Les nouvelles approches de l'analyse multi-paramétrique en cytométrie de masse : caractérisation des cellules réservoirs du VIH

Abstract : Mass cytometry (CMM) has revolutionized the study of cell and phenotypic diversity, significantly increasing the number of markers that can be analyzed simultaneously (41 to date). By making it possible to precisely define the state of the lymphocyte populations, particularly regarding their differentiation, activation and entry into the cell cycle, the CMM has revealed small subsets so far unknown. In this study, the CMM was used to try to better characterize the HIV’s reservoirs. With the introduction in 1996 of Combined Antiretroviral Therapy (ART), HIV infection has shifted from a fatal destiny to a manageable chronic disease with a normal life span through a reduction in active viral replication (the amount of virus is below optimal detection limits). However, if treatment is interrupted, the viral load increases again in the patient due to viable provirus reservoirs located in long-lived cell populations that cannot be eliminated by current treatments. These reservoirs constitute a major obstacle to the eradication of HIV. The best characterized reservoir is that of CD4+ T cells and is mainly hosted in TCM, TTM, TSCM and Tfh. A first study allowed us to evaluate the stages of the cell cycle in association with markers of differentiation, activation and exhaustion, leading to a thorough assessment of the quiescent state of CD4 T cells likely to harbour latent reservoirs of HIV. This broad multiplex analysis demonstrates that some subsets of LTCD4+CD25-HLA-DR- classically considered "at rest" – do actually contain significant amounts of cells in cycling or expressing inhibitory receptors, opening new pathways for redefining CD4 T quiescent cells from peripheral blood. A second study aimed to define CD4+ T Cells populations producing HIV in vivo. We have developed a multiparametric analysis on cells of HIV+ patients under ART and in therapeutic interruption phase (ATI). This study shows that CD3+CD4+CD32high cells express a high level of activation markers and receive important activation signals via cytokines, unlike CD32a- cells. On the other hand, the analysis of HIV-producing LTCD4+ (expressing the p24 capsid protein), allowed us to detect a very small number of p24+ positive cells (less than 0.004% in ATI phase but none before). The phenotype of the producing cells was then highlighted. These are T lymphocytes that do not express CD8, enriched with a factor 4 in TSCM cells, and a factor 2 in TFH. These populations are highly enriched in activated cells co-expressing 3 activation markers (increased by a factor of 20) and are in cycle (Ki67+) and/or over-express immune control molecules (ICPs) with an enrichment of a factor of 500. This allows us to detect producing cells with much higher frequencies in these TCD3+CD8- populations in cycles up to 0.08%, and in G2 phase (2.46%), but also in cells with poly-expression of 4 immune-checkpoints (2.27%). The advent of mass cytometry has exponentially increased the information we could get on a cell. Thanks to this tool, cell cycle identification, in correlation with different phenotypic markers, makes possible the exploration of previously inaccessible information, including the analysis of latent and productive reservoirs of HIV. This work enables us to characterize as precisely as possible these HIV-producing cells, but also the latent cells, and potentially reservoirs of the virus.
Document type :
Theses
Complete list of metadatas

Cited literature [520 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02149652
Contributor : Abes Star <>
Submitted on : Thursday, June 6, 2019 - 3:19:08 PM
Last modification on : Thursday, August 22, 2019 - 10:25:07 AM

File

2018PSLEP038_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02149652, version 1

Collections

Citation

Aurélien Corneau. Les nouvelles approches de l'analyse multi-paramétrique en cytométrie de masse : caractérisation des cellules réservoirs du VIH. Immunologie. PSL Research University, 2018. Français. ⟨NNT : 2018PSLEP038⟩. ⟨tel-02149652⟩

Share

Metrics

Record views

77

Files downloads

81