, 2005.

M. Daudon, O. Traxer, P. Conort, B. Lacour, and P. Jungers, Type 2 diabetes increases the risk for uric acid stones, Journal of the American Society of Nephrology, vol.17, issue.7, pp.2026-2033, 2006.

F. Ebrahimi and . Wang, Fracture behavior of urinary stones under compression, Journal of biomedical materials research, vol.23, issue.5, pp.507-521, 1989.

M. Lokhandwalla and B. Sturtevant, Fracture mechanics model of stone comminution in eswl and implications for tissue damage, Physics in Medicine & Biology, vol.45, issue.7, p.1923, 2000.

C. Zhong, G. Chuong, and . Preminger, Characterization of fracture toughness of renal calculi using a microindentation technique, Journal of materials science letters, vol.12, issue.18, pp.1460-1462, 1993.

Y. Liu and P. Zhong, Begostone-a new stone phantom for shock wave lithotripsy research (l), The Journal of the Acoustical Society of America, vol.112, issue.4, pp.1265-1268, 2002.

J. A. Mcateer, J. C. Williams, R. O. Cleveland, J. Van-cauwelaert, M. R. Bailey et al., Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy, Urological research, vol.33, issue.6, pp.429-434, 2005.

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger et al., A simple method for fabricating artificial kidney stones of different physical properties, Urological research, vol.38, issue.4, pp.315-319, 2010.

A. J. Portis and C. P. Sundaram, Diagnosis and initial management of kidney stones, American family physician, vol.63, issue.7, pp.1329-1340, 2001.

J. Vieweg, C. Teh, K. Freed, R. A. Leder, R. H. Smith et al., Unenhanced helical computerized tomography for the evaluation of patients with acute flank pain, The Journal of urology, vol.160, issue.3, pp.679-684, 1998.

I. Boulay, P. Holtz, W. D. Foley, B. White, and F. P. Begun, Ureteral calculi: Diagnostic efficacy of helical ct and implications for treatment of patients, AJR. American journal of roentgenology, vol.172, issue.6, pp.1485-1490, 1999.

N. C. Dalrymple, M. Verga, K. R. Anderson, P. Bove, A. M. Covey et al., The value of unenhanced helical computerized tomography in the management of acute flank pain, The Journal of urology, vol.159, issue.3, pp.735-740, 1998.

G. Bandi, R. J. Meiners, P. J. Pickhardt, and S. Y. Nakada, Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy, BJU international, vol.103, issue.4, pp.524-528, 2009.

A. R. Kambadakone, B. H. Eisner, O. A. Catalano, and D. V. Sahani, New and evolving concepts in the imaging and management of urolithiasis: Urologists' perspective, Radiographics, vol.30, issue.3, pp.603-623, 2010.

J. A. Levine, J. Neitlich, M. Verga, N. Dalrymple, and R. C. Smith, Ureteral calculi in patients with flank pain: Correlation of plain radiography with unenhanced helical ct, Radiology, vol.204, issue.1, pp.27-31, 1997.

S. Yilmaz, G. Sindel, C. Arslan, . Özkaynak, . Karaali et al., Renal colic: Comparison of spiral ct, us and ivu in the detection of ureteral calculi, European radiology, vol.8, issue.2, pp.212-217, 1998.

A. Rahmouni, R. Bargoin, A. Herment, N. Bargoin, and N. Vasile, Color doppler twinkling artifact in hyperechoic regions, Radiology, vol.199, issue.1, pp.269-271, 1996.

N. Chelfouh, D. Grenier, H. Higueret, . Trillaud, J. Levantal et al., Characterization of urinary calculi: In vitro study of" twinkling artifact" revealed by color-flow sonography, AJR. American journal of roentgenology, vol.171, pp.1055-1060, 1998.

W. Lu, O. A. Sapozhnikov, M. R. Bailey, P. J. Kaczkowski, and L. A. Crum, Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging, Ultrasound in medicine & biology, vol.39, issue.6, pp.1026-1038, 2013.

R. R. Winkel, A. Kalhauge, and K. Fredfeldt, The usefulness of ultrasound colour-doppler twinkling artefact for detecting urolithiasis compared with low dose nonenhanced computerized tomography, Ultrasound in medicine & biology, vol.38, issue.7, pp.1180-1187, 2012.

M. S. Parmar, Kidney stones, BMJ: British Medical Journal, vol.328, issue.7453, p.1420, 2004.

J. W. Segura, G. M. Preminger, D. G. Assimos, S. P. Dretler, R. I. Kahn et al., Ureteral stones clinical guidelines panel summary report on the management of ureteral calculi, The Journal of urology, vol.158, issue.5, pp.1915-1921, 1997.

B. R. Matlaga, B. Chew, B. Eisner, M. Humphreys, B. Knudsen et al., Ureteroscopic laser lithotripsy: A review of dusting vs fragmentation with extraction, Journal of endourology, vol.32, issue.1, pp.1-6, 2018.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi et al., Holmium: Yag laser lithotripsy for upper urinary tract calculi in 598 patients, The Journal of urology, vol.167, issue.1, pp.31-34, 2002.

A. Breda, O. Ogunyemi, J. T. Leppert, and P. G. Schulam, Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones, European urology, vol.55, issue.5, pp.1190-1197, 2009.

O. M. Aboumarzouk, M. Monga, S. G. Kata, O. Traxer, and B. K. Somani, Flexible ureteroscopy and laser lithotripsy for stones> 2 cm: A systematic review and meta-analysis, Journal of Endourology, vol.26, issue.10, pp.1257-1263, 2012.

B. Altay, B. Erkurt, and S. Albayrak, A review study to evaluate holmium: Yag laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy, Lasers in medical science, vol.32, issue.7, pp.1615-1619, 2017.

M. Osman, G. Wendt-nordahl, K. Heger, M. S. Michel, P. Alken et al., Percutaneous nephrolithotomy with ultrasonography-guided renal access: Experience from over 300 cases, BJU international, vol.96, issue.6, pp.875-878, 2005.

A. Skolarikos, J. Alivizatos, and . De-la-rosette, Percutaneous nephrolithotomy and its legacy, European urology, vol.47, issue.1, pp.22-28, 2005.

C. Chaussy, E. Schmiedt, B. Jocham, W. Brendel, B. Forssmann et al., First clinical experience with extracorporeally induced destruction of kidney stones by shock waves, The Journal of urology, vol.127, issue.3, pp.417-420, 1982.

K. Kerbl, J. Rehman, J. Landman, D. Lee, C. Sundaram et al., Current management of urolithiasis: Progress or regress?, Journal of endourology, vol.16, issue.5, pp.281-288, 2002.

A. Neisius, N. B. Smith, G. Sankin, N. J. Kuntz, J. F. Madden et al., Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter, Proceedings of the National Academy of Sciences, pp.201-319, 2014.

R. O. Cleveland and J. A. Mcateer, The physics of shock wave lithotripsy, vol.1, pp.529-558, 2007.

S. Nachef, D. Cathignol, and A. Birer, Piezoelectric electronically focused shock wave generator, The Journal of the Acoustical Society of America, vol.92, issue.4, pp.2292-2292, 1992.
DOI : 10.1121/1.405133

URL : https://asa.scitation.org/doi/pdf/10.1121/1.405133

J. Tavakkoli, A. Birer, A. Arefiev, F. Prat, J. Chapelon et al., A piezocomposite shock wave generator with electronic focusing capability: Application for producing cavitation-induced lesions in rabbit liver, Ultrasound in Medicine and Biology, vol.23, issue.1, pp.107-115, 1997.

M. Fink, Time reversal of ultrasonic fields. i. basic principles, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.39, issue.5, pp.555-566, 1992.

M. Fink, C. Prada, F. Wu, and D. Cassereau, Self focusing in inhomogeneous media with time reversal acoustic mirrors, Ultrasonics Symposium, 1989. Proceedings., IEEE 1989, pp.681-686, 1989.

J. Thomas, F. Wu, and M. Fink, Time reversal focusing applied to lithotripsy, Ultrasonic imaging, vol.18, issue.2, pp.106-121, 1996.
DOI : 10.1177/016173469601800202

A. Derode, P. Roux, and M. Fink, Robust acoustic time reversal with highorder multiple scattering, Physical review letters, vol.75, issue.23, p.4206, 1995.
DOI : 10.1103/physrevlett.75.4206

A. Derode, A. Tourin, and M. Fink, Ultrasonic pulse compression with one-bit time reversal through multiple scattering, Journal of applied physics, vol.85, issue.9, pp.6343-6352, 1999.

M. Fink, Time-reversal acoustics, Journal of Physics: Conference Series, vol.118, pp.12-13, 2008.
DOI : 10.1090/conm/408/07692

G. Montaldo, P. Roux, A. Derode, C. Negreira, and M. Fink, Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide, The Journal of the Acoustical Society of America, vol.110, issue.6, pp.2849-2857, 2001.

G. Montaldo, P. Roux, A. Derode, C. Negreira, and M. Fink, Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy, Applied physics letters, vol.80, issue.5, pp.897-899, 2002.

G. Montaldo, D. Palacio, M. Tanter, and M. Fink, Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging, Applied physics letters, vol.84, issue.19, pp.3879-3881, 2004.

, Building three-dimensional images using a time-reversal chaotic cavity, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.9, pp.1489-1497, 2005.

G. Memoli, M. Caleap, M. Asakawa, D. R. Sahoo, B. W. Drinkwater et al., Metamaterial bricks and quantization of meta-surfaces, Nature Communications, vol.8, issue.14608, 2017.

N. B. Dhar, J. Thornton, M. T. Karafa, and S. B. Streem, A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy, The Journal of urology, vol.172, issue.6, pp.2271-2274, 2004.

E. Sylven, C. Agarwal, R. Briant, and . Cleveland, High strain rate testing of kidney stones, Journal of Materials Science: Materials in Medicine, vol.15, issue.5, pp.613-617, 2004.

G. Dahake and S. Gracewski, Finite difference predictions of p-sv wave propagation inside submerged solids. ii. effect of geometry, The Journal of the Acoustical Society of America, vol.102, issue.4, pp.2138-2145, 1997.

X. Xi and P. Zhong, Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy, The Journal of the Acoustical Society of America, vol.109, issue.3, pp.1226-1239, 2001.

W. Eisenmenger, The mechanisms of stone fragmentation in eswl, Ultrasound in medicine & biology, vol.27, pp.683-693, 2001.

R. O. Cleveland and O. A. Sapozhnikov, Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy, The Journal of the Acoustical Society of America, vol.118, issue.4, pp.2667-2676, 2005.

O. A. Sapozhnikov, A. D. Maxwell, B. Macconaghy, and M. R. Bailey, A mechanistic analysis of stone fracture in lithotripsy, The Journal of the Acoustical Society of America, vol.121, issue.2, pp.1190-1202, 2007.

X. Eisenmenger, . Du, . Tang, Y. Zhao, . Wang et al., The first clinical results of "wide-focus and low-pressure" eswl, Ultrasound in medicine & biology, vol.28, issue.6, pp.769-774, 2002.

E. Tan, K. Tung, and K. Foo, Comparative studies of extracorporeal shock wave lithotripsy by dornier hm3, edap lt 01 and sonolith 2000 devices, The Journal of urology, vol.146, issue.2, pp.294-297, 1991.

L. A. Crum, Cavitation microjets as a contributory mechanism for renal calculi disintegration in eswl, The Journal of urology, vol.140, issue.6, pp.1587-1590, 1988.

C. C. Church, A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter, The Journal of the Acoustical Society of America, vol.86, issue.1, pp.215-227, 1989.

S. Zhu, F. H. Cocks, G. M. Preminger, and P. Zhong, The role of stress waves and cavitation in stone comminution in shock wave lithotripsy, Ultrasound in medicine & biology, vol.28, issue.5, pp.661-671, 2002.

A. P. Duryea, W. W. Roberts, C. A. Cain, and T. L. Hall, Controlled cavitation to augment swl stone comminution: Mechanistic insights in vitro, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.60, issue.2, pp.301-309, 2013.

Y. A. Pishchalnikov, O. A. Sapozhnikov, M. R. Bailey, J. C. Williams, R. O. Cleveland et al., Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves, Journal of endourology, vol.17, issue.7, pp.435-446, 2003.

R. O. Cleveland, R. Anglade, and R. K. Babayan, Effect of stone motion on in vitro comminution efficiency of storz modulith slx, Journal of endourology, vol.18, issue.7, pp.629-633, 2004.

M. Orkisz, M. Bourlion, G. Gimenez, and T. A. Flam, Real-time target tracking applied to improve fragmentation of renal stones in extra-corporeal lithotripsy, Machine Vision and Applications, vol.11, pp.138-144, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01825429

C. Chang, S. Liang, Y. Pu, C. Chen, T. Chen et al., In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part 1, The Journal of urology, vol.166, issue.1, pp.28-32, 2001.

C. Chang, Y. Manousakas, S. Pu, C. Liang, T. Chen et al., In vitro study of ultrasound based real-time tracking for renal stones in shock wave lithotripsy: Part ii-a simulated animal experiment, The Journal of urology, vol.167, issue.6, pp.2594-2597, 2002.

M. Pernot, G. Montaldo, M. Tanter, and M. Fink, ultrasonic stars" for time-reversal focusing using induced cavitation bubbles, Applied physics letters, vol.88, issue.3, pp.34-102, 2006.

N. R. Owen, M. R. Bailey, L. A. Crum, O. A. Sapozhnikov, and L. A. Trusov, The use of resonant scattering to identify stone fracture in shock wave lithotripsy, The Journal of the Acoustical Society of America, vol.121, issue.1, pp.41-47, 2007.

M. Kuwahara, . Kambe, . Taguchi, S. Saito, S. Shirai et al., Initial experience using a new type extracorporeal lithotripter with an antimisshot control device, The Journal of lithotripsy & stone disease, vol.3, issue.2, pp.141-146, 1991.

T. Kishimoto, K. Yamamoto, T. Sugimoto, H. Yoshihara, and M. Maekawa, Side effects of extracorporeal shock-wave exposure in patients treated by extracorporeal shock-wave lithotripsy for upper urinary tract stone, European urology, vol.12, pp.308-313, 1986.

J. E. Lingeman, J. Woods, P. D. Toth, A. P. Evan, and J. A. Mcateer, The role of lithotripsy and its side effects, The Journal of urology, vol.141, issue.3, pp.793-797, 1989.

J. K. Fine, C. Y. Pak, G. M. Preminger, J. W. Segura, and M. Marberger, Effect of medical management and residual fragments on recurrent stone formation following shock wave lithotripsy, The Journal of urology, vol.153, issue.1, pp.27-33, 1995.

A. P. Evan, L. R. Willis, J. E. Lingeman, and J. A. Mcateer, Renal trauma and the risk of long-term complications in shock wave lithotripsy, Nephron, vol.78, issue.1, pp.1-8, 1998.

J. E. Lingeman and T. B. Kulb, Hypertension following extracorporeal shock wave lithotripsy, The Journal of Urology, vol.137, issue.6, p.142, 1987.

M. Lokhandwalla and B. Sturtevant, Mechanical haemolysis in shock wave lithotripsy (swl): I. analysis of cell deformation due to swl flowfields, Physics in Medicine & Biology, vol.46, issue.2, p.413, 2001.

M. Lokhandwalla, J. A. Mcateer, J. C. Williams, and B. Sturtevant, Mechanical haemolysis in shock wave lithotripsy (swl): Ii. in vitro cell lysis due to shear, Physics in Medicine & Biology, vol.46, issue.4, p.1245, 2001.

D. Howard and B. Sturtevant, In vitro study of the mechanical effects of shock-wave lithotripsy, Ultrasound in Medicine and Biology, vol.23, issue.7, pp.1107-1122, 1997.

M. Delius, R. Denk, C. Berding, H. Liebich, M. Jordan et al., Biological effects of shock waves: Cavitation by shock waves in piglet liver, Ultrasound in Medicine and Biology, vol.16, issue.5, pp.467-472, 1990.

D. Dalecki, C. H. Raeman, S. Z. Child, and E. L. Carstensen, A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter, Ultrasound in Medicine and Biology, vol.22, issue.4, pp.493-496, 1996.

J. C. Williams, J. F. Woodward, M. A. Stonehill, A. P. Evan, and J. A. Mcateer, Cell damage by lithotripter shock waves at high pressure to preclude cavitation, Ultrasound in medicine & biology, vol.25, issue.9, pp.1445-1449, 1999.

L. R. Willis, A. P. Evan, B. A. Connors, Y. Shao, P. M. Blomgren et al., Shockwave lithotripsy: Dose-related effects on renal structure, hemodynamics, and tubular function, Journal of endourology, vol.19, issue.1, pp.90-101, 2005.

B. A. Connors, A. P. Evan, L. R. Willis, P. M. Blomgren, J. E. Lingeman et al., The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig, Journal of the American Society of Nephrology, vol.11, issue.2, pp.310-318, 2000.

J. A. Mcateer, A. P. Evan, J. C. Williams, and J. E. Lingeman, Treatment protocols to reduce renal injury during shock wave lithotripsy, Current opinion in urology, vol.19, issue.2, p.192, 2009.

A. P. Evan, J. A. Mcateer, B. A. Connors, P. M. Blomgren, and J. E. Lingeman, Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery, BJU international, vol.100, issue.3, pp.624-628, 2007.

Y. A. Pishchalnikov, J. A. Mcateer, and J. C. Williams, Effect of firing rate on the performance of shock wave lithotriptors, BJU international, vol.102, issue.11, pp.1681-1686, 2008.

C. E. Brennen, Fission of collapsing cavitation bubbles, Journal of Fluid Mechanics, vol.472, pp.153-166, 2002.

Y. A. Pishchalnikov, J. C. Williams, and J. A. Mcateer, Bubble proliferation in the cavitation field of a shock wave lithotripter, The Journal of the Acoustical Society of America, vol.130, issue.2, pp.87-93, 2011.

O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, J. C. Williams, J. A. Mcateer et al., Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy, The Journal of the Acoustical Society of America, vol.112, issue.3, pp.1183-1195, 2002.

A. P. Duryea, C. A. Cain, H. A. Tamaddoni, W. W. Roberts, and T. L. Hall, Removal of residual nuclei following a cavitation event using lowamplitude ultrasound, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.61, issue.10, pp.1619-1626, 2014.

A. P. Duryea, H. A. Tamaddoni, C. A. Cain, W. W. Roberts, and T. L. Hall, Removal of residual nuclei following a cavitation event: A parametric study, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.62, issue.9, pp.1605-1614, 2015.

M. S. Pearle, J. E. Lingeman, R. Leveillee, R. Kuo, G. M. Preminger et al., Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less, The Journal of urology, vol.173, issue.6, 2005.

A. E. Perks, G. Gotto, and J. M. Teichman, Shock wave lithotripsy correlates with stone density on preoperative computerized tomography, The Journal of urology, vol.178, issue.3, pp.912-915, 2007.

K. J. Weld, C. Montiglio, M. S. Morris, A. C. Bush, and R. D. Cespedes, Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics, Urology, vol.70, issue.6, pp.1043-1046, 2007.

J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: A new technique for soft tissue elasticity mapping, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.4, pp.396-409, 2004.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. Gennisson et al., Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging, Ultrasound in medicine & biology, vol.34, issue.9, pp.1373-1386, 2008.

J. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink et al., Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging, Ultrasound in medicine & biology, vol.36, pp.789-801, 2010.

M. D. Sorensen, A. R. Shah, M. S. Canney, O. A. Sapozhnikov, J. M. Teichman et al., Ureteroscopic ultrasound technology to size kidney stone fragments: Proof of principle using a miniaturized probe in a porcine model, Journal of endourology, vol.24, issue.6, pp.939-942, 2010.

Z. Xu, A. Ludomirsky, L. Y. Eun, T. L. Hall, B. C. Tran et al., Controlled ultrasound tissue erosion, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.6, pp.726-736, 2004.

Z. Xu, J. B. Fowlkes, E. D. Rothman, A. M. Levin, and C. A. Cain, Controlled ultrasound tissue erosion: The role of dynamic interaction between insonation and microbubble activity, The Journal of the Acoustical Society of America, vol.117, issue.1, pp.424-435, 2005.

T. Hall, J. Fowlkes, and C. Cain, Imaging feedback of tissue liquefaction (histotripsy) in ultrasound surgery, Ultrasonics Symposium, vol.3, pp.1732-1734, 2005.

Z. Xu, J. B. Fowlkes, and C. A. Cain, A new strategy to enhance cavitational tissue erosion using a high-intensity, initiating sequence, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.53, issue.8, pp.1412-1424, 2006.

K. Kieran, T. L. Hall, J. E. Parsons, J. S. Wolf, J. B. Fowlkes et al., Refining histotripsy: Defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney, The Journal of urology, vol.178, issue.2, pp.672-676, 2007.

V. A. Khokhlova, J. B. Fowlkes, W. W. Roberts, G. R. Schade, Z. Xu et al., Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications, International journal of hyperthermia, vol.31, issue.2, pp.145-162, 2015.

A. D. Maxwell, C. A. Cain, T. L. Hall, J. B. Fowlkes, and Z. Xu, Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials, Ultrasound in medicine & biology, vol.39, issue.3, pp.449-465, 2013.

A. D. Maxwell, T. Wang, C. A. Cain, J. B. Fowlkes, O. A. Sapozhnikov et al., Cavitation clouds created by shock scattering from bubbles during histotripsy, The Journal of the Acoustical Society of America, vol.130, issue.4, pp.1888-1898, 2011.
DOI : 10.1121/1.3625239

URL : http://europepmc.org/articles/pmc3206907?pdf=render

S. Umemura, K. Kawabata, and K. Sasaki, In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition, The Journal of the Acoustical Society of America, vol.101, issue.1, pp.569-577, 1997.

K. Lin, Y. Kim, A. D. Maxwell, T. Wang, T. L. Hall et al., Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: Microtripsy, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.61, pp.251-265, 2014.
DOI : 10.1109/tuffc.2014.6722611

URL : http://europepmc.org/articles/pmc3966303?pdf=render

X. Zhang, G. E. Owens, H. S. Gurm, Y. Ding, C. A. Cain et al., Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy), IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.62, pp.1342-1355, 2015.
DOI : 10.1109/tuffc.2015.007016

URL : http://europepmc.org/articles/pmc4528908?pdf=render

K. Lin, A. Duryea, Y. Kim, T. Hall, Z. Xu et al., Dual-beam histotripsy: A low-frequency pump enabling a high-frequency probe for precise lesion formation, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.61, issue.2, pp.325-340, 2014.

T. Ikeda, S. Yoshizawa, M. Tosaki, J. S. Allen, S. Takagi et al., Cloud cavitation control for lithotripsy using high intensity focused ultrasound, Ultrasound in medicine & biology, vol.32, issue.9, pp.1383-1397, 2006.

S. Yoshizawa, T. Ikeda, A. Ito, R. Ota, S. Takagi et al., High intensity focused ultrasound lithotripsy with cavitating microbubbles, Medical & biological engineering & computing, vol.47, issue.8, pp.851-860, 2009.

A. P. Duryea, W. W. Roberts, C. A. Cain, and T. L. Hall, Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.62, issue.5, pp.896-904, 2015.

A. Shah, N. R. Owen, W. Lu, B. W. Cunitz, P. J. Kaczkowski et al., Novel ultrasound method to reposition kidney stones, Urological research, vol.38, issue.6, pp.491-495, 2010.

A. Shah, J. D. Harper, B. W. Cunitz, Y. Wang, M. Paun et al., Focused ultrasound to expel calculi from the kidney, The Journal of urology, vol.187, issue.2, pp.739-743, 2012.

J. D. Harper, B. W. Cunitz, B. Dunmire, F. C. Lee, M. D. Sorensen et al., First in human clinical trial of ultrasonic propulsion of kidney stones, The Journal of urology, vol.195, issue.4, pp.956-964, 2016.

A. D. Maxwell, B. W. Cunitz, W. Kreider, O. A. Sapozhnikov, R. S. Hsi et al., Fragmentation of urinary calculi in vitro by burst wave lithotripsy, The Journal of urology, vol.193, issue.1, pp.338-344, 2015.

P. C. May, W. Kreider, A. D. Maxwell, Y. Wang, B. W. Cunitz et al., Detection and evaluation of renal injury in burst wave lithotripsy using ultrasound and magnetic resonance imaging, Journal of endourology, vol.31, issue.8, pp.786-792, 2017.

T. A. Zwaschka, J. S. Ahn, B. W. Cunitz, M. R. Bailey, B. Dunmire et al., Combined burst wave lithotripsy and ultrasonic propulsion for improved urinary stone fragmentation, Journal of endourology, vol.32, issue.4, pp.344-349, 2018.

K. Maeda, W. Kreider, A. Maxwell, B. Cunitz, T. Colonius et al., Modeling and experimental analysis of acoustic cavitation bubbles for burst wave lithotripsy, Journal of Physics: Conference Series, vol.656, pp.12-027, 2015.

R. O. Cleveland, M. R. Bailey, N. Fineberg, B. Hartenbaum, M. Lokhandwalla et al., Design and characterization of a research electrohydraulic lithotripter patterned after the dornier hm3, Review of Scientific Instruments, vol.71, issue.6, pp.2514-2525, 2000.

M. R. Bailey, D. T. Blackstock, R. O. Cleveland, and L. A. Crum, Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. i. acoustic fields, The Journal of the Acoustical Society of America, vol.104, issue.4, pp.2517-2524, 1998.

, Comparison of electrohydraulic lithotripters with rigid and pressurerelease ellipsoidal reflectors. ii. cavitation fields, The Journal of the Acoustical Society of America, vol.106, issue.2, pp.1149-1160, 1999.

C. Ohl and R. Ikink, Shock-wave-induced jetting of micron-size bubbles, Physical review letters, vol.90, issue.21, pp.214-502, 2003.

A. P. Duryea, T. L. Hall, A. D. Maxwell, Z. Xu, C. A. Cain et al., Histotripsy erosion of model urinary calculi, Journal of Endourology, vol.25, issue.2, pp.341-344, 2011.

A. Meitzler, H. Tiersten, A. Warner, G. Berlincourt, F. Couqin et al., Ieee standard on piezoelectricity, 1988.

G. Everstine, Finite element formulatons of structural acoustics problems, Computers & Structures, vol.65, issue.3, pp.307-321, 1997.

O. Zienkiewicz and P. Bettess, Fluid-structure dynamic interaction and wave forces. an introduction to numerical treatment, International Journal for Numerical Methods in Engineering, vol.13, issue.1, pp.1-16, 1978.

A. Logg, K. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, vol.84, 2012.

M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The fenics project version 1.5, vol.3, 2015.

T. R. Chandrupatla, A. D. Belegundu, C. Ramesh, and . Ray, Introduction to finite elements in engineering, NJ, vol.2, 2002.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al.,

K. Mcinnes, B. F. Rupp, S. Smith, H. Zampini, H. Zhang et al., PETSc Web page, 2016.

R. D. Falgout and U. M. Yang, Hypre: A library of high performance preconditioners", in Preconditioners, Lecture Notes in Computer Science, pp.632-641, 2002.

N. Perez, M. A. Andrade, F. Buiochi, and J. C. Adamowski, Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.57, issue.12, pp.2772-2783, 2010.

Y. H. Zheng, Y. F. Li, S. W. Wang, and Y. Zhao, Experiment on yield strength of pzt-4 piezoelectric generating column, Applied Mechanics and Materials, Trans Tech Publ, vol.441, pp.62-65, 2014.

P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes, Automated derivation of the adjoint of high-level transient finite element programs, SIAM Journal on Scientific Computing, vol.35, issue.4, pp.369-393, 2013.

S. W. Funke and P. E. Farrell, A framework for automated pde-constrained optimisation, 2013.

A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Transactions on Mathematical Software (TOMS), vol.26, issue.1, pp.19-45, 2000.

K. Kim, K. Lee, H. Kim, S. Yoon, and S. Hong, Dependence of particle volume fraction on sound velocity and attenuation of epdm composites, Ultrasonics, vol.46, issue.2, pp.177-183, 2007.

J. M. Cannata, T. A. Ritter, W. Chen, R. H. Silverman, and K. K. Shung, Design of efficient, broadband single-element (20-80 mhz) ultrasonic transducers for medical imaging applications, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.50, issue.11, pp.1548-1557, 2003.

Y. Kim, A. D. Maxwell, T. L. Hall, Z. Xu, K. Lin et al., Rapid prototyping fabrication of focused ultrasound transducers, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.61, pp.1559-1574, 2014.

M. Akiyama and T. Kamakura, Elliptically curved acoustic lens for emitting strongly focused finite-amplitude beams: Application of the spheroidal beam equation model to the theoretical prediction, Acoustical science and technology, vol.26, issue.3, pp.279-284, 2005.

E. Bängtsson, D. Noreland, and M. Berggren, Shape optimization of an acoustic horn, Computer methods in applied mechanics and engineering, vol.192, issue.11, pp.1533-1571, 2003.

Q. D. Tran, G. Jang, H. Kwon, W. Cho, S. Cho et al., Shape optimization of acoustic lenses for underwater imaging, Journal of Mechanical Science and Technology, vol.30, issue.10, pp.4633-4644, 2016.

X. Wang and K. Bathe, Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, vol.40, issue.11, 1997.

G. H. Yoon, J. S. Jensen, and O. Sigmund, Topology optimization of acousticstructure interaction problems using a mixed finite element formulation, International journal for numerical methods in engineering, vol.70, issue.9, pp.1049-1075, 2007.

G. P. Thomas, J. Chapelon, J. Béra, and C. Lafon, Parametric shape optimization of lens-focused piezoelectric ultrasound transducers, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.65, issue.5, pp.844-850, 2018.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, vol.114, issue.2, pp.185-200, 1994.

W. Chew, J. Jin, and E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microwave and Optical Technology Letters, vol.15, pp.363-369, 1997.

U. Basu and A. K. Chopra, Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: Theory and finite-element implementation, Computer methods in applied mechanics and engineering, vol.192, issue.11, pp.1337-1375, 2003.

H. Allik and T. J. Hughes, Finite element method for piezoelectric vibration, International journal for numerical methods in engineering, vol.2, issue.2, pp.151-157, 1970.

G. Allaire, F. Jouve, and A. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique, vol.334, issue.12, pp.1125-1130, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01336301

M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The fenics project version 1.5, vol.3, pp.9-23, 2015.

K. Bathe, Finite element procedures. Klaus-Jurgen Bathe, 2006.

E. Jones, T. Oliphant, and P. Peterson, Scipy: Open source scientific tools for python, 2014.

J. Mestas, R. A. Fowler, T. J. Evjen, L. Somaglino, A. Moussatov et al., Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in at2 dunning rat tumour model, Journal of drug targeting, vol.22, issue.8, pp.688-697, 2014.

D. L. Sokolov, M. R. Bailey, and L. A. Crum, Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field, The Journal of the Acoustical Society of America, vol.110, issue.3, pp.1685-1695, 2001.

D. , Device and method for producing high-pressure ultrasonic pulses, US Patent, vol.7, 2007.

M. Lafond, F. Prieur, F. Chavrier, J. Mestas, and C. Lafon, Numerical study of a confocal ultrasonic setup for cavitation creation, The Journal of the Acoustical Society of America, vol.141, issue.3, pp.1953-1961, 2017.

A. Philipp, C. Delius, . Scheffczyk, W. Vogel, and . Lauterborn, Interaction of lithotripter-generated shock waves with air bubbles, The Journal of the Acoustical Society of America, vol.93, issue.5, pp.2496-2509, 1993.

G. Sankin, W. Simmons, S. Zhu, and P. Zhong, Shock wave interaction with laser-generated single bubbles, Physical review letters, vol.95, issue.3, pp.34-501, 2005.

E. Klaseboer, S. W. Fong, C. K. Turangan, B. C. Khoo, A. J. Szeri et al., Interaction of lithotripter shockwaves with single inertial cavitation bubbles, Journal of fluid mechanics, vol.593, pp.33-56, 2007.

N. Hawker and Y. Ventikos, Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, Journal of Fluid Mechanics, vol.701, pp.59-97, 2012.

E. Johnsen and T. Colonius, Shock-induced collapse of a gas bubble in shockwave lithotripsy, The Journal of the Acoustical Society of America, vol.124, issue.4, 2008.

M. Arora, C. Junge, and . Ohl, Cavitation cluster dynamics in shock-wave lithotripsy: Part 1. free field, Ultrasound in medicine & biology, vol.31, issue.6, pp.827-839, 2005.

G. Sankin and P. Zhong, Interaction between shock wave and single inertial bubbles near an elastic boundary, Physical Review E, vol.74, issue.4, pp.46-304, 2006.