R. Bar-shalomab, A. Y. Valdivia, and M. D. Blaufox, PET Imaging in Oncology, vol.30, pp.150-185, 2000.

E. De-groot, Optimized dose regimen for whole-body FDG-PET imaging, EJNMMI Research, vol.3, issue.1, p.63, 2013.

B. Huang, M. W. , .. Law, and P. Khong, Whole-Body PET/CT Scanning: Estimation of Radiation Dose and Cancer Risk, Radiology, vol.251, issue.1, p.19251940, 2009.

R. Campagnolo, P. Garderet, and J. Vacher, Tomographie par emetteurs positrons avec mesure de temps de vol, Proc. Commun. au Colloque National sur le Traitement du Signal, 1979.

T. Tomitani, Image Reconstruction and Noise Evaluation in Photon Time-ofFlight Assisted Positron Emission Tomography, IEEE Trans Nucl Sci, vol.28, issue.6, pp.4581-4589, 1981.

. Ter-pogossian, Photon Time-of-flight-assisted Positron Emission Tomography, J Comp As Tom, vol.5, pp.227-239, 1981.
DOI : 10.1097/00004728-198104000-00014

. Ter-pogossian, Super PETT I: A Positron Emission Tomograph Utilizing Photon Time-of-Flight Information, IEEE Trans Med Imag, vol.1, issue.3, pp.179-187, 1982.

M. Yamamoto, D. Ficke, and M. Ter-pogossian, Experimental Assessment of the Gain Achieved by the Utilization of Time-of-Flight Information in a Positron Emission Tomograph "(Super PETT I), IEEE Trans Med Imag, vol.1, issue.3, pp.187-192, 1982.

T. F. Budinger, Time-of-Flight Positron Emission Tomography: Status Relative to Conventional PET, J Nucl Med, vol.24, issue.1, p.73, 1983.

A. Mallon and P. Grangeat, Three-dimensional PET Reconstruction With Time-of-flight Measurement, Phys Med Biol, vol.37, issue.3, pp.717-729, 1992.

V. Digital, P. Philips, and U. S. ,

M. Berger, NIST Standard Reference Database, vol.8

S. Korpar, Study of TOF PET Using Cherenkov Light, Nucl Instrum Meth A, vol.654, issue.1, pp.532-538, 2011.

S. Korpar, Study of TOF PET Using Cherenkov Light, Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics, vol.37, pp.1531-1536, 2011.

S. Korpar, Study of a Cherenkov TOF-PET Module, Vienna Conference on Instrumentation, vol.732, pp.595-598, 2013.
DOI : 10.1016/j.nima.2013.05.137

S. Ziegler, Positron Emission Tomography: Principles, Technology, and Recent Developments, Nucl Phys A, vol.752, pp.679-687, 2005.
DOI : 10.1016/j.nuclphysa.2005.02.067

D. L. Miller and D. Schauer, The ALARA Principle in Medical Imaging, AAPM Newsletter, vol.40, issue.1, pp.38-40, 2015.

M. Larobina, A. Brunetti, and M. Salvatore, Small animal PET: a review of commercially available imaging systems, Curr Med Imag Rev, vol.2, issue.2, 2006.

H. W. De and J. , Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner, Phys Med Biol, vol.52, issue.5, p.1505, 2007.

C. Weirich, Simultaneous PET and MR Imaging with a Newly Developed 3TMR-BrainPET Scanner, CEUR Workshop Proceedings, pp.201-205, 2010.

V. Bettinardi, Physical Performance of the New Hybrid PET/CT Discovery-690, Med Phys, vol.38, issue.10, pp.5394-5411, 2011.

, Cyclotron Produced Radionuclides: Principles and Practice, Technical Reports Series, issue.465, 2008.

G. Saha, Fundamentals of nuclear pharmacy, 2004.

G. Saha, W. Macintyre, and R. Go, Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging, Semin Nucl Med, vol.22, pp.150-161, 1992.

D. L. Bailey, Positron Emission Tomography Basic Sciences, 2005.

B. Bendriem and D. Townsend, The Theory and Practice of 3D PET, 1998.

O. Klein and Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z Physik, vol.52, pp.853-868, 1928.
DOI : 10.1007/bf01366453

J. H. Hubbell, Review of photon interaction cross section data in the medical and biological context, Phys Med Biol, vol.44, pp.1-22, 1999.

E. Hecht, Optics, 2017.

, Geant4 User's Guide for Application Developers, 2013.

A. Levin and C. Moisan, A More Physical Approach to Model the Surface Treatment of Scintillation Counters and its Implementation into DETECT, 1996.

P. Cerenkov, Visible Radiation Produced by Electrons Moving in a Medium with Velocities Exceeding that of Light, Phys Rev, vol.52, p.378, 1937.

V. Jelle, Cerenkov Radiation and Its Applications, Br J Appl Phys, vol.6, pp.227-232, 1955.

G. Collins and V. Reiling, Cerenkov Radiation, Phys Rev, vol.54, pp.499-503, 1938.

, Performance Measurements of Positron Emission Tomographs, 2007.

T. F. Budinger, PET instrumentation: what are the limits?, Sem Nucl Med, vol.28, pp.247-267, 1998.
DOI : 10.1016/s0001-2998(98)80030-5

G. Bolard, Performance comparison of two commercial BGO-based PET/CT scanners using NEMA NU 2-2001, Med Phys, vol.34, pp.2708-2717, 2007.

C. Melcher and J. Schweitzer, Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator, IEEE Trans Nucl Sci, vol.4, pp.502-505, 1992.
DOI : 10.1007/978-3-642-57703-1_8

Y. Hirano, K. Koshino, and H. Iida, Influences of 3d PET scanner components on increased scatter evaluated by a monte carlo simulation, Phys Med Biol, vol.62, issue.10, pp.4017-4030, 2017.

M. Gaens, GPU-accelerated Monte Carlo based scatter correction in brain PET/MR, EJNMMI Phys, vol.1, issue.1, p.32, 2014.
DOI : 10.1186/2197-7364-1-s1-a32

URL : https://ejnmmiphys.springeropen.com/track/pdf/10.1186/2197-7364-1-S1-A32

C. H. Holdsworth, Evaluation of a Monte Carlo scatter correction in clinical 3D PET, 2003 IEEE Nucl Sci Symposium. Conference Record (IEEE Cat. No.03CH37515), vol.4, pp.2540-2544, 2003.

D. Bailey, T. Jones, and T. Spinks, A Method for Measuring the Absolute Sensitivity of Positron Emission Tomographic Scanners, Eur J Nucl Med, vol.18, pp.374-379, 1991.

G. Saha, Basics of PET Imaging Physics, Chemistry, and Regulations, 2010.

A. Braem, Feasibility of a novel design of a high resolution parallax-free compton enhanced pet scanner dedicated to brain research, Phys Med Biol, vol.49, pp.1-16, 2004.

G. Knoll, Radiation detection and measurement, 1989.

D. Yvon, CaLIPSO: A novel detector concept for positron annihilation detection, Proc. 3rd Int Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA) Conf, pp.1-9, 2013.
DOI : 10.1109/animma.2013.6728041

D. Townsend, High-density avalanche chamber (HIDAC) positron camera, J Nucl Med, vol.28, pp.1554-1562, 1987.

A. Jeavons, R. Chandler, and C. A. Dettmar, A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals, IEEE Trans Nucl Sci, vol.46, pp.468-473, 1999.

K. Bolwin, Development of a clear sub-millimeter small animal PET scanner by reducing the influence of the non-collinearity effect, Journal of Instrumentation, vol.12, issue.03, p.3006, 2017.

D. L. Thorek, Cerenkov imaging -a new modality for molecular imaging, Am J Nucl Med Mol Imag, vol.2, issue.2, p.163, 2012.

M. Miyata, Development of TOF-PET using Cherenkov Radiation, J Nucl Sci Technol, vol.43, issue.4, pp.339-343, 2006.

S. E. Brunner, Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET, IEEE Trans Nucl Sci, vol.61, issue.1, pp.443-447, 2014.

, Users Guide V6.2, GATE collaborative documentation wiki, 2013.

K. Iniewski, Medical Imaging. Principles, Detectors, and Electronics, 2009.

, CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction, Phys Med Biol, vol.63, issue.18, p.5505, 2018.

L. A. Shepp and Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography, IEEE Trans Med Imag, vol.1, issue.2, pp.113-122, 1982.

K. V. Slambrouck, Bias Reduction for Low-Statistics PET: Maximum Likelihood Reconstruction With a Modified Poisson Distribution, IEEE Trans Med Imag, vol.34, issue.1, pp.126-136, 2015.

C. Byrne, Iterative algorithms for deblurring and deconvolution with constraints, Inverse Problems, vol.14, issue.6, pp.1455-1467, 1998.
DOI : 10.1088/0266-5611/14/6/006

L. Landweber, An Iteration Formula for Fredholm Integral Equations of the First Kind, Am J of Math, vol.73, pp.1615-624, 1951.

H. Zaidi and B. Hasegawa, Determination of the Attenuation Map in Emission Tomography, J Nucl Med, vol.44, pp.291-315, 2003.

S. R. Cherry, Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care, J Nucl Med, vol.59, issue.1, pp.3-12, 2018.

E. C. Ehman, PET/MRI: Where Might It Replace PET/CT?, International Society for Magnetic Resonance in Medicine, vol.46, issue.5, pp.1247-1262, 2017.
DOI : 10.1002/jmri.25872

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.25872

A. Mehranian and H. Zaidi, Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction, J Nucl Med, p.635641, 2015.

M. Conti, Effect of Randoms on Signal-to-Noise Ratio in TOF PET, IEEE Trans Nucl Sci, vol.53, issue.3, pp.1188-1193, 2006.

S. Vandenberghe, Recent Developments in Time-of-flight PET, EJN-MMI Physics, vol.3, issue.1, pp.1-30, 2016.

P. Lecoq, Pushing the Limits in Time-of-Flight PET Imaging, IEEE Trans Rad Pl Med Sci, vol.1, issue.6, pp.473-485, 2017.

D. Sarrut, A review of the use and potential of the GATE monte carlo simulation code for radiation therapy and dosimetry applications, Med Phys, vol.41, issue.6, p.64301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015819

S. Jan, GATE: a simulation toolkit for PET and SPECT, Phys Med Biol, vol.49, issue.19, pp.4543-4561, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

G. Santin, Evolution of the GATE project: new results and developments, Nuclear Physics B-Proceedings Supplements, vol.172, pp.101-103, 2007.

S. Jan, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys Med Biol, vol.56, issue.4, pp.881-901, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00559709

J. Strydhorst and I. Buvat, Redesign of the GATE PET coincidence sorter, Phys Med Biol, issue.61, pp.522-531, 2016.

I. Martinez-rovira, C. Jouvie, and S. Jan, Implementation of biological washout processes within GATE/Geant4-A Monte Carlo study in the case of carbon therapy treatments, Med Phys, issue.42, pp.1773-1778, 2015.

V. Cuplov, Extension of the gate monte-carlo simulation package to model bioluminescence and fluorescence imaging, J Biomed Opt, vol.19, issue.2, pp.26-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01316110

Q. Pham, Coupling of Geant4-DNA physics models into the GATE Monte Carlo platform: Evaluation of radiation-induced damage for clinical and preclinical radiation therapy beams, Nucl Instr Meth Phys Res Sect B: Beam Interact Mater. Atoms, issue.353, pp.46-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288784

A. Mittone, An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy, J Synchrotron Radiat, issue.59, pp.785-792, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00849320

F. Lamare, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Med Phys, vol.51, issue.4, pp.943-962, 2006.

C. R. Schmidtlein, Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanners, Med Phys, vol.33, issue.1, pp.198-208, 2006.

P. Gonias, Validation of a GATE model for the simulation of the Siemens biographTM 6 PET scanner, Nucl Instr Meth Phys Res A, vol.571, issue.1-2, pp.263-266, 2007.

F. Baldacci, A track length estimator method for dose calculations in low-energy x-ray irradiations: implementation, properties and performance, Med Phys, issue.25, pp.36-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01015846

F. Smekens, Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy, Phys Med Biol, issue.59, pp.7703-7715, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01124424

A. Kantz and R. Hofstadter, Large Scintillators, Cerenkov counters for high energies, Nucleonics (U.S.), vol.12, issue.3, 1954.

E. Dally and R. Hofstadter, A lead fluoride Cerenkov shower counter, Rev Sci Instr, vol.658, issue.39, 1968.

D. Anderson, Y. Kobayashi, M. Yoshimura, and C. Woody, Lead Fluoride: An Ultracompact Cherenkov Radiator for EM Calorimetry, Nucl Instrum Meth Phys Res, vol.290, pp.385-389, 1990.

R. Dolenec, S. Korpar, P. Kri?an, and R. Pestotnik, Cherenkov TOF PET with silicon photomultipliers, Nucl Instr Meth Phys Res Sect A: Acc Spect Det and Assoc, vol.804, pp.127-131, 2015.

, France French Patent N 1 361 037, BD15 034SG, p.12, 2013.

H. Moriceau, Low temperature direct bonding: An attractive technique for heterostructures build-up, low Temperature Processing for Microelectronics and Microsystems Packaging, vol.52, pp.331-341, 2012.

J. G. Timothy, Microchannel plates for photon detection and imaging in space, 2013.

K. Blodgett, Surface conductivity of lead silicate glass after hydrogen treatment, J Am Ceram Soc, vol.34, pp.14-27, 1951.

P. Oschepkov, Application of a continuous secondary electron multiplication for amplifying small currents (Translation), Pribory Tekh Eksper, vol.4, pp.89-91, 1960.

G. Goodrich and W. Wiley, Continuous channel electron multiplier, Rev. Sci. Instrum, vol.33, pp.761-762, 1962.

J. Adams and B. Manley, The mechanism of channel electron multiplication, IEEE Trans Nucl Sci, vol.13, pp.88-89, 1966.

W. Wiley and C. Hendee, Electron multipliers utilizing continuous strip surfaces, IEEE Trans Nucl Sci, vol.9, pp.103-106, 1962.

O. Siegmund, Microchannel plates: recent advances in performance, vol.6686, p.66860, 2007.

D. Washington, Technology of channel plate manufacture, Acta Electronica, vol.14, pp.201-224, 1971.

T. Gys, Micro-channel plates and vacuum detectors, Nucl Instrum Meth A, vol.787, pp.254-260, 2015.

I. ;. Photonis-usa-pennsylvania, . Planacon, and . Datasheet, , 2013.

. Nye-lubricants and . Inc, Nye Datasheet OCF-452: An optical fluid with a refractive index of 1.52 at 589.3 nm

C. Canot, Development of the Fast and Efficient Gamma Detector Using Cherenkov Light for TOF-PET, Proceedings of iWoRiD 2017 International Workshop on Radiation Imaging Detectors, 2017.

. Ketek-gmbh, . Ketek, and . Datasheet,

, Users Guide V7.1, GATE collaborative documentation wiki, 2015.

S. C. Strother, M. E. Casey, and E. J. Hoffman, Measuring PET Scanner Sensitivity: Relating Count-Rates to Image Signal-to-Noise Ratios Using Noise Equivalent Counts, IEEE Trans Nucl Sci, vol.37, pp.783-388, 1990.

C. Rueden, the ImageJ development team at the Laboratory for Optical, and C. I. L. at the

S. Ziegler, NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging, EJNMMI Physics, vol.2, pp.1-14, 2003.
DOI : 10.1186/s40658-015-0122-3

URL : https://ejnmmiphys.springeropen.com/track/pdf/10.1186/s40658-015-0122-3

C. Canot, Détecteur Cherenkov de gamma 511 keV, rapide et efficace, pour la Tomographie par Emission de Positrons, 2018.