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Résumé

Le développement massif de données numériques a permis l’essor du domaine de la
Recherche d’Information Musicale (MIR). Les travaux au sein de cette communauté visent
à développer des systèmes informatiques capables de classifier, recommander, analyser,
composer des morceaux de musique. Afin de réaliser ces tâches, les méthodes actuelles se
basent sur des modèles d’observation de l’inter-dépendance des éléments musicaux locaux
tels que les notes ou les accords.

Si certains de ces modèles prennent en compte la structure des morceaux à analyser,
très peu rendent compte de cette organisation à des échelles intermédiaires telle que la
phrase musicale ou au-delà. Il s’avère donc nécessaire de modéliser l’organisation inter-
connectant les éléments musicaux formant des segments, à savoir décrire comment ces
éléments sont reliés les uns aux autres à différentes échelles afin de former un tout.

Qu’est-ce qu’une section musical ? Plusieurs échelles coexistent dans la musique :
au niveau élémentaire, il y a les éléments de base tels que les notes, les accords. Ensemble,
ces éléments forment des rythmes, des mélodies, des enchaînements qui une fois assemblés
forment des motifs qui pourront être répétés, modifiés ou mélangés avec d’autres motifs
pour à leur tour former des phrases et des sections.

Dans le cas de la pop, ces sections correspondent souvent à des couplets, des refrains,
des ponts, . . . La durée typique d’une section est d’environ 15 secondes1, mais cette durée
peut être allongée ou raccourcie en fonction du tempo. Le but est alors de comprendre
quelles sont les relations importantes entre les notes, les motifs, les phrases au sein d’une
section. L’hypothèse centrale de ce travail est que la structure d’une section musical
s’appuie sur un système d’implication dont l’attente est plus ou moins fortement infirmée.

Comment crée-t-on un système d’implication et quelles sont les principales
structures qui en découlent ? Généralisant le principe d’implication développé par
certaines théories musicologiques (Narmour en étant la figure de proue), le modèle Sys-
tème&Contraste (S&C) a été conçu afin de définir les propriétés d’organisation perme-
ttant de caractériser les sections en tant qu’unités structurées autonomes au sein d’un
morceau. La structure d’uns section est alors déterminée par les relations de similarité,
d’analogie ou de transformation entre les éléments de base qui le constituent.

1Conformément à l’échelle de base pour la description de la structure musicale ("form") telle que définie
par Bob Snyder concernant les « trois niveaux d’expérience musicale » [Snyder and Snyder, 2000]
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Une formalisation simple du modèle S&C permet de rendre compte de la structure
d’une section formée de quatre éléments : face à la succession des trois premiers éléments
et leurs similarités, il est possible de créer un système logique simple suscitant une attente.
Le contraste apparaît alors comme la surprise que peut apporter le dernier élément vis-
à-vis de cette attente et contribue à la délimitation de la section musical en marquant la
conclusion du schéma d’implication.

Prenons un exemple hors du registre musical. Si l’on considère la suite, 1-2-3-7, les
trois premiers éléments 1-2-3, créent une attente (4) du fait de la relation simple qui les
relie (+1). Cependant, la dernière observation (7) vient contraster avec cette attente
et crée une surprise. Celle-ci peut varier en intensité, suivant le nombre de propriétés
intervenant. Par exemple 7 sera moins contrastif queA, qui surprend par de nombreux
aspects (lettre, taille, gras). Dans le modèle S&C, appliqué à la musique, le principe est
le même, transposé aux propriétés musicales.

Toutefois, pour la musique, l’attente est beaucoup plus compliquée à décrire du fait de
la coexistence de nombreuses dimensions musicales : chaque événement de base possède
un nombre important de caractéristiques (rythme, mélodie, harmonie, timbre, paroles. . . )
et décrire les relations pour toutes ces dimensions est un enjeu considérable. Une des
contributions de ma thèse consiste à proposer et à tester des formalismes capables de
décrire les relations entre accords, rythmes et mélodies.

En outre, la création de l’attente dans le cas d’un système de quatre éléments n’est
pas toujours le résultat d’un processus linéaire incrémental. Du fait de la multitude de
dimensions pouvant intervenir, la création de l’attente peut résulter de relations qui ne
sont pas systématiquement séquentielles. Ainsi, s’intéresser à la relation entre le premier
et le troisième élément du système peut considérablement simplifier le processus cognitif
permettant de visualiser l’attente. Par exemple, si l’on considère la section représentée en
Figure 1, en considérant une projection purement logique des trois premiers éléments, le
lecteur pourrait attendre une mélodie identique au deuxième élément du fait de la relation
d’identité entre la première mélodie et la troisième. Ainsi, la description d’une section à
l’aide du modèle S&C, du fait des relations qu’il fait intervenir, n’est plus linéaire mais
matricielle.

Le modèle S&C permet de rendre compte de la structure de très nombreuses sections
musicales. Il est particulièrement approprié dans le cas de la description de l’attente et
de la surprise pour les séquences du type A-B-A’-C ou A-A’-B-C. Ces structures sont très
récurrentes dans la musique pop (par exemple le refrain de Waka Waka de Shakira ou de
la Macarena), le jazz (Beautiful Love), ou même la musique classique (avec par exemple
la forme antécédent-conséquent).

Cette modélisation permet par ailleurs de décrire les relations à plusieurs échelles au
sein d’une section, ce qui a donné lieu à la formalisation du modèle polytopique décrit
ci-après.

Comment les procédés structurels s’établissent-ils sur plusieurs échelles si-
multanément ? Si de nombreuses sections musicales peuvent se décomposer en quatre
éléments (carrure), il est nécessaire, pour considérer l’échelle où les éléments de base

4



Figure 1: Michael Jackson - Thriller (comp.: Rod Temmperton) Thriller, EMI 1982.
Timing: 2’26-2’40. ”Thriller”, pp. 25-26, published by Rodsongs (PRS), 1982

apparaissent, de le subdiviser en seize. Une partie de mes travaux de thèse s’est donc
concentrée sur la généralisation du modèle S&C pour que celui-ci puisse décrire la struc-
ture d’une section à partir des relations entre ces seize éléments. Cette généralisation
s’est faite par l’utilisation du modèle S&C à plusieurs échelles : PGLR (Polytopic Graph
of Latent Relations).

Dans le PGLR, l’organisation entre les éléments de base est décrite à l’aide de plusieurs
sous-systèmes de quatre éléments, qui sont assemblés pour former un autre système à une
échelle supérieure. L’utilisation de plusieurs échelles associée à l’utilisation du modèle
S&C permet alors d’organiser les éléments en les plaçant sur un polytope, notamment un
n-cube (carré, cube, tesseract, ...), ce qui rend possible la construction d’un graphe de
dépendances entre les éléments de base formant la section.

En effet, l’utilisation du modèle S&C permet de passer d’une description linéaire du
contenu musical à une description matricielle. Ainsi, le graphe de dépendances associé
à un S&C s’inscrit dans un carré. C’est l’association de ces carrés à plusieurs échelles
qui induit un n-cube. Pour décrire un section de seize éléments, quatre sous-systèmes de
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Figure 2: Graphe de dépendances induit par la description d’un segment de 16 éléments
à l’aide d’un PGLR associé au modèle S&C.

quatre éléments chacun sont assemblés en considérant le système formé par les quatre
premiers éléments de chaque sous-système. La Figure 2 donne une illustration du graphe
de dépendances correspondant à une telle description.

Ces concepts se relient à des principes de la théorie de l’information tels
que la « complexité » et permettent de générer de la musique. Du fait de la
géométrie du polytope, un élément est susceptible d’avoir plusieurs dépendances. Ou,
pris sous un autre angle, du fait de la multiplicité du nombre de carrés dans un tesseract,
il existe plusieurs manières de choisir les quatre sous-systèmes. Cela a pour conséquence
de multiplier le nombre de descriptions possibles de la structure d’une section. De même,
il existe de nombreuses manières de représenter une relation entre deux éléments. Il faut
donc faire un choix, c’est à dire une optimisation ! Ici, le critère utilisé pour guider cette
optimisation est issu de la théorie de l’information : la complexité.

L’idée latente à ce concept est que la meilleure description est celle qui est la plus
simple. Une description est simple s’il suffit de peu d’information pour la représenter.
Ainsi, pour chaque possibilité de structure de dépendance et pour chaque relation, on
associe un coût. Il suffit ensuite de choisir la description qui minimise la somme de tous
ces coûts.

Le concept de complexité se rattache aux principes de longueur minimale de descrip-
tion ou complexité de Kolmogorov, qui désignent la taille du programme le plus simple
capable de générer une section musicale (au sein d’une famille P de programmes prédéfi-
nis). Par conséquent, en recherchant la description la plus simple d’une section, on
cherche aussi à trouver un programme capable de générer cette section.
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Étude expérimentale, résultats Pour évaluer la pertinence du modèle et sa capacité
à décrire efficacement la structure de sections musicales, nous avons comparé ses per-
formances à un modèle séquentiel. Cette comparaison s’est principalement faite sur une
tâche : la prédiction de sections. Le corpus utilisé pour cette tâche est issu du jeu de
données RWC POP (pour Real World Computing Popular Music Database), couramment
utilisé dans le domaine du MIR du fait du grand nombre d’informations qui y sont sto-
quées. De ces données ont été extraites des séquences de 16 accords ainsi que les mélodies
durant 4, 8 ou 16 mesures. La mesure utilisée pour l’évaluation des différents modèles
est une mesure statistique, dérivée de la vraisemblance, la perplexité. Cette mesure per-
met d’évaluer le nombre moyen de branchements possibles à partir d’un élément. Ainsi,
plus ce nombre est faible, plus le modèle associé est capable de prédire efficacement une
section.

Que ce soit pour la prédiction de séquences d’accords, ou la prédiction de segments
rythmiques et mélodiques, le modèle polytopique s’avère toujours plus performant que le
modèle séquentiel. De plus, le modèle combinant les multiples possibilités de graphes de
dépendances permet d’améliorer drastiquement les performances du modèle polytopique.
L’utilisation du modèle S&C et notamment de la modélisation de l’attente sous la forme
d’un élément virtuel est particulièrement intéressant pour la prédiction de séquences
d’accords.

Discussions et ouvertures Cette thèse formalise et généralise les concepts latents du
modèle Système & Contraste. Le modèle présenté, Polytopic Graph of Latent Relations,
permet de rendre compte de dépendances à plusieurs échelles simultanément et utilise
ces relations entre les éléments sur plusieurs dimensions pour caractériser une attente.
Le contraste entre cette attente et les éléments réellement observés génère ensuite une
surprise.

Ce modèle aura permis de mettre en évidence des mécanismes structurels importants,
qui utilisés à bon escient seront susceptibles d’améliorer grandement les performances
sur des tâches telles que la prédiction ou la génération de contenu musical. Toutefois, il
est de nombreux aspects du modèle qui peuvent encore être développés. En effet, dans
ce manuscrit, le modèle S&C n’est généralisé qu’aux sections pouvant être découpées en
seize éléments. Il pourrait être intéressant par la suite d’élargir le champ de recherche
pour encapsuler les sections dont les tailles ne seraient pas aussi simples. De plus, si
un certain nombre de formalismes ont été proposés pour décrire les relations entre les
éléments musicaux (accords, rythmes, mélodies), il peut être intéressant de développer ces
formalismes pour intégrer d’autres dimensions, ou incorporer des connaissances musicales
permettant d’interpréter plus facilement les descriptions faites à l’aide du modèle.

Le modèle Système & Contrast est un modèle encore très récent mais qui montre un
très grand potentiel et qui apportera très certainement beaucoup, à la fois au domaine
du MIR et à la musicologie.
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Chapter 1

Introduction

1.1 Context and Focus

It is quite common sense that listeners do not perceive music only as a mere sequence of
sounds, nor do composers conceive their works as such. Music is essentially the result of
patterns of which inner organisation and mutual relationships participate to the overall
structure of the musical content, at different time-scales simultaneously.

However, what exactly is music structure remains an open scientific question. Consid-
ering the definition given by the Merriam-Webster dictionary, structure is “the aggregate
of elements of an entity in their relationships to each other”. Indeed, the structure of a
whole is highly determined by the relation between its elements.

One of the most frequent attributes of music is that it contains redundancies, in the
form of repetitions or similarities. These redundancies are organised in such a way that
they create expectations. And ultimately these expectations may or may not be denied to
create a surprise. Indeed, the expectation arising at some point in time from listening to
a musical passage is built on the feeling that “something is going to happen”. The surprise
is then “the feeling caused by something unexpected or unusual” (Merriam-Webster) that
actually happens then, typically by a more or less strong denial of the expectation created
upstream.

Therefore, defining the structure of a musical group requires to describe the organi-
sation in time of the elements that constitute that group, their relations to one another,
and how these relations create a flow of information. The present work assumes that
redundancy, expectation and surprise are factors that are essential to describe this flow
of information, and therefore the structure. Movements, sections, phrases, motives, are
groups at various scales. In this thesis, the focus is put on the structure of sections (i.e.,
a special type of segment at a particular general temporal scale that also happens to be
a group).

Multiple questions then arise concerning the framework in which the actual structure
of a large-scale musical object can be described:

• What are the elements that constitute the musical object? Both for audio and sym-
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bolic representations of music, there are multiple elements that can be used to de-
scribe what happens at the elementary level of musical events: Mel Frequency Cep-
stral Coefficients (MFCC), onset time, tristimulus harmonic energy ratio, sharpness,
spread, skewness, etc. as audio descriptors, and notes, chords, rhythms, metric, in-
struments, lyrics, etc. for symbolic representations. As both a multi-dimensional
and multi-scale process, how can we connect and articulate these low-level musical
elements with the structural description of a large-scale musical object?

• What are the essential dependencies between the elements forming the large-scale
musical object? Potentially, all the elements constituting a musical object may be
considered to have relationships with one another. However, some relations may
have more importance than others, from a structural point of view. Therefore, if we
assume that there is an underlying graph structure behind the relationships within
a musical object, there is a need to define a subset of these relationships, i.e. a
graph topology, as representing the primary dependencies on which rests the core
of the structural description.

• How do we describe the relationship between two elements? Defining the topology
of the dependency graph between the elements is not sufficient, as it provides no
information about the actual relationships between the elements. As a consequence,
there is a need to find some framework that can be used to describe formally the
musical or perceptive relations between two musical elements. Are these elements
identical? Similar? If so, in which manner? Are they totally different? Are they
more different or less different than two other elements? What properties should
these relations possess and how does this impact the structural organisation of the
larger musical object?

In this work, we consider the large-scale musical object as being a symbolic representa-
tion of a section, considering that sections are musical segments which form macroscopic
constituents of the global piece. In pop songs, which will be the main focus of the present
work, sections usually correspond to a segment such as a chorus or a verse, lasting approx-
imately 15 seconds and exhibiting a clear beginning and end [Snyder and Snyder, 2000].
As we deal with symbolic music data, we will consider that basic low-level elements are
notes, with a pitch and an onset, themselves forming aggregate of notes, or chords at the
next level. The aim is then to describe the dependencies between these elements, their
relationships with one another, and how these relationships are organised as regards the
structure of the whole section.

The musical content observed at a given instant t within a music section obviously
tends to share privileged relationships with its immediate past, hence the sequential
perception of the music flow and the “natural” inclination towards modelling the music
flow with chain-rule dependencies. But music content at instant t also relates with distant
events which have occurred in the longer term past, especially at instants which are
metrically homologous to t, in previous bars, motifs, phrases, etc. This is particularly
evident in strongly “patterned” music, such as pop music, where recurrence and regularity
play a central role in the design of cyclic musical repetitions, anticipations and surprises.
But it is also discernible in a number of other music genres, which rely abundantly on all
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Figure 1.1: Example of structure description of the theme of the first movement of
Mozart’s piano sonata in A major, K.331, using Lerdahl and Jackendoff’s model.

sorts of similarities, progressions, expectations and denials, simultaneously at different
scales.

To overcome the limitations of purely sequential models in music content descriptions,
hierarchical models are often resorted to, in order to provide a representation framework
for the grouping structure of a musical passage.

The most famous hierarchical approach is undoubtedly the Generative Theory of
Tonal Music (GTTM) by Lerdahl and Jackendoff [Lerdahl and Jackendoff, 1985], which
has been for many years a source of inspiration for a wide variety of work in music
structure modelisation. However, hierarchical approaches such as GTTM rely axiomat-
ically on an adjacency hypothesis, under which the grouping of elements into a higher
level object is only possible via neighbouring units. This can be seen on Figure 1.1 by
the fact that none of the branches in the GTTM tree cross another one. The reference
to “formal syntactic theories of sequential structure in music” recently made by Pearce
and Rohrmeier [Pearce and Rohrmeier, 2018] shows that this hypothesis of a sequential
structure of the music remains strongly rooted in the MIR community.

The work presented here is based on a non-sequential approach, called Polytopic
Graph of Latent Relations (PGLR). Under this scheme, relationships between musical
elements within a musical section are assumed to be developing predominantly between
homologous elements within the metrical grid at different scales simultaneously. This
approach generalises to the multi-scale case the System&Contrast framework which aims
at describing the logical system of expectation within a section and the surprise resulting
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from that expectation, as a 2 × 2 square matrix (i.e. a particular case of 2-dimensional
polygon structure).

For regular sections of 2n events, the PGLR lives on a n-dimensional cube (square,
cube, tesseract, etc...), n being the number of scales considered simultaneously in the
multi-scale model. By extension, the PGLR can be generalised to other regular (or
slightly irregular) n-polytopes.

Each vertex in the polytope corresponds to a low-scale musical element, each edge
represents a relationship between two vertices and each face forms an elementary system
of relationships. In addition, the last vertex in each elementary system can be viewed as
the denied realisation of a (virtual) expected element, itself resulting from the implication
triggered by the combination of former relationships within the system. It is important
to understand that a system may be formed from non-adjacent elements in the polytope,
implying a non-sequential description of the structure.

The estimation of the PGLR structure of a musical section can then be obtained
computationally as the joint estimation of:

1. the description of the polytope (as a more or less regular n-polytope)

2. the nesting configuration of the graph over the polytope, reflecting the flow of de-
pendencies and interactions as elementary implication systems within the musical
section (this flow being assumed to be time-wise causal - but not necessarily se-
quential).

3. the set of relations between the nodes of the graph, with potentially multiple possi-
bilities which need to be disambiguated (hence the “latent” nature of the relations,
as they are not actually observed).

The aim of the PGLR model is to both describe the time dependencies between the
elements of a section and to model the logical expectation and surprise that can be built
on the observation and perception of the similarities and differences between elements
with strong relationships. The description of the structure can be related to a compression
problem in the sense that it tries to compact the information of a section by inferring
structural information. As such, the PGLR formalism can be seen both as some sort of
cognitive model and as a compression scheme.

1.2 Outline of the thesis

In Chapter 2, we connect the work of this thesis to other works that have been done
by the Music Information Retrieval (MIR) community. This first chapter introduces the
main concepts that are at the base of this study, such as music structure, expectation or
the Minimum Description Length (MDL) principle, along with the different approaches
focusing on these concepts that exist in the MIR domain. This chapter also serves as an
introduction to the System&Contrast (S&C) model.
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Chapter 3 formalises the S&C model and presents its generalisation to multi-scale
structure description: the PGLR model. This chapter develops different computational
approaches that implement the PGLR model as well as the corresponding algorithmic
designs. It introduces the key concepts of antecedent function and (latent) relation.

The subsequent chapter, Chapter 4, provides some examples of descriptions and anal-
yses that can be done using the PGLR model presented in Chapter 3, as well as details
about the creation of a corpus used for quantitative evaluations. Moreover, it defines
the performance measure that is used for these evaluations, namely the perplexity, an
objective measure to compare the prediction (and compression) ability of the different
models.

Generalising the proposed concept to multiple musical dimensions, Chapter 5 and
Chapter 6, provide different formalisms for the description of relationships between har-
monic, rhythmic or melodic data. For each dimension, extensive results are given to
describe the behaviour of PGLR models.

Finally, Chapter 7 summarises the contributions of this thesis and indicates a number
of directions which could be explored to further improve and exploit the present work.

17



18



Chapter 2

Music Structure Analysis

2.1 Structure and Scale

The domain of Musical Information Retrieval (MIR) is vast, and its community aims
at providing tools and computing systems which are able to recommend [Celma, 2010,
Van den Oord et al., 2013, Flexer and Stevens, 2018], classify songs by genre and ge-
ographical origin [McKay et al., 2010, Conklin, 2013, Velarde et al., 2018], or compose
and generate new musical pieces [Conklin, 2003, Bresson et al., 2010, Nika et al., 2016,
Pachet et al., 2017]... All these tasks (and many more) are not easy to solve, as musical
pieces can be described using a multitude of features, such as notes, chords, patterns or
various properties of an audio file, as well as lyrics, or even features related to their us-
age, such as purchase statistics, or number of listeners. Therefore to achieve these tasks,
there is a need for models that can integrate and organise the information contained and
conveyed by music pieces at many levels.

Considering both the audio and the symbolic domains in MIR, researchers begin to
have a good understanding of how the various dimensions involved in music can be used
to improve MIR results, and structural information is often mentioned as being of great
interest to describe music content. However, there is no general definition of what exactly
is the structure of music, i.e. what is the exact nature of the information which can be
used to describe the organisation of a musical content. Therefore, the awareness of the
difficulty to give a clear definition or formalisation of music structure has grown in the
MIR community, to try to bridge the gap with the musicological conceptions of music
structure that are usually described in treaties and books about musical form, mostly
focused on classical music (for example the sonata form [Hepokoski and Darcy, 2006] or
the rondo form [Clercx, 1935]...)

While there are a number of models that aim at describing the structure of a global
piece, there are only a few ones dedicated to the modelling of the musical structure
of a section [Snyder and Snyder, 2000], i.e. the structural unit which lies just at the
level under the global structure of the piece — a section can also be referred as a
phrase [Jusczyk and Krumhansl, 1993], a sentence [Schoenberg et al., 1967, Caplin, 1998]
or a period [Schoenberg et al., 1967, Caplin, 1998, Monelle, 2014]. In the present work,
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sections will generally correspond to a passage that is 8-bar long and that can be consid-
ered as having a rather well-defined beginning and end. For example, a chorus, a verse or
a bridge in typical pop-music songs, which makes it possible to loop or to delete (when
remixing a song, for instance) [Bimbot et al., 2010].

If the notion of section is very common in the MIR community (enough at least
to create a sub-domain which focuses on the segmentation of music pieces to find such
sections), it is interesting to note that most of the segmentation methods are based on
sequential approaches, in the sense that they describe the structure of a section using ad-
jacency relationships between elements [Pearce and Rohrmeier, 2018]. But in most cases,
they do not use explicit syntactic or procedural descriptions of the structural information
of the sections. Analysers tend to consider the structure of a section as being a set of
properties, some of them being predominant [Sloboda, 1991, Smith and Chew, 2013], but
most of the segmentation methods achieve a clustering of the song in multiple sections
which can be then characterised, manually or not, with some labels.

Considering the segmentation or “chunking” [Wiering et al., 2009] problem which is
also referred to as structure discovery problem, one can distinguish two main families of al-
gorithms: the bottom-up methods which consist in grouping lower-scale elements until they
form a segment with good properties, or the top-down methods which consist in splitting
the musical piece into successive slices. The first family includes methods such as the one
named Temporal Gestalt units, designed by Tenney et al. [Tenney and Polansky, 1980]
and implemented afterwards by Eerola et al. [Eerola and Toiviainen, 2004], which con-
sists in considering a distance between each pair of successive notes of a melody and
creating a boundary once the sum of the distances inside a group of notes reaches a
threshold. This method is particularly interesting because it works at two scales: at
the basic scale, sets of notes form a “clang” [Tenney and Polansky, 1980], and then, lists
of clangs form a segments (sections or sequences). However the process of combining
notes in clangs and then clangs together is still a sequential process especially since the
two processes are not done simultaneously but sequentially. Some improvements of this
method were proposed by considering other measures to compute the distance between
two notes [Cambouropoulos, 2001, Cambouropoulos, 2006, Temperley, 2004], or deriva-
tions where chunking methods improve segment boundaries detection by analysing the
behaviour of the notes at these boundaries [Chang et al., 2004, Ferrand et al., 2003].

Within the family of top-down methods, probabilistic methods such as the one used
by [Bod, 2002] and [Juhász, 2004] dominate the field. These are based on Markovian
models which are used to detect the boundaries of the segment in a piece given some
probabilistic rules that are learned on an annotated corpus.

Among these probabilistic methods the information dynamics of music (IDyOM)
model [Abdallah and Plumbley, 2009, Pearce and Wiggins, 2012, Sears et al., 2018] oc-
cupies a central role. Based on a multiple viewpoint model [Conklin and Witten, 1995]
of music data, they are based on statistical n-grams to model the flow of information in
music. An entropic criterion is used to infer segment boundaries following the idea that
sections borders happen where expectations are low [Narmour, 1992] i.e. the uncertainty
of the prediction is high.

Another method, designed by Ferrand et al. [Ferrand et al., 2003] consists in using a
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sliding window of finite memory to compute a density score over a melody based on the
intervals encountered if they also appear in the memory window. Pattern matching meth-
ods, both in audio [Maddage et al., 2004] and in symbolic analysis [Cambouropoulos, 2006],
must also be mentioned. The latter, for example, considers the repeated sequences inside
a piece for computing a score over the piece, given the degree of overlapping, duration
and frequency of repeated patterns. Then, they use the local maxima to detect segments
boundaries. The interest of this method is that it provides a bit more information than
the boundaries of the segments, as it can be used to tell which are the segments that are
similar. However, even these approaches are mainly based on a sequential point of view
of the musical content, and do not provide much insight on the structure of the segment
itself. In fact, these pattern-matching algorithms are used to compute a score for each
possible onset at every point on the time scale, and then, the segment boundaries are
detected by finding the local optima of this score.

As an alternative, there also exist a number of hierarchical or multi-scale models for
musical structure. That is the case for the segmentation method presented by Tenney et
al. [Tenney and Polansky, 1980], and if we focus on studies dedicated to the description
of the harmonic structure, it is possible to find a larger family of methods that are based
on a hierarchical description of the musical content.

In fact, as the harmony is considered as one of the most important musical dimen-
sion in classical music, many musicologists have been working on systems or methods
to describe the structure of chord progressions inside a piece. Using the tools devel-
oped in Linguistic Sciences and in the MIR domain, these methods build some sort
of grammatical models to describe the structure of a piece. For example, de Haas et
al. [de Haas et al., 2009, de Haas et al., 2011, De Haas et al., 2013] as well as Rohrmeier
et al. [Rohrmeier, 2007, Rohrmeier, 2011] who use a grammar model based on standard
musical progression to describe the structure of a chord sequence. The structure can then
be represented as a hierarchical graph, such as the tree shown on Figure 2.1. Using the
same principle, Steedman [Steedman, 1996] also builds a grammar to describe the struc-
ture of a large variety of chord progressions that would occur in blues music. Recently
Deguernel et al. [Déguernel et al., 2017] used a similar model to describe the harmonic
structure of a piece that is then applied to machine improvisation.

The problem with such methods is that they are usually based on rules taken from
standard musicology, which tend to be very specific to a given music genre (“classical”
music, blues, jazz) and/or over-focused to some particular set of conventions. Moreover,
the rules used in the grammar are strongly related to musicological descriptions of har-
mony, and are therefore not prone to be generalised to other musical dimensions. For
example, it would be rather difficult to describe a rhythmic section on the basis of its
evolution from the dominant to the tonic !

Recently, Guichaoua [Guichaoua, 2017], has introduced a new segmentation method
for the analysis of chord sequences. This approach considers different structural descrip-
tions for sections of various lengths. The structure model behind his works is based on
the construction of systems of sub-sequences. To build these systems, non-sequential
dependencies between chords are exploited to encode binarily the compliance (vs non-
compliance) of their logical relationship. As is the case for the present work, the model
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Figure 2.1: Rohrmeier’s hierarchical description of the structure of a chord sequence using
a syntactic grammar based on the tonal function and degree of each chord.

used to describe these systems of chords, is the System&Contrast model that will be
described further in Section 2.3.

Guichaoua’s algorithm aims at splitting the whole piece in segments that can be de-
scribed using this framework. As there may be multiple possible descriptions for a section
or multiple possibilities of segmentation of the whole piece, for each section and associ-
ated description model, a complexity score is computed. These scores are then summed
to compute a complexity description score for the whole song. Following Ockham’s Razor
principle, the segmentation that is ultimately chosen is the segmentation with minimal
complexity score. As a by-product of this algorithm, it is possible to describe the structure
of each section using the models associated with complexity score calculation.

Stemming from the same research group, the work presented in this thesis is closely
related to Guichaoua’s approach: it shares the conception of multi-dimensional relation-
ships as an essential aspect of music structure, a fundamental property of the polytopic
model. In this work, we extend the concept in several directions: (i) more sophisticated
and powerful relationships between musical elements, forming graphs of latent relations
and (ii) generalisation and experimentation of the approach to new musical dimensions
(namely rhythm and melody).
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2.2 Information and Expectation

Along with the notion of structure which plays a growing role in the MIR domain, the
interest of the community towards information theory has also greatly increased over the
past few years. This is directly related to the rapidly expanding volume of data provided
for the MIR evaluation tasks, for which a lot of modelling techniques are based on learning
schemes.

In fact, most of the methods that are used to characterise or capture knowledge from
large datasets are based on statistical methods and probabilistic models following the
principles stated by Meyer [Meyer, 1956, Meyer, 1957]: practised listeners, composers
and performers musical style may be “regarded as a complex system of probabilities”.
The methods following this point of view include Markov Models or n-grams1 as well as
neural networks and deep learning2. These approaches are closely related to Shannon’s
information theory [Shannon, 2001] according to which an observed data can be viewed as
the output of a communication system and the encoding cost of the variable is considered
as highly-dependent on its emission probability. As it is virtually impossible to know the
real probability density function for that variable, it is generally estimated on the basis
of the frequencies of its realisations (in a given training set).

In the MIR domain, probabilistic methods thus tend to estimate probability distribu-
tions of musical events, such as notes, rhythm, chords, or audio features by considering
the frequency of such events inside a corpus. What changes across models is essentially
that they consider different types of musical events and compute and combine statistical
estimations in different ways.

Reflecting the fact that, in the Information Theory domain, Shannon’s communica-
tion principles can be challenged by Kolmogorov’s complexity theory [Kolmogorov, 1965,
Chaitin, 1966, Vitányi and Li, 2000], there is a similar "contention" in the automatic mu-
sic analysis field [Meredith, 2012a, Bimbot et al., 2016].

In fact, considering Shannon’s theory, a musical object would be the result of the real-
isation of a random variable following a probabilistic distribution which can be estimated
using frequencies of musical objects that already exist. In such case, the relevance of the
structure of a musical piece would be based on the frequency of observing comparable
structures in the training corpus used for estimating the probabilities.

On the other hand, following the point of view associated with the Kolmogorov’s
complexity theory, a musical piece can be considered as the output of a program. In that
case, the "best" description of the structure of the musical piece can be defined as the
shortest program that is able to generate the piece as result.

As the Kolmogorov complexity is a rather abstract concept, its value can not be
computed in the general case and it must be estimated/approximated. One framework
to do this is minimum description length (MDL), that is (for a music piece) the size of
the shortest program, restricted to a specific subset of programs, that takes no input (or

1[Conklin and Witten, 1995, Shao et al., 2004, Noland and Sandler, 2006,
Abdallah and Plumbley, 2009, Pearce and Wiggins, 2012, Lin and Zhang, 2018]

2[Li et al., 2010, Grill and Schlüter, 2015, Calvo-Zaragoza et al., 2016, Lattner et al., 2017]
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including the specification of its input variables) and returns the piece as its only output.
Equivalently, approaching the Kolmogorov complexity can be understood as the quantity
of information strictly needed to compress the musical piece to obtain a description that
is shorter than its in extenso description.

The reason the MDL principle has sparked more and more interest in the MIR com-
munity is because it becomes more and more obvious that compressing a musical object
and retrieving information from it form a one and single problem. In fact, the more infor-
mation is known about the object, the greater the compression capacity, and (if the class
of compression programs is well-chosen) the inverse may be true too. Based on such view-
points, and following the idea that the shorter the description is, the more structural reg-
ularity may emerge from the object, Meredith et al. [Meredith, 2012b, Meredith, 2013a,
Meredith, 2018] directly associated the notion of music analysis with the search of a
shortest description of its organisation and designed algorithms of compression based on
the detection of regularities and redundancies [Meredith, 2013b]. They also used existing
compression algorithms from other fields to apply them to MIR tasks such as classifica-
tion or pattern recognition with the goal to investigate if compression techniques may be
useful to retrieve information [Louboutin and Meredith, 2016].

In parallel, Mavromatis et al. [Mavromatis, 2009], also used the MDL principle - but in
a framework that is more related to Shannon’s theory - as the aim to select the simplest
statistical model (such as a hidden Markov model) that would best fit the statistical
properties of the corpus.

Therefore Shannon’s and Kolmogorov’s approaches are not contradictory, as both can
be used to compress the information present in the in extenso representation of music
pieces, one by using entropic encoding and the other by exploiting structural redundancies
and regularities. Both are based on a different (yet complementary) point of view, and as a
consequence, depending on the "information" on which they are based, MIR approaches
may borrow from one or the other concept. Probabilistic methods consist in finding
model that can generate a musical flow with similar probabilities to those observed in
the training data (or derived from expert-knowledge), whereas complexity-based methods
aim at providing models that give short descriptions of music pieces which can potentially
be interpreted as the underlying organisation of the musical content.

The work that is presented in this thesis is mostly based on the second type of ap-
proaches, in the sense that our aim is to describe the structure of a section using a model
which gives an explanation of the inner organisation of musical sections. This is achieved
by inferring simple (latent) relations between specific pairs of elements composing the
section, under the hypothesis that the more redundancy or regularity is present within
the section, the simpler the relations are.

Another hypothesis underlying the work presented here is that, by formalising the
principle of expectation, it is possible to reduce the quantity of information necessary
to describe a musical section. This notion of expectation (expectedness or expectancy)
is present in a lot of studies both in MIR and standard musicology3. It is alternatively

3[Duerksen, 1972, Lerdahl and Jackendoff, 1985, Schmuckler, 1989, Narmour, 2000, Huron, 2006,
Ockelford, 2006, Abdallah and Plumbley, 2009, Pearce and Wiggins, 2012, Tillmann et al., 2014,
Loy, 2017, Agres et al., 2018]
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referred to as implication4, surprise5 or anticipation6. Here, we want to draw the attention
of the reader on the fact that expectation has different meanings in all these studies:
sometimes it is is a cognitive projection made by the brain such as for Tillmann et
al. [Tillmann et al., 2014], sometimes it can be the deduction that a predictive model can
trigger based on music descriptor statistical evaluation [Farbood, 2006], or sometimes
it is understood as a step-by-step process directly applied to the analysis of the music
content [Lerdahl and Jackendoff, 1985, Narmour, 1992]. However all these points of view
have in common that they tend to model the expectation as the ability to predict the
future.

The work presented in this thesis is strongly based on the System&Contrast (S&C)
model [Bimbot et al., 2012a] which has recently been introduced as a generalisation of
Narmour’s Implication-Realization model (proof given in [Bimbot et al., 2016]). The
principle of the S&C model is to give a compact and simple description of the struc-
tural organisation of basic elements in a musical section, considering that expectation (in
the sense we use it) is a way to reduce the information necessary to encode surprise in the
musical flow. The next section provides a detailed presentation to the System&Contrast
model.

2.3 System & Contrast Model

Approaching structure as “the arrangement of - and relations between - the parts or ele-
ments of something complex” (Oxford dictionary), and given that a musical section may
be considered as “something complex”, the System&Contrast model bases its principles
on the fact that the structure of a section can be described using a system of relations
between the elements that compose it. In other words, a musical segment is composed of
elements (with multiple properties) which can be described on the basis of their mutual
relationships to form a strong "logical" unit, that is the section.

In this section, we review briefly the System&Contrast (S&C) model, following almost
the same structure as the one used by Bimbot et al. [Bimbot et al., 2016], but sometimes
with different examples and illustrations.

2.3.1 Intuitive and General Presentation

The basic principle behind the S&C model is that, given a set of three objects (which
may or may not be musical objects), it is often possible to characterise an expectation
on a fourth object based on the relations between the first three objects. For example,
given the sequence of three objects “A”, “B” and “C”, it is possible to characterise the
expectation of the reader as “D”. And then, “A-B-C-D” forms a strong logical system.
However for objects that have more than one property, or for sequences of objects that are
not generated by the iteration of a single relation, it appears that a matrix representation

4[Narmour, 1989, Bharucha, 1987]
5[Abdallah and Plumbley, 2009, Tillmann et al., 2014]
6[Lévy, 2004]
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Figure 2.2: Examples of (plain) square systems.

Figure 2.3: Examples of incomplete square systems.

is beneficial to the characterisation of the logical relations, via the formation of a system.
Figure 2.2 shows some examples of such square systems i.e. systems of 4 elements,

which correspond to a very common form in music. Here, the relation that would be
considered useful to describe the observations are quite simple. In the first system, B is
expected at the bottom right position as it is the letter following A in the alphabet like 2
is following in the digit set. In the second system, one expects a U after the sequence r, s,
t, i and as S is capitalised compared to r, and as t is small, one expects also a capitalised
letter as the fourth element. The third system involves a rich set of properties such as
font, orientation, animal and ecosystem which are easy to explain. The fourth example
illustrates that objects may have multiple properties, some of them having no obvious
relation and which therefore, do not participate in the description of the system. Here,
the only systemic properties are the shape (circle for all elements), and the size (larger
on the left, smaller on the right). Therefore, one would expect a circle smaller than the
third one and bigger than the second one with any kind of colouring motif.

A fundamental property of a square system is its redundancy, in the sense that the
fourth element can be easily guessed from the rest of the system. In fact, Figure 2.3
presents some systems where the fourth element has been replaced by a question mark.
It is easy to deduce some properties of the fourth element by observing the relations
between the first three elements. For the first example, one would expect the number
222, a circle with the filled sector rotated for the second, “Germany” with the flag of that
country as background for the third, and, in the last example, almost anything different
from a spiral provided it is small. Note that the question mark for this last example could
be used as a possible object to fill the system in the sense that it has a size corresponding
to the systemic expectation.

Considering now a complete set of four elements, and assuming that the first three
elements form a system, it can be very interesting to compare the expectation created
by the system with the actual fourth element; and to describe how it deviates from that
expectation and to what extent. The fact that we are able to characterise the expectation
based only on the observation of the first three elements makes it possible to characterise
the fourth element by is difference with the expectation. This results in the concept of
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Figure 2.4: Examples of square S&Cs.

contrast.
In summary, a square System&Contrast (S&C) can be defined as a system of four

elements, where the last element may have some properties that create some conflict with
the properties that are expected by analogical inference in fourth position, on the basis
of the first three elements. The contrast can be assimilated to some surprise triggered
by the system and the contradiction (i.e. denial) of the logic implied by its first three
elements.

Some basic examples of S&Cs, based on simple properties, are given on Figure 2.4.
As it is the case for the fourth example, the contrast may not directly contradict the
expected properties but can also involve properties that are not useful to describe the
rest of the system. In such a case, the contrast is a surprise in the sense that it contradicts
the logical framework used to describe the expectation from the observation of the first
three elements. Conversely, it may also happen some properties of the first three elements
do not form any particular expectation, if these properties happen to be unrelated. This
is the case in the fifth example in Figure 2.4, where texture, orientation and deformation
appear as not to be showing any systemic behaviour.

In the S&C approach, sequences are therefore represented in a matrix arrangement
(instead of a purely sequential chain) based on relations between the first element (say
x0), called the primer, and its neighbours in the 2 × 2 matrix, via latent relations (say
f and g). In fact, to create an expectation, it would also be possible to resort to a
single iterated relation, f , but the model would have less potential : with two relations
on potentially different musical dimensions, and between non-contiguous elements, the
S&C model offers greater latitude to create sophisticated expectations, and combine them
at several scales. The fact that the S&C model introduces non-sequential dependencies
constitutes in fact one of the most important hypothesis of the model: the structure of a
musical section relies on relations that are not necessarily sequential. This is illustrated
by the elementary graph of dependencies within a S&C, as depicted on Figure 2.5.

With the notations of Figure 2.5, with f and g denoting the relations, and x0 the
primer, we have:


x1 = f(x0)
and

x2 = g(x0)
(2.1)
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Figure 2.5: Elementary graph of dependencies within a S&C.

Then, the expectation can be represented by a virtual element, x̂3, equal to f(g(x0))
(or g(f(x0))) meaning that x̂3 is to x2 what x1 is to x0 (and also that x̂3 is to x1 what
x2 is to x0). In the rest of this work, we will only consider commutative relations,
but in the case where the relations were not, a convention can be set for the creation
of the expectation, for instance, f(g(x0)). Function γ is then the contrast function,
which describes the difference between the actual observation x3 and the virtual element
representing the expectation, x̂3.

Note that the S&C model enforces a causality principle in the sense that the direction
of the relationships between elements within the system is assumed to be in accordance
with the order in which these elements occur in the unfolded sequence. As a consequence,
the contrast is always in final position, although, in some cases, it would also be possible
to explain the system on the basis of a disparity affecting another element than the last
one.

As illustrated in the examples above, f and g may only apply to a subset of the prop-
erties of the primer. They can be understood as (more or less complex) transformations
of the primer. We call the quadruplet (x0, f, g, γ) the S&C description of the sequence
X = x0x1x2x3. Such a description may be considered as the “genetic program” of the
system [Bimbot et al., 2016]— echoing Narmour’s genetic “code” [Narmour, 1989]— or
at least, a “generative program”, as we will later elaborate on.

A S&C description requires the choice of a logic space to describe the relations inside a
system. This can be viewed as an optimisation process that can readily be formulated as
a minimum description length (MDL) problem. In fact, considering the S&C description
as a program generating the sequence X, the MDL approach can be understood as a
compression scheme over this description. The aim then, is to find the space of relations
for which the description of f , g and γ are the shortest.

As it is not the focus of this work, we do not discuss here the case when there are
more or less than four elements in a S&C. The matter has been formalised by Bimbot
et al. [Bimbot et al., 2012b, Bimbot et al., 2016] and solved, to some extent, by the im-
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Figure 2.6: Taylor Swift - Blank Space (comp.: Taylor Swift, Max Martin, Shell-
back) Blank Space, Big Machine Records/Republic Records 2010. Timing: 1’08-1’28.
Transcribed by the author

plementation proposed by Guichaoua [Guichaoua, 2017]. Still, it is important to keep in
mind that the S&C model can also be used to describe the structure of sections that have
three, five or six (or even seven) elements, while sections with more or less elements can
be handled by changing the time-scale.

2.3.2 Musical Examples

Music generally appears as a sequential and dynamic presentation of acoustic or symbolic
objects. However, an important hypothesis underlying the application of the S&C model
to music is that dependency relations between discrete objects inside a musical section
may be considered as matricial. Analysing a musical passage therefore involves implicit
operations of delinearisation of the musical flow and of discretisation of its properties.

Rather than re-using former illustrations of descriptions and analysis of musical sec-
tions with the S&C model, such as those presented by Bimbot et al. [Bimbot et al., 2012b,
Deruty et al., 2013, Bimbot et al., 2016], we present a few new examples. As we focus
only on square S&Cs, each section is decomposed in four elements, x0, x1, x2 and x3.

The first example shown on Figure 2.6, is a part of the chorus of a famous pop song
(which has been viewed more than 2.3 billions times on YouTube). This section follows a
aabc structure which is one of the most common pattern in music. To analyse the section
using the S&C model, we divided it in four 2-bar elements. The relation f between the
first two is almost identity, in fact, there is a sixteenth note which does not appear in
the second element, but all the rest is identical except for the lyrics which have only in
common the rhyme at their middle-end and end. The relation g between the primer and
the third element, creates a strong change in the melody, as it indeed drastically modifies
the melody contour in terms of pitch but also the rhythm by adding notes on the last
beat of the first bar and removing two other onsets.

Given these two relations, one would logically expect some repetition of x2 with a
very small change of the rhythm and lyrics that would rhyme with the middle and end
of x2. However, x3 contrasts with this expectation by showing a drastic change both
in rhythm and pitch, and discrepancy in the rhyme: “lovers” vs “baby”. In this case,
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Figure 2.7: Shakira - Waka waka (This Time for Africa) (comp.: Zangalewa, arr.:
Shakira, John Hill) Waka waka (This Time for Africa)(The Official 2010 FIFA World
Cup (TM) Song), Epic Records/Sony Music Entertainment 2010. Timing: 1’03-1’11.
Transcribed by the author.

almost all musical dimensions follow a aabc. However, whereas for some dimensions such
as the pitch contour or the lyrics, the discrepancy between a and b is large, for other
musical dimensions (such as for the rhythm) the inner structure could be encoded as
aa′a′′c. Some other sections in the song, such as the first part of the same verse, shows a
similar organisation but with a weaker contrast.

The second example is also a well-known pop song, and its S&C description is depicted
on Figure 2.7. This section has a aba′c form, which is extremely common in music. Here,
relations f and g are both different from identity in almost every dimensions that could be
reasonably considered. Function f marks a strong change of the rhythm on the first part
of the 2-bar element and a small change of the pitch contour as it is almost a transposition
of the primer’s pitch. There is also a rhyme between lyrics, with the repetition of the “eh
eh eh”. On the other hand, g strongly changes the second part of the primer to increase
the pitch contour, the rhythm density and the lyrics. The contrast is not excessive in
term of rhythm, as the rhythmic pattern of x3 is almost the same as that of x2. However,
some changes appear on the first half of the element, where g creates the expectation
of a change in the second part. The pitch contour is a bit different of what could have
been expected but, it is in the lyrics that the contrast is the most drastic. In fact, while
all the first sentences were in Fang language, the last one is in English which creates a
drastic change of sonority (and cultural background). Still, the rhyme is consistent with
the expectation (but considering the rest of the lyrics, one would have probably expected
“Zangalewa” instead of Africa!) And for the first part, the most straightforward syllables
would have been “waka waka” instead of “This time for”. Therefore, the whole form,
aba′c, can be seen as the conjunction of all the patterns that are obtained by considering
separately the musical dimensions: aba′b′ (rhythm), aa′bc (melody), abac (first part of
lyrics), aabc (second part of the lyrics), aabb (rhymes), and... aaab (lyrics language)! In
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Figure 2.8: Smokey Joe & The Kid - Smokid All Star (Feat. Waahli, NON
Genetic, Pigeon John, ASM, Youthstar, Blake Worrell, Chill Bump, Dj Netik)
(comp.: Smokey Joe & The Kid) Smokid All Star, Benzaï Lab/Believe Music 2016.
Timing: 0’35-0’56. Transcribed by the author

other words, these multiple musical dimensions are all redundant within the section, but
in different ways.

The next example shown on Figure 2.8 is taken from the accompaniment of a recent
rap-song. It also exhibits an aba′c form. Here f changes the harmony and g transforms
the rhythm by doubling each chord. The only contrast here is what happens at the end
of x3: the organ stops to let the trumpets and other wind instruments mark a strongly
different rhythm with notes that induce two different chords on the same strong beat.
Without this change on the last strong beat, x3 would have been exactly what would be
logically expected. In fact, stopping the accompaniment to create a contrast is a very
common strategy in some types of pop music (this process was actually also used for the
two first examples).

In Figure 2.9, which is the chorus of “People Are Strange” by the famous band The
Doors, the structure obtained after a delinearisation of the content is a bit different than
for the previous examples. Here, the first three elements of the S&C, which have actually
a lot in common (such as the lyrics “When you’re strange” at the beginning), all last
three bars. There is therefore a direct contrast based on the element duration, as x3 lasts
only one and a half bar (counting the anacrusis). In fact, the local meter, the number
of beats by element and the position of the musical material w.r.t. the beat are musical
dimensions that are frequently used to create surprise.

Another observation that can be made from this example, is that the guitar part,
which governs the harmony, has no other deviation with the expectation, except for its
length. Indeed, f keeps the guitar identical and g changes it to a stagnant line. Therefore,
in the absence of contrast, one may expect a stagnant line for x3, which is actually the
case.

As we view it, the structure of the global section is somehow the reunion of the
structural patterns emerging for its multiple musical-dimensions, hence the need for
a multi-dimensional approach of the music structure analysis (as originally sketched
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Figure 2.9: The Doors - People Are Strange (comp.: Jim Morrison, Robbie Krieger)
People Are Strange, Elektra 1967. Timing: 0’19-0’40. Transcribed by ear and corrected
by the author

in [Peeters and Deruty, 2009]). As noted by Smith et al. [Smith and Chew, 2013], the
listener certainly focuses on different dimensions at different moments in a song and may
locally perceive a predominant structural role of the melody for one section and of the
harmony for another one. But we believe that a proper description of the structure of a
musical section must account for the patterns formed by the multiple musical dimensions
and their congruence in reinforcing the consistency of its structural construction.

Going back to our previous example, it is furthermore interesting to note that the last
melodic element shows no anacrusis and only contains the ending note of the melody,
while all other elements contained an anacrusis. This rises the problem that will be
developed in Chapter 6: quite often, melodic elements are not time-aligned with their
corresponding harmony-governing element or accompaniment. Here, one would consider,
metrically speaking, the beginning of the section at the first beat of the first plain bar of
the segment, but this is almost two beats after the actual beginning of the melody...

Our last example is taken from a heavy metal piece, “2 Minutes to Midnigth” by
Iron Maiden (see Figure 2.10). Here the section follows an abac form, where each basic
element lasts 4 bars. Function g is almost the identity, whereas f creates drastic changes
in the system. However, the last element x3 is really different from x1 and creates a
contrast for every instrument. But the contrast does not affect the whole section for

32



Figure 2.10: Iron Maiden - 2 Minutes To Midnight (comp.: Bruce Dickinson, Adrian
Smith) 2 Minutes To Midnight, EMI 1984. Timing: 0’52-1’13. Transcribed by ear

every instrument. In fact, the guitar and the drums have contrastive parts only over the
second half of x3, the bass has a contrast which is beginning at the last beat of the second
bar of x3, while the whole melody is entirely contrastive. Therefore, for one dimension,
the contrast can be considered at the scale of the whole system. However, by considering
other dimensions, it would be more effective to describe the contrast at smaller scales.
Note incidentally that the same observation can be made for the previous examples, such
as, Figures 2.6, 2.7, and 2.8.

All these examples, along with those that were presented in the previous studies, con-
firm the relevance of using compression schemes to describe musical structure. Moreover,
the analysis of these musical sections highlights the multi-dimensional property of music
and the need for modelling the structural information at several layers of information
simultaneously.

But not only is music structure multi-dimensional, in the sense that it affects several
musical properties, it is also developed over multiple time-scales simultaneously. It is
therefore important to investigate how these scales articulate with one to another. How-
ever, these two fundamental properties of the music may be addressed independently,
even if in practical use, they are musically correlated. The aim of the following study is
to formalise these processes in the context of a computational approach.
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Chapter 3

Multi-scale System & Contrast

This chapter is dedicated to the formalisation of the principles underlying the implemen-
tation of the System&Contrast model into a multi-scale framework: the Polytopic Graph
of Latent Relations. In particular, we investigate how 6 specific configurations (called
Primer Preserving Permutations or PPP) can be defined and used to characterise the
inner organisation of musical sections at different scales simultaneously.

Given that a wide majority of musical sections in pop-music are composed of 8 bars
(or 16 strong beat1), this chapter will focus only on the description of these sections, as-
suming they are subdivided in 4 and 16 elements, i.e. square systems and square systems
of square systems. However, this hypothesis is not considered as too severely restraining,
as former works by Deruty et al. [Deruty et al., 2013], Bimbot et al. [Bimbot et al., 2016]
and Guichaoua [Guichaoua, 2017] have shown that less regular structures could be ap-
proached as deformations of square ones.

3.1 Square Formalisation

The principle behind the S&C model is that a sequence of musical elements can be
described by using non sequential dependencies between these elements. This new or-
ganisation creates a strong process of expectation (via logical implications). Applied to a
sequence of four elements, (xi)0≤i≤3, it can be understood as the geometrical arrangement
of the elements into a square matrix:

X =
[
x0 x1
x2 x3

]
(3.1)

Based on this arrangement, two relations f and g can be assumed, which relate the
primer, that is the first element of the sequence, x0, and its neighbours in X:x1 = f(x0)

x2 = g(x0)
(3.2)

1Here, bars are in 4/4 with therefore alternation between strong beat (S) and weak beat (W): S-W-
S-W.
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Note that, as mentioned in the previous chapter, these two relations may apply to a
subset of the properties characterising the elements of the system.

The S&C model envisions the fourth element, x3, as being in relation with a virtual
projected element x̂3 which would result from the combination of f and g, applied to
x0, namely the logical expectation that one could build, by analogical implication, from
the observation of the three first elements. The disparity between x̂3 and the actual
(observed) x3 is modelled by a contrast function γ:

x̂3 = f(g(x0)) (3.3)
x3 = γ(x̂3) (3.4)

The description of a section using the S&C model is the quadruplet (x0, f, g, γ) which,
due to the fact that these relations are often simpler to describe, can be used as a compact
description of the in extenso representation of the section. It can be viewed as a minimal
description in the sense of the Kolmogorov’s complexity [Vitányi and Li, 2000] in line
with several other work in MIR2.

3.2 Multi-scale Analysis

A number of approaches in music modelling are based on hierarchical representations of
the dependencies between elements to describe a piece structure or even a section struc-
ture. For example Rohrmeier and De Haas [De Haas et al., 2009, de Haas et al., 2011,
Rohrmeier, 2007] use a tree-like model based on formal languages to describe structures
of chord progressions. However, dependencies inside their model are formalised in terms
of musicological rules assuming some tonal background, such as a dominant to tonic
progression. Therefore, the structure model they use is inherently restricted to chord
progressions.

Our aim is to propose another model, based on the S&C framework, which has also a
hierarchical basis, but that would focus on similarities between elements at given metrical
positions to infer non-sequential dependencies between the elements of a section. As the
dependencies do not depend on the musicological properties of the elements, this structure
model can be used with any dimension: rhythms, chords, melodies, meters, nuances...

Considering a basic element as all the musical information that is related to a given
strong beat, it appears that a wide majority of sections are composed of 16 such elements.
It can be less or more, but 16 elements sections is the most common case, especially
in pop music. As the S&C model is designed to describe systems of four elements,
there is a need to generalise its principles in order to be able to describe a full section.
The generalisation that is presented in this section is called Polytopic Graphs of Latent
Relations (PGLR) [Louboutin and Bimbot, 2017b]. Its main principle is to reconsider
the sequential nature of musical section by relating musical elements one another, not
on the basis of their contiguity, but rather taking into account the fact that they lie
in homologous metrical positions. This section details how this can be formulated by
viewing the musical section as a polytope.

2[Mavromatis, 2009, Temperley, 2014, Louboutin and Meredith, 2016]
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Figure 3.1: Polytopic representation of the chord sequence taken from Master Blaster by
Stevie Wonder.

3.2.1 Polytopic Graph of Latent Relations

Indeed, elementary systems of four elements, as described in the previous section, can
further be used to describe longer sequences of musical elements. In particular, sequences
of 2n elements can be arranged as an n-dimensional cube (square, cube, tesseract, etc...),
and more generally speaking, on an n-polytope, n being the number of scales considered
simultaneously in the multi-scale model.

Each vertex in the polytope corresponds to a musical element of the lowest scale,
each edge represents a latent relationship between two vertices and each face forms an
elementary system of relationships between (typically) 4 elements.

For instance, a sequence of 16 chords can be divided into four sequences of four
successive chords, each of them being described as separate systems. Then, these four
S&Cs, taken as elementary objects, can be related by forming an upper-scale S&C, linking
the four primers of the 4 lower-scale S&Cs. Figure 3.1 represents such a description
projected on a tesseract, and is illustrated in the case of the chord sequence from the
chorus section of Master Blaster by Stevie Wonder:

Cm Cm Cm Bb Ab Ab Ab Gm F F F F Cm Cm Bb Bb

The PGLR approach views a sequence of musical elements within a structural sec-
tion as exhibiting privileged relationships with other elements located at similar metrical
positions across different timescales.
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Figure 3.2: Polytopic representation of a sequence of 16 elements, where elements at the
same depth are aligned vertically. The resulting partial order between vertices is causal.

As opposed to the sequential viewpoint which assumes a total order of elements along
the time-line, the polytopic organisation on the tesseract leads to a partial order (illus-
trated on Fig. 3.2), where elements of the same depth are aligned vertically and where
the fourth element of each face can be defined in reference to the virtual element resulting
from the implication of the three others.

In the most general case, valid systemic organisations can be characterised by a graph
of nested systems, the flow of which respects the partial ordering of Fig. 3.2. Note however
that there is a possible conflict between three implications systems for elements 7, 11, 13
and 14, each possible implication corresponding to a face of the tesseract. For instance,
node 7 can be viewed as resulting from 3 implication systems: [1, 3, 5, 7], [2, 3, 6, 7] and
[4, 5, 6, 7]. Element 15, as it has the highest depth can be viewed as the contrastive
element of 6 concurrent systems.

3.2.2 Primer Preserving Permutations

One way to handle these conflicts is to constrain the graph to preserve systemic prop-
erties at higher scales. This can be achieved by forcing lower-scale systems to be sup-
ported by parallel faces on the tesseract, while the first elements of each of the 4 lower-
scale systems are used to form an upper-scale system. This approach drastically brings
down the number of possible graphs to 6, which corresponds to specific permutations of
the initial index sequence (see Table 3.1), termed here as Primer Preserving Permuta-
tions (PPP) [Louboutin and Bimbot, 2017a].
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PPP0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PPP1 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
PPP2 0 2 4 6 1 3 5 7 8 10 12 14 9 11 13 15
PPP3 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15
PPP4 0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15
PPP5 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Table 3.1: List of the 6 Primer Preserving Permutations.

To illustrate a PPP, let’s consider the subdivision of a sequence of 16 chords into
four sub-sequences of four successive chords. Each sub-sequence can be described as
a separate Lower-Scale S&C (LS): [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11] and [12, 13, 14, 15].
Then, these four S&Cs can be related to one to another by forming the Upper-Scale S&C
(US) [0, 4, 8, 12], linking the four primers of the 4 LS. This configuration (PPP0) turns
out to be particularly economical for describing chord sequences such as the one taken
from Master Blaster :

Cm Cm Cm Bb Ab Ab Ab Gm F F F F Cm Cm Bb Bb

as most similarities (identities) develop between neighbouring elements.
But, if we now consider another example such as the following progression:

Bm Bm A A G Em Bm Bm Bm Bm A A G Em Bm Bm

a different configuration appears to be more efficient to explain this sequence. In fact,
grouping chords into the following 4 lower-scale S&Cs: [0, 1, 8, 9], [2, 3, 10, 11], [4, 5, 12, 13]
and [6, 7, 14, 15], which are all parallel faces in the tesseract, and then relating these four
systems by a upper-scale system [0, 2, 4, 6] (configuration PPP3) leads to a less complex
(and therefore more economical) description of the relations between the data within the
section. In fact, by doing such grouping, the number of identity relations used for the
description is higher than using PPP0

3. Fig. 3.3 illustrates these two configurations.
Algorithm 1 recursively generates all the PPP for a sequence of size 2n. The dimension

of the n-cube corresponding to the sequence is used to build a set of vectors {2i|0 ≤ i < n}.
Then, if n is even (resp. odd), the algorithm selects two (resp. one) vectors in the set
of directions (which is represented as a set of integers that are powers of 2: 1, 2, 4 and
8 for a section of 16 elements) in argument to build a face (resp. edge) from the primer.
The primer and each new point are used to compute the PPPs of dimension n− 2 (resp.
n − 1) using the the direction that are not already selected. Each sub-sequence of size
2n−2 with the same structure (indexed by k) is then concatenated to form a sequence of
size 2n.

3Some examples of non-identity relations between elements will be given in Chapter 4, formalisms for
relation between chords, rhythms or melodies will be developed in Chapter 5 and 6.
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Input: Primer p, set of directions used D
Function PPP(p,D):

if |D| = 2 then /* D = {d1; d2}|d2 > d1 */
return [[p; p+ d1; p+ d2; p+ d1 + d2]];

end
L = [];
if |D| mod 2 = 1 then

for d ∈ D do
D′ = D − {d};
S1 = PPP(p,D′);
S2 = PPP(p+ d,D′);
for k = 0 to |S1| − 1 do

L.Append(S1[k]⊕ S2[k]);
end

end
else

for d1, d2 ∈ D2|d2 > d1 do
D′ = D − {d1; d2};
S1 = PPP(p,D′);
S2 = PPP(p+ d1,D′);
S3 = PPP(p+ d2,D′);
S4 = PPP(p+ d1 + d2,D′);
for k = 0 to |S1| − 1 do

L.Append(S1[k]⊕ S2[k]⊕ S3[k]⊕ S4[k]);
end

end
end
return L;

end
Algorithm 1: Recursive function that generate the list of PPPs for a n-cube of di-
mension. The initial call will then be f(0, {2i|0 ≤ i < n}). Here ⊕ is used as the
concatenation operation on lists.
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Figure 3.3: Representations of two PPP-based PGLRs on a tesseract: PPP0 (left), PPP3
(right). In blue, the Upper-Scale (US) S&C – in black, the 4 Lower-Scale (LS) S&Cs.
Dotted nodes indicate the virtual elements (x̂) in the implication scheme (Section 3.1).

3.3 Polytopic Model Specifications

3.3.1 Antecedent Functions

The concept of PGLR offers a new way to describe the dependencies between the ele-
ments in a section. But due to the multiplicity of possible graphs of dependencies over
a polytope, there may be a lot of different models of description. This section presents
a list of proposed models based on the PGLR framework. Each model is a first-order
model, i.e. each element has only one antecedent in the graph. Therefore, a model of
dependencies can be assimilated to its antecedent function i.e. the function which, for
each element, returns its antecedent in the polytopic graph. The antecedent function
associated with a model is denoted ΦM .

3.3.2 Relations

In the PGLR formalism, an element can be any musical object: a rhythmic patterns, a
chord, a melodic cell, particular dynamics or instrumentations, a local metric value or
tempo, etc... For each type of musical dimension considered, specifying a full description
of the structure of a system, requires to describe the set of relations between elements
that are dependent. Whereas, for the sequential model, the antecedent function does not
depend on the formalism used to describe the relations, this is not the case for the models
that are based on the S&C framework.

In fact, in the S&C framework, the antecedent of the last element in a system of four
elements is a virtual element. Therefore, the antecedent function requires a formulable
relation of the dependencies in order to generate such a virtual element. This particular
element can only be created by applying the combination of the two first relations to the
primer. That is, only by formulating the relation between the three first elements, can
we model the expectation.

Moreover, to ensure that it is possible to specify a virtual element for any system,
the relation space, R, and the element representation space, E , must verify the following
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properties:

1. (R, ◦) is a commutative group
That is, any combination of relations is in R, combinations can be done in any
order, identity relation is in R and any relation has a unique inverse in R. This
property ensures that we can combine relations f and g to obtain a virtual element,
and it also ensures that each relation has a symmetric, which can be used to describe
the antecedent of an element E by a dual relation.

2. ∀(e0, e1) ∈ E ,∃!r ∈ R, e1 = r(e0) ∈ R
That is, for every couple of elements in E , the relation between the two elements is
in R and is unique. This property of uniqueness guarantees that we can describe
any relation between any elements with the same relation formalism.

3. ∀e ∈ E ,∀r ∈ R, r(e) ∈ E
That is, any relation of R can be applied to every element of E , and its image is
also in E . This property ensures that we can apply any relation to any primer to
obtain a virtual element, and that the virtual element is also in E . The benefit is
that the contrast relation can also be represented with a relation living in R.

4. ∀e ∈ E ,∀r ∈ R,∃x ∈ E , r(x) = e
That is, for every relation in R, any element of E has an antecedent in E by this
relation. This property ensures that given the contrast relation and the observed
contrastive element, it is possible to describe the virtual element, that is, the ex-
pectation.

5. the complexity of the relations must be measurable. That is, there exists a function,
C, that can give a cost to any relation of R. This property is needed to apply a
complexity score to the relation description.

By using a set of relations that satisfy such properties, it is possible to fully describe
any S&C. The interest of such a formalism is that given any element of the S&C and the
three relations f , g and γ it is possible to reconstruct the full sequence of elements.

Moreover, it is important to note that the last property is necessary to give a com-
plexity score to the description of a sequence. The complexity of description of a whole
sequence of elements, X, by a model,M , can be defined as the total sum of each individual
relation cost between one element, xi and its antecedent in the graph, ΦM(xi):

CM(X) =
15∑
i=1

C(r(ΦM(xi), xi)) (3.5)

This cost function can be useful to chose the best PPP, as it will be discussed later.

3.3.3 Sequential Model

As opposed to models based on the PGLR framework considered in this work, it is worth
noting that the sequential model (which we will denote as Seq), turns out to be the most
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Figure 3.4: Representation of the relations used by a sequential analysis of a sequence of
16 elements.

common approach in standard (and computational) musicology. It is indeed considered as
“common sense” in music analysis that an element depends essentially on what happened
just before. In fact, this hypothesis is discarded in the case of polytopic models, and it is
therefore important to compare the two approaches, both formally and experimentally.

In the case of first-order models (as we consider here), the sequential model relates
an element with its immediate predecessor as shown on Figure 3.4. In the statistical
framework, the model is called a bi-gram model.

Therefore, the antecedent function for such a graph (here, a chain) can be very easily
defined by:

ΦSeq(xi) = xi−1 (3.6)

ΦSeq being independent on the type of formalism chosen to describe the relation
between elements.

From here, all models that will be presented are based on the multi-scale principle
supporting the PGLR framework. As such, they will often be referred as multi-scale or
polytopic models in the next chapters.

3.3.4 Tree Systemic Model

A first type of multi-scale model which we will consider in this work is what we call
tree systemic model and denote as Sys. Tree systemic model is an implementation of
the PGLR, which consists in partitioning the observed sequence in four lower-scale (LS)
systems of four elements. But, instead of considering a virtual element, it simplifies the
description of a system of four elements by describing the three last elements in relation
to the first element of the system, the primer. It can be seen as related to the S&C
framework, where the virtual element is replaced by the primer. So as to describe the
global structure of the section and model the relation between each of the four systems,
an upper-scale (US) system is used to describe the relation between the four primers of
the LS systems. It can be seen as creating a new system with the sub-sequence of the
section which contains only the primers of each of the LS systems. Fig. 3.5 shows the
representation of the graph structure created by the tree systemic model.

Given such a graph of dependencies, it is possible to recursively define an antecedent
function ΦSys for the Tree Systemic model:
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Figure 3.5: Representation of the relations used by a multi-scale analysis of a sequence of
16 elements in the Tree Systemic model. Here, the sub-sequence Y used in Equation 3.7
to pass from a scale to the upper one is (0, 4, 8, 12).

ΦSys(xi) =



xi−1 if i (mod 4) = 1
xi−2 if i (mod 4) = 2
xi−3 if i (mod 4) = 3
ΦSys(y i

4
) in Y = (yl)0≤l<n

4
= (x4∗j)0≤j<n

4
otherwise

(3.7)

Here, each of the first three lines relates an element to the primer of its sub-system.
The last line is used to pass from the lower scale to the upper one by considering the sub-
sequence, Y , formed by the primers of each sub-system only. Y is obtained by sampling
X at each index that is a multiple of 4.

Note that this function can be applied on the initial sequence but also on any permu-
tation of the sequence. In particular, for each PPP, a new model can be defined: Sys0,
Sys1, ..., Sys5.

By considering all the possible descriptions corresponding to the 6 PPPs, the model
that corresponds to the best PPP (according to some description cost such as the one
defined by Equation 3.5) can also be defined. This “optimal” model (for sequence X)
will be referred to as SysX in Chapters 5 and 6.

Ultimately, the antecedent function can be generalised to any section containing 22p

elements, where p is the number of scales. And, by introducing a “special” system of two
elements, the tree systemic model can also be generalised to the description of sequences
of length 22p+1.

3.3.5 Static S&C Model

Let us now introduce the static S&C model, S&C, which is the direct implementation
of the PGLR framework. In fact, as for the previous model, it consists in describing the
structure of a sequence by partitioning that sequence in 4-element systems. But here the
S&C formalism is applied to the description of each system of four elements to generate
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Figure 3.6: Representation as a tree of the relations resulting from a multi-scale analysis
of a sequence of 16 elements, with the creation of a virtual element (that is, using the
static S&C model). Here, the sub-sequence Y used in Equation 3.8 to pass from a scale
to the upper one is (0, 4, 8, 12).

a virtual element based on the first two relations. The difference with the tree systemic
model is therefore that the last element of a system is described in relation to this virtual
element which may not actually exist in the observed sequence, whereas the reference
was the primer, in the Tree Systemic model. The connection between the lower-scale and
the upper-scale one is achieved in the same way as for the tree systemic model, that is by
creating a new sequence with only the primers of each lower-scale systems and describing
the structure of this sub-sequence using the S&C formalism.

For sections that have more than two scales, the process can be recursively iterated:
each sub-sequence is partitioned in systems of four elements and the sequence of the next
scale is obtained by down-sampling the full sequence and taking only the primer. Fig. 3.6
represents the graph of relations for a sequence of 16 elements as a tree, while Fig. 3.7
represents the same graph projected on a 4-cube.

Formally, let r be a deterministic function that describes the relation between two
elements. The antecedent function, ΦS&C , is defined recursively as follow:

ΦS&C(xi|T ) =



xi−1 if i (mod 4) = 1
xi−2 if i (mod 4) = 2
r(xi−3, xi−2)(xi−1) if i (mod 4) = 3
ΦS&C(y i

4
|r) in Y = (yl)0≤l<n

4
= (x4∗j)0≤j<n

4
otherwise

(3.8)

As for the Sysmodel, the function is also valid for sequences of length 22p+1. Moreover,
the antecedent function can be applied on both the initial sequence and each permutation
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Figure 3.7: Representation on a tesseract of the relations resulting from a multi-scale
analysis of a sequence of 16 elements with the creation of a virtual element (that is, using
the static S&C model).

of the sequence. Therefore, for each PPP, a distinct model can be considered. This model
can be indexed by its PPP number, for example: S&C0, S&C1... The model whose PPP
minimises the description cost is referred to as S&CX in Chapters 5 and 6.

3.3.6 Dynamic S&C Model

The dynamic S&C model, Dyn, also uses the PGLR formalism and the S&C concept. The
difference with the static S&C model is that the number of systems of four elements used
to compute the description is much larger, because there is no constraint of homology
between lower-scale system. In fact, the main principle of the dynamic S&C model is
that the description of a system of four elements is necessary for each element which can
be seen as a contrastive element in the polytope. But an interesting thing about the
polytopic representation is that for some elements, there are multiple possible systems
to describe a single element which appears in a contrastive position. In such a case,
the choice of the best system to be used is an optimisation problem that is explained
hereafter.

Let a choice be a sequence of sets, each one containing four ordered indexes (in
increasing order). Each set corresponds to a system used to explain an element in a
metrically contrastive position. Therefore, the indexes of a set form a square (a face) in the
polytopic representation and the last index corresponds to a possible contrastive element.
The choice must contain a set for each element in a possible contrastive position in the
sequence (4 sets for a sequence of 8 elements, 10 sets for a sequence of 16 elements. . . ),
N sets in the general case. The sets are ordered in the sequence in the ascending order
of the contrastive index of each set, that is for K = K0 . . .Kk . . .KN and Kk = K0

k . . .K3
k,
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we have for all k1 < k2 and j1 < j2:

Kj1k1 < K
j2
k1 and K3

k1 < K
3
k2

An example of a choice for a 8-element sequence would be:

{[0, 1, 2, 3], [0, 1, 4, 5], [0, 2, 4, 6], [2, 3, 6, 7]}

A choice is therefore a set of faces on the tesseract, each one being used to describe
one of all the elements of the section that are in a contrastive position.

For a choice K and an index i, we define Kk∗
i
as the first set in K containing index i.

That is for all k < k∗i , Kk does not contain the index i.
Given a choice C, we can, a posteriori, build an antecedent function ΦS&CDyn

:

ΦS&CDyn
(xi|K) = ΦS&C(yl) in y = (xKj

k∗
i

)0≤j<4 with l subject to yl = xi (3.9)

When there are more than one possible system that can lead to an explanation of a
contrastive element, a cost is associated with each system, based on its relation costs.
Following the MDL principle, the system that is used for the description is the one with
the minimal cost.

For example, looking at Figure 3.2, which gives another point of view of the polytopic
representation of a sequence of elements, it appears that nodes 7, 11, 13, 14 are contrastive
in three different implication systems and 15 in 6 implication systems. Therefore, there
exists 34 ∗ 6 = 486 distinct choices for a sequence of 16 elements.

3.3.7 Relational Static S&C Model

The relational static S&C model is just an improvement of the static S&C model. Its
main aim is to use the relation redundancies in an S&C description to create an even
more simple description. That is, achieving a better compression by considering the
redundancies between the S&C description of all the lower-scale systems.

To fully describe a section of 16 elements, X = x0x1 . . . x15, a static S&C model,
associated with any PPP, requires:

• the first element, x0, which is the primer of the upper-scale S&C;

• the upper-scale relations, F , G and Γ, which describe the relations between the
primers of the lower-scale S&Cs;

• the set of lower-scale relations, (fi, gi, γi)0≤i<4.

Under the hypothesis that there exists a relation formalism to describe the relations
between relations, it is then possible to describe the lower-scale systems with three S&Cs
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of relations instead of four S&Cs. In fact, it is possible to create an S&C to describe the
relations between all fi relations, and the same for gi and γi.

The new description becomes:

• the first element, x0, which is the primer of the upper-scale S&C;

• the upper-scale relations, F , G and Γ, which describe the relations between the
primers of all the lower-scale S&Cs;

• (f0, Ff , Gf ,Γf ), the S&C to describe the relations between all “f” relations of the
lower-scale S&C in the previous description.

• (g0, Fg, Gg,Γg)

• (γ0, Fγ, Gγ,Γγ)

For this model, the antecedent function of an element is the same as the one defined
for the static S&C model. The only difference is the way the relations are encoded and
the way the evaluation can be done.

In this chapter, we presented the detailed formalism of possible implementations of
the PGLR framework, a multi-scale generalisation of the S&C model. The next chapter
introduces the experimental data and methodology that have been used to compare these
various possible schemes in different situations.
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Chapter 4

Musical Data and Evaluation
Method

In this chapter we develop how the S&C model (in its static form, defined in the previous
chapter, see Section 3.3.5) can be used to manually analyse and describe a musical section.
Then we present the data that are used in our experiments in computational structure
analysis using PGLRs and the evaluation methodology.

4.1 Examples of Multi-Scale Descriptions

As the static S&C model generalises the 2 × 2 matricial S&C model to a multi-scale
model, it is possible to use it to analyse and describe the main dependencies between the
basic musical units at different scales simultaneously.

Considering again the examples from Section 2.3.2, it is now possible to improve the
analysis of their musical content on the basis of smaller lower-scale elements. In fact,
each of the 4 elements in the passage from “Smokid All Star” can be split in four smaller
element (see Figure 4.1). Then, except from the last one, each element contains only one
chord which is played either once, or twice.

Let us now focus on the “primer preserving permutation” PPP0 (as defined in Chap-
ter 3). PPP0 is, so to say, the less disruptive polytopic configuration, as it follows more
closely the time-line of the music). We will therefore consider a S&C description of each
set of four consecutive elements.

Considering a purely chromatic logic, the first four elements (chords Gm, Cm, A
and Cm again) form an S&C where function f (from Gm to Cm) changes two notes, by
displacing the lower one by one semitone (d to eflat) and the middle one by two semitones
(bflat to c), while keeping the third one unchanged. From similar considerations, function
g (from Gm to A) changes all three notes of the two chords, upping them (from bottom
to top) by two, three and two semitones respectively.

By combining these displacements for each note, one could logically expect in fourth
position a chord containing the three notes (f , eflat and a) (a F7(no5) chord).
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Figure 4.1: Smokey Joe & The Kid - Smokid All Star (Feat. Waahli, NON
Genetic, Pigeon John, ASM, Youthstar, Blake Worrell, Chill Bump, Dj Netik)
(comp.: Smokey Joe & The Kid) Smokid All Star, Benzaï Lab/Believe Music 2016.
Timing: 0’35-0’56. Transcribed by the author

“Logically” is used here in the sense of strictly “mechanical” chromatic displacements.
Listeners may not expect an F7 chord as the most “natural” continuation of Gm Cm
A as it is more related to the Bb key than to the Gm key which may create a surprise
when played after a A chord. Indeed, the logical implication which provides the most
compressible element here may result (and generally does result) in a different element
from the one that would be considered as the most likely one (which is in fact a very
interesting feature).

Ultimately, the contrast function γ then describes the discrepancy between the implied
chord, here F7(no5), and the Cm chord, actually observed: +2, 0 and +2 semi-tones, from
bottom to top.

Here, it must be noted that a different “logic” may lead to a different expectation.
For instance, a different way of pairing the notes between the first three chords in the
system, could lead to D (instead of F7(no5)) as the most rational counterpart of A, and
the contrast function would be different.

Considering now the second group of four elements, as chords 4 and 5 are identical
(Gm), the logical implication according to the 2× 2 S&C model would be a repetition of
chord 6 in position 7 (therefore an A chord, whichever logic is considered). The contrast
lies in the Dsus4.

The third group of four elements (8 − 11) follows the same chord pattern as 0 − 3
and the last one (12 − 15) has the same implication than the second group (4 − 7) but
the contrast is radically different and “surprising”, as two diads appear on trumpets and
wind instruments which were silent until then, while the chords played by the organ stop.

Looking now at the upper scale, we have a more global S&C which links those four
S&Cs. The contrast inside this higher scale S&C is here the composition of contrasts
from the second and the last group (which condenses in elements 7 and 15).

Note however that, in this configuration of the static S&C model, the upper system
does not relate the whole lower scale S&Cs but only their primers, i.e. the first (0), the
fifth (4), the (doubled) ninth (8) and the (doubled) thirteenth (12) chords. These are all
Gm chords and they form a non-contrastive system (as the last doubled chord is exactly
what one would logically expect from the observation of the three first chords). This
upper-scale system is very simple to encode. But as a counterpart to this, it is quite
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Figure 4.2: Iron Maiden - 2 Minutes To Midnight (comp.: Bruce Dickinson, Adrian
Smith) 2 Minutes To Midnight, EMI 1984. Timing: 0’52-1’13. Transcribed by ear

complex to encode all the displacements and contrasts in the lower-scale S&Cs.
Considering another PPP, the picture is different. For example PPP3, which relates

[0, 1, 8, 9], [2, 3, 10, 11], [4, 5, 12, 13] and [6, 7, 14, 15] as lower scale S&Cs and [0, 2, 4, 6] as
the upper-scale one. In that case, the upper-scale is (almost) non-contrastive - one could
expect some inversion of the A chord. At the lower scale, only the last S&C shows a real
contrast. Therefore, the representation of the chord sequence using PPP3 requires less
information than PPP0 to encode all the S&Cs.

If we consider now another one of the examples presented earlier (Figure 4.2), using
PPP3 would also reduce considerably the amount of information to encode the global
structure, as only the upper- and the two last lower-scale S&Cs would be considered as
contrastive. The third lower-scale system is almost only contrastive for the melody, as
there is only one note which is contrastive for the bass. The guitar and drums are not
contrastive at all. Therefore, considering each instrument separately, they may result in
different types of description as the contrast vary in intensity for each instrument and
system. However, it is very interesting to see that for all instruments, the PPP resulting
in the simplest description is PPP3, leading in a common structural description.

Moreover, by considering the last lower-scale S&C of PPP3, [6, 7, 14, 15], one may
experience some difficulties to easily describe the logical or even the musical expectation
for any of the instruments. Here, there is no obvious explanatory space of relations
between the elements. This is one of the challenges in the S&C conception (and not an
easy one, neither for a human being, nor for a computer). In fact, one of the contributions
of this work is to explore possible relation spaces for different types of musical dimensions,
as described in the next two chapters.
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Figure 4.3: Alanis Morissette - Ironic (comp.: Glen Ballard, Alanis Morissette) Ironic,
Maverick 1995. Timing: 0’42-1,06. Transcribed by ear

But let us consider now a third and last example, presented on Figure 4.3. This
is a passage from one of the most famous Canadian pop-songs from the 90’s. Here,
the global form of the section is aaab and PPP3 is (as it is often the case), the best
PPP to efficiently describe the section’s structure. However (and this will be discussed
in Chapter 6), this example shows how the presence of anacruses creates a phase shift
between the melodic motifs and their accompaniment. The incidence of that phenomenon
tends to intensify at smaller scales, and needs to be accounted for (and dealt with) in the
analysis process. Here, the beginning of the sentence “It’s like rain” is clearly part of the
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melody associated with the section, and it is particularly relevant to “take it onboard” to
construct the systemic description of the whole section. But as it is sang in anacrusis, the
notes are outside the segment’s metrical boundaries as opposed to the other instruments.
And corresponding motifs in the rest of the section are also ahead of phase. We show in
Section 6.3 how this problem can be handled algorithmically.

The three previous examples illustrate the process that lies behind the algorithms that
are presented in the forthcoming sections. They also point out some of the difficulties
that need to be overcome. In particular, it reveals how important the data representation
is, for finding a good space of relations.

4.2 Corpus Creation

For implementing, testing and evaluating algorithmic implementations of the PGLR
model, appropriate music data are absolutely necessary.

This section presents the work that was done to exploit the RWC POP corpus with
the goal to build a simplified corpus containing musical information, in an adequate
representation, so as to be used for quantitative experiments.

4.2.1 RWC POP

The Real World Computing (RWC) Music Database has been designed and created for
scientific use by Goto et al. [Goto et al., 2002]. The main goal behind their work was
to create a database that could be publicly used by researchers and at a very small cost
(virtually for free, just incurring the duplication and shipping costs).

A first advantage of such a database is to make possible to evaluate, on the same cor-
pus, different methods on the same task. Performances can be compared and diagnostics
of differences between them can be achieved in a much easier way.

A second objective was to create a consequent database that could be used in any
scientific contexts without creating any copyright complications. For example, the use of
some musical samples from commercial music at a conference may be an obstacle to the
diffusion as a video on the web.

A third goal for creating this corpus was to provide a tool for researchers of the MIR
community that would greatly increase their capacities to conduct some statistical studies.
In fact, at the time, the lack of large music databases available was seen as an obstacle
to research progress and the provision of RWC. This may be debatable today, where
some MIR applications are required to handle collections of songs that are countable in
millions of items... Nevertheless, the RWC database still offers an valuable benchmark
for a number of MIR tasks and since its creation, the RWC database has been used
in many occasions for a wide variety of tasks, such as declipping [Gaultier et al., 2017],
music annotation [Bittner et al., 2014], music classification [Homburg et al., 2005], beat
detection [Durand and Essid, 2016], structure analysis [Peeters and Bisot, 2014], etc...

The RWC database is distributed under a “research” license. It originally contains 215
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songs and is divided into four sub-sets, RWC Classical, RWC Jazz, Royalty-Free Music
Database and the last one, RWC Popular (RWC POP), which is the subset used in this
work. The database was then enlarged to include two more categories RWC Genres,
which contains 100 songs and Musical Instrument Sound Database (50 songs).

RWC POP consists in 100 songs, for which an audio (WAV) version and a standard
MIDI file, transcribed by ear, are provided. Over this collection, 20 songs have lyrics in
English and were composed in the style of American hits from the 80’s. The other 80
songs have Japanese lyrics and were written in the 90’s Japanese style. Many composers,
arrangers and writers have been called for to compose these songs so as to ensure a
significant variety of style or influences over the collection.

4.2.2 Chord Annotation

As Guichaoua [Guichaoua, 2017] worked on chord progression analysis, a first need for
his experiments (as well as ours) was to incorporate harmony-related information to the
corpus, that is providing an annotation of chords which could be used along with the
S&C model. The interest of the harmonic dimension is that it is often used in standard
musicology to describe the structure of a musical phrase [De Haas et al., 2009] or even a
piece [Hepokoski and Darcy, 2006].

The description of the structure of a chord sequence using the PGLR model may be
very useful to characterise the structure of a section. In fact, chords and/or harmony are
often (yet not always) an essential musical dimension to inform music structure. However,
given a musical section (in audio, midi or even as a score), it can be hard to find the
associated chord sequence, as such information is derived indirectly from the data. The
problem of chord annotation is indeed a major subject of interest in the MIR community
and the representation of the chord progressions may differ w.r.t. the method used to
infer the chord sequence associated with a section.

Several types of representation of the chord content of a musical section co-exist:

• Chord progression, where only the information relative to the successive chords is
kept. In such a case, chords are considered as following each other without any
duration or onset information. That is each chord of the sequence is annotated
with its name (a symbol from a list of predefined possibilities) and each chord has
the same importance, independently of its duration or onset.

• Chord segmentation, it is the most commonly used annotation for audio files. It
consists in annotating a recording with, at each chord change, the name of the new
chord, its onset (in seconds) and its duration (in seconds). In such a representation,
a chord that has a long duration may have more importance than one with a short
duration. However, as the annotation is based on a recording, it is annotated in
seconds and it may be hard to associate a precise musical time with the temporal
duration of the chord. In fact, the problem of alignment between midi files and audio
files, which consists in associating musical duration to temporal duration, is also a
problem of interest in the MIR community [Hu et al., 2003, Raffel and Ellis, 2016].
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• Chord grids, which consist in representing the harmony of a section using a schematic
point of view. A discrete scale of description is chosen (often a bar or a beat) to
assign to each musical temporal unit, a chord name corresponding to the principal
chord being played (or perceived) at this time. This representation combines the
previous representation with a discrete representation that is musically relevant.
However, if the scale is too large, some harmonic information may be missing in
the final chord sequence. On the opposite, if the sampling is too frequent, it may
create a great amount of redundancy.

For our study, the chord grid is the most suitable representation, as the PGLR model is
mostly designed to describe the relations and dependencies between events that are taken
at specific metrical positions (each beat, strong beat or bar). For chord representation,
we decided to use a scale that is related to the tempo. Generally it is set to a beat, but
for some fast tempos, the scale may be set to a half-beat while for slow tempos, the scale
is set to two beats duration. This representation may create a lot of redundancies, but
it is precise enough to guarantee that models may infer some structure over a section.
Diminishing further the scale could be used to detect some very small changes of chords,
but it would drastically increase the computation time of the analysis of a section whereas
the number of cases where the precision would be useful is not sufficient to justify such
an augmentation of the computation time.

Using some semi-automatic method, Cho et al. [Cho, 2011] obtained a chord annota-
tion of the songs from RWC POP. But its main problem is that the result is provided
together with an audio segmentation representation. That is, each chord duration and
onset is given in seconds instead of musical unit. Fortunately, Goto et al. [Goto, 2006]
also gave a beat annotation for the songs of the dataset. Then, by taking at each beat
one of the chord played or sustained on the beat, it is possible to get a chord grid rep-
resentation. However, as for some beats, there may be two chords played or as a change
may occur off-beat, it may create some ambiguity. This is why the 100 RWC-Pop data
were post-processed manually [Guichaoua and Bimbot, 2018] to ensure a better consis-
tency of the annotated data with the metrical information, yielding to three versions of
annotation, with different levels of manual intervention. In our experiments, we use the
last one, i.e. the “cleanest” annotation.

For each song, the annotation is represented as a CSV file where each line represents
a section, characterised by a (semiotic) label, the length of the section (in beats) and the
sequence of chords grouped by cells of four beats. Some additional conventions were used
to simplify the annotation:

• if there is only one chord in a cell, the chord lasts four beats;

• if two chords in a cell are separated by a comma, then each chord is considered as
lasting for two beats;

• if two chords separated by a comma are also in parenthesis, then these two chords
should be considered to be each lasting for one beat;

• if a chord is replaced with a N , it means that the corresponding time interval is
filled with silence or non-pitched content;
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Figure 4.4: CSV file that gives the harmonic description of the seventh song from RWC
POP.

• if a chord is replaced by a “%”, it means then the corresponding duration is deleted
(for example, for ternary bars).

• if a cell information is between brackets, it means that the corresponding beats are
also to be considered as the beginning of the next section, even though they can
also be used to describe the end of the current section. This happens when two
sections overlap.

For example a cell containing C, (C,Dm) represents the sequence C,C,C,Dm, whereas
if the cell contains (Am,N), (E,%) then it means that the cell contains only three beats
and the corresponding sequence is Am,N,E (where N indicates that the second beat is
silent). The CSV file for song RWC POP 07 is represented on Figure 4.4.

4.2.3 Creation of the New Corpus

As working on chord sequences was only a part of the objectives of this thesis, we worked
on building a corpus which also contains other musical dimensions, namely melody and
rhythm. Fortunately, the RWC POP database contains a midi file for every song as well
as the corresponding audio file. Therefore, extracting the melodic line of each song was
manageable.

However, the segmentation of the piece in small segments was initially made with
audio files, and, unless calling for an alignment algorithm that may give some inaccurate
results (or doing it manually!), there was no segmentation of the midi files. Analysing each
melodic section would then have been impossible. But, as some segmentation information
was present together with the chord annotations (and as the precision scale used for the
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chord sampling is known), it was possible, by aligning a melody with its chord annotation
to determine section boundaries. This global alignment was done manually (which did
not take not too long), using both audio files and midi files.

By condensing all the melodies, chord sequences and segmentation annotations in one
XML file for each, we created a new corpus which is a simplified (and reduced) version of
the RWC POP corpus. In this format, the corpus can very easily be parsed automatically,
using the music21 Python library.

An excerpt of such a file is presented on Figure 4.5.

4.2.4 Test Corpus

Once all songs were annotated, we built different sub-corpora containing only the sections
that needed to be used as input for the algorithm, to provide a structural description of
the section. As our current implementation of the S&C model can only be used on
sections of 16 elements, we had to select sections of length 16 or 32 in the corpus.

In this study, we present experiments that consider each dimension separately. Some
perspectives on multi-dimensional structure description where all dimensions may be
analysed together will be mentioned in Section 7.2, but they were not actually tested
in the scope of this work. Therefore three parallel corpora have been created : one for
the harmonic analysis of the structure, one for the rhythmic information and one for the
melodic content.

In the harmonic case, when two sections have the same label, only one is kept in the
corpus (section labels differ at least in terms of subscripts or superscripts as soon as their
harmonic content is different in one position). For rhythmic experiments, all sections
of proper size have been kept, as there may be some variations from one instance of a
section to another, even if they have identical labels.

Moreover, as the midi file for song 56 was not exploitable, but the corresponding
chords had been annotated, the sections of this song are present in the chord corpus but
not in the melody one. This results in total in a small difference of number of sections in
each corpus : the chord corpus contains 727 sequences whereas the melodic corpus (used
both for melodic and rhythmic experiments) contains 791 sections.

Finally, for the chord corpus, as most of the sequences contain not 16 but 32 chords,
we sub-sampled these sequences by taking one chord out of two (the one played on
strong beats). This can be seen as changing the scale precision for the chord grid of the
corresponding section.

Ultimately, in the cases when a chord sequence contains a N , i.e. a void chord (silence
or non-harmonic beat), the N is replaced with the immediate (non-N) predecessor1. This
choice of completion can be justified by the fact that, even after a silence, the last chord
played is usually still perceived by the listener.

1Note that no sequence of the corpus that have a real chord begins with a void chord. In such a case,
another completion rule should have been added.
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Figure 4.5: Part of the XML file, opened with musescore, that gives both the harmonic,
melodic and segmentation description of the seventh song from RWC POP.
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4.3 Evaluation Methodology

As there exists no “ground-truth” as of the actual structure of a music section, we con-
sidered that the different models could be compared as regards their prediction ability.

Under this approach, performance for each model is obtained by calculating a perplex-
ity [Jelinek et al., 1977, Brown et al., 1992] B∗, derived from the amount of entropy H∗ in
the data that remains unexplained by the model. This is estimated by measuring how well
an unseen sequence, X = x0 . . . xn−1, can be predicted by the model. The more powerful
the model, the lower the perplexity. Alternative measures such as predictive information
rate or other measures defined by Abdallah et al. [Abdallah and Plumbley, 2009] could
have been used here. However, as these other measures are functions of time, they are
more suited for segmentation or event detection than for prediction evaluation2.

Given a model M , the computation of perplexity requires the definition of a prob-
ability mass function for all observable events which underlie the model. In fact, the
ability of M to predict a sequence X can be assimilated to the probability, PM(X), that
sequence X can be generated by model M .

Using the chain rule, this probability can be defined as:

PM(X) = PM(x0 . . . xn−1) (4.1)
= PM(x0)PM(x1|x0)PM(x2|x1, x0) . . . PM(xn−1|xn−2, . . . , x0) (4.2)

When using Markov first-order approximation :

PM(xi|xi−1 . . . x0) ≈ PM(xi|xi−1) (4.3)

But here, even if all models that are considered are first-order models, the dependen-
cies of the events are not necessarily sequential. We consider that an element may depend
more strongly on another element than its direct predecessor.

This can be achieved with the antecedent function of a model, ΦM , which defines which
event is used as an antecedent in a PGLR. Therefore, the first-order approximation used
to estimate PM(xi|xi−1 . . . x0) is, in all cases:

PM(xi|xi−1 . . . x0) ≈ PM(xi|ΦM(xi)) (4.4)

Note that, when using the sequential model for which Φ(xi) = xi−1, the approximation
is exactly the same as the first-order Markov chain.

To specify further the probability value PM(xi|Φ(xi)), we assume in this work that it
can be approximated as:

PM(xi|Φ(xi)) ≈ PM(r(Φ(xi), xi)) (4.5)

where r(Φ(xi), xi) is the (forward) relation which turns Φ(xi) into xi (i.e. that trans-
forms the antecedent into the current element). Note that therefore:

r(Φ(xi), xi)(Φ(xi)) = xi (4.6)
2Moreover some of these measures are closely related to the perplexity (resp. entropy) and the cross-

perplexity (resp. cross-entropy).
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Ultimately, for each set of relations S, the probability mass function of the relations
is discrete and finite. We estimate the probability PM(r) of a relation r to appear in a
description based on model M as:

PM(r) = 1 +Occ(d, CM)
|S|+∑

s∈S Occ(s, CM) (4.7)

where CM is the training corpus associated with the model M (that contains all
the relations used for the descriptions of each section within the training corpus) and
Occ(d, CM) is the number of occurrences of relation r observed in CM . Note that, rather
than being the exact frequency of occurrences of r, we use a back-off technique in order
to avoid null probability values.

For our experiments, we use a 2-fold cross-validation strategy to estimate probabilities
and compute entropy (and then perplexity) scores. That is, we split the corpus into the
even indexed songs and the odd indexed songs. The measured entropy is obtained as the
average between the two partial entropies calculated by (i) learning probabilities on even
songs and compute the entropy on odd songs and (ii) vice-versa.

We hypothesise an a priori uniformity in the distribution of the first element of
each sequence and therefore, considering a finite number E of possible elements, the
initial probability is estimated as PM(x0) = 1

E
(this preserves comparability between the

models).
Using these probabilities estimation, the entropy of model M can be computed as:

H∗(M) = −
z−1∑
k=0

PM(rk) log2 PM(rk) (4.8)

This entropy quantifies, as an average number of bits per relation, the quantity of in-
formation conveyed by each relation. The more frequent is a relation, the less information
it carries. Conversely, a relation that has a low probability value carries more surprise
and then more information. The entropy of the probability mass function reflects the
minimal number of bits required to describe each relation within the relation space.

Based on the entropy, it is ultimately possible to compute the perplexity as:

B∗ = 2H∗ (4.9)

B∗ can be interpreted as a branching factor, that is, the average equivalent number
of distinct relations between two elements, if all relations are equiprobable. It measures
the compression capacity of the model and is smaller for models which capture more
information in the data.

In this work, we consider specifically the cross-perplexity B̂, which is obtained from
the negative log likelihood (NLL) Ĥ, computed on a test-set. In that case, the capacity
of the model to catch relevant information from an unseen musical section is measured
by means of a cross-entropy score, which quantifies the ability of the model to predict
unknown sequences from a similar (yet different) population.
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For a given model M and a sequence X = x0 . . . xn−1, ĤM is defined as:

ĤM(X) = − 1
n

n−1∑
i=0

log2 PM(xi|Φ(xi)) (4.10)

with the convention P (x0|Φ(x0)) = 1/|S|.

In that context, the cross-perplexity B̂ = 2Ĥ can be understood as an estimation of the
average (per symbol) branching factor in predicting the sequence knowing its structure,
on the basis of probabilities learnt on other sequences.

Additionally, for the models S&CX and SysX , we also compute the total entropy
ĤMtot(X) = ĤM(X) + QM , which takes into account the number of bits needed to
encode the optimal configuration of the PPP (1 among 6) for each sequence of 16 chords,
namely:

Q = log2(6)/16 ≈ 0.16 bits/symbol (4.11)

For the dynamic model (Dyn), as there are more distinct possible graphs (486), the
encoding cost is larger (0.56bits/symbol). This term is equal to 0 for all models that have
a unique distinct possible graph (Seq, Sysi, S&Ci).

The next two chapters introduce and study several relation formalisms for three musi-
cal dimensions: chords, rhythms and melodies. The different models presented in Chap-
ter 3 are compared to one another, using the perplexity measure defined in this chapter.
This is the occasion to investigate the impact of various properties of the different models
and formalisms and their relevance for the analysis of the structure across each musical
dimension.
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Chapter 5

Application to Chord Sequences

The main focus of this chapter is to describe relation formalisms that were investigated
along with the PGLR approach for modelling chord sequences, specifically. Firstly we
identify a few contextual aspects of this particular task, then we present multiple for-
malisms to describe the relations between chords. Finally, the formalisms are combined
with the different models presented in Chapter 3 and evaluated on a prediction task.

5.1 Context and Practical Considerations

5.1.1 Harmony

In standard musicology, the study of harmony (i.e. abstract mechanisms that govern
melody and chord progressions), undeniably occupies a central place. As time passes,
the interest for this domain does not decrease. As a result, many formalisms for chord
progressions description have been designed, such as [Piston, 1948, Schoenberg, 1983,
Cohn, 2011].

The plurality of formalisms for the description of chord progressions has the advantage
to provide plenty of representations and relation formalisms between chords. Describing
the relation between two chords as a movement in a space with specific properties is
indeed a well-established principle. It results in well-defined vision of the description
of chords and relations between them, which can be used, in musicology, to describe
compositional principles, cultural idiosyncrases, as well as in automatic music processing,
for the design of algorithmic methods.

However most of the approaches to analyse chord progressions consist in describing
the relation between chords that are sequentially successive or within adjacent groups of
chords. In fact, to describe the structure of a chord progression, a usual approach consists
in using the tonal function of the chords [Bigand and Parncutt, 1999, De Haas et al., 2009,
de Haas et al., 2011, Déguernel et al., 2017] and then describe the relation between chords
as a functional progression. For these models the adjacency between chords and groups
of chord is very important. Here, as the polytopic models consider some non-sequential
relations, it partly departs from standard musicological assumptions.
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Representation
Full Name Musical PCS TR

Am11 {9, 0, 4, 7, 11, 2} Am

Figure 5.1: Musical, Pitch Class Set (PCS) and Triad Reduction (TR) representations of
the chord Am11.

Considering the PGLR approach, the aim is to use existing concepts in the musico-
logical and MIR communities, to describe in a formal and quantifiable way the relations
between chords. In fact, to be able to compare the different models, it is important to
choose some formalisms for describing relations that can be used with different types of
models and that can describe both the relation between adjacent chords and long-term
related chords.

Moreover, if we refer back to Equation 3.5, the formalisms must be provided with a
criterion on which it is possible to base the computation of a complexity measure from
the relation between two chords. Another important point is that, to be used with the
S&C model, the formalisms of these relations must not only describe the relation between
two chords but also provide a way to characterise the virtual element. Therefore, some
adjustments had to be made to adapt the concepts of the musicological and MIR domain
to the PGLR analysis of the structure of chord sequences.

5.1.2 Chord Representations

Speaking as generally as possible, a chord, in music, is a set of notes (here represented as
“pitches”) that are heard as if sounding simultaneously. However, in tonal western music,
chords are more generally conceived as set of pitch classes supporting the local harmonic
ground plan of the music. In particular, chords play a strong role in the accompaniment
of the melody in pop songs.

The most frequently encountered chords are triads (i.e. sets of three pitch classes),
with a predominance of major and minor triads. More sophisticated chords contain
combinations of 4 pitch classes or even more.

Chords can be represented in various ways. In this chapter, we consider two types
of representations that are most commonly used in MIR: (i) the complete set of pitch
classes forming the chord (PCS description) and (ii) the tabular notation of the major
or minor triadic reduction of the chord (TR description). Assuming 4 or 5 pitch classes
per chord, this leads to potentially several hundreds of different PCS descriptions (much
less in practice), but only 24 distinct TRs.

For example, following i, the chord Am11 (see Figure 5.1), would be represented by
the set: {9, 0, 4, 7, 11, 2}, while its reduction using ii would simply be Am (or {9, 0, 4}).
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Figure 5.2: Triad circle of phase-shifts (outside) and triad circle of thirds (inside).

5.2 Relation Formalisms

As mentioned earlier, a number of formalisms exist to describe chord relations, either
in classical musicology (through chromatic relations or via displacements over the cir-
cle of fifths, which is the circle of notes obtained by transposing a note to its fifth at
each step) or in the framework of more recent theories, in particular Wietzmann re-
gions [Weitzmann and Saslaw, 2004] or neo-Riemannian theory [Cohn, 2011]. Following
a similar point of view, Tymockzo [Tymoczko, 2006, Tymoczko, 2008] also proposed a
model based on combinations of chromatic and scalar transpositions.

Depending on the formalism under consideration, the property of uniqueness of the
relation between two chords may or may not be satisfied.

5.2.1 Triad Circles

This subsection focuses on the relation formalisms that can be used along with the TR
representation of chords.

We call triad circle any circular arrangement of triads aimed at reflecting some prox-
imity relationship between triads along its circumference. As there are a lot of possible
criteria to define proximity between chords, we decided to consider the most common one
which is used in general musicology, that is the criterion of voice-leading proximity. Or,
more precisely speaking, a simplified version of it.

Two chords are considered to be close to each other if (a) they share some notes and
(b) if one can obtain the second chord by moving by a small number of semitones the
notes of the first chord. That is, two chords are close if their (matched) notes only differ
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by a small number of semitones.
In this study, only two circles will be considered: the circle of thirds and the circle of

phase-shifts (see Figure 5.2).
The circle of thirds is formed by alternating major and minor triads where the neigh-

bouring triads share two common pitch classes and where the third pitch class is away of
1 or 2 semitones from the other third pitch class. This circle can be generated by alternat-
ing the two neo-Riemanian transformations: R (stands for Relative) which change Am
to C by moving the fundamental down by two semitones, and L (stands for Leading-tone
exchange) which change C to Em by moving the fundamental one semitone down. The
interest of such a circle is that chords that belong to a same tonality are grouped together
on a sector of the circle.

The circle of phase-shifts consists of a chord progression which results from a minimal
displacement on the 3-5 phase torus of triads as defined in [Amiot, 2013]. The 3-5 phase
torus of triads is 2D torus defined in C2 by the two parametric equations:

|a3| = 2.236 and |a5| = 1.93185 (5.1)

Where a3 and a5 are the third and fifth coefficients of the Fourier transform of the triads.
The coordinates in this parametric space are (arg(a3), arg(a5)).

The circle is obtained after applying the rotation (−5π/6,−π/2) to the coordinate of
each major triad, which is equivalent to transposing each major triad by half a semitone
in the pitch space. Moreover, when unfolding the torus (by reversing the Fourier trans-
form) it appears that the direct path linking two adjacent major triads comes close to
a unique minor triad. For example, the closest minor triad between C and C# arc is
Fm. Therefore, it is possible to insert, on this basis, minor triads in the circle of major
triads and create a regular progression in the 3-5 phase space. The final circle is shown
on Figure 5.2.

As the 3-5 torus of phase-shifts is a particular representation of the Tonnetz, this new
circle (triad circle of phase-shifts) is, like the circle of thirds, a circular representation of
a path in this specific chord space.

These two representations provide a way to express relationships between two TRs–
in a unique way– as the angular displacement around the circle. Moreover, it is easy to
prove that such a space of representations and relations verifies the properties defined
in Section 3.3.2, i.e. that it is a commutative group which can be used to describe any
relation between two chords, such that any relation can be applied to any chord to create
another chord in the same representation space and such that all relations are invertible.

In fact, if considering the triads over the circle as integers modulo 24, the relation
between two chord c1 and c2 simply becomes c2−c1 (mod 24) which is always an integer.
Applying a relation to a chord corresponds to an addition modulo 24, which provides an
integer also lying in J0; 23K. Moreover, for every chord c, and every relation r there is a
unique antecedent of c by r which simply is c− r (mod 24). This resides in the fact that
Z24 is a cyclic group.

The two circles of triads under consideration in our study are particularly interesting
in the sense that they may be easily used to interpret the modelling results, as they are
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Figure 5.3: Transports {(0, 0), (4, 5), (7, 8)} and {(0, 5), (4, 8), (7, 0)} between C and Fm.

well-known by the musicological and MIR communities. But in order to further support
their relevance, we also consider in our forthcoming experiments, random circles, i.e.
circles on which the 24 triads are placed randomly.

Following Equation 3.5, the description cost of a relation based on triad circle for-
malisms can be computed as the absolute value of the rotation on the circle to move from
one triad to the other one. Each individual cost can then be added into a global cost for
the whole sequence using Equation 3.5.

5.2.2 Optimal Transport

This subsection focuses specifically on the description of relations between two chords
represented using the PCSs. Here we consider only chords that have at least one note.
Note that the triad reduction of a chord can also be represented using PCSs, as the set
of three notes representing the triad reduction.

If two chords X and Y are represented as sets of pitch classes xi and yj, the set of
transports between X and Y can be defined as:

T = {tk = (xik , yjk) | xik ∈ X, yjk ∈ Y } (5.2)

that is, pairs of notes across the two chords indexed by an integer k which represents a
virtual mapping between their respective pitch classes. This is a simplified model that
can be used to represent “voices” in chord sequences. In this study, we consider only
complete transports, i.e. each note is associated to at least one voice.

Formally speaking, a transport T between X and Y is said to be complete if and only
if it satisfies:


∀x ∈ X, ∃t ∈ T, ∃y ∈ Y / t = (x, y)
and

∀y ∈ Y, ∃t ∈ T, ∃x ∈ X / t = (x, y)
(5.3)

The optimality of a transport between two chords is defined using the distance asso-
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ciated with the pitch class displacement of the transport:

|T | =
∑

(x,y)∈T
|d(x, y)| (5.4)

The term d(x, y) is a displacement in the pitch class space, |d(x, y)| is the correspond-
ing distance. In our work, we use two types of distances:

• the chromatic distance (or smoothness) [Lewin, 1998, Straus, 2003, Cohn, 2011],
which is the shortest displacement in semitones from pitch class x to pitch class y.
It is defined as:

d(x, y) = ((y − x+ 5) (mod 12))− 5 (5.5)
In Fig.5.3, the first transport is minimal for chromatic distance (its cost being equal
to 2).

• the harmonic distance, where the displacement is considered on the circle of fifths
instead of the chromatic scale. It can be defined as:

d(x, y) = (7(y − x) + 5) (mod 12))− 5 (5.6)

In Fig.5.3 the second transport is minimal for harmonic proximity (its cost being
equal to 6).

It is important to note that the transport cost can be used as a relation cost in reference
to Equation 3.5.

The algorithm used to find the optimal transport between two chords is the most
naive one. It tests all possible complete transports between the two chords (that is n!
possible cases if n is the number of pitch classes in X and Y ) and chooses the one with
the minimal cost. But as the two chords may have different sizes, the algorithm considers
every possible duplication of notes of the smaller chord, so that it has the same number
of notes than the larger chord. Therefore the total number of possibilities of complete
transport, CT (X, Y ), between X of size |X| and Y of size |Y | is defined by:

CT (X, Y ) = (min(|X|, |Y |))||Y |−|X|| ∗ (max(|X|, |Y |))! (5.7)

The fact that the algorithm that computes the optimal transport between two chords
adapts the number of notes of the smallest chord so that it matches the number of notes
of the largest one, has some consequences. As in a S&C description, the graph of latent
relations is connected, i.e. every chord is linked to any of the other chord by a path in
the graph. Therefore, to optimise all transports in a sequence, it is necessary to adapt
the size of all chords in that sequence so that it corresponds to the one of the largest
chord of the sequence.

Fortunately, in practice |X| = |Y | or ||Y |−|X|| = 1 and the maximum number of notes
in the largest chord of the sequence is 4 which makes the optimisation of the transport
between two chords reasonably tractable. This is the reason why we could afford to use a
candid algorithm, and did not consider more sophisticated ones, as proposed or discussed
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in [Kantorovitch, 1958, Villani, 2003]: these are indeed much harder to implement, as
they are designed for transport between objects of a much higher size such as images (see
for instance [Ferradans et al., 2013]).

The initial optimisation process that we investigated consisted in finding the optimal
transports within the system made of f , g and γ such that the sum of the three transport
costs is minimal. This meant testing all possible combinations of relations, as γ depends
on the conjunction of f and g. However, with such an approach, the contrast was bound to
influence the description of the system. After considering this, we felt that this situation
was not desirable, for two reasons: (a) because this would mean that the contrast could
have a non-causal influence on the choice of the description of f and g and (b) because
two sections with the same first three elements and a different contrast could end up with
totally different PGLR models.

Therefore we simplified the modelling assumption (and therefore the optimisation
process), by focusing on the goal to first minimise the transports corresponding to the
systemic relations, f and g an then only, to find subsequently the most economical de-
scription for the contrast, keeping f and g fixed.

By doing so, we also significantly reduced the computation time needed to optimise a
given sub-system. Another advantage of such a choice is that, the optimisation of f and
g can be carried out independently. In fact, as the notes of the primer (x0) are fixed, to
find the best f (resp g), we just need to explore all permutations of notes in x1 (resp x2).
The choice of a permutation of x1 (resp x2) does not affect the transport cost between
the primer and any permutation of x2 (resp x1) and vice-versa. The computation time
for the optimisation of the description of a sequence of n chords falls down from O(Θn−1)
to O((n− 1) ∗Θ), where Θ is the computation time of a single transport optimisation as
defined by Equation 5.7.

When used with a sequential model, minimal transport can be viewed as some sort
of voice-leading analysis [Cohn, 2011]. However, here, chords are taken regularly on a
metrical grid. As a consequence, optimal transport may be used to describe the relation
between two identical chords whereas voice-leading analysis only considers progression
between distinct successive chords.

5.2.3 Musicologically-constrained Optimal Transport

One limitation that can be objected when considering the optimal transport formalism
as described above is that the virtual chord created to model the logical expectation of
a system may be outside of the tonality of the section; or it can correspond to a chord
that is hard to explain with standard musicology.

For example, if we consider the chord sequence shown on Figure 5.4, C F G C, the
virtual chord obtained by using the basic optimal transport algorithm is the B7 chord
without its fifth. such a chord is not common for a progression the first three chords of
which are clearly perceived as belonging to the C-major tonality. A way to explain such
chord could be to consider it as a passage chord which may or may not really occur in
the sequence, that is a chord which makes a link between the system and the contrast
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but is “invisible”. In this sense, it could play a similar role to the one of the augmented
triad in Cohn’s theory [Cohn, 2011], that is, it could be envisioned as describing a virtual
path between the system and the contrast.

However, we also studied a relation formalism based on optimal transport which
would create some virtual chord with a more straightforward interpretability in terms of
standard musicology1. We therefore considered an extension of the concept of optimal
transport enabling the incorporation of musicological constraints. The main principle
behind this musicologically-constrained optimal transport is that a note displacement may
depend on the musicological function of the departure note in the chord. This means that
it could be more relevant to take into account the function of each note in the chord for
estimating and applying the displacements corresponding to f and g.

For example, let us consider chord progression C F G C. In the case of (unconstrained)
optimal transport, the optimal transports are f = (0, 1, 2) and g = (−1,−2, 0), then
g ◦ f = (−1,−1, 2), applied to the primer C = [0, 4, 7] it results in the creation of the
virtual element B7 = [11, 3, 9].

If we now consider the relations described with the musicologically-constrained frame-
work, we have :

• f = (root : 0, (0, 1, 2)) (i.e. is the root of the first chord is the first note of the
pc-set and the note of the pc-set are displaced by 0, 1 and two semitones following
their order in the pc-set, the root stays in place, the third go up by one semitone
and the fifth by two),

• g = (root : 0, (−1,−2, 0)) (the root is also the first note of the primer’s pc-set and
the transport is (−1,−2, 0)).

• To obtain the virtual element, we can both apply f to the image of the primer by
g or apply g to the image of the primer by f (and as the two cases are equivalent,
we only detail the first one). In order to apply f to G = [11, 2, 7] with the root
being 7 (and not 11), we first apply a circular permutation to the pc-set so that
the root is placed in first place (that is the condition to apply f) yielding to the
following representation : [7, 11, 2]. Then, by displacing the pitch classes following
the transport encoded in f , we obtain the virtual element [7, 0, 4] which corresponds
to the C chord.

Under this approach, we generate a different virtual element, and in the case of the
M-C OT, the result appears as more musicological. Figure 5.4 gives an illustration of
this example.

On this example, we only considered the root function, but it is conceivable to also
consider different harmonic functions such as third, fifth seventh and so on. However,
considering the function of each note in a chord requires to encode each of these functions
and for each chord (assuming that they exist and are clearly identifiable for all chords!).
As the basic representation of the corpus is a symbolic representation of the chords, it can
be easily done, especially for the root. However, if we consider the relation as a vector

1These experiments were carried out in the context of an informal collaboration with Mathieu Giraud
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Initial
Sequence

C F G C

Formalism Basic OT Extended OT
f (0, 1, 2) (root : 0, (0, 1, 2))
g (−1,−2, 0) (root : 0, (−1,−2, 0))

Virtual
Element

Figure 5.4: Difference between the virtual chords created with basic optimal trans-
port (basic OT) and extended optimal transport for the sequence C F G C. Here, the
first virtual element is obtained by using g ◦ f = (−1,−1, 2) on the primer [0, 4, 7] (0 is
pitch class for the C note). The second is obtained by applying f on the circular reversal
of [11, 2, 7] where the root (7) has the index 0 in the pitch class set, that is ([7, 11, 2]).

that describes the displacement given a note function, there can be some difficulties. In
fact, there are chords without fifth or third, or chords where the root does not really
appear, and applying a root displacement to a chord where the root is not played creates
a conflictual situation. To handle such conflicts, for each relation with a displacement
associated with a note function, a rule must be created to apply it to chords where there
is no note played that have such function.

Therefore, as in the example above, we considered the root function only. And instead
of encoding the displacement for each note function, we computed the basic optimal
transport and used a circular permutation to ensure that the root of the third chord
follows the same displacement than the root of the primer with f . In case there is no
root, in the chord, the first active note above the root was chosen as a substitute for the
root. For the chord sequence presented on Figure 5.4, this results exactly in applying
[0, 1, 2] to [7, 11, 2] instead of [11, 2, 7] as [7, 11, 2] is obtained by circulating [11, 2, 7] so
that the root of G (7) is the first note of the pitch class set.

By doing so, some displacements may be applied to a note that does not have the
same function than the one used to compute the transport. However, using a circular
permutation that aligns roots increases the chance that a displacement is applied to a
note that has the proper function.

71



5.2.4 Multi-scale Generalisation

One of the main benefits of formalising relations in terms of optimal transport is that the
relation space is isomorphic to the chord space. In fact, if two chords can be described by
PCS of n pitch classes, then the relation between the two chords will be described by a set
of n intervals. And as intervals may vary from −5 to 6, once taken the interval modulo
12, we can consider each interval as a pitch class which would result in considering the
relation as living in the same space as a chord.

Therefore, it is possible, by using the transport formalism, to describe systems of
relation. This readily provides the possibility to implement the Relational Static S&C
model, defined in Section 3.1, which aims at describing systems of relations between
relations to further simplify (or compress) the description of a sequence by using higher-
level redundancies.

5.3 Results

This section presents a collection of results obtained by considering the different for-
malisms introduced above for describing the relations between chords. The aim is to
investigate the performance of the multi-scale models (that encompass both the tree sys-
temic, the static S&C, the dynamic S&C and the relational static S&C models) and
compare them to the sequential model for the description of the structure of a section
based on its chord sequence representation. Moreover, a comparison between the different
options of relation formalisms is also performed. This is the occasion to investigate some
specificities of the S&C model such as the relevance of non-sequential modelling and the
role of the virtual element.

All results are obtained using a 2-fold cross-validation scheme on the corpus of the
727 sections of RWC POP represented as sequences of 16 chords.

In our experiments, we test a number of possible combinations by associating (when
relevant), different chord descriptions, representations, and relation formalisms:

• chord descriptions: full chords (up to 4 notes), triadic reductions (3 notes).

• chord representation: full pitch class set (FPCS), triadic pitch class set of 3 notes
(TPCS), symbolic triadic representation (TR)

• relation formalisms: optimal transport (chromatic and harmonic) and circular re-
lations (on circle of thirds, circle of phase-shifts and random)

We compare the sequential bi-gram model (Seq) – a very common approach in MIR
as described in [Pearce, 2005] – with different configurations of multi-scale models (Sys
and S&C) as defined in terms of their antecedent functions, according to the formalism
defined in Section 3.3. We also test the dynamic approach (Dyn).

For each multi-scale model based on the PPPs, three system optimisations are con-
sidered:
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Figure 5.5: Representations of the relations used by a multi-scale analysis of a sequence
of 16 events projected on a tesseract: PPP0 (left), PPP3 (right).

Thirds
Circle

Optimal Transport
DPG

Rotation Chromatic Harmonic
on TR on

FPCS
on

TPCS
on

FPCS
on

TPCS
Seq 7.46 3.22 3.39 4.06 4.29 1
Sys0 8.34 3.34 3.53 4.23 4.50 1
Sys∗ 7.11 2.97 3.11 3.66 4.03 1
SysX 5.21 2.53 2.64 3.03 3.25 6
S&C0 6.06 2.85 3.01 3.78 3.94 1
S&C∗ 4.82 2.43 2.57 3.10 3.25 1
S&CX 4.17 2.25 2.36 2.79 2.93 6
DynX 4.41 2.36 2.45 4.00 4.03 486

Table 5.1: Average cross-perplexity obtained with a 2-fold cross-validation, for the differ-
ent models on RWC POP. DPG stands for distinct possible graphs.

• S0 which corresponds to the static configuration PPP0 (see Fig. 5.5, left);

• S∗ which corresponds to the globally optimal PPP over the whole corpus which
happens to be PPP3 (see Fig. 5.5, right);

• SX : in this case, the optimal PPP is chosen a posteriori as the one that optimises
the description of the sequence X (which varies across all Xs).

Comparative results, in terms of average cross-perplexity, are provided synthetically
in Table 5.1 and are commented in detail in the forthcoming sub-sections.

5.3.1 Benefit of Multi-Scale Organisations

A first observation that can be made from Table 5.1 is that the multi-scale models (S&C
and Sys) globally outperform the sequential one: all cross-perplexity values are lower, ex-
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Figure 5.6: Log-distribution of the pitch displacements induced by the optimal transports
computed by Seq (left) and S&C3 (right) models.

Triad Circle
Third Phase Random

Seq 8.00 7.67 9.32
S&C0 6.68 6.77 7.84
S&C3 5.35 5.35 6.02
S&CX 4.63 4.63 5.21

Table 5.2: Average cross-perplexity obtained for the Seq and S&C models on RWC POP
data with 2-fold cross-validation with the different types of triad circles.

cept for the basic Sys0 configuration.2. In particular, the S&CX model, which consists in
taking the permutation that has the smallest cross-perplexity for each sequence, provides
the most spectacular cross-perplexity improvement for all types of chord representations
and relations, at the expense of a very limited number of Distinct Possible Graphs (DPG).
It is also worth noting that each PPP used alone with the S&C dependency model has
a smaller cross-perplexity than the sequential model. Note that the S&C∗ configuration
provides a noticeable advantage over Seq and S&C0 configurations.

Figure 5.6 shows that a strong reason of the good performance of the multi-scale
models is that there are more identity relations implied in the S&C description of a
chord sequence. That is the S&C models are more able to catch obvious long-range
redundancies within chord sequences. Using logical expectation may also be contributing
to the performance advantage.

The last row of the table also shows that the dynamic nesting approach is an inter-
esting alternative as it provides cross-perplexity scores almost as favourable as S&CX .
However, the Dyn model has a high number of distinct possible graphs, that is a high
encoding cost of the model structure. Therefore, even if it can be useful for prediction,
it may be less interesting in terms of compression ability.

Table 5.2 shows the cross-perplexity figures obtained with the S&C and Seq structure
models for different types of triad circles. For all these relation formalisms, the sequential

2This result is consistent with a preliminary study made during this thesis on a small corpus of 45
chord sequences which had also indicated such trends [Louboutin and Bimbot, 2016].

74



S&C0 S&C1 S&C2 S&C3 S&C4 S&C5 S&CX

Basic OT 2.85 2.75 3.53 2.43 3.05 3.18 2.25
M-C OT 3.01 2.87 3.78 2.69 3.29 3.48 2.45

Table 5.3: Average cross-perplexity obtained by the S&C models on RWC POP data,
with 2-fold cross-validation using the basic (Basic OT) and musicologically-constrained
optimal transport (M-C OT) formalisms.

model is outperformed by the S&C models, with again a strong advantage for S&CX

approach. S&CX still outperforms the other models after adding the cost of the model
description to the cross-perplexity score (which increases then from 4.63 to 5.18).

Therefore, the multi-scale models appear to have a definite advantage over the se-
quential model, as they seem to be more able to catch the redundancies in the chord
sequences at multiple ranges. The simplicity of these models makes their encoding cost
very small, which makes them useful for both compression and prediction tasks.

5.3.2 Impact of the Representation

The performance of triadic circle relations (TCRs) is based on a global sequence entropy
while the optimal transport (OT) approach is evaluated in terms of average “per voice”
entropy. In particular, the maximal branching factor of TCRs is 24 instead of 12 for OT.
Therefore, the two cross-perplexity scores cannot be directly compared. However, both
approaches show similar trends w.r.t. the relative model performance. This supports the
hypothesis of a general benefit of the multi-scale approach rather irrespective of the way
the chord information and relations are encoded.

In Table 5.1, results are also provided for optimal transport on triadic reductions
(TRs) represented by PCS. Here too, the relative performance levels across models show
the same trends. Note that the cross-perplexity on TRs is slightly higher because the
average pitch class distance between triads tends to be larger than that between chords
with 4 notes or more.

In chromatic optimal transport, the distance is computed from the set of note displace-
ments measured on a semitone scale. We also tested a harmonic distance by considering
displacements on the circle of fifths. Results in Table 5.1 show that this globally degrades
the performance.

On Table 5.2, cross-perplexity values are provided for two other triad circles: the circle
of phase-shifts as defined on Fig. 5.2 and a randomised circle, where triads are positioned
at random. Results show that the phase circle performs quite the same as the circle of
thirds, whereas the randomised circle clearly performs less well. All outperform their
counterpart in the sequential model, as for all polytopic models, the identity relation is
of zero cost and with higher probability.

Table 5.3 presents the results obtained when using the basic and musicologically-
constrained optimal transport, presented in Section 5.2.3. For each model, the basic
optimal transport formalism leads to a slightly better results. The difference is not very
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US LS1 LS2 LS3 LS4
44.4 % 8.0 % 15.7 % 19.7 % 22.4 %

Table 5.4: Proportion of sequences with contrastive US (Upper-Scale system) and LSk
(kth Lower-Scale system).

high, but it must be noted that the musicologically-constrained method also requires
the encoding of the root, which in term of compression requires more information (which
could be seen as an issue). Nevertheless, in case we wish to interpret the result in terms of
relevance of the virtual chords under musicological standards, the constrained transport
may turn out to be of more interest.

5.3.3 Role and Importance of the Virtual Chord

As the virtual chord has a very special role in the S&C model, there was a need to study
and evaluate its importance in the modelling scheme.

As shown in Table 5.1, the effectiveness of the virtual element in the S&C scheme
is underlined by the systematic improvement observed when comparing Sys scores to
S&C results. The virtual element, x̂3, in the S&C model, appears globally as a better
antecedent for x3, than does the primer, x0, in Sys. Note that this improvement is present
for every type of relation formalisms, and as the virtual chord may differ from a relation
model to another, it implies that, due to the expectation process used by the S&C model,
it is more prone to catch the structure of (relatively frequent) non-contrastive sequences
such as abab.

However, a detailed examination of the results shows that , for about 37% of test
sequences, SysX outperforms S&CX using the optimal transport formalism. This can
be explained by the fact that SysX is obviously more interesting to describe sequences
with an aaba structure, which is (also) a rather common (contrastive) pattern in chord
sequences.

To study the specific relationship between the virtual and the contrastive element
in the S&CX scheme, we also investigated on the location and the number of con-
trastive vs. non-contrastive elements in potentially contrastive positions defined by the
PPP framework. An element in such position is said to be non-contrastive if it is the
same element than the virtual chord. The following results are focusing on the triad data
and the circle of third formalism.

Table 5.4 presents the distribution of actual contrasts for the Upper-Scale (US) sys-
tems and the 4 Lower-Scale (LS) systems in contrastive positions. While 44.4% of US
systems are contrastive, it can also be noted that the frequency of LS contrasts (or, so
to speak, the occurrence of surprises at the lower-scale span) increases with the index of
the LS system (i.e., its depth in the tesseract).

Figure 5.7 depicts the proportion of sequences as a function of the number of actual
contrasts observed in different contrastive positions. It can be observed that the number
of contrastive Lower-Scale systems decays rapidly from over 60.4% of sequences with
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Figure 5.7: Proportion of contrastive systems within US systems (left) and the 4 LS
systems (right)

All Diff
Systemic position 5.6 14.6

Contrastive position 3.5 18.7

Table 5.5: Perplexity of relations for systemic relations and contrastive relations, includ-
ing (All) or excluding (Diff) the identity relation.

no contrastive Lower-Scale system down to only 2.3% with all four LS systems being
contrastive.

It would surely be interesting to compare these profiles across different music genres
and a variety of musical dimensions, in order to study possible correlations.

Table 5.5 reports on the perplexity obtained when considering separately the systemic
positions and the contrastive positions. Keeping in mind that they may be specific to the
corpus, results show nevertheless two very interesting trends.

Perplexity is higher in systemic positions (5.6) as opposed to contrastive positions (3.5),
implying that the actual observations in contrastive positions often correspond (or are
close) to the implied expectation. This can be related to the results previously presented,
w.r.t. the relatively low density of actual contrasts.

However, when different from identity (column Diff), these relations show a lower
cross-perplexity for systemic relations (14.6 vs 18.7) indicating that, when a relation is
not identity, the contrast is more unpredictable and/or more distant on the circle of
thirds, than it is for systemic relations.

In summary, strictly contrastive (i.e. non-identity) relations tend to be less frequent
but more intense than for systemic relations. This certainly relates to the presumed
role of contrasts as carrying a strong quantity of surprise. These observations may be a
motivation for a differential treatment of systemic relations vs. contrastive ones.
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RS&C0 RS&C1 RS&C2 RS&C3 RS&C4 RS&C5 RS&CX

Cross-perplexities 2.87 2.93 3.01 2.87 2.95 2.97 2.69

Table 5.6: Cross-perplexities obtained using the relational static S&C model with optimal
transport relation formalism.

5.3.4 Relational Static S&C Model Performances

As mentioned earlier, when using optimal transport as a relation formalism, the repre-
sentation of the relations is exactly the same as the representation of chords, that is a set
of integers from Z12. In fact the two spaces are isomorphic: for chords, it represents pitch
classes and for relations it represents intervals. Therefore, it is possible to describe the
relation between relations in the exact same way as it is done for relation between chords.
This makes it possible to use the relational static S&C model presented in Section 3.3.7
with the optimal transport formalism to describe the multi-scale structure of a chord
sequence.

Table 5.6 presents the cross-perplexities obtained using this model.
When compared to the static S&C model, the relational static S&C Model does not

seem to provide much benefit. In fact, the cross-perplexity values obtained with the basic
static S&C were 2.85 for S&C0, 2.43 for S&X∗ (S&C3), and 2.25 for S&CX . Here, the
values obtained with the relational static S&C model are always higher.

The reason behind these results may be explained by considering the effect of each
model on the probability distributions of elements and relations. Using the static S&C
model is interesting to compress a sequence of chords because it uses the note displace-
ments instead of pitch classes to describe the full sequence. Such a process is interesting
because the probability distribution of pitch classes is flat and the probability distribu-
tion of note displacements has one big peak on the identity relation and small very values
for large displacements. In other words, the entropy of the relations distribution is way
smaller than the entropy of the pitch classes distribution.

However, passing from the distribution of relations to the distribution of relations of
relations, may reduce this effect by flattening the peak on identity relation and therefore
increase the entropy. This flattening effect can be explained by the fact that, due to
the large amount of identity relations, a lot of these relations may be transformed into
non-identity relations of relations (in the case they are related to non-identity relation).
And as there are only a few of these relations that are non-identity, only a few pair of
non-identity relations lead to identity relations of relations. This results in a smaller
peak of the identity for relation of relations than there was on the basic distribution of
relations (between pitch classes) and therefore a higher entropy.

Some similar trends were already observed in former work, when considering intervals
of intervals for melody representation and compression, when used for pattern similarity
measurement, pattern discovery and music classification [Louboutin and Meredith, 2016].
There too, taking intervals of intervals instead of the basic interval representation did not
increase the average compression ratio or the classification.

However, a noticeable effect of such a representation is that it decreases the difference
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of performance between the different permutation models. In fact, here, the maximum
difference of cross-perplexity value between two permutation models, RS&Ci, is 0.24
while, for the basic S&Ci models the maximum difference is 1.68 (S&C2 having 3.68 and
S&C3 having 2.85).

As a consequence, each permutation model using this new representation, RS&Ci,
provides a better cross-perplexity (max 3.01) than the sequential model, Seq (3.22). The
fact that the use of this second step of compression improves the results of the “badly-
performing” permutations can be explained using the same argument as the one used
above. In fact, as for permutations performing bad using the basic static S&C model, the
associated distribution of note displacements has a high entropy, i.e. it has less probability
density for the identity and more non-identity displacements. Then, using relation be-
tween relations may create a distribution of intervals between note displacements where
there are more identity relations than in the distribution of pitch-class displacements,
that is a distribution with a smaller entropy.

5.3.5 Additional Observations and Considerations

5.3.5.1 Correlation Between Description Cost and Cross-Entropy

As optimising the transport cost between chords minimises the average pitch class dis-
placement, only a few intervals concentrate most of the probability density function. This
raises the idea that there must be some correlation between the global description cost
of a sequence (computed with Equation 3.5) and the cross-entropy. Indeed, Figure 5.8
shows a very high correlation between the two values. This result is going along with the
idea that there could be an implicit optimisation process governing some aspects of music
organisation and it reinforces the approaches in MIR based on the minimum description
length principle or related concepts such as entropy or mutual information. Under these
hypothesis, using cross-entropy, and then cross-perplexity, to measure the efficiency of a
model makes some sense.

Moreover, another very interesting perspective can be drawn from Figure 5.8: whereas
the learning phase can be of some use for some prediction or generation tasks, the fact
that there is a high correlation between cross-entropy and global transport cost shows
that it may be advantageous to describe the structural organisation of a chord sequence
using minimal transport model without resorting to an exact estimation of relation prob-
abilities, i.e. no learning phase and (even more important) no training data !

On that basis, the next round of experiments uses the cost function to select the
optimal PPP for a given sequence and studies their distribution across our experimental
dataset.

5.3.5.2 Distribution of PPPs

As a final experiment in this chapter, we study the behaviour of the S&CX model, i.e.
the model which selects, for each sequence to describe, the PPP that results in the most
economical description.
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Figure 5.8: Graph of average sum of the optimal transport costs, function of the average
cross-entropy on 727 sequences corpus for the Seq (red square), S&C0...6 (blue triangles)
and Sys0...6 (yellow circles) models. Correlation: 0.996, p-value: 9.76e−13.

The simplicity of a description can be evaluated by several criteria. In our experiments
on model comparisons, the determination of the optimal PPP was obtained by simply
picking the PPP with the best cross-perplexity score for the sequence. However, as shown
in the previous section, the cross-entropy is highly related to the description cost of a
sequence computed with 3.5), in terms of optimal transport cost or rotation distance on
a circle. Therefore, another way of evaluating the complexity of a description can be to
compute the total relation cost (by using for example Equation 3.5).

The advantage of such a method is that it can be used without any learning step.
Moreover, it may be easier to see if two models lead to the same description cost on
a sequence. Due to the probability estimation step, it is indeed very rare that two
PPPs obtain an identical cross-perplexity value for the same sequence. It results in
the fact that one of two PPPs that would give the same score (considering here the
description cost), will get discarded as best PPP because of a little difference in term
of cross-perplexity. Using cross-perplexity as a criterion for the choice of the PPP may
provide better prediction ability to the model; however, it may influence the possible
interpretations of the results in terms of structure, because of slight variations in the
probability estimation process.

For these reasons, to explore the relative prevalence of the various PPPs, we used the
cost criterion. Therefore, for each chord sequence X, it is possible to compute the overall
relation cost for each PPP, so as to find which is/are the one(s) yielding to the best score.

Over the 727 sequences, 2 out of 3 have a unique optimal PPP. To build the histogram
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Figure 5.9: Histogram of best PPPs across the test data.

depicted on Figure 5.9, we considered every unique solution as counting for 1. For the
other cases (ex-aequos), when the number of optimal PPP, k, is superior to 1, each
optimal solution was counted as 1/k. The relation formalism used to compute the cost
of a PPP is the rotation distance over the triad circle of thirds.

On Figure 5.9, permutation PPP3 (see Fig. 5.5 right) appears as the prevailing one
(≈ 33%) and this may be related to the fact that such a PPP is better at describing
sequences that correspond to a rather common “antecedent-consequent” form in music
(especially, in pop music): ABAC. In fact, due to the configuration of each lower-scale
sub-system of the PPP3, if the two halves of the section have the same beginning, then,
in the first two sub-systems, [0, 1, 8, 9] and [2, 3, 10, 11], the first and third elements will
be identical (or strongly similar) and there will be no contrast as the second and last
element would also be the same. These two sub-systems can then be described in a
simple manner (as there is no contrast). For the other sub-systems there may be more
contrasts due to the difference between the antecedent and the consequent. The upper
scale S&C, [0, 2, 4, 6], aims at describing the structure of the first half of the section (that
is the antecedent, AB) at a mid-scale level.

On the other hand, the least frequent PPP (PPP2) displays a frequency of occurrence
below 5%. Somewhere in between, the four other permutations see their frequencies
ranging within 10% to 20%).

This chapter has focused on the description of the structure of chord sequences, and
the various behaviours that the implementations of the PGLR model may exhibit when
used for such descriptions. The next chapter investigates on the behaviour of these models
for two other musical dimensions: rhythm and melody.
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Chapter 6

Rhythm and Melody

In this chapter we extend the application of the PGLR model to other musical dimensions,
namely rhythm and melody. In this case, unlike chords, basic elements are not vertical
anymore, but horizontal. In fact, in a rhythmic or melodic motif, notes are coming one
after another and modifying the time organisation would alter the melody. This is due
to the temporal aspects that are at the foundation of melody.

Therefore, one of the main issues faced when working on rhythm and melody instead
of chords is that relation formalisms such as optimal transport are not easy to adapt. In
this chapter, after reviewing briefly the state of the art in transformations and similarity
measures for rhythm and melody, we propose and study a few relation formalisms that
satisfy adequate properties for being used with the PGLR model.

As it focuses on rhythm and melody, this chapter also introduces and addresses a key
problem: how to handle the phase-shift between the segment boundaries of the melodic
section and the accompaniment section that occurs in the case of anacruses or late starts
of the melody.

This chapter finally provides the results of several series of experiments that have been
conducted to investigate the effectiveness of a multi-scale description of the structure of
melodic and rhythmic sections, and the importance of the relation formalisms used to
this aim.

6.1 Context and Practical Considerations

As now well-developped in the previous chapters of this thesis, one of the most important
aspect of music is that it contains redundancies, and this is the reason why musical
objects are perceived as structured. This aspect is especially noticeable by the repetition
of rhythmical patterns or melodic motifs which are probably the most salient "agents" of
redundancy.

As a consequence, a lot of studies in MIR focus on the detection of these repeated
patterns, aiming to find the themes and their repetitions inside a piece of music. But as
repeated patterns tend never to be strictly identical repetitions, some methods have been
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introduced to measure similarities between melodic patterns. These measures sometimes
result in a description that can be understood as the transformation which has to be
applied to the first pattern to obtain the second pattern. Once the transformation has
been described, it is possible to use this transformation to compute a measure of the
distance between the two patterns. If the distance is small, one may consider the second
pattern as a repetition of the first one. Beyond a certain threshold, they are considered
as distinct.

In this work, the aim is to use some relation formalism which can be applied along
with the S&C model, in the sense that it can both describe relations between two melodic
(or rhythmic) elements and be used to create some virtual melodic elements by combining
transformations (i.e. modelling melodic expectation on the basis of analogical induction).

Therefore, one may be interested in the melodic or rhythmic transformations from the
state of the art methods, which are used to compute similarity measures between melodic
patterns. To apply them to the S&C description of a melodic section, it is necessary to
see if these transformations methods, usually used to compute the distance measures
between two melodic patterns, have the property defined in Section 3.3.2 so that they
can be safely combined.

One of the most common transformation is the one used to compute the edition dis-
tance [Mongeau and Sankoff, 1990, Giraud et al., 2013]. Its most basic implementation
consists to give the minimal number of insertions and deletions that need to be applied
on the first pattern to obtain the second one. Moreover, additional operations may be
used to refine the transformation, such as substitution, fragmentation or consolidation.
Note that this problem also occurs in different relation systems that use a more complex
insertion/deletion formalism such as the one described by Forth et al. [Forth et al., 2008].

After a brief overview of this type of approaches, it becomes rapidly clear that such
transformations cannot be used with the S&C contrast. In fact, the main problem of such
transformations is that they may not be applied to every possible pattern. For example,
if we consider a transformation which consists in deleting the first note of a pattern, it
cannot be applied to a pattern which has no first note! And as our study here focuses on
relations between small patterns (a few beats), some of them may contain only silence,
for instance... The same issue holds for other comparable operations: how to insert a
note where there is already a note? How to consolidate n notes where there are less than
n notes? Such a problem may be solved using some rules, but the aim here is to limit as
much as possible the creation of such rules, because then the formalism may become too
much ad hoc and would have a high description cost. Indeed, a more complex space of
relations will result in a more complicated explanation of the section’s structure.

A second family of transformations that catches our interest are those used for in-
stance by Sioros [Sioros et al., 2018], Ycart [Ycart et al., 2016] or Forth [Forth, 2012].
Such transformations are mostly related to a path in a limited space. For example, Ycart
considers rhythms as trees and transformation between rhythms as transformation of
these trees. This provides interesting possibilities for comparing rhythms. However, as
for editing transformations, there are many cases when combining some transformations
requires special rules. For instance, when the combination of two relations would range
beyond the limits of the rhythm space, as can be the case when fusing two branches of a
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Figure 6.1: Rhythm transformation facing problems for combination.

tree consisting only in one leaf which is the root. If these transformations are very good
at describing the relation between two rhythm patterns, they were not designed to be
combined, nor to be applied on potentially any rhythmic element.

As an illustration, Figure 6.1 shows a case where f is a fusion operation which applies
on two branches at the lower level of the tree and g = f ◦ f . In that case, f ◦ g would be
equivalent to applying f to the quarter note... But, considering the corresponding tree,
there is nothing to fuse!

Finally, there are other transformations that focus on the onset information of the
rhythm, in order to describe the transformation between two rhythmic elements using
some translation vectors. But once again, these transformations cannot be easily used
with the S&C model because, when applied to a variety of patterns, some notes may
begin or end outside the time boundaries of the element.

All the rhythm relations that we have just reviewed show a same drawback: they
cannot be easily combined, due to the limits imposed by the subdivision of time or the
pattern duration. The main problem is that time flows in one direction, and that reversing
it or assuming its circularity would be hard to justify and would result in relations that
would be somehow arbitrary. Therefore, we had to search for some alternate formalism
in order to express relations between melodic patterns which would (as much as possible)
satisfy the properties required for their proper use with the S&C model.
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Figure 6.2: Binary encoding of rhythmic information of a melodic section.

6.2 Relation Formalisms

6.2.1 Rhythmic Relations

The relation formalism that is to be used in the PGLR model is intimately related to the
representation used to encode rhythmic elements. There are mostly two representations
that are common in MIR.

The first one considers rhythmic sections as a set of notes encoded by their onset and
duration. The interest of such a representation is that it directly encodes the onset of
the note which makes them implicitly ordered in time. Moreover, as the duration is also
encoded, it can be used in the relations to compare and model such factors of variability.
However, the problem with such a representation is that notes that begin in one element
and finish in another one require to be handled, which brings in quite some complication
in the modelling scheme.

The second common representation, which we use in our work, simplifies the situation
by discarding the duration information and encoding the onset information on a discrete
time-scale. Rhythmic information consists in a list of bits, where each bit corresponds to
an onset time: if a note in a section starts at an onset-time, the corresponding bit is set
to 1, and if there is no note in the musical segment at this onset time, the bit is set to
0. The bits are updated regularly over time with a sampling step (ideally) equal to the
smallest common divisor of the time of all durations of the rhythmic pattern.

Such a binary representation of the rhythm information is shown on Figure 6.2. The
interest of such a rhythmic information encoding scheme is that it is easy to split a
pattern in sub-patterns by slicing the bit sequence into smaller elements. However, this
representation has the disadvantage that it does not encode the duration of the notes.
The negative impact of this simplification can be moderated by observations such as those
made by Conklin et al. [Conklin, 2013] – where the duration feature does not seem to
have a lot of effect on music classification – and Nakamura et al. [Nakamura et al., 2017]
– showing that for melodic parts, most of the notes end where the next note begins.

As we did for chords, the rhythmic part of the melodic section is considered as a set
of 16 basic elements corresponding to a strong beat. In the case of rhythmic patterns
however they are elements of R = {0; 1}4. That is, when a melodic section consists in 4
bars of 4 beats, the shortest element is the sixteenth note, whereas when the section is
made of 8 bars of 4 beats, the shortest note is the eighth note. Such rhythmic elements can
be considered as points in the rhythmic domain defined by Forth et al. [Forth et al., 2008]
except that here the length of an element is set to the duration of a strong beat whereas
in Forth’s work, a point corresponds to a metrical cycle [London, 2012], which itself often
corresponds with a bar-length rhythm.
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Such a representation may introduce some inaccuracies in the encoding of the rhythm
when, for example, a triplet appears in the melody. However, the method that will be
presented can also be used with a space larger than R.

Given a section of 16 basic elements from R, the next aim is to define a structured
space where we can describe relations between two basic elements, with the constraint
that, any relation applied to any elements lives also in R. As mentioned earlier, it is also
desirable that each element has only one antecedent for each relation.

There are plenty of spaces that satisfy such properties. However, in relation to the
MDL principle, a proper family of such spaces must be simple to describe, in the sense
that similar elements must be related through simple transformations. And as we would
like to guarantee some musicological relevance of the approach, it is also desirable that the
relation encoding can be interpreted in accordance with understandable musical concepts.

Given that times flow in only one direction, it is hard to handle relations that imply
displacement of onsets, as some onsets may fall outside of the time limit imposed by one
element. Therefore, it appears difficult to define a relation which would result from the
combination of the relation between the activated onset of two elements.

However, as there are only 16 elements in R, it is possible to arrange and order them
according to some of their properties and then express the relation between two elements
as a displacement in that space. In that case, the relation between two elements is global
and may not be directly related to relations between their respective sub-elements.

Considering the spaces that were used to describe chord relations, and especially
triads, the simplest structure that would ensure the properties required for a convenient
use with the S&C model is a circle.

Under this constraint, we end up having to lay out 16 elements on a circle, which opens
a number of possibilities equal to the number of permutations of these 16 elements, that
is 15!/2 ≈ 6.5 ∗ 1011 (after removing symmetries and rotations of a same circle).

This number of circles is very large and considering all these circles as possible spaces
would require an optimisation process over all the circles to find the optimal one... and
in what sense?

To reduce further this number of possibilities, we can introduce additional constraints,
inspired from the principles of optimal transport, that is considering only circles where
elements that are close on the circle also have some proximity in terms of some other met-
rics or properties. Indeed, on the triadic circle, neighbouring triads have some proximity
in terms of optimal transport, and it intuitively makes sense to consider preferentially
rhythm circles where neighbours have several activated or inactivated onsets in common.

In order to implement this idea, the resulting approach has been to choose circles
where elements that are neighbours only differ by one bit (therefore they shares 3 common
bits). As the graph in 4 dimensions, where each of the 16 elements is linked to every other
elements differing by one bit, is a 4-cube, the circles that we have just defined correspond
to circular Hamiltonian paths traversing this graph.

Such paths exist and a well-known one is the Gray code— resulting from the Gray
encoding algorithm [Frank, 1953] (see Figure 6.3). But this is not the unique Hamiltonian
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Input: r; the current rhythm, circ; the list containing the previous elements in
the circle being built

Output: L, a list of Hamiltonian paths in the 4-cube
Function HamilCircles(r,circ):

if |circ| = 15 & circ[0] ∈ Neighbours(r) then
circ.Append(r);
return [circ];

end
if |circ| = 15 then

return [];
else

L = [];
for rn ∈ Neighbours(r) do

if rn /∈ circ then
newcirc = circ;
newcirc.Append(r);
L.Extend(HamilCircles(rn,newcirc))

end
end
return L;

end
end

Algorithm 2: Recursive algorithm such that HamilCircles(r0, []) (with r0 being any
rhythm) creates all possible Hamiltonian paths on a 4-cube.
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Figure 6.3: A circular organisation of rhythmic patterns generated by the Gray encoding
algorithm.

path in the 4-cube, and to generate all the possible circles, we used a recursive algorithm
(see algorithm 2) and then removed symmetrical or rotational equivalent circles. As a
result, we found 1344 distinct Hamiltonian paths.

A total of 1344 circles is still quite a lot, and appears to be too profuse a number of
spaces to describe rhythmical patterns in a meaningful way. It would be surprising that
each of them provide a relevant interpretation of the relations between rhythmic patterns,
with respect to the circle structure. Therefore we decided to make yet another step to
decrease this collection of circles to a more tractable number.

A first approach could be to find out if there are pairs of circles that are equivalent in
the sense of the S&C model. Two circles would be equivalent in that sense, if they were
to follow the equivalence relation defined by:

C1 ≡ C2 iff ∀(a, b, c) ∈ R,RC1(a, b)(c) = RC2(a, b)(c) (6.1)

Putting property 6.1 into words, two circles are equivalent if, for all triplet of elements,
the two circles create the exact same virtual element. In such a case, the two circles result
in the same cross-perplexity score for every rhythmic pattern, as the two distributions of
rotation probabilities are only permutations of the other one.

For example two circles can be related by a constant multiplier, K. i.e. the elements
of C2 can be obtained using the element of C1 following the equation:

C2[i] = C1[i ∗K (mod 16)] (6.2)

In such a case, it is easy to prove that the two circles are equivalent, in the sense
of Equation 6.1. Therefore, this equivalence property may be of interest to reduce the
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Figure 6.4: Bit-symmetry axes for rhythm circles.

number of circles. However, none of the 1344 circles are equivalent to any of the others...
Another interesting subset of circles are those who exhibit internal symmetries. The

idea of considering geometric constraints to reduce the number of possible configurations
of a geometric structure was already invoked (in [Louboutin and Bimbot, 2017a]) to re-
duce the set of 36 permutations for which each lower-scale system is a square in the
tesseract to the 6 PPP where the upper-scale system is also a square in the tesseract.
Similarly, the symmetry property appears as a logical solution to reduce the number of
circles. Indeed, the more internal symmetries a circle possesses, the more “regular” it is.

As a matter of fact, for some of the 1344 circles, it is possible to find axes that split
the circle in two halves such that, for a particular bit n ∈ J0; 3K, each element on the
circle has the same n-th bit than its symmetric counterpart w.r.t. the axis. For example,
on Figure 6.4, axis A1 cuts the circle in such a way that each opposite elements have the
same fourth bit (b3). But there may be others axes (say A2 and A4) that create some
symmetry for other bits, such as represented on Figure 6.4.

Based on this property, it is possible to count, for each circle, the number of axes
bit-symmetries and the number of bits that are symmetric for each of them. Following
the principle that the more regular the structure, the simpler the explanation, the circles
that are ultimately selected are the one that have the most symmetries. The histogram
of the distribution of circles as a function of their number of symmetries is shown on
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Figure 6.5: Number of circles that have n bit-symmetries (total is 1344)

Figure 6.5.
There are precisely 48 circles that have 8 symmetries (which is the maximum). All of

these circles have four axes of bit-symmetry, with two of them creating one bit-symmetry
and two others three bit-symmetries. And for each of these circles, there is one bit that
has four axes of symmetries, one that has two, and two that have only one. Therefore,
the symmetry property can not be used any further to shortlist this set of circle on the
basis of the simplicity of their structure. This is not a problem: this inventory of 48
circles provides a very good subset, remembering that we started with 1344... They are
in a sufficiently small number to be studied individually while still offering an interesting
range of possibilities in modelling rhythmic patterns.

And by construction, we can use the PGLR model to describe a rhythmic section
using the same process as for chord sequences with triad circles.

6.2.2 Melody Relations

Once the relations between rhythmic elements have been formalised and internal stability
is guaranteed, the formalisation of relations between melodic patterns still faces a few
difficulties:

• As two melodic patterns may differ in rhythm, there can be a different number of
notes, and then, it is hard to describe the relation between two patterns just with
note displacements.

• The need to preserve the order between notes prevents us from using optimal trans-
port as we did for chords. In fact, optimal transport compares all possible permuta-
tions, and then chooses the one with the minimum transport. But here, permuting
notes does not have any relevance, as neglecting the order of the notes would defi-
nitely impact the relevance of the comparison between musical motifs.
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• Some patterns may contain only silences. While the formalism of rhythmic relations
can describe the transformation of active rhythmic patterns to silence (or silence
to active rhythmic patterns), optimal transport was designed to describe relations
between chords that have at least one note and the principle used to handle the
void chord cannot be easily generalised to handle void rhythms and/or melodies1.

To overcome these obstacles, an approach could be to complete the representation
of the melodic elements using rules that are similar to the one used to complete chord
sequence. This completion strategy would be applied to the pitch part of the melodic
elements to associate a pitch to unpitched onsets (bit at 0). By having such information
encoded, the relation between two melodic elements can be described as the combination
of a rhythmic rotation and the encoding of pitch to pitch displacements. Therefore,
it is necessary to design a completion method such that each onset (1 and 0) has a
corresponding pitch.

To complete a melodic sequence, we used the two following rules (in this order) to
define a substitute pitch for unpitched onsets (i.e. an onset whose bit is 0):

1. Continuation: when it is possible, a pitch on a 0 onset, is set to the last pitch
played (on a 1 onset) in the song. This first "rule" is the same as for chords: it
is based on note continuation, which means that when a note is being played, the
listener perceives this note until the next note is played. However, in the case of
chords, we could trace-back the last chord inside the sequence, whereas for melody
it can happen that the previous note is way before the beginning of the segment
boundaries of the section.

2. Anticipation: when there is no note before the unpitched onset, the pitch is set to
the first note being played after. This rule is more arbitrary than the previous one,
as it is not based on any well-established cognitive perception of pitch sequences.
However, it can be justified by the MDL principle. In fact, by doing such a com-
pletion, the first note played, if not in the primer, is directly related to the initial
pitch which is the simplest relation (the cost of encoding is the same as if it was the
pitch on the first onset, if existing). In case the first note played is in the primer,
the principle of assuming that the imaginary last note played is the same as the
one played is the “simplest” possible explanation too, as melodic movements impliy
small displacements in the pitch space.

Note that the solution chosen here is not the only possible one. Another way, similar
to what was done with chords, could have been to just remove the 0000 rhythmic pattern
and consider each silent pattern as a simple beat pattern with the last note played. There
are indeed multiple other solutions, but we decided to use the one described above as it
does not change the actual rhythmic information which makes the reconstruction of the
sequence easier. It was also the simplest method to implement, given the rest of the work
we did on rhythm and chords.

1For experiment on chords, void chords N were replaced by the last preceding chord in the sequence.
However, here, it is not relevant to fill void rhythms by a repetition of the previous rhythm, as there is
nothing comparable as chord persistence or key continuation for rhythm or melody.
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((5, 7, 7, 9), (1, 1, 0, 1)) ((4, 2, 0,−4), 4) ((9, 9, 7, 5), (1, 0, 1, 1))

Figure 6.6: Description of the relation between two melodic patterns. Here, the rhythmic
transformation (4, i.e. the second part, or fifth argument of the f relation) is obtained
using the Gray circle clockwise.

Under this approach, melodic elements of a section are considered as belonging to
M = J0; 11K4 × R, i.e. the melodic space is the combination of a rhythmic space and
(the Cartesian product of) four pitch spaces. The relation between two melodic elements
is described as the combination of four pitch-to-pitch displacements (∈ J0; 11K4) and a
rotation on a rhythm circle (∈ J−7; 8K) as seen on Figure 6.6.

The melodic space has the properties defined in 3.3.2, which ensures that the for-
malism can be used with an S&C description. For the rhythmic part, we can use the
same arguments as the one used for the triad circles; for the pitch class part, as every
onset is associated with a pitch-class, the circular structure of the pitch-class space en-
sures the properties. The generalisation of the properties to the whole melodic space is
straightforward as the two parts (rhythm and pitch) are independent.

6.3 Time Alignment Optimisation

One of the peculiarities of melodic motifs in music is that their boundaries often hap-
pen not to be aligned with metrical instants (beats, bars) nor with harmonic changes
(governed by chords and other accompaniments). In other words, the surface of melodic
sections may present a phase shift with the metrical segment boundaries. This creates of
course an additional difficulty when modelling melodic objects and sections. This section
addresses this issue.

The first problem occurs in the case of anacruses, i.e when melody begins before the
first bar of the sequence. If we synchronise blindly melodic elements on the first beat of
the section, it may create a rather complex description of the melodic structure as the
element used as the primer may start on the second or third beat of the melodic surface
(depending on the length of the anacrusis), and it also potentially contains the beginning
of the next motif...

The second problem is dual to the previous one: it happens when the melody of the
previous section ends on the first beat of the next section. In that case, picking the
melodic content occurring on the first beat of the latter section would result in taking the
end of the melody of the former section instead of the real beginning of the melody of the
current section. This would affect the efficiency and the interpretability of the resulting
analysis.

In fact, a good structure model for melody must account for these various phase shifts
of the surface content, and compensate for them in order to synchronise and match motifs
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Figure 6.7: Example of a section, taken from the song “What’s Up” by 4 Non Blondes,
where the melody does not fit inside the metrical boundaries of the segment for the
accompaniment.

before inferring relations between them. Figure 6.7 shows an example where phase-shifts
can be observed on a musical section.
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In the most general case, each melodic element could be considered as having its
own time-shift with respect to the beat, and each of these time-shifts would need to be
estimated... However, this would have two drawbacks: (i) a very high complexity for
considering all possibilities and (ii) the consequence that it would require to disqualify
the difference of phase as a possible structuring relation between two elements in the
section and/or for a contrast.

The solution chosen here therefore considers only one possible global phase-shift for the
whole melody. In other words, the boundaries of the segment are globally shifted before
extracting the melody of the song, then the resulting melody is split in 16 elements.
This approach can be related to one of the rules (the 3rd one) used by Temperley in
his segmentation algorithm Grouper [Temperley, 2004]. This rule associates a penalty to
segments for which metrical position of the first note onset is not the same as the metrical
position of the beginning of the other segments.

Under such an hypothesis, the solution becomes much more simple: given an interval
of possible phase-shifts, the phase estimation algorithm computes a cost for the section
description with each possible phase and then chooses the one that corresponds to the
lowest cost.

Put into equation, let ρ be a phase-shift and Xρ = (xρi )0≤i<16 be the sequence of
elements obtained by splitting the “shifted” melody into 16 melodic elements2. Assuming
we can compute a complexity score, CF(r), for the description of a relation, r, using a
formalism, F , then, given a description model, M , we can compute a description cost,
CM(X), for the whole sequence:

CM(Xρ) =
15∑
i=1

CF(r(ΦM(xρi ), x
ρ
i )) (6.3)

Therefore, given a melodic section, it is possible to compute, for each phase shift ρ ∈ P ,
a complexity score. Following the MDL principle, the optimisation process then chooses
the phase-shift leading to the minimal complexity score, that is:

ρ∗ = arg min
ρ∈P

CM(Xρ) (6.4)

Except for the additional minimisation over the phase-shift, the criterion defined in
Equation 6.3 is identical to that of Equation 3.5 which gives the description cost of a
sequence and a relation formalism (which was used to chose the best PPP in the last
chapter using a chord relation description cost). Here, the cost of the relations between
rhythmic or melodic elements are defined in a similar way as it was done for chord
relations:

• the cost with the rhythm formalism, CFR
(r), can be defined as the absolute value

of the rotation angle on the circle:

CFR
(r) = |r| (6.5)

2It is not really the melody that is shifted but the segment boundaries of the section, but it can also
be seen as if we would have shifted the melody in the other direction.
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• the complexity cost of a melodic relation, r = (rr, rp) associated with the formalism
described in Section 6.2.2, CFM

(r), is defined as the sum of the rhythm relation cost,
CFR

(rr) (absolute value of the rotation on the circle), and the cost of the pitch part
of the relation, CFP

(rp) (sum of all the pitch displacements in semi-tones):

CFM
(r) = CFP

(rp) + CFR
(rr) (6.6)

=
3∑
i=0
|rpi
|+ |rr| (6.7)

Note that, in the first case, r just encodes a rotation on a rhythm circle while in the
second case, r = (rp, rr) is the combination of four pitch-class displacements, rp, and a
rotation on a rhythm circle, rr.

It is important to note that a phase may have a value which is not a integer number
of beats. In such a case, every basic melodic element may vary with the change of
phase because the sampling of the melody is made after the determination of the optimal
phase-shift. Therefore, a phase-shift may create more similarities between basic melodic
elements both by, changing the melodic elements and enhancing their similarities with
each other, but also by creating a sequence where elements are better aligned and therefore
relate more closely to their antecedents in the systemic model.

6.4 Results

After having exposed the principles on which are based the modelling of rhythmic and
melodic relations in this work, and explained how the proposed approach can be handled
by extending the one previously used with chords, it is time to evaluate and compare the
performances of the implementations of the PGLR model on these musical dimensions.

Similarly to what we have done with chord sequences description, we conduct a study
of the behaviour of the models on different rhythm circles, in order to see the effect of
the choice of a specific relation formalism on the prediction task performances. As in
the previous series of experiments, all results are obtained using 2-fold cross-validation
strategy on the corpus of the 791 sections of 16 elements extracted from the melodies of
RWC POP.

6.4.1 Rhythm Modelling

Figure 6.8 represents the distributions of the cross-perplexities over the 1344 rhythm
circles for each model. That is, for each type of model, a box represents the distribution
(over the 1344 rhythm circles), of the cross-perplexity of the model averaged over the 791
test sections.

Table 6.1 shows the maximum difference of average cross-perplexity between two
models. That is, for two modelsM1 andM2, the value computed is:

d∗(M1,M2) = max
0≤i<1344

(
B̃(M2|Ci)− B̃(M1|Ci)

)
(6.8)
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Figure 6.8: Schematic distributions of the average cross-perplexities over the 1344 rhythm
circles for each model.

where Ci is the i-th rhythm circle used to describe the relation between rhythmic
elements.

If the value is negative, it means that the second model, M2, is always better than
the first one, M1, and that the difference between the two cross-perplexities is at least
equal to the absolute value of the cross-perplexity difference. For example, considering
the result on first column and fourth row, the sequential model, Seq, is always better than
the static S&C model with no permutation, S&C0, with a difference in cross-perplexity
of at least 0.35. The values in Table 6.1 are used to quantify the difference that can
be seen on Figure 6.8. If a negative value appears in the table, it means that, even if
the two models have boxes that seem to be at the same level, for all rhythm circle, the
cross-perplexity value of the second model is always lower than the one of the first model.

Table 6.2 complements the results shown on Table 6.1 by giving the number of rhythm
circles for which the first model performs better than the second model. For example,
there are only 3 circles for which the average cross-perplexity of S&C1 is better than the
one of Seq, and looking at the other table (Table 6.1), we can see that, in the best case
when S&C1 “outperforms” Seq, the gain in cross-perplexity value of S&C1 is only of 0.06
which is only a very small difference.

6.4.1.1 Benefit of the Multi-Scale Organisation

A first observation that can be made by observing Figure 6.8 is that the combined multi-
scale models (S&CX , SysX) perform better than the sequential one (Seq). By considering
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Model 2
Seq S&CX SysX S&C0 S&C1 S&C2 S&C3 S&C4 S&C5 Sys0 Sys1 Sys2 Sys3 Sys4 Sys5

M
od

el
1

Seq 0.00 −1.21 −1.30 1.75 0.87 1.68 0.11 0.69 0.38 1.31 1.14 1.35 0.31 1.02 0.09
S&CX 2.26 0.00 0.09 3.34 2.60 3.35 1.61 2.19 1.93 3.05 2.95 3.13 1.94 2.76 1.83
SysX 2.41 0.26 0.00 3.38 2.67 3.46 1.74 2.24 1.99 3.01 2.92 3.19 1.94 2.77 1.87
S&C0 −0.35 −2.18 −2.23 0.00 −0.24 0.48 −0.99 −0.46 −0.75 −0.02 −0.12 0.14 −0.87 −0.17 −0.88
S&C1 0.06 −1.78 −1.82 0.96 0.00 1.05 −0.53 0.02 −0.28 0.66 0.45 0.76 −0.37 0.40 −0.45
S&C2 −0.37 −2.17 −2.24 0.38 −0.14 0.00 −0.90 −0.62 −0.82 −0.04 −0.08 −0.11 −0.83 −0.40 −1.08
S&C3 0.81 −1.10 −1.15 1.83 1.10 1.94 0.00 0.76 0.52 1.52 1.39 1.63 0.39 1.27 0.33
S&C4 0.47 −1.41 −1.51 1.32 0.66 1.31 −0.04 0.00 0.04 0.98 0.86 1.00 −0.04 0.60 −0.25
S&C5 0.66 −1.26 −1.31 1.54 0.83 1.55 0.05 0.44 0.00 1.33 1.12 1.30 0.22 0.95 0.04
Sys0 −0.02 −1.68 −1.73 0.84 0.26 1.02 −0.47 −0.10 −0.32 0.00 0.23 0.36 −0.42 0.10 −0.54
Sys1 −0.07 −1.74 −1.81 0.87 0.21 0.94 −0.54 −0.11 −0.36 0.38 0.00 0.42 −0.47 0.14 −0.64
Sys2 −0.06 −1.82 −1.90 0.80 0.16 0.71 −0.54 −0.25 −0.42 0.25 0.20 0.00 −0.49 −0.12 −0.73
Sys3 0.76 −1.19 −1.28 1.57 0.97 1.79 0.08 0.60 0.35 1.23 1.15 1.43 0.00 1.01 0.18
Sys4 0.19 −1.56 −1.66 1.04 0.45 1.06 −0.27 0.00 −0.16 0.50 0.46 0.47 −0.23 0.00 −0.48
Sys5 0.84 −0.97 −1.10 1.87 1.13 1.79 0.40 0.74 0.45 1.39 1.28 1.40 0.39 1.03 0.00

Table 6.1: Maximum difference of average cross-perplexity on a rhythm circle between
two models. The difference is defined by Equation 6.8.

Model 2
Seq S&CX SysX S&C0 S&C1 S&C2 S&C3 S&C4 S&C5 Sys0 Sys1 Sys2 Sys3 Sys4 Sys5

M
o d

el
1

Seq 0 0 0 1344 1341 1344 27 1016 301 1344 1344 1344 185 1294 17
S&CX 1344 0 63 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344
SysX 1344 1281 0 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344 1344
S&C0 0 0 0 0 0 727 0 0 0 0 0 15 0 0 0
S&C1 3 0 0 1344 0 1344 0 2 0 1144 1097 1279 0 547 0
S&C2 0 0 0 617 0 0 0 0 0 0 0 0 0 0 0
S&C3 1317 0 0 1344 1344 1344 0 1344 1333 1344 1344 1344 1296 1344 629
S&C4 328 0 0 1344 1342 1344 0 0 3 1344 1344 1344 0 1344 0
S&C5 1043 0 0 1344 1344 1344 11 1341 0 1344 1344 1344 346 1344 2
Sys0 0 0 0 1344 200 1344 0 0 0 0 333 1007 0 28 0
Sys1 0 0 0 1344 247 1344 0 0 0 1011 0 1248 0 32 0
Sys2 0 0 0 1329 65 1344 0 0 0 337 96 0 0 0 0
Sys3 1159 0 0 1344 1344 1344 48 1344 998 1344 1344 1344 0 1344 91
Sys4 50 0 0 1344 797 1344 0 0 0 1316 1312 1344 0 0 0
Sys5 1327 0 0 1344 1344 1344 715 1344 1342 1344 1344 1344 1253 1344 0

Table 6.2: Number of circles for which Model 1 performs better than Model 2.

Table 6.2, it appears that there are no circle for which the sequential model outperforms
these two models. Moreover, by considering Table 6.1, it appears that S&CX always
outperforms Seq with a difference of cross-perplexity of at least 1.21 (and even 1.30 for
SysX).

Therefore, the observation that multi-scale models outperform the sequential model in
the chords prediction task seems to extend to rhythm prediction, at least in the framework
we consider for rhythm modelling. Note that the multi-scale models (S&CX and SysX)
keep outperforming the sequential model, even after adding the cost of the combination
model (log2 6/16, see Equation 4.11) to the negative log-likelihood before computing the
cross-perplexity, even though, after such an operation, the minimal difference of cross-
perplexities between S&CX and Seq is reduced to 0.34. This confirms the hypothesis that
the multi-scale point of view greatly impacts in a positive way the modelling performance
of musical sections in terms of prediction.

However, considering each PPP model separately, some of them appear to be less
effective than the sequential one, especially S&C0 and S&C2 which seem to be the models
that have the worst performances (hence the advantage of optimising the PPP for each
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section). Considering Table 6.2, there is no circle for which these two models perform
better than the sequential model. S&C1 performs a bit better but is still almost always
worst than the sequential model. The remaining three permutations display a better
average performance. While S&C4 performs almost at the same level than the sequential
model, S&C3 and S&C5 outperform it for a great majority of rhythm circles (1317 out of
1344). In fact, the PPP corresponding to the best performance is the same as for chords
prediction, namely S&C3 which outperforms S&C5 in most of the cases and wins over
all other PPP for all circles. And in the rare cases where the cross-perplexity of S&C5 is
lower than the one of S&C3, the maximum difference is 0.05, which is, here again, rather
small.

Globally, these results confirm the sense that non-sequential dependencies defined on
a PGLR structure greatly facilitates the prediction of information in music, here in the
case of the rhythm dimension.

Of course, our representation of rhythm is only some approximation of the real rhythm
information, as it reduces 2-beat rhythmic cells to four bits (i.e. each bit corresponds to
a 8th note). This is a choice that has been made to simplify the description of relations
between rhythmic cells. It can be compared to the reduction of chords (of four or more
notes) to major and minor triads, in order to simplify the relations from optimal transport
to rotations on the triadic circle.

Therefore, it may be kept in mind that part of the results reported here are determined
by the type of rhythmic model used in the experiments, which may influence the relative
performance of the various approaches. But still, the advantages that can be expected
from the static S&C model are patent.

6.4.1.2 Relative Importance of the Virtual Element

Another observation that can be made from Figure 6.8, Table 6.1 and Table 6.2 is that
the use of a virtual rhythmic element instead of the primer in the multi-scale description
is not as effective as it was for chords sequence prediction. In fact, SysX and S&CX

display almost the same level of performance, with even a slight advantage of SysX over
S&CX on a majority of circles. Sys0 and Sys2 also outperform their corresponding model
with virtual element (S&C0 and S&C2). Moreover, the single permutation multi-scale
model that reaches the minimal average cross-perplexity is Sys5 which is almost always
better than its equivalent, S&C5.

However, it is worth noting that the best S&Ci permutation model, S&C3 (which was
also the best model for the description of chord sequences) outperforms its equivalent,
Sys3, for a great majority of the rhythm circles. Its performance is also very close to
that of Sys5, as for almost half of the circles, S&C3 has a lower cross-perplexity and the
worst case difference is substantial (Sys5 better than S&C3 by at most 0.40 and S&C3
better than Sys5 by at most 0.33).

Therefore, for rhythm section description, depending on the section or the circle that
is used, the virtual element may have some advantage over the primer as an antecedent
for the contrastive element, but this advantage may disappear when considering a large
number of sections for a given circle. A reason for this may be that, for rhythms, the
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Figure 6.9: Distributions of the cross-perplexities over the 1344 rhythm circles and only
48 circles, alternating for each model.

contrast is more pronounced than for chords. As it is not as often equal to identity, as it
was for chords, it may be harder to predict.

6.4.1.3 Importance of the Rhythm Circle

Another observation that can be made by considering Figure 6.8 is that the choice of the
adequate relation formalism between rhythmic elements is also very important. In fact
for every model, there is a definite difference of average cross-perplexity depending on
the rhythm circle chosen. The difference between the maximal and the minimal cross-
perplexities varies from one model to another, within about 1.5 points of cross-perplexity,
which is a rather strong difference.

Until now, we compared the results of the different models for each of the 1344 rhythm
circles. However, to evaluate the relevance of the bit-symmetry property as a way to
reduce this number to 48, we compared the results obtained on the 48 circles with those
achieved with the entire set of 1344 circles. By doing this, it was possible to evaluate if the
48 circles may be considered as a judicious selection that can reduce the computational
complexity without altering significantly the performances of the model.

Figure 6.9 shows the corresponding results by depicting, for each model, (i) the perfor-
mance obtained on the 1344 circles and (ii) the results on the 48 circles only. The figure
shows clearly that "shortlisting" the subset of 48 circles clearly lowers the upper bound of
the performance interval (i.e. by getting rid of circles that do not perform well), while it
hardly impacts the lower bound (i.e. discarding good circles). In fact if, for some models,
the circle that performed the best is not in the subset of 48 circles, the result using the
best circle in that subset is never very far from optimal. Therefore, the simplification

100



Figure 6.10: Cross-perplexity values obtained by the S&CX model over the 48 circles.

seems to be a good compromise and globally all the average scores improve visibly when
moving from 1344 circles down to 48.

It is also important to notice that the behaviour of a rhythm circle is almost the same
for every possible model. In fact, considering Table 6.2, there are many cases when a
model surpasses another one for a great majority of circles. It implies that the ranking
of the models, for a given circle, is almost always the same. Therefore, the choice of the
good relation formalism is a very important step for the description of rhythmic sections.

As a consequence, we investigated the effect of the choice of circle, over the perfor-
mances of the S&CX model, by focusing on the 48 circles that have 8 bit-symmetries
and observe the distribution of cross-perplexities across them. Figure 6.10 shows the
average cross-perplexity value obtained with the S&CX model associated with each 48
circles. The lowest (i.e. the best) cross-perplexity value (7.41) is obtained with circle
n◦17, which is represented with its associated bit-symmetry axes on Figure 6.11. The
difference in cross-perplexity value between this circle and the other ones ranges between
0.17 (minimum) and 1.47 (maximum).

It is interesting to study the structure of the circle to understand what are its main
features and why these features may be particularly appropriate to describe relations
between rhythmic patterns. Among the observations that can be made, the most striking
one is probably that, for this circle, the bit that has the most symmetries is the first bit,
i.e. the bit that encodes the strong beat of a basic rhythmic element. Therefore, the
reason of the performances associated with this circle may be that it favours regularities
between rhythmic elements, with a primary importance given to the strong beat.

Moreover, considering elements that have their first bit active (i.e. an onset set to 1
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Figure 6.11: The rhythm circle that provides the best cross-perplexity value with the
S&CX model over the 48 circles.

on the first strong beat), each of them has an immediate neighbour which differs only on
the last bit (i.e. presumably the weakest beat of the group). Therefore, these differences
by one step on the circle link elements that are usually considered as close to each other
musicologically. It can be assimilated to the major triad and its relative minor triad that
are neighbours in the triad circle of thirds and considered as very close harmonically.

Finally, by considering the S&CX model and the circle leading to the best performance
(namely n◦17), it is possible to represent the distribution of the PPP providing the best
cross-perplexity over the set of sequences in the corpus. In fact, Figure 6.12 is the
equivalent for rhythm modelling of what Figure 5.9 was for chord sequence modelling,
as both depicts the distribution of the optimal PPP for the S&CX model over the test
sections (but for different musical dimensions).

The main observation that can be made from Figure 6.12 is that, for the rhythm (as
it was the case for chords), PPP3 is the one that performs the best in a majority of cases
(38% for rhythm vs 32% for chords). The ranking of the other permutations is slightly
different (but not so much, when comparing the two histograms). PPP5 comes second
for rhythm, with 22% (versus 16% for chords), then PPP1 and PPP4 with 12% each (vs.
21% and 10% for chords, respectively), then PPP1 with 11% comes just after (18% for
chords) and finally PPP2 with 5% (chords: 3%).
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Figure 6.12: Distributions of the PPP ranking best with the optimal circle for S&CX

over the 791 sections.

The relative similarity of the two distributions illustrates one of the interest of the
PGLR model as a common framework for multi-dimensional musical structure descrip-
tion. It makes it possible to compare different models and different musical dimensions
within a generic scheme. Here, the fact the results are similar (yet not completely cor-
related) over the different dimensions of musical information (rhythm vs. chords), shows
that there may exist similar trends shared by totally distinct musical dimensions, beyond
their different nature at the surface level.

6.4.1.4 Impact of Phase Shift

As developed earlier, the fact that some sections may contain anacruses or late departures
is bound to have a clear impact on the results. Therefore, to investigate this aspect, we
computed, for each section, each model (Seq, SysX , S&CX Sysi, S&Ci) and each circle
(out of the 1344 possibilities), the optimal phase-shift, i.e. the phase-shift corresponding
to the description with the lowest cost using the method described in Section 6.3. Then,
the performance on the prediction task was measured with the phase-compensated shifted
sections.

The results are presented on Figure 6.13.
Rather clearly (but not so surprisingly), for every model, the use of the phase optimisa-

tion drastically improves the prediction performance. For instance, the drop of the mean
average cross-perplexity over the 1344 circles yields a difference of 2.20 cross-perplexity
points for Sys5 and 3.12 for S&CX . This strong trend clearly supports the hypothesis
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Figure 6.13: Distributions of the average cross-perplexities over the 1344 rythmic circles.
The cross-perplexities are computed on the phase-compensated sequences.

that phase-shift compensation is of major importance to model rhythmic sequences. The
incorporation of phase optimisation in the criterion greatly improves the prediction of
rhythm by creating more coherent basic elements that have a higher similarity with one
another.

Another very interesting result is that the difference across circles is much less crucial,
as changing the circle does not affect very much the average cross-perplexity. This aspect
is particularly visible for the S&CX model for which the choice of circle seems to have
almost no more effect on the average cross-perplexity.

Yet, as observed on Figure 6.13 the respective position and ranking of static models
is almost the same as without optimisation, with only a slight difference for Sys5 which
lost its first position to Sys3.

6.4.2 Melody modelling

We briefly recall that, by “melody modelling”, we mean here, the joint modelling of
rhythmic and pitch information in sequences of notes, as exposed above in Section 6.2.2.

Given the additional complexity resulting from this joint modelling, the computation
time for the experiments on melodic sections could have become prohibitive. Therefore,
given the results observed in our previous experiments, we have limited our experiments in
melody modelling to the use of 48 rhythm circles (those that have the 8 bit-symmetries).

Moreover, on a data set like ours (791 sections), the space of melodic relations in its
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Figure 6.14: Distributions of the average cross-perplexities over the 48 rhythm circles for
each model obtained with melodic data.

most general form would be too large to reliably estimate a probability for each relation.
Simplifications of the relation space have been made accordingly.

In fact, if we consider a general melodic relation as defined in Section 6.2.2, it would
belong to the spaceM = J0; 11K4 ∗ R where R is a discrete space of size 16. Therefore,
the total number of possible relations would be 124 ∗ 16 = 331776... Compared to 791
sections in the corpus and only 15 relations per section, i.e. 791 × 15 = 11865 observed
relations, any reliable probability estimation would be out of reach.

As a consequence, we assume that, given a melodic relation, note displacements are
independent from one another, and from the position of the note in the rhythmic pat-
tern. That is, given a melodic relation ((d0, d1, d2, d3), r), the probability distribution
estimated for each pitch class displacement di is the same. This results in the following
approximation:

log2 P (((d0, d1, d2, d3), r)) ≈ 1
4

3∑
i=0

log2 P ((di, r)) (6.9)

under which, the relation space is only of size 12 ∗ 16 = 192 (which clearly makes any
estimation more reliable with 11865 data!) However, this simplification has also some
drawbacks which will be discussed later.

Figure 6.14 represents the distributions of the melodic cross-perplexities over the 48
rhythm circles for each model. For each of them, a box represents the distribution (over
the 48 rhythmic circles) of the average cross-perplexity obtained on the 791 sections.
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A first observation that can be made by observing Figure 6.14 is that the multi-scale
models (SysX , S&CX) now performs only slightly better than the sequential one (Seq).
And when considering the encoding cost of the multi-scale models (log2 6/16 added to the
negative log likelihood), their performances is not significantly different from that of the
Seq model. Sequential and multi-scale models yield approximately the same compression
ability.

Moreover, this figure shows that the sequential model clearly outperforms each of the
single permutation models. But the respective ranking of the single permutation multi-
scale models is similar to the one obtained when considering rhythm only. Indeed, as the
rhythm is a strong basis of the melody, it seems logical that the results are similar.

The fact that the multi-scale models do not show a clear advantage over the sequential
model may be owed to the representation used to create the basic melodic elements and
the method used to estimate the probability of melodic relation. Indeed, the way a
basic element is represented is highly dependent on a sequential process. That is, pitch
information encoded for a rhythmic bit set to 0 is totally determined from the observation
of the last preceding pitch on a rhythmic bit set to 1. This may create an unrelevant
similarity relation in the estimation process.

As a consequence, a basic element with no rhythmic bit set to 1 (in a section containing
mostly silences), may have pitch class values that are similar (or even identical) to the
pitch classes of the direct predecessor of the element in the section, while long range
relation may create more gaps between pitch class values. In such a case, sequential
relations may become simpler to describe than long range relations. This can explain
why the Seq model has similar results to S&CX and SysX .

Therefore, it appears unnecessary to encode and then predict such information that
can be automatically reconstructed on the basis of the pitch information alone, from
the knowledge of onsets set to 1 and using the same completion rules as when encoding
the initial sections. In fact, once the rhythm is predicted (or generated), the only pitch
information that needs to be encoded is the pitch classes that are on bits set to 1.

To measure how the sequential completion affects the results, we computed a modified
NLL score, to evaluate the capacity of a model to predict the relevant information, that
is pitch class displacements associated to active onsets only. Therefore, for each sequence
X = (((p0, p1, p2, p3), r)i)0≤i<n havingm ≤ 4n activated onsets (excluding the primer) and
denoted as p∗0 . . . p∗m−1, we compute a cross-entropy like score, ĤA

M , which is restricted to
pitch displacements on activated onsets. This score is therefore defined by:

ĤA
M(X) = − 1

m

m−1∑
j=0

log2 PM((p∗j , ri)|ΦM(p∗j , ri)) (6.10)

where, ΦM(p∗j , r)) is the pair (pk, rk) with:

• xi = (Pi, ri) such that p∗j is the pitch in Pi associated with the j-th activated onset
of the section

• ΦM(xi) = xk = (Pk, rk)
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Figure 6.15: Distributions of the average extended cross-perplexity score over the 48
rhythm circles for each model obtained with melodic data.

• pk has the same index in Pk than p∗j in Pi

Here, the probability PM((p∗j , r)|ΦM(p∗j , r)) is estimated as the frequency in the learn-
ing corpus of the pair ((p∗j − pk) mod 12, (r − rk) mod 16). Note that ΦM(p∗j , r) may
be related to a non-activated onset, and for this reason it is still important to have an
initial representation with pitch information on non-activated onsets.

This new score provides the likelihood that the model predicts the pitch class displace-
ment and the rhythm change (which can be identity) for newly activated pitch classes. As
there may be a difference of activated locations across sections, this is not a normalised
score for comparing a given model on different sequences. However, this score can be
used to compare different models on the same set of sections : as the number of basic
elements with onset is only dependent on the section and does not change with the model
, the normalisation factor (m) is the same for all models. It therefore provides a score
that is comparable across models.

Figure 6.15 represents the distributions of the modified score, ĤA
M , obtained with the

48 rhythm circles for each model. That is, for each model, a box represents the distri-
bution, over the 48 rhythm circles, of the average score obtained using a rhythm circle
on 736 test sections (out from the 791), as the 55 others were containing no activation
location (i.e. m = 0).

The results corresponding to this new scoring function are depicted on Figure 6.15
and they now show the same tendency than the one observed with chords and rhythm.
By considering only activated onsets, the multi-scale models (SysX and S&CX) greatly
outperform the sequential model (except for the S&C0 model). Here, however, the virtual
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element does not seem to have a positive effect on the performance, but this observation
was not further investigated.

6.4.3 Summary

Results presented in this chapter point towards and strengthen the potential of the PGLR
model as an attractive approach for music structure modelling along several dimensions.

It would then be very interesting to conduct further studies based on this framework,
as there are several aspect addressed in this work that can be further improved or extended
in different directions. Examples of such perspectives are briefly considered in the next
and last chapter of this thesis.
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Chapter 7

Conclusion and Perspectives

7.1 Contributions of this work

The work developed in this manuscript has been studying the formalisation, the exten-
sion and the implementation of the System&Contrast (S&C) model for music structure
modelling in a multi-scale and multi-dimensional framework. Even though the present
work has not yet reached a fully operational status, it opens new tracks for modelling
music structure and offers an attractive paradigm for information processing in music.

One hypothesis behind the S&C model is that, the relations between the elements
forming a musical section and the logical implications that can be induced from them,
provide a relevant description of the structure of this section.

To consolidate this hypothesis, the S&C framework has been investigated, extended
and evaluated in this thesis, along several directions:

• in a multi-scale framework, with the PGLR (Polytopic Graph of Latent Relations)
as a general scheme for describing the systemic structure of regular musical sections,

• for several musical dimensions, i.e. considering chords, rhythm and melody,

• considering a variety of formalisms to represent the relations between musical ele-
ments, based on optimal transport or circular displacements.

As a common background to this work is the Minimum Description Length principle,
which has been called for in multiple occasions for defining cost criteria whose optimisa-
tion has provided structural descriptions of musical contents.

In this framework, the Polytopic Graph of Latent Relations (PGLR) model assumes
that relations of dependency between the elements of regular sections lie on a correspond-
ing polytope (square, cube, tesseract...), and under such an assumption, different models
have been built to describe sections of 16 elements, in particular:

• a sequential model, Seq, which relates each element in the section with its direct
predecessor (bi-gram);
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• six multi-scale tree systemic models, Sysi, which consist in four lower-scale systems
where all elements are described in relation to the primer of the system and one
upper-scale system linking each primer of the lower-scale systems. Each model
is associated to a Primer Preserving Permutation (PPP) which is a permutation
such that the graph formed by the five systems has some particular geometrical
properties when projected on the tesseract.

• six static multi-scale S&C models S&Ci, which consist in four lower-scale S&Cs
and one upper S&C linking each primer of the lower-scale S&C. The difference
with the tree-systemic models comes from the fact that the fourth element in each
S&C is defined in relation to a virtual expected element instead of the primer. Each
multi-scale static S&C model is also associated with a PPP.

• two models, SysX and S&CX , which consider all the PPPs and choose, for a section
X, the PPP that best describes it, by minimising a description cost.

• a dynamic multi-scale S&C model, DynX , which, for each element in a contrastive
position, construct a S&C to describe it as a local surprise.

• a relational multi-scale static S&C, RS&C, which consists in describing lower-scale
S&Cs as S&Cs of relations instead of S&Cs of elements.

Each of these models is associated with an antecedent function formalising the fact that
they are all first-order models (in the sense that each element has only one antecedent).
In some cases, the antecedent may be virtual in the sense that it may not be part of the
elements observed in the section.

For all these models, we have considered different transformations to formalise the
latent relations between an element and its antecedent, and we showed that, within the
PGLR framework, these transformations have to satisfy some properties. On this basis,
we have designed a number of spaces that can be used to describe relations between
chords, rhythms and melodies.

A number of combinations of spaces and models have been tested on a corpus of pop-
music (symbolic data) to evaluate the interest of the multi-scale models. Performance
has been measured using the cross-perplexity, i.e. the ability of a model to predict unseen
sections after a training step, on other sequences.

These experiments have systematically shown an advantage of the multi-scale models
over the sequential approach, with a particularly strong benefit for the modelling of rhyth-
mic and chord sequences. If for rhythm and melody, the introduction of a virtual element
for predicting the contrast does not seem to have a strong advantage, its effectiveness on
chord sequence prediction seems more convincing.

As a consequence, this study has provided strong arguments to support that the
PGLR extension of the S&C model displays interesting properties for music structure
description.

110



7.2 Extensions and perspectives

7.2.1 Improving the model

This thesis has provided and experimented formalisms that can be very useful for music
structure modelling. The proposed scheme results from the combination of two aspects
of music that are related but may be considered separately. The first one is to model the
structure of the dependency relations between the elements of a section, and this resulted
in our case in the PGLR. The second aspect is the formalism effectively used to describe
the relations (or equivalently the transformations) between the elements.

On this second aspect, some solutions have been designed by considering spaces of
relations which form some sort of external algebra (i.e. such that, for any pair of elements,
it is possible to compute the relation between the two and apply it to any other element
of the section). We have proposed and/or designed such spaces of relations for harmonic,
rhythmic and melodic elements, which can be used in this framework.

But there is still a lot to improve along these two aspects. First, the only type of
sections considered in this work are “regular” sections of 16 elements, where each group
of four elements may form a S&C. Therefore, there is still some work needed to generalise
the implementation of the PGLR framework to sections of any size. One promising track
is the approach adopted by Guichaoua [Guichaoua, 2017], where sections of various sizes
are modelled as deformations of regular sections by removing or adding auxiliary elements,
at the expense of some cost which is included in the MDL criteria and integrated in the
optimisation process. In this case, the optimal PGLR (which is no more a n-cube) is a
by-product of the structure modelling process.

A complementary track would be to include explicitly the possibility of triangular
polytopes (and other predetermined structures) for accommodating ternary construc-
tions, or others.

This means that it is necessary to extend the S&C formalism such as illustrated in
Figure 7.1 for sections of size, 3, 6 and 5 elements. Moreover, increasing the number
of possible S&C structures also increases the combinatorial complexity of the problem,
which results in a higher encoding cost of the PGLR model as well as a longer computation
time.

As regards now the definition of adequate spaces for describing relations between
musical elements, a lot can be done to improve and generalise the work that has been
presented here. Not only can one imagine many variants of the formalisms of relations
between chords, rhythmic patterns and melodic motifs, but there are way more properties
that would be useful in order to describe the multiple musical dimensions that may play a
part in the structure of the section. For instance, the instrument playing, the dynamics,
the local metric (which would allow to have basic elements of different size), but also
properties that may be implicit.

Tonality is one of them and, indeed, once the listener hears the beginning of a section
where all elements belong to the same tonality, the most logical outcome would be that
the last part of the section be in the same tonality, resulting in the fact that notes and
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Figure 7.1: A few possible formalisms of S&Cs for non-square sections.

chords that do not belong to this tonality create a strong contrast and mark a radical
change in the harmony (which indeed sometimes happens !)

Coming back to the musical dimensions studied in this thesis, there is still a lot to
do, as for chords, it could be interesting to develop relation formalisms that incorporate
musicological rules such as diatonic displacement instead of simple chromatic displace-
ment. Another promising track for rhythm, would be to find a relation space which has
the right properties (such as rhythm circles) but which does not requires to sample the
rhythmic patterns at fixed instants (which, in our case, creates problems for triplets, for
instance). But, as explained in Section 6.1, there is– for rhythm– no obvious circularity
of the properties like the one of the pitch class space. The only solution presented in this
work for rhythm relation description results in a compression scheme which is not lossless,
i.e. it is not always possible to reconstruct the exact rhythmic section using its PGLR
description. There may therefore be a need there, to improve the relation formalism, in
order to make it lossless.

Finally, all experiments presented in this study focus on a unique stream of data at a
time. Even melody, which involves two dimensions in our approach (rhythm and pitch),
forms in fact a single stream of data (sequences of note onsets and pitches). Modelling
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the multi-stream aspect of music is essential though, to account for the dependencies that
exist between, for instance, tonality, chords and melody, which has not been addressed
in the present work.

In a musical section, the parallel structures of the melodic stream and of the chord
progression may differ at some points but they are still related. Therefore, to improve
the method that has been presented in this work, one may focus on the combination of
the relations formalisms to handle several dimensions at the same time. This could also
be very useful for drum structure description where the kick, the snare, the hit-hat and
the other instruments may each be represented using a separate rhythmic dimension but
may be combined to form a unique description of the musical section.

7.2.2 Music Cognition

Assuming that the S&C model and its PGLR implementations are able to catch some
structural information inside a section, it then appears as a very interesting approach to
analyse and understand some aspects of music construction. In fact, the present work
is strongly related to music cognition and music perception, in the sense that it models
musical contents in relation to some expectation, which may (or may not) play a role in
the musical experience of listeners.

Such an investigation of the perception of listeners in front of a musical section may be
useful to find a clear or formal characterisation of the actual surprise in a musical section.
In fact, considering the contrast as the surprise in the section, it can be fully described
as the relation between the expected element and the heard one. Therefore, having a
perception evaluation of this surprise can help define and refine measures to quantify
“surprise”. The interest of having a measure able to quantify the surprise in a section
is that it can relate musical sections that are totally different in terms of composition
principles by their structure and their degree of complexity.

More generally speaking, our work confirms that music can be viewed as the sequential
presentation of a multi-scale content, which is structured by the distribution of surprises
at specific instants. Extensive perceptual tests (with a proper methodology) would be
extremely useful to further establish this conception. However, a major difficulty to
anticipate in such a study is the entanglement of two types of surprises in music: the
“cognisable” surprise (i.e. the surprise created by the deviation of an element from its
purely logical induction), and the “cultural” surprise (namely the observation of an un-
conventional event in a given context). This duality of the concept of surprise is discussed
in more details in [Bimbot et al., 2016], in relation with different types of information,
and remains to date an open question.

7.2.3 Music Generation

Finally, while most of the work presented in this thesis is focused on theoretical aspects of
the System & Contrast model and experimental validations, we briefly investigated some
simple and direct application of the PGLR model. Considering that we have at hand,
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Figure 7.2: Example of a generated sequence by S&C3 model.

Figure 7.3: A second example of a generated sequence by S&C3 model.

Figure 7.4: A third example of generated sequence by S&C3 model.

Figure 7.5: Example of a generated sequence by Seq model.

from our experiments, some estimations of the probability distributions for the relations
between chords, these can be used for music generation, using a multi-scale framework. In
fact, given a graph of dependencies, each associated relation can be randomly generated
using the distribution that has been computed for that PGLR to describe the structure
of the sections of RWC POP.

Figure 7.2, Figure 7.3, and Figure 7.4 show some examples of chord sequences obtained
with the prevalent static S&C configuration (S&C3) using the trained distribution of
rotations over the circle of triads. Here, only the model, S&C3 and the very first chord
were chosen, all other chords were obtained by randomly assigning relations on the edges
of the PGLR (following the trained distribution). In comparison, Figure 7.5 shows a
chord sequence generated by the sequential model.

These are only examples, and the following comments are therefore informal. But
a first observation that can be made is that the sequence generated by the Seq model
and the sequences obtained using the S&C3 model are very different in term of structure.
And despite some tonal peculiarities (in all sequences), the organisation of the multi-scale
examples may seem more familiar in their organisation. For the sequence generated by
Seq, changes of chords seem more erratic and, unlike S&C3-based sequences, it is quite
difficult to subdivide it into consistent lower-scale groups of chords.

In fact, considering the first example (Figure 7.2), one can easily identify a structural
pattern aabc as the system formed by the last four chords is highly contrastive due to the
occurrence of the Bb chord and something that could be interpreted as a perfect cadence
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in F or a half cadence in Bb (even though this is pure chance, as it is not built in the
model). The modulation may be a bit abrupt as all chords beforehand were in C key and
Bb is the only chord in the full sequence that is not in C. Still, such a sequence could be
considered as a reasonable basis for a composition. Indeed, as the Dm chord belongs both
to C, F and Bb keys, it can be viewed (a posteriori) as a passage chord and it makes the
musical flow rather fluid. In fact, even though these musicological considerations were
not “injected” in the model, we believe that the strong structure of the sequence which
has been generated does help supporting these impressions.

The second sequence (Figure 7.3) feels a bit more unusual and appears as a struc-
ture which could be described by the pattern abcc′ which is not that common in music.
However, except for the Gbm chord at the end of the second bar, which sounds really
off-tonality, the rest of the chord flow sounds plausible (with some medieval-like ending
at the end...) The third example (Figure 7.4) has a form which can be seen as aba′c
where a′ is a transposition of a with a small contrast on its second half. This is a very
conventional pattern. Yet, because of the absence of a tonal model, the chords sequence
tends to ramble in different tonalities in an erratic way. In summary, the chords sequences
generated by the S&C show a priori a good structural coherence as they exhibit, by con-
struction, well-identifiable structural patterns at different scales, which is not the case for
the sequential model.

However, both models are facing the problem of tonal stability. In fact, given the
generation process, some generated chords that occur can very well be out of key. This
problem is well illustrated by the sequence on Figure 7.4 where, in the same section, all
pitch classes except B are present. This problem stems from the fact that models are
first-order models and therefore have no mechanism to constrain tonality. As for chord
relation description, it could be interesting to add such musical constraint in order to
improve the results in generation and get sections that are therefore more consistent.
More generally, an interesting move would be to couple the chord model with a tonality
model (which could itself be sequential... or systemic...)

7.2.4 Broadening the scope

In the work presented in this thesis, the musical dimensions— chords, rhythm and
melody— have been studied separately. A next step of this study would certainly be
to combine these dimensions into a single model. One way to address this problem could
be to find ways to inter-operate the PGLR with Conklin et al.’s Multiple Viewpoints
model [Conklin and Witten, 1995] or the Information Dynamics of Music (IDyOM) ap-
proach designed by Pearce et al. [Pearce and Wiggins, 2012, Sears et al., 2018].

In fact, these approaches consider a stream of event as a stream of object having
multiple features called viewpoints: chromatic pitch, chromatic pitch interval, onset,
duration, inter-onset interval, scale degree, mode, tonic pitch, or even, scale degree thread
first in bar. All these viewpoints can then be used to improve the prediction of the next
musical object. One may use such descriptions of musical objects to consider multiple
dimensions at the same time. For example, one may consider the melodic dimension as
a combination of two viewpoints: chromatic pitch class interval and rhythm pattern.
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However, to be able to use the multiple viewpoint approach along with the PGLR
paradigm, it is necessary to design for each viewpoint a relation formalism which would
have suitable properties as defined in Section 3.3.2, which may require some inventive-
ness1.

A second characteristic of Information Dynamics in Music as developed by Abdallah
et al. [Abdallah and Plumbley, 2009] or Pearce et al. [Pearce and Wiggins, 2012] is that
expectation in the music flow is modelled on a sequential and statistical basis (typically n-
grams). PGLRs, as developed in this thesis, consider an interesting alternative paradigm,
where dependencies between musical units within sections are assumed to be primarily
governed by multi-scale relations (which are therefore not necessarily contiguous) and
where its inner structure is based on its internal relations of analogy.

So it makes it very tempting to investigate how these two conceptions could be merged
in an inter-operable framework, in which statistical information and description complex-
ity could cooperate to a robust modelling of information dynamics, which would jointly
integrate statistical and complexity criteria to describe the evolution and the organisation
of the musical flow. For a lack of time, this has not been addressed within the scope of
the present work, but it appears as one of the most exciting perspective that could follow.

7.2.5 Final Words

One fascinating aspect of music is certainly the incredible number of ways to approach it,
across so many different facets. Hopefully, this journey throughout the multi-scale and
multi-dimensional universe of music structure, will have taken readers of this work into
a new landscape which will enrich and enhance their own approach to music.

Talking of my own experience, I now listen to music with much more open-mindedness,
and with a better ability to understand pieces that I may not have instinctively liked a
few years ago.

Beyond its theoretical contributions and its experimental results, a great achievement
of this work would be not only to inspire colleagues and students for future scientific
work in music data processing and information retrieval but also to create interest with
musicologists and composers, who may find new tools and sources of inspiration from
this emerging framework.

1As an alternative, the PGLR approach could be used in its systemic version to start with, leaving
temporarily out the contrastive part of the model.
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