J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, Electronic Conductivity, Seebeck Coefficient, and Defect Structure of LaFeO3, J. Am. Ceram. Soc, vol.65, pp.363-368, 1982.

M. Kim, S. Park, H. Haneda, J. Tanaka, and S. Shirasaki, High temperature electrical conductivity of La1-xSrxFeO3-? (x>0.5), pp.239-243, 1990.

L. Tai, Structure and electrical properties of La1?xSrxCo1?yFeyO3

, The system La0.8Sr0.2Co1?yFeyO3, vol.76, pp.259-271, 1995.

L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3

, The system La1-xSrxCo0.2Fe0.8O3, vol.76, pp.273-283, 1995.

W. B. Li, J. X. Wang, and H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today, vol.148, pp.81-87, 2009.

M. Zawadzki and J. Trawczy?ski, Synthesis, characterization and catalytic performance of LSCF perovskite for VOC combustion, Catal. Today, vol.176, pp.449-452, 2011.

R. Spinicci, M. Faticanti, P. Marini, S. Rossi, and P. Porta, Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion, J. Mol. Catal. A Chem, vol.197, pp.147-155, 2003.

H. Huang, Y. Liu, W. Tang, and Y. Chen, Catalytic activity of nanometer La1-xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion, Catal. Commun, vol.9, pp.55-59, 2008.

V. Szabo, M. Bassir, A. Van-neste, and S. Kaliaguine, Perovskite-type oxides synthesized by reactive grinding Part II: Catalytic properties of LaCo(1-x)FexO3 in VOC oxidation, Appl. Catal. B Environ, vol.37, pp.175-180, 2002.

M. Alifanti, J. Kirchnerova, B. Delmon, and D. Klvana, Methane and propane combustion Chapitre I. Étude bibliographique over lanthanum transition-metal perovskites: Role of oxygen mobility, Appl. Catal. A

, Gen, vol.262, pp.167-176, 2004.

N. Li, A. Boréave, J. Deloume, and F. Gaillard, Catalytic combustion of toluene over a Sr and Fe substituted LaCoO3 perovskite, Solid State Ionics, vol.179, pp.1396-1400, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00312674

A. Galenda, M. M. Natile, and A. Glisenti, LSCF and Fe2O3/LSCF powders: Interaction with methanol, J. Mol. Catal, vol.282, pp.52-61, 2007.

Y. Teraoka, H. M. Zhang, and S. Furukawa, Oxygen permeation through pervoskite-type oxides, Chem. Lett, vol.14, pp.1473-1746, 1985.

H. J. Bouwmeester and A. J. Burggraaf, Dense Ceramic Membranes for Oxygen Separation, Membr. Scince Technol, vol.4, pp.80013-80014, 1996.

P. V. Hendriksen, P. H. Larsen, M. Mogensen, F. W. Poulsen, and K. Wiik, Prospects and problems of dense oxygen permeable membranes, Catal. Today, vol.56, pp.56-283, 2000.

J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu et al., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Memb. Sci, vol.320, pp.13-41, 2008.

Y. Chi, T. Li, B. Wang, Z. Wu, and K. Li, Morphology, performance and stability of multibore capillary La0.6Sr0.4Co0.2Fe0.8O3-? oxygen transport membranes, J. Memb. Sci, vol.529, pp.224-233, 2017.

Y. S. Lin, Microporous and dense inorganic membranes: Current status and prospective, Sep. Purif. Technol, vol.25, pp.39-55, 2001.

Y. Zeng, Y. S. Lin, and S. L. Swartz, Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, J. Memb. Sci, vol.150, pp.87-98, 1998.

M. A. Habib, R. Ben-mansour, and M. A. , Nemit-allah, Modeling of oxygen permeation through a LSCF ion transport membrane, Comput. Fluids, vol.76, pp.1-10, 2013.

I. Chapitre, Étude bibliographique

S. J. Xu and W. J. Thomson, Oxygen permeation rates through ion-conducting perovskite membranes, Chem. Eng. Sci, vol.54, pp.3839-3850, 1999.

J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, Electrochemical properties of mixed conducting perovskites

L. , -x)M(x)Co(1-y)Fe(y)O(3-?) (M=Sr, vol.143, pp.2722-2729, 1996.

C. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser, and M. R. Pascuccie, Membrane Synthesis, Applications, and Characterization, Dense Perovskite, La1?xAxFe1-yCoyO3-? (A =, vol.81, pp.1437-1444, 1998.

S. J. Xu and W. J. Thomson, Stability of La0.6Sr0.4Co0.2Fe0.8O3-? Perovskite Membranes in Reducing and Nonreducing Environments, Ind. Eng. Chem. Res, vol.37, pp.1290-1299, 1998.

J. E. Elshof, J. M. Bouwmeester, and H. Verweij, Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor, Appl. Catal. A, Gen, vol.130, pp.195-212, 1995.

X. Tan, Y. Liu, and K. Li, Mixed conducting ceramic hollow-fiber membranes for air separation, AIChE J, vol.51, 1991.

B. Zydorczak, Z. Wu, and K. Li, Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3-? hollow fibre membranes for oxygen permeation, Chem. Eng. Sci, vol.64, pp.4383-4888, 2009.

X. Tan, N. Liu, B. Meng, and S. Liu, Morphology control of the perovskite hollow fibre membranes for oxygen separation using different bore fluids, J. Memb. Sci, vol.378, pp.308-318, 2011.

D. Han, J. Sunarso, X. Tan, Z. Yan, L. Liu et al., Optimizing oxygen transport through La0.6Sr0.4Co0.2Fe0.8O3-? hollow fiber by microstructure modification and Ag/Pt catalyst deposition, Energy and Fuels, vol.26, pp.4728-4734, 2012.

H. Wang, S. Werth, T. Schiestel, and J. Caro, Perovskite hollow-fiber membranes for the production of oxygen-enriched air, Angew. Chemie -Int. Ed, vol.44, pp.6906-6909, 2005.

I. Chapitre, Étude bibliographique

H. Jiang, H. Wang, S. Werth, T. Schiestel, and J. Caro, Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor, Angew. Chemie -Int. Ed, vol.47, pp.9341-9344, 2008.

R. An, J. Song, Y. Li, X. Tan, J. Sunarso et al., Bundling strategy to simultaneously improve the mechanical strength and oxygen permeation flux of the individual perovskite hollow fiber membranes, J. Memb. Sci, vol.527, 2017.

J. Zhu, Z. Liu, S. Guo, and W. Jin, Influence of permeation modes on oxygen permeability of the multichannel mixed-conducting hollow fibre membrane, Chem. Eng. Sci, vol.122, 2014.

Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, A perspective on lowtemperature solid oxide fuel cells, Energy Environ. Sci, vol.9, pp.1602-1644, 2016.

D. M. Bierschenk, J. R. Wilson, and S. A. Barnett, High efficiency electrical energy storage using a methane-oxygen solid oxide cell, Energy Environ. Sci, vol.4, pp.944-951, 2011.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy, Renew. Sustain. Energy Rev, vol.15, pp.1-23, 2011.

S. H. Jensen, X. Sun, S. D. Ebbesen, R. Knibbe, and M. Mogensen, Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydrogen Energy, vol.35, pp.9544-9549, 2010.

L. Baqué, A. Caneiro, M. S. Moreno, and A. Serquis, High performance nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochem. Commun, vol.10, pp.1905-1908, 2008.

B. Fan, J. Yan, and X. Yan, The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-? as SOFC cathode material, Solid State Sci, vol.13, pp.1835-1839, 2011.

I. Chapitre, Étude bibliographique

S. P. Jiang, Co,Fe)O3 electrodes, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and, vol.146, pp.997-1000, 2002.

K. Murata, T. Fukui, H. Abe, M. Naito, and K. Nogi, Morphology control of La(Sr)Fe(Co)O3-? cathodes for IT-SOFCs, J. Power Sources, vol.145, pp.257-261, 2005.

H. Tu, Y. Takeda, N. Imanishi, and O. Yamamoto, Ln0.4Sr0.6Co0.8Fe0.2O3?? (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, vol.117, pp.277-281, 1999.

V. V. Kharton, F. Figueiredo, L. Navarro, E. Naumovich, A. Kovalevsky et al., Ceria-based materials for solid oxide fuel cells, J. Mater. Sci, vol.36, pp.1105-1117, 2001.

K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics, vol.52, pp.165-172, 1992.

S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., Highly efficient and robust cathode materials for lowtemperature solid oxide fuel cells: PrBa0.5Sr0.5Co2?xFexO5+?, Sci. Reports, vol.3, 2013.

L. Blum, U. Packbier, I. C. Vinke, and L. G. De-haart, Long-term testing of SOFC stacks at forschungszentrum jülich, Fuel Cells, vol.13, pp.646-653, 2013.

M. A. Peña and J. L. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev, vol.101, pp.1981-2018, 2001.

T. Broux, U. Thèse, and . De-rennes-1, , 2015.

H. E. Shinawi, J. F. Marco, F. J. Berry, and C. Greaves, LaSrCoFeO5 and LaSrCoFeO5.5: new La-Sr-Co-Fe perovskites, J. Mater. Chem, vol.20, p.3253, 2010.

H. Kruidhof, H. Bouwmeester, R. Vdoorn, and A. Burggraaf, Influence of order-disorder Chapitre I. Étude bibliographique transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides, Solid State Ionics, pp.816-822, 1993.

A. Klimkowicz, K. ?wierczek, A. Takasaki, and B. Dabrowski, Oxygen storage capability in Co-and Fe-containing perovskite-type oxides, Solid State Ionics, vol.257, pp.23-28, 2014.

S. Bebelis, V. Kournoutis, A. Mai, and F. Tietz, Cyclic voltammetry of La0.78Sr0.2FeO3-? and La0.78Sr0.2Co0.2Fe0.8O3-? electrodes interfaced to CGO/YSZ, vol.179, pp.1080-1084, 2008.

J. Laurencin, M. Hubert, K. Couturier, T. L. Bihan, P. Cloetens et al., Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations, Electrochim. Acta, vol.174, pp.1299-1316, 2015.

S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev, vol.104, pp.4791-4843, 2004.

S. B. Adler, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes, J. Electrochem. Soc, vol.143, pp.3554-3564, 1996.

S. B. Adler, X. Y. Chen, and J. R. Wilson, Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces, J. Catal, vol.245, pp.91-109, 2007.

Y. Lu, C. R. Kreller, S. B. Adler, J. R. Wilson, S. A. Barnett et al.,

K. Chen and . Thornton, Performance Variability and Degradation in Porous La1-xSrxCoO3-? Electrodes, J. Electrochem. Soc, vol.161, 2014.

S. B. Adler, Mechanism and kinetics of oxygen reduction on porous La1?xSrxCoO3?? electrodes, Solid State Ionics, vol.111, 1998.

M. Kuhn, Y. Fukuda, S. Hashimoto, K. Sato, K. Yashiro et al., Oxygen nonstoichiometry and thermo-chemical stability of perovskite-type

, J. Electrochem. Soc

C. Niedrig, S. F. Wagner, W. Menesklou, and E. Ivers-tiffée, Characterization of oxygendependent stability of selected mixed-conducting perovskite oxides, Solid State Ionics, vol.273, pp.41-45, 2015.

H. J. Bouwmeester, M. W. Otter, and B. A. Boukamp, Oxygen transport in La0.6Sr0.4Co1?yFeyO3??, J. Solid State Electrochem, vol.8, pp.599-605, 2004.

E. Siebert, C. Roux, A. Boréave, F. Gaillard, and P. Vernoux, Oxido-reduction properties of La0.7Sr0.3Co0.8Fe0.2O3?? perovskite oxide catalyst, Solid State Ionics, vol.183, pp.40-47, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602784

F. J. Berry, J. F. Marco, and X. Ren, Reduction properties of phases in the system La0.5Sr0.5MO3 (M = Fe, Co), vol.178, pp.961-969, 2005.

X. J. Chen, S. H. Chan, and K. A. Khor, Cyclic voltammetry of (La,Sr)MnO3 electrode on YSZ substrate, Solid State Ionics, vol.164, pp.17-25, 2003.

V. Roche, A. Hadjar, J. P. Deloume, T. Pagnier, R. Revel et al., Physicochemical origins of electrochemical promotion of LSM/YSZ, Catal. Today, vol.146, pp.266-273, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420433

J. Van-herle and S. Diethelm, Electrochemical characterisation of oxygen nonstoichiometry and transport in mixed conducting oxidesApplication to La0.4Ba0.6Fe0.8Co0.2O3??, Solid State Ionics, vol.174, pp.127-134, 2004.

E. Siebert, A. Boréave, F. Gaillard, and T. Pagnier, Electrochemical and Raman study of La0.7Sr0.3Co0.8Fe0.2O3?? reduction, Solid State Ionics, pp.30-40, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877333

V. C. Kournoutis, F. Tietz, and S. Bebelis, Cyclic voltammetry characterization of a La0.8Sr 0.2Co0.2Fe0.8O3 -? electrode interfaced to CGO/YSZ, Solid State Ionics, vol.197, pp.13-17, 2011.

J. L. Déportes, M. Duclot, P. Fabry, J. Fouletier, A. Hammou et al., Electrochimie des solides, 1994.

?. Çelikbilek, E. Siebert, D. Jauffrès, C. L. Martin, and E. Djurado, Influence of sintering temperature on morphology and electrochemical performance of LSCF/GDC composite films as efficient cathode for SOFC, Electrochim. Acta, vol.246, pp.1248-1258, 2017.

F. Monaco, V. Tezyk, E. Siebert, S. Pylypko, B. Morel et al., Experimental validation of a La0.6Sr0.4Co0.2Fe0.8O3-? electrode model operated in electrolysis mode: Understanding the reaction pathway under anodic polarization, Solid State Ionics, vol.319, pp.234-246, 2018.

D. Marinha, L. Dessemond, J. S. Cronin, J. R. Wilson, S. A. Barnett et al., Microstructural 3D reconstruction and performance evaluation of LSCF cathodes obtained by electrostatic spray deposition, Chem. Mater, vol.23, pp.5340-5348, 2011.

N. Hildenbrand, B. A. Boukamp, P. Nammensma, and D. H. Blank, Improved cathode/electrolyte interface of SOFC, Solid State Ionics, vol.192, pp.12-15, 2011.

F. S. Baumann, J. Fleig, H. U. Habermeier, and J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-? model electrodes, Solid State Ionics, vol.177, pp.1071-1081, 2006.

J. Nielsen, T. Jacobsen, and M. Wandel, Impedance of porous IT-SOFC LSCF:CGO composite cathodes, pp.7963-7974, 2011.

D. Marinha, . Thèse, and . Lepmi, , 2010.

C. Niedrig, S. F. Wagner, W. Menesklou, and E. Ivers-tiffée, Characterization of oxygendependent stability of selected mixed-conducting perovskite oxides, Solid State Ionics, vol.273, pp.41-45, 2015.

B. C. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500C, Solid State Ionics, vol.129, pp.95-110, 2000.

J. Fleig, The Influence of Current Constriction on the Impedance of Polarizable Electrodes, J. Electrochem. Soc, vol.144, p.302, 1997.

T. Kenjo and Y. Kanehira, Influence of the local variation of the polarization resistance on SOFC cathodes, Solid State Ionics

E. Siebert, C. Roux, A. Boréave, F. Gaillard, and P. Vernoux, Oxido-reduction properties of La0.7Sr0.3Co0.8Fe0.2O3?? perovskite oxide catalyst, Solid State Ionics, vol.183, pp.40-47, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602784

C. Montella, J. Diard, and B. L. Gorrec, Cinetique électrochimique, 1996.

, Application note 27, Ohmic drop correction. I Effect on measurements

M. Hubert, J. Laurencin, P. Cloetens, J. C. Silva, F. Lefebvre-joud et al., Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: From synchrotron-based 3D reconstruction to electrochemical modeling, Solid State Ionics, vol.294, pp.90-107, 2016.

S. Y. Vassiliev, E. E. Levin, and V. A. Nikitina, Kinetic analysis of lithium intercalating systems: Cyclic voltammetry, Electrochim. Acta, vol.190, pp.1087-1099, 2016.

S. I. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro et al., Oxygen nonstoichiometry and thermo-chemical stability of La0, Solid State Ionics, vol.181, pp.1713-1719, 2010.

J. Nielsen, P. Hjalmarsson, M. H. Hansen, and P. Blennow, Effect of low temperature insitu sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes, J. Power Sources, vol.245, pp.418-428, 2014.

N. Hildenbrand, B. A. Boukamp, P. Nammensma, and D. H. Blank, Improved cathode/electrolyte interface of SOFC, Solid State Ionics, 2011.

O. Celikbilek, . Thèse, and . Lepmi, , 2016.

M. Kleitz and F. Petitbon, Optimized SOFC electrode microstructure, Solid State Ionics, vol.92, pp.65-74, 1996.

V. C. Kournoutis, F. Tietz, and S. Bebelis, Cyclic voltammetry characterization of a La0.8Sr 0.2Co0.2Fe0.8O3-? electrode interfaced to CGO/YSZ, Solid State Ionics, vol.197, pp.13-17, 2011.

V. C. Kournoutis, F. Tietz, and S. Bebelis, Cyclic voltammetry characterization of a La0.8Sr0.2Co0.2Fe0.8O3-? electrode interfaced to CGO/YSZ, Solid State Ionics

I. Chapitre, Effet de la microstructure sur la voltammétrie cyclique de La 0, pp.13-17, 2011.

Z. Pan, Q. Liu, L. Zhang, X. Zhang, and S. Hwa, Electrode on Its Electrochemical Performance in SOC, vol.162, pp.1316-1323, 2015.

S. P. Badwal, Stability of solid oxide fuel cell components, Solid State Ionics, vol.143, pp.39-46, 2001.

Y. Nishida and S. Itoh, A modeling study of porous composite microstructures for solid oxide fuel cell anodes, Electrochim. Acta, 2011.

G. Delette, J. Laurencin, F. Usseglio-viretta, J. Villanova, P. Bleuet et al., Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions, Int. J. Hydrogen Energy, vol.38, pp.12379-12391, 2013.

A. V. Virkar, J. Chen, C. W. Tanner, and J. W. Kim, Role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells, Solid State Ionics, 2000.

A. Bertei, B. Nucci, and C. Nicolella, Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes

, Eng. Sci, 2013.

J. Laurencin, M. Hubert, K. Couturier, T. L. Bihan, P. Cloetens et al., Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations, Electrochim. Acta, vol.174, pp.1299-1316, 2015.

J. Deseure, Y. Bultel, L. Dessemond, and E. Siebert, Modelling of dc and ac responses of a planar mixed conducting oxygen electrode, Solid State Ionics, vol.176, pp.235-244, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00386446

S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev, vol.104, pp.4791-4843, 2004.

A. Bard and L. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

H. Girault, Electrochimie physique et Analytique, Presses Po, 2001.

S. B. Adler, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes, J. Electrochem. Soc, vol.143, p.3554, 1996.

F. S. Baumann, J. Fleig, H. U. Habermeier, and J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-? model electrodes, Solid State Ionics, vol.177, p.1071, 2006.

I. Chapitre, Effet de la microstructure sur la voltammétrie cyclique de La 0,6 Sr 0,4 Co 0,2 Fe 0,8 O 3-? déposée sur CGO 1081

T. Kawada, J. Suzuki, M. Sase, A. Kaimai, K. Yashiro et al.,

H. Kawamura and . Yugami, Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3?? by an Electrochemical Method, J. Electrochem. Soc, vol.149, p.252, 2002.

J. Van-herle and S. Diethelm, Electrochemical characterisation of oxygen nonstoichiometry and transport in mixed conducting oxidesApplication to La0.4Ba0.6Fe0.8Co0.2O3??, Solid State Ionics, vol.174, pp.127-134, 2004.

J. Jamnik, J. Maier, and S. Pejovnik, A powerful electrical network model for the impedance of mixed conductors, Electrochim. Acta, vol.44, pp.4139-4145, 1999.

F. Berthier, J. Diard, and C. Montella, Numerical solution of coupled systems of ordinary and partial differential equations. Application to the study of electrochemical insertion reactions by linear sweep voltammetry, J. Electroanal. Chem, vol.502, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00418211

J. Maier, On the correlation of macroscopic and microscopic rate constants in solid state chemistry, Solid State Ionics, vol.112, issue.98, pp.152-152, 1998.

Y. Li, K. Gerdes, T. Horita, and X. Liu, Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations, J. Electrochem. Soc, vol.160, 2013.

A. Hammouche, E. Siebert, A. Hammou, M. Kleitz, and A. Caneiro, Electrocatalytic Properties and Nonstoichiometry of the High-Temperature Air Electrode La1-xSrxMnO3, J. Electrochem. Soc, vol.138, pp.1212-1216, 1991.

D. Marinha, L. Dessemond, and E. Djurado, Microstructure-Electrical Properties of Original LSCF Films Deposited by ESD for IT-SOFCs, ECS Trans. 28, pp.93-103, 2010.

I. Kivi, J. Aruvali, K. Kirsimae, A. Heinsaar, G. Nurk et al., Oxygen Stoichiometry in La0.6Sr0.4CoO3-? and La0.6Sr0.4Co0.2Fe0.8O3-? Cathodes under Applied Potential as a Function of Temperature and Oxygen Partial Pressure, Measured by Electrochemical in Situ High-Temperature XRD Method, J. Electrochem. Soc, vol.160, pp.1022-1026, 2013.

I. Chapitre, Effet de la microstructure sur la voltammétrie cyclique de La 0

S. I. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro et al., Thermal and chemical lattice expansibility of La0, Solid State Ionics, vol.186, pp.37-43, 2011.

M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro, and J. Mizusaki, Thermo-chemical lattice expansion in La0.6Sr0.4Co1?yFeyO3??, Solid State Ionics, vol.241, pp.12-16, 2013.

M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro, and J. Mizusaki, Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3??, Solid State Ionics, vol.195, pp.7-15, 2011.

L. Tai, Structure and electrical properties of La1?xSrxCo1?yFeyO3. Part 1. The system La0.8Sr0.2Co1?yFeyO3, Solid State Ionics, vol.76, issue.94, p.244, 1995.

L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3

, The system La1-xSrxCo0.2Fe0.8O3, vol.76, pp.273-283, 1995.

L. Baqué, A. Caneiro, M. S. Moreno, and A. Serquis, High performance nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochem. Commun, vol.10, pp.1905-1908, 2008.

B. Fan, J. Yan, and X. Yan, The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-? as SOFC cathode material, Solid State Sci, vol.13, pp.1835-1839, 2011.

S. P. Jiang, Co,Fe)O3 electrodes, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and, vol.146, pp.1-22, 2002.

K. Murata, T. Fukui, H. Abe, M. Naito, and K. Nogi, Morphology control

L. , Sr)Fe(Co)O3-? cathodes for IT-SOFCs, J. Power Sources, vol.145, pp.257-261, 2005.

K. Yashiro, I. Nakano, M. Kuhn, S. Hashimoto, K. Sato et al., Electrical Conductivity and Oxygen Diffusivity of Perovskite-Type Solid Solution La0.6Sr0.4Co1-yFeyO3-?, ECS Trans, vol.35, pp.1899-1907, 2011.

I. V. Chapitre, Effet de la composition de LSCF déposé sur CGO sur la voltammétrie cyclique

H. J. Bouwmeester, M. W. Otter, and B. A. Boukamp, Oxygen transport in La0.6Sr0.4Co1?yFeyO3??, J. Solid State Electrochem, vol.8, pp.599-605, 2004.

C. Endler-schuck, J. Joos, C. Niedrig, A. Weber, and E. Ivers-tiffée, The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3?? (LSCF) cathodes, Solid State Ionics, vol.269, pp.67-79, 2015.

E. Bucher, C. Gspan, T. Höschen, F. Hofer, and W. Sitte, Oxygen exchange kinetics of La0.6Sr0.4CoO3-? affected by changes of the surface composition due to chromium and silicon poisoning, Solid State Ionics, vol.299, 2017.

R. Ganeshananthan and A. V. Virkar, Measurement of Transport Properties by Conductivity Relaxation on Dense La0.6Sr0.4CoO3-? With and Without Porous Surface Layers, J. Electrochem. Soc, vol.153, 2006.

Y. Li, K. Gerdes, and X. Liu, Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique, J. Electrochem. Soc, vol.160, pp.554-559, 2013.

E. Siebert, C. Roux, A. Boréave, F. Gaillard, and P. Vernoux, Oxido-reduction properties of La0.7Sr0.3Co0.8Fe0.2O3?? perovskite oxide catalyst, Solid State Ionics, vol.183, pp.40-47, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602784

M. Kuhn, Y. Fukuda, S. Hashimoto, K. Sato, K. Yashiro et al., Oxygen nonstoichiometry and thermo-chemical stability of perovskite-type

, J. Electrochem. Soc, vol.160, pp.34-42, 2013.

S. I. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro et al., Oxygen nonstoichiometry and thermo-chemical stability of La0, Solid State Ionics, vol.181, pp.1713-1719, 2010.

H. E. Shinawi, J. F. Marco, F. J. Berry, and C. Greaves, LaSrCoFeO5, LaSrCoFeO5 and LaSrCoFeO5.5: new La-Sr-Co-Fe perovskites, vol.20, pp.3253-3259, 2010.

F. J. Berry, J. F. Marco, and X. Ren, Reduction properties of phases in the system La0.5Sr0.5MO3 (M = Fe, Co), vol.178, pp.961-969, 2005.

A. Klimkowicz, K. ?wierczek, A. Takasaki, and B. Dabrowski, Oxygen storage capability

I. V. Chapitre, Effet de la composition de LSCF déposé sur CGO sur la voltammétrie cyclique 149

, Co-and Fe-containing perovskite-type oxides, vol.257, pp.23-28, 2014.

M. Lehner, R. Tichler, and M. Koppe, Power-to-Gas : Technology and Business Models, 2014.

K. Kendall and M. Kendall, High-Temperature Solid Oxide Fuel Cells for the 21st Century -Fundamentals, Design and Applications, 2016.

C. Graves, S. D. Ebbesen, S. H. Jensen, S. B. Simonsen, and M. B. Mogensen, Eliminating degradation in solid oxide electrochemical cells by reversible operation, Nat Mater, vol.14, pp.239-244, 2015.

S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev, vol.104, pp.4791-4843, 2004.

N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stöver, Materials and manufacturing technologies for solid oxide fuel cells, J. Mater. Sci, vol.45, pp.3109-3135, 2010.

S. Y. Gómez and D. Hotza, Current developments in reversible solid oxide fuel cells, Renew. Sustain. Energy Rev, vol.61, pp.155-174, 2016.

M. A. Laguna-bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, vol.203, pp.4-16, 2012.

J. Laurencin, M. Hubert, D. F. Sanchez, S. Pylypko, M. Morales et al., Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-? /Gd0.1Ce0.9O2-? composite electrode operated under solid oxide electrolysis and fuel cell conditions, Electrochim. Acta, pp.459-476, 2017.

D. The, S. Grieshammer, M. Schroeder, M. Martin, M. Daroukh et al., Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h, J. Power Sources, vol.275, pp.901-911, 2015.

G. Rinaldi, S. Diethelm, E. Oveisi, P. Burdet, J. Van-herle et al., Post-test Analysis on a Solid Oxide Cell Stack Operated for 10,700 Hours in Steam Electrolysis Mode, Fuel Cells, pp.1-9, 2017.

F. Tietz, V. A. Haanappel, A. Mai, J. Mertens, and D. Stöver, Performance of LSCF cathodes in cell tests, J. Power Sources, vol.156, pp.20-22, 2006.

N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, and A. Caneiro, Electrode reaction of Sr1-xLaxCo0.8Fe0.2O3-? with x = 0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600 ? T ? 800
URL : https://hal.archives-ouvertes.fr/hal-00333651

, Solid State Ionics, vol.177, pp.907-913, 2006.

F. S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H. Habermeier et al., Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes, J. Electrochem. Soc, vol.154, p.931, 2007.

N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, L. Mogni et al., Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3-? electrode material, Solid State Ionics, vol.180, pp.1448-1452, 2009.

Z. Zhan, W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim et al., Syngas Production By Co-electrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle, Energy & Fuels, vol.23, pp.3089-3096, 2009.

Y. T. Kim, Z. Jiao, and N. Shikazono, Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction, J. Power Sources, vol.342, pp.787-795, 2017.

S. B. Adler, J. A. Lane, and B. C. Steele, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes, J. Electrochem. Soc, vol.143, p.3554, 1996.

M. Liu, Significance of interfaces in solid-state cells with porous electrodes of mixed ionic-electronic conductors, Solid State Ionics, vol.107, pp.528-534, 1998.

J. Deseure, Y. Bultel, L. Dessemond, and E. Siebert, Modelling of dc and ac responses of a planar mixed conducting oxygen electrode, Solid State Ionics, vol.176, pp.235-244, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00386446

J. Laurencin, M. Hubert, K. Couturier, T. L. Bihan, P. Cloetens et al., Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations, Electrochim. Acta, vol.174, pp.1299-1316, 2015.

M. Hubert, J. Laurencin, P. Cloetens, J. C. Silva, F. Lefebvre-joud et al., Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: From synchrotron-based 3D reconstruction to electrochemical modeling, Solid State Ionics, vol.294, pp.90-107, 2016.

N. J. Simrick, A. Bieberle-hütter, T. M. Ryll, J. A. Kilner, A. Atkinson et al., An investigation of the oxygen reduction reaction mechanism of La0

, Annexe B using patterned thin films, Solid State Ionics, vol.206, pp.7-16, 2012.

M. Prestat, J. F. Koenig, and L. J. Gauckler, Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3-? electrodes: Part I. Reaction model and faradaic impedance, J. Electroceramics, vol.18, pp.87-101, 2007.

J. Fleig, R. Merkle, and J. Maier, The p(O2) dependence of oxygen surface coverage and exchange current density of mixed conducting oxide electrodes: model considerations, Phys. Chem. Chem. Phys, vol.9, p.2713, 2007.

V. Yurkiv, R. Costa, Z. Ilhan, A. Ansar, and W. G. Bessler, Impedance of the surface double layer of LSCF/CGO composite cathodes: An elementary kinetic model, J. Electrochem

. Soc, , vol.161, 2014.

J. E. Mortensen, M. Søgaard, and T. Jacobsen, Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode, J. Electrochem. Soc, vol.161, pp.161-175, 2014.

F. S. Baumann, J. Fleig, H. U. Habermeier, and J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-? model electrodes, Solid State Ionics, vol.177, pp.1071-1081, 2006.

M. Liu, Equivalent Circuit Approximation to Porous Mixed-Conducting Oxygen Electrodes in Solid-State Cells, J. Electrochem. Soc, vol.145, p.142, 1998.

M. Liu and J. Winnick, Fundamental issues in modeling of mixed ionic-electronic conductors (MIECs), vol.118, pp.451-453, 1999.

E. Siebert, F. Boréave, T. Gaillard, and . Pagnier, Electrochemical and Raman study of La0.7Sr0.3Co0.8Fe0.2O3?? reduction, Solid State Ionics, pp.30-40, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877333

H. Wiemhöfer, H. G. Bremes, U. Nigge, and W. Zipprich, Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors, Solid State Ionics, vol.150, pp.63-77, 2002.

G. W. Coffey, L. R. Pederson, and P. C. Rieke, Competition Between Bulk and Surface Pathways in Mixed Ionic Electronic Conducting Oxygen Electrodes, J. Electrochem

. Soc, , vol.150, p.1139, 2003.

E. Siebert, C. Roux, F. Boréave, P. Gaillard, and . Vernoux, Oxido-reduction properties of La0.7Sr0.3Co0.8Fe0.2O3?? perovskite oxide catalyst, Solid State Ionics, vol.183, pp.40-47, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602784

B. Annexe,

S. B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, vol.135, pp.603-612, 2000.

N. Vivet, S. Chupin, E. Estrade, T. Piquero, P. L. Pommier et al., 3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography, J. Power Sources, vol.196, pp.7541-7549, 2011.

E. Lay-grindler, J. Laurencin, J. Villanova, I. Kieffer, F. Usseglio-viretta et al.,

, Solid Oxide Electrolysis Cell (SOEC) Anode after High Temperature Electrolysis Operation, ECS Trans, vol.57, pp.3177-3187, 2013.

J. Laurencin, R. Quey, G. Delette, H. Suhonen, P. Cloetens et al., Characterisation of Solid Oxide Fuel Cell Ni-8YSZ substrate by synchrotron X-ray nano-tomography: From 3D reconstruction to microstructure quantification, J. Power Sources, vol.198, pp.182-189, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858097

Y. Nishida and S. Itoh, A modeling study of porous composite microstructures for solid oxide fuel cell anodes, Electrochim. Acta, vol.56, pp.2792-2800, 2011.

G. Delette, J. Laurencin, F. Usseglio-viretta, J. Villanova, P. Bleuet et al., Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions, Int. J. Hydrogen Energy, vol.38, pp.12379-12391, 2013.

A. V. Virkar, J. Chen, C. W. Tanner, and J. W. Kim, Role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells, Solid State Ionics, vol.131, pp.189-198, 2000.

A. Bertei, B. Nucci, and C. Nicolella, Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chem. Eng

. Sci, , vol.101, pp.175-190, 2013.

J. Rutman and I. Riess, Placement of reference electrode in solid state electrolyte cells, Solid State Ionics, vol.179, pp.913-918, 2008.

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci, vol.52, pp.861-911, 1997.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: Statistical and numerical approach, Int. J. Solids Struct, vol.40, pp.143-147, 2003.

J. P. Diard, B. L. Gorrec, and C. Montella, Handbook of Electrochemical Impedance Spectroscopy, 2017.

J. Jamnik, Treatment of the Impedance of Mixed Conductors -Equivalent Circuit Model and Explicit Approximate Solutions, J. Electrochem. Soc, vol.146, p.4183, 1999.

O. A. Marina, L. R. Pederson, M. C. Williams, G. W. Coffey, K. D. Meinhardt et al.,

E. C. Nguyen and . Thomsen, Electrode Performance in Reversible Solid Oxide Fuel Cells, J. Electrochem. Soc, vol.154, p.452, 2007.

R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev et al., Performance comparison of Fick's, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode, J. Power Sources, vol.122, pp.9-18, 2003.

S. R. Bishop, K. L. Duncan, and E. D. Wachsman, Surface and Bulk Defect Equilibria in Strontium-Doped Lanthanum Cobalt Iron Oxide, J. Electrochem. Soc, vol.156, 2009.

. B1242 and . Doi,

A. M. Svensson, S. Sunde, and K. Ni?ancia?iu, Mathematical Modeling of Oxygen Exchange and Transport in Air-Perovskite-Yttria-Stabilized Zirconia Interface Regions II. Direct Exchange of Oxygen Vacancies, J. Electrochem. Soc, vol.145, p.1390, 1998.

M. Gong, R. S. Gemmen, and X. Liu, Modeling of oxygen reduction mechanism for 3PB and 2PB pathways at solid oxide fuel cell cathode from multi-step charge transfer, J. Power Sources, vol.201, pp.204-218, 2012.

H. J. Bouwmeester, M. W. Otter, and B. A. Boukamp, Oxygen transport in La0.6Sr0.4Co1?yFeyO3??, J. Solid State Electrochem, vol.8, pp.599-605, 2004.

K. Yashiro, I. Nakano, M. Kuhn, S. Hashimoto, K. Sato et al., Electrical Conductivity and Oxygen Diffusivity of Perovskite-Type Solid Solution La0.6Sr0.4Co1-yFeyO3-?, ECS Trans, vol.35, pp.1899-1907, 2011.

M. Sogaard, P. V. Hendriksen, T. Jacobsen, and M. Mogensen, Modelling of the Polarization Resistance from Surface Exchange and Diffusion Coefficient Data, 7th Eur. SOFC Forum, 2006.

V. C. Kournoutis, F. Tietz, and S. Bebelis, Cyclic voltammetry characterization of a La0.8Sr0.2Co0.2Fe0.8O3-? electrode interfaced to CGO/YSZ, Solid State Ionics, vol.197, pp.13-17, 2011.

T. C. Geary, D. Lee, Y. Shao-horn, and S. B. Adler, Nonlinear Impedance Analysis of La0.4Sr0.6Co0.2Fe0.8O3-? Thin Film Oxygen Electrodes, J. Electrochem. Soc, vol.163, pp.1107-1114, 2016.

S. B. Adler, Mechanism and kinetics of oxygen reduction on porous LaSrCoO electrodes, Solid State Ionics, vol.111, issue.98, pp.179-188, 1998.

V. C. Kournoutis, F. Tietz, and S. Bebelis, AC impedance characterisation of a La0.8Sr0.2Co0.2Fe0.8O3-? electrode, Fuel Cells, vol.9, pp.852-860, 2009.

A. Hartley, M. Sahibzada, M. Weston, I. S. Metcalfe, and D. Mantzavinos, La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells, Catal. Today, vol.55, pp.197-204, 2000.

R. Armstrong and B. R. Horrocks, The double layer structure at the metal-solid electrolyte interface, Solid State Ionics, vol.94, pp.181-187, 1997.

A. Mitterdorfer and L. J. Gauckler, Reaction kinetics of the Pt, O2(g)|c-ZrO2 system: precursor-mediated adsorption, Solid State Ionics, vol.120, pp.211-225, 1999.

D. Marinha, L. Dessemond, and E. Djurado, Electrochemical investigation of oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3?? cathodes deposited by Electrostatic Spray Deposition, J. Power Sources, vol.197, pp.80-87, 2012.