, Le calcul de la concentration en 14 C dans le combustible avec DARWIN2.3 n'est pas validé expérimentalement aujourd'hui, en l'absence de mesures exploitables. Les principaux freins à cela sont à ce jour une méconnaissance de la concentration, ? Le 14 C est un nucléide formé dans les combustibles

, Nous proposons une expérience permettant de s'affranchir des deux contraintes précédentes, le but étant de valider les sections efficaces des réactions 14, p.et

, Une mesure par scintillation liquide de l'activité en 14 C dans les échantillons irradiés permet de remonter, moyennant la connaissance du flux, au taux de réaction d'activation. La faisabilité de cette expérience a été démontrée pour le réacteur expérimental MINERVE avec un flux neutronique représentatif des REP : la précision cible est atteinte et garantie pour une, O(n,?) contribuant à la formation du 14 C, avec une précision cible de l'ordre de 5%

;. P. Archier and . Archier, COMAC -Nuclear data covariance matrices library for reactor applications, Proc. Int. Conf. PHYSOR, Kyoto, Japon, pp.2014-2015, 2014.

;. P. Archier and . Archier, CONRAD evaluation code: development status and perspectives, Nuclear Data Sheets 118, pp.448-490, 2014.

;. P. Archier and . Archier, Validation of a multi-purpose depletion chain for burnup calculations through TRIPOLI-4 calculations and IFP perturbation method, Proc. Int. Conf. PHYSOR, 2016.

, Arrêté INB, 2012.

(. Asn and O. Qualification, Qualification des outils de calcul scientifique utilisés dans la démonstration de sûreté -1 ère barrière, 2017.

A. Bail, Mesures de rendements isobariques et isotopiques de produits de fission lourds sur le spectromètre de masse Lohengrin, 2009.

;. J. Bair and . Bair, Total neutron yield from the raction 14 C(?,n) 17 O, Physical review, vol.144, p.799, 1966.

;. C. Bastian and . Bastian, AGS, a computer code for uncertainty propagation in time-of-flight cross-section data, Proc. Int. Conf. PHYSOR, 2006.

M. Basunia, Determination of the 151 Eu(n,?) 152m1,g Eu and 153 Eu(n,?) 154 Eu reaction cross-sections at thermal neutron energy, pp.88-90, 2014.

T. Bayes, An essay toward solving a problem in the doctrine of chances, Philos. Trans. Roy. Soc. London, vol.53, pp.370-418, 1763.

J. Benoit, Decay heat of sodium fast reactor: comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package, Proc. Int. PHYSOR, 2012.

D. Bernard, Validation of JEFF-3.1.1 thermal and epithermal induced capture cross-sections through MELUSINE experiment analysis, Nuclear Science Engineering, vol.179, pp.302-312, 2015.

;. D. Bernard-&-bouland, O. Bernard, and . Bouland, Americium-241 phase I: reevaluation for JEFF-3.1.1 and a step forward, Journal of Nuclear Science and Technology, vol.49, pp.132-166, 2012.

;. D. Blanchet and . Blanchet, On core-reflector interface effects in the ASTRID sodium cooled fast reactor, Proc. Int. Conf. ICAPP, 2016.

;. T. Bonner-&-brubaker, W. Bonner, and . Brubaker, The disintegration of nitrogen by neutrons, Physical review, vol.49, p.223, 1936.

D. Boulanger, High Burnup PWR and BWR MOX fuel performance: a review of Belgonucleaire recent experimental programs, Proc. Int. Meeting on LWR Fuel Performance, 2004.

;. A. Gruel and . Gruel, Interpretation of fission product oscillations in the MINERVE reactor, from thermal to epithermal spectra, Nuclear Science and Engineering, vol.169, pp.229-244, 2011.

;. Y. Gupta and . Gupta, Fission fragment yield distribution in the heavy-mass region from the 239 Pu(nth,f) reaction, Physical review C 96, p.14608, 2017.

;. B. Habert and . Habert, Estimation des incertitudes dans l'évaluation des sections efficaces de réactions nucléaires, 2009.

;. B. Habert and . Habert, Retroactive generation of covariance matrix of nuclear model parameters using marginalization techniques, Nuclear Science and Engineering, vol.166, pp.276-287, 2010.

N. Hfaiedh, Determination of the optimized SHEM mesh for neutron transport calculation, Proc. Int. Conf. M&C, 2005.

:. Hudelot, The OSMOSE program for the qualification of integral cross sections of actinides: preliminary results in a PWR-UOS spectrum, Proc. Int. Conf PHYSOR, 2006.

;. V. Huy and . Huy, Contribution to a better knowledge of nuclear data using integral data assimilation for a better characterization of the ASTRID core, 2018.

, Post-Irradiation Examination and in-pile measurement techniques for water reactor fuels, p.1635, 2009.

. Irsn-c14, Carbonne 14 et environnement, Fiche de l'IRSN, 2016.

. Irsn-h3, Tritium et environnement, Fiche de l'IRSN, 2016.

;. J. Irsn-kr85 and . Jaboulay, Analysis of MERCI deacy heat meaurement for PWR UO2 fuel rod, Nuclear Technology, vol.177, pp.73-82, 2012.

M. , Capture and fission with DANCE and NEUANCE, 2014.

;. C. Johnson-&-barschall, H. Johnson, and . Barschall, Interaction of fast neutrons with nitrogen, Physical review, vol.80, p.818, 1950.

V. Jouault, Amélioration de la démarche de vérification et validation du nouveau code neutronique APOLLO3, 2017.

;. P. Koehler-&-graff, S. Koehler, and . Graff, 17 O(n,?) 14 C cross section from 25 meV to approximately 1 MeV, Physical review C, vol.44, p.2788, 1991.

;. G. Krivtchik and . Krivtchik, Analysis of uncertainty propagation in nuclear fuel scenarios, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01131207

;. S. Lahaye and . Lahaye, First Verification and Validation steps of MENDEL release 1.0 cycle code system, Proc. Int. Conf. PHYSOR, Kyoto, Japon, 2014.

;. L. Leal and . Leal, Nuclear data evaluation work at IRSN, 2017.

J. Lebrat, JEFF-3.1.1 nuclear data validation for sodium fast reactors, Journal of nuclear science and Technology, vol.48, pp.620-627, 2011.

:. Lebrat, Analysis of the TRAPU and DOUBLON in PHENIX for the experimental validation of the DARWIN package for fast reactors, Proc. Int. Conf. GLOBAL, 2015.

;. Lebrat and . Lebrat, The use of representativity theory in the depletion calculations of SFR blankets, Annals of Nuclear Energy, vol.101, pp.429-433, 2017.

;. P. Leconte and . Leconte, OSMOSE programme: Validation of actinide nuclear data for LWR applications, pp.2013-2014, 2013.

;. P. Leconte and . Leconte, MAESTRO: an ambitious experimental programme for the improvement of nuclear data of structural, detection, moderating, and absorbing materials -first results for nat V, 55 Mn, 59 Co, and 103 Rh, Proc. Int. Conf. ANNIMA, pp.2013-2015, 2013.

;. P. Leconte and . Leconte, Feedback on 239 Pu and 240 Pu nuclear data and associated covariances through the CERES integral experiments, Proc. Int. Conf. PHYSOR, Kyoto, Japon, 2014.

;. P. Leconte and . Leconte, Thermal neutron activation experiments on Ag, EPJ Web of Conferences, vol.111, p.7001, 2016.

;. P. Leconte and . Leconte, Nuclear data feedback on structural, moderating and absorbing materials through the MAESTRO experimental programme in MINERVE, JEFFDOC-1849, disponible sur www, 2017.

;. Y. Lee and . Lee, TRIPOLI-PEPIN depletion code and its first numerical benchmarks for PWR high-burnup UO2 and MOX spent fuel, Proc. Int. Conf. M&C, 2005.

G. Leinweber, Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01-200 eV, Annals of Nuclear Energy, vol.69, pp.74-89, 2014.

;. J. Lerendegui-marco and . Lerendegui-marco, Radiative neutron capture of 242 Pu in the resonance region at the CERN n_TOF-EAR1 facility, Physical Review C, vol.97, p.24605, 2018.

;. R. Macfarlane and . Macfarlane, The NJOY nuclear data processing system, version, 2012.

;. A. Meister and . Meister, The effective temperature for Doppler broadening of neutron resonances in UO2, Proc. Int. Conf. PHYSOR, 1998.

E. Mendoza, Measurement and analysis of the 243 Am neutron capture cross section at the n_TOF facility at CERN, Physical Review C, vol.90, p.34608, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01074669

R. Mills, Fission Product Yield Evaluation, 1995.

;. G. Morgan and . Morgan, Cross sections for the 14 N(n,p0), (n,?0) and (n,?1) reactions from 0.5 to 15 MeV, Nuclear Science and Engineering, vol.70, pp.163-176, 1979.

;. M. Moxon and . Moxon, The neutron capture cross-section of 151 Eu and 153 Eu in the energy range 0.1 to 100 keV, Annals of Nuclear Energy, vol.3, pp.399-403, 1976.

, S. Mughabghab, Atlas of Neutron Resonances, 2006.

;. D. Muir and . Muir, The contribution of individual correlated parameters to the uncertainty of integral quantities, Physics Research A, vol.644, pp.55-58, 2011.

G. Noguère, Zero variance penalty model for the generation of covariance matrices in integral data assimilation problems, Nuclear Science and Engineering, vol.172, pp.164-179, 2012.

G. Noguère, New resonance shape analysis of the 1 st resonance of Pu240 for thermal reactor application, JEFDOC-1526, disponible sur, 2013.

;. G. Noguère-&-doan, P. H. Noguère, and . Doan, Progress report on Eu154 buildup for DARWIN applications, 2014.

J. Wagemans, Experimental determination of the 14N(n,p)14C reaction cross section for thermal neutrons, Physical review C, vol.61, p.64601, 2000.

;. E. Wigner and . Wigner, Effect of the temperature of the moderator on the velocity distribution of neutrons with numerical calculations for H as moderator, 1994.

;. C. Wong and . Wong, 14 C(p,n) 14 N reaction and the two-body force, Physical review, vol.160, p.769, 1967.

P. Yankwich, Chemicals forms assumed by 14 C produced by neutron irradiation of nitrogenous substances, Journal of chemical physics, vol.14, p.131, 1946.

P. Yankwich, Canadian journal of chemistry, vol.34, p.301, 1956.

;. A. Zoia and . Zoia, Doppler broadening of neutron elastic scattering kernel in TRIPOLI-4®, Annals of Nuclear Energy, vol.54, pp.218-226, 2013.