K. U. Eckardt, Evolving importance of kidney disease: from subspecialty to global health burden, Lancet, vol.382, issue.9887, pp.158-69, 2013.

N. C. Chesnaye, Mortality risk disparities in children receiving chronic renal replacement therapy for the treatment of end-stage renal disease across Europe: an ESPN-ERA/EDTA registry analysis, Lancet, vol.389, pp.2128-2137, 2017.

S. P. Mcdonald, Long-term survival of children with end-stage renal disease, N Engl J Med, vol.350, issue.26, pp.2654-62, 2004.

M. M. Mitsnefes, Cardiovascular disease in children with chronic kidney disease, J Am Soc Nephrol, vol.23, issue.4, pp.578-85, 2012.

M. Tonelli, Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study, Lancet, vol.380, issue.9844, pp.807-821, 2012.

C. A. Herzog, Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO), Kidney Int, vol.80, issue.6, pp.572-86, 2011.

C. , Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis, Chronic Kidney Disease Prognosis, vol.375, pp.2073-81, 2010.

S. L. Furth, Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease, Clin J Am Soc Nephrol, vol.6, issue.9, pp.2132-2172, 2011.

M. M. Mitsnefes, Changes in left ventricular mass in children and adolescents during chronic dialysis, Pediatr Nephrol, vol.16, issue.4, pp.318-341, 2001.

J. A. Ros,

, Rev Clin Esp, vol.137, issue.1, pp.53-60, 1975.

M. M. Mitsnefes, Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric Nephrology Consortium study, Pediatr Nephrol, vol.21, issue.8, pp.1167-70, 2006.

J. W. Groothoff, Increased arterial stiffness in young adults with end-stage renal disease since childhood, J Am Soc Nephrol, vol.13, issue.12, pp.2953-61, 2002.

W. G. Goodman, Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis, N Engl J Med, vol.342, pp.1478-83, 1920.

J. P. Schanstra, Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides, J Am Soc Nephrol, vol.26, issue.8, pp.1999-2010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01907604

S. Decramer, Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis, Nat Med, vol.12, issue.4, pp.398-400, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122384

C. Delles, Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals, J Hypertens, vol.28, issue.11, pp.2316-2338, 2010.

D. Polzin, Textbook of Veterinary Internal Medicine, vol.2, 1938.

S. A. Brown, D. R. Finco, W. A. Crowell, D. C. Choat, and L. G. Navar, The American journal of physiology, vol.258, p.495, 1990.

S. Decramer, A. Gonzalez-de-peredo, B. Breuil, H. Mischak, B. Monsarrat et al.,

. Schanstra, Molecular & cellular proteomics : MCP, vol.7, p.1850, 2008.

D. M. Good, P. Zurbig, A. Argiles, H. W. Bauer, G. Behrens et al., Valérie BRUNCHAULT STUDY, vol.2

L. Tarnow, D. Theodorescu, V. Thongboonkerd, R. Vanholder, E. M. Weissinger et al., Molecular & cellular proteomics : MCP, vol.9, p.2424, 2010.

J. P. Schanstra and H. Mischak, Pediatric nephrology, vol.30, p.713, 2015.

H. Mischak, A. Vlahou, and J. P. Ioannidis, Clinical biochemistry, vol.46, p.432, 2013.

J. P. Schanstra, P. Zurbig, A. Alkhalaf, A. Argiles, S. J. Bakker et al., Journal of the American Society of Nephrology, vol.26, 1999.

J. Siwy, P. Zurbig, A. Argiles, J. Beige, M. Haubitz et al.,

H. Marx, W. Mischak, J. Mullen, A. Novak, F. Ortiz et al., Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association -European Renal Association, 2016.

S. Forterre, J. Raila, and F. J. Schweigert, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, vol.16, p.271, 2004.

M. B. Nabity, G. E. Lees, L. J. Dangott, R. Cianciolo, J. S. Suchodolski et al., Veterinary clinical pathology / American Society for Veterinary Clinical Pathology, vol.40, p.222, 2011.

D. J. Polzin, The Veterinary clinics of North America. Small animal practice, p.15, 2011.

S. Brown, C. Atkins, R. Bagley, A. Carr, L. Cowgill et al., , vol.21, p.542, 2007.

F. Westgren, C. J. Ley, N. Kampa, and P. Lord, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association, vol.55, p.632, 2014.

D. Theodorescu, E. Schiffer, H. W. Bauer, F. Douwes, F. Eichhorn et al.,

P. Schofer, D. M. Zurbig, J. J. Good, H. Coon, and . Mischak, Proteomics. Clinical applications, vol.2, p.556, 2008.

R. Dissard, J. Klein, C. Caubet, B. Breuil, J. Siwy et al.,

B. Rascalou, M. Payre, W. Buleon, H. Mullen, I. Mischak et al., PloS one, issue.8, p.76703, 2013.

J. Klein, T. Papadopoulos, H. Mischak, and W. Mullen, Electrophoresis, vol.35, p.1060, 2014.

P. Zurbig, M. B. Renfrow, E. Schiffer, J. Novak, M. Walden et al., Electrophoresis, 2006.

Y. Benjamini and Y. Hochberg, Journal of the Royal Statistical Society. Series B (Methodological), vol.57, p.289, 1995.

H. Mischak, R. Apweiler, R. E. Banks, M. Conaway, J. Coon et al.,

M. Fliser, H. Girolami, D. Hermjakob, J. Hochstrasser, B. A. Jankowski et al., Proteomics. Clinical applications, vol.1, 0148.

R. Bennett, E. Bischoff, G. Bongcam-rudloff, J. J. Capasso, P. Coon et al.,

M. Hancock, D. Haubitz, R. R. Hochstrasser, J. P. Holman, J. Ioannidis et al., Science translational medicine, vol.2, pp.46-88, 2010.

M. Dakna, K. Harris, A. Kalousis, S. Carpentier, W. Kolch et al., BMC bioinformatics, p.594, 2010.

J. P. Braun, H. P. Lefebvre, and A. D. Watson, Veterinary clinical pathology / American Society for Veterinary Clinical Pathology, vol.32, p.162, 2003.

K. Rossing, H. Mischak, P. Rossing, J. P. Schanstra, A. Wiseman et al., Proteomics. Clinical applications, vol.2, p.997, 2008.

P. Magalhaes, M. Pejchinovski, K. Markoska, M. Banasik, M. Klinger et al.,

M. Rychlik, A. Rroji, G. Restivo, F. Capasso, A. Bob et al.,

L. Zurbig, F. Pape, C. Ferrario, G. Denis, H. Spasovski et al., , vol.7, p.16915, 2017.

D. Fliser, J. Novak, V. Thongboonkerd, A. Argiles, V. Jankowski et al., References 1. Decramer, S. et al. Urine in clinical proteomics, Journal of the American Society of Nephrology : JASN, vol.18, pp.1850-62, 2007.

M. Frantzi, Developing proteomic biomarkers for bladder cancer: towards clinical application, Nat Rev Urol, vol.12, pp.317-347, 2015.

H. Mischak, Clinical proteomics: A need to define the field and to begin to set adequate standards, Proteomics Clin Appl, vol.1, pp.148-56, 2007.

W. B. Dunn, Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat Protoc, vol.6, pp.1060-83, 2011.

G. A. Gowda and D. Djukovic, Overview of mass spectrometry-based metabolomics: opportunities and challenges, Methods Mol Biol, vol.1198, pp.3-12, 2014.

K. Kim, Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment, PLoS One, vol.9, p.86223, 2014.

C. E. Brown, Urinary proteomic biomarkers to predict cardiovascular events, Proteomics Clin Appl, vol.9, pp.610-617, 2015.

J. Metzger, Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis, Proteomics Clin Appl, vol.5, pp.322-355, 2011.

J. Metzger, Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders, Gut, vol.62, pp.122-152, 2013.

L. U. Zimmerli, Urinary proteomic biomarkers in coronary artery disease, Mol Cell Proteomics, vol.7, pp.290-298, 2008.

S. Decramer, Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis, Nat Med, vol.12, pp.398-400, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122384

J. Klein, Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV), Sci Transl Med, vol.5, pp.198-106, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00853060

J. P. Schanstra, Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides, J Am Soc Nephrol, vol.26, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01907604

B. Schonemeier, Urinary Peptide Analysis Differentiates Pancreatic Cancer From Chronic Pancreatitis, Pancreas, 2016.

M. Posada-ayala, Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease, Kidney Int, vol.85, pp.103-114, 2013.

X. Zhao, Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits, Metabolomics, vol.6, pp.362-374, 2010.

X. Wang, Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease, Mol Cell Proteomics, vol.11, pp.370-80, 2012.

A. H. Emwas, Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review, Metabolomics, vol.11, pp.872-894, 2015.

J. K. Nicholson, Metabolic phenotyping in clinical and surgical environments, Nature, vol.491, pp.384-92, 2012.

R. Ramautar, Capillary Electrophoresis-Mass Spectrometry for Clinical Metabolomics, Adv Clin Chem, vol.74, pp.1-34, 2016.

H. G. Gika, E. Macpherson, G. A. Theodoridis, and I. D. Wilson, Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples, J Chromatogr B Analyt Technol Biomed Life Sci, vol.871, pp.299-305, 2008.

L. Novakova, L. Matysova, and P. Solich, Advantages of application of UPLC in pharmaceutical analysis, Talanta, vol.68, pp.908-926, 2006.

N. Gray, Development of a Rapid Microbore Metabolic Profiling Ultraperformance Liquid Chromatography-Mass Spectrometry Approach for High-Throughput Phenotyping Studies, Anal Chem, vol.88, pp.5742-51, 2016.

N. Gray, M. R. Lewis, R. S. Plumb, I. D. Wilson, and J. K. Nicholson, High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies, J Proteome Res, vol.14, pp.2714-2735, 2015.

R. Ramautar, G. W. Somsen, and G. J. De-jong, CE-MS for metabolomics: developments and applications in the period, Electrophoresis, vol.34, pp.86-98, 2010.

R. Ramautar, G. W. Somsen, and G. J. De-jong, CE-MS for metabolomics: developments and applications in the period 2012-2014, Electrophoresis, vol.36, pp.212-236, 2015.

N. L. Kuehnbaum, A. Kormendi, and P. Britz-mckibbin, Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity, Anal Chem, vol.85, pp.10664-10673, 2013.

R. Ramautar, J. M. Busnel, A. M. Deelder, and O. A. Mayboroda, Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis-mass spectrometry, Anal Chem, vol.84, pp.885-92, 2012.

W. Zhang, T. Hankemeier, and R. Ramautar, Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics, Curr Opin Biotechnol, vol.43, pp.1-7, 2016.

S. Harada, Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in communitydwelling men, Environ Health Prev Med, vol.21, pp.18-26, 2016.

K. Kami, Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry, Metabolomics, vol.9, pp.444-453, 2013.

T. Kimura, Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling, Sci Rep, vol.6, p.26138, 2016.

T. Soga, Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry, Anal Chem, vol.74, pp.2233-2242, 2002.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal Chem, vol.78, pp.779-87, 2006.

J. Li and L. Wong, Emerging patterns and gene expression data, Genome Inform, vol.12, pp.3-13, 2001.

P. Du, W. A. Kibbe, and S. M. Lin, lumi: a pipeline for processing Illumina microarray, Bioinformatics, vol.24, pp.1547-1555, 2008.

C. R. Pelz, M. Kulesz-martin, G. Bagby, and R. C. Sears, Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data, BMC Bioinformatics, vol.9, p.520, 2008.

F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions, 1986.

P. Huber, J. Robust Statistics, 1981.

E. J. Maxwell and D. D. Chen, Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry, Anal Chim Acta, vol.627, pp.25-33, 2008.

, Scientific RepoRts |, vol.6

M. C. Tseng, Y. R. Chen, and G. R. Her, A beveled tip sheath liquid interface for capillary electrophoresis-electrospray ionization-mass spectrometry, Electrophoresis, vol.25, pp.2084-2093, 2004.

A. Gleiss, M. Dakna, H. Mischak, and G. Heinze, Two-group comparisons of zero-inflated intensity values: the choice of test statistic matters, Bioinformatics, vol.31, pp.2310-2317, 2015.

G. Fda-&-industry, Bioanalytical Method Validation, Food and Drug Administration: A Guidance. Centre for Drug Valuation and Research (CDER, 2001.

S. Taylor and K. Pollard, Hypothesis tests for point-mass mixture data with application to 'omics data with many zero values, Stat Appl Genet Mol Biol, vol.8, 2009.

M. Dakna, Addressing the challenge of defining valid proteomic biomarkers and classifiers, BMC Bioinformatics, vol.11, p.594, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00624800

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Statist. Soc. B, vol.57, pp.289-300, 1995.

H. Mischak, Recommendations for biomarker identification and qualification in clinical proteomics, Sci Transl Med, vol.2, pp.46-88, 2010.

P. Begley, Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum, Anal Chem, vol.81, pp.7038-7084, 2009.

E. Zelena, Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum, Anal Chem, vol.81, pp.1357-64, 2009.

G. Y. Chen, H. W. Liao, Y. J. Tseng, I. L. Tsai, and C. H. Kuo, A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry, Anal Chim Acta, vol.864, pp.21-30, 2015.

S. S. Waikar, V. S. Sabbisetti, and J. V. Bonventre, Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate, Kidney Int, vol.78, pp.486-94, 2010.

V. Chadha, U. Garg, and U. S. Alon, Measurement of urinary concentration: a critical appraisal of methodologies, Pediatr Nephrol, vol.16, pp.374-82, 2001.

Y. Wu and L. Li, Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics, Anal Chem, vol.84, pp.10723-10754, 2012.

M. Assfalg, Evidence of different metabolic phenotypes in humans, Proc Natl Acad Sci, vol.105, pp.1420-1424, 2008.

P. Bernini, Individual human phenotypes in metabolic space and time, J Proteome Res, vol.8, pp.4264-71, 2009.

S. Wallner-liebmann, The impact of free or standardized lifestyle and urine sampling protocol on metabolome recognition accuracy, Genes Nutr, vol.10, p.441, 2015.

S. Decramer, J. L. Bascands, and J. P. Schanstra, Non-invasive markers of ureteropelvic junction obstruction, World J Urol, vol.25, pp.457-65, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409592

A. A. Boldyrev, G. Aldini, and W. Derave, Physiology and pathophysiology of carnosine, Physiol Rev, vol.93, pp.1803-1848, 2013.

V. Peters, Intrinsic carnosine metabolism in the human kidney, Amino Acids, vol.47, pp.2541-50, 2015.

H. Kurata, Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats, J Pharmacol Exp Ther, vol.319, pp.640-647, 2006.

E. Riedl, Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats, Cell Physiol Biochem, vol.28, pp.279-88, 2011.

A. Yay, Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats, Biotech Histochem, vol.89, pp.552-559, 2014.

B. Janssen, Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1, Diabetes, vol.54, pp.2320-2327, 2005.

V. Peters, CNDP1 genotype and renal survival in pediatric nephropathies, J Pediatr Endocrinol Metab, 2016.

C. Desveaux, Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers, PLoS Pathog, vol.12, p.1005395, 2016.

G. C. Tseng, M. K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong, Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects, Nucleic Acids Res, vol.29, pp.2549-57, 2001.

D. S. Wishart, HMDB 3.0-The Human Metabolome Database in 2013, Nucleic Acids Res, vol.41, pp.801-808, 2013.

J. Hastings, The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013, Nucleic Acids Res, vol.41, pp.456-63, 2013.

M. Kanehisa, Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res, vol.42, pp.199-205, 2014.

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal Chem, vol.84, pp.283-292, 2012.

D. Meyer, E. Dimitriadou, K. A. Hornik, and L. ;. Tu-wien, E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), 2015.

C. Pontillo and H. Mischak, Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease, Clin Kidney J, vol.10, issue.2, pp.192-201, 2017.

J. Ostergaard and N. H. Heegaard, Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding, Electrophoresis, vol.24, issue.17, pp.2903-2916, 2003.

B. B. Rosenblum, Improved single-strand DNA sizing accuracy in capillary electrophoresis, Nucleic Acids Res, vol.25, pp.3925-3934, 1997.

A. Ric, ssDNA degradation along capillary electrophoresis process using a Tris buffer, Electrophoresis, vol.38, issue.12, pp.1624-1631, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02134843

D. M. Good, Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease, Mol Cell Proteomics, vol.9, issue.11, pp.2424-2461, 2010.

A. Waygood, An introduction to electrical science, 2013.

S. D. Mendonsa and M. T. Bowser, In vitro evolution of functional DNA using capillary electrophoresis, J Am Chem Soc, vol.126, issue.1, pp.20-21, 2004.

J. R. Brody and S. E. Kern, History and principles of conductive media for standard DNA electrophoresis, Anal Biochem, vol.333, issue.1, pp.1-13, 2004.

M. Kanoatov, Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant, Anal Chem, vol.87, issue.5, pp.3099-106, 2015.

T. Ray, A. Mills, and P. Dyson, Tris-dependent oxidative DNA strand scission during electrophoresis, Electrophoresis, vol.16, issue.6, pp.888-94, 1995.

T. Ray, J. Weaden, and P. Dyson, Tris-dependent site-specific cleavage of Streptomyces lividans DNA, FEMS Microbiol Lett, vol.75, issue.2-3, pp.247-52, 1992.

W. O. Tucker, K. T. Shum, and J. A. Tanner, G-quadruplex DNA aptamers and their ligands: structure, function and application, Curr Pharm Des, vol.18, issue.14, pp.2014-2040, 2012.

J. R. Williamson, M. K. Raghuraman, and T. R. Cech, Monovalent cation-induced structure of telomeric DNA: the G-quartet model, Cell, vol.59, issue.5, pp.871-80, 1989.

C. Saintome, The exception that confirms the rule: a higher-order telomeric Gquadruplex structure more stable in sodium than in potassium, Nucleic Acids Res, vol.44, issue.6, pp.2926-2961, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327389

A. Marchand and V. Gabelica, Folding and misfolding pathways of G-quadruplex DNA, Nucleic Acids Res, vol.44, issue.22, pp.10999-11012, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01385240

A. Ambrus, Human telomeric sequence forms a hybrid-type intramolecular Gquadruplex structure with mixed parallel/antiparallel strands in potassium solution, Nucleic Acids Res, vol.34, issue.9, pp.2723-2758, 2006.

C. V. Miduturu and S. K. Silverman, Modulation of DNA constraints that control macromolecular folding, Angew Chem Int Ed Engl, vol.45, issue.12, pp.1918-1939, 2006.

R. Owczarzy, Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations, Biochemistry, vol.47, pp.5336-53, 2008.

M. G. Eggleton, Urine acidity in alcohol diuresis in man, J Physiol, vol.104, issue.3, pp.312-332, 1946.

N. Nakanishi, Low urine pH Is a predictor of chronic kidney disease, Kidney Blood Press Res, vol.35, issue.2, pp.77-81, 2012.

S. Ogawa, Lower urinary pH is useful for predicting renovascular disorder onset in patients with diabetes, BMJ Open Diabetes Res Care, vol.3, issue.1, p.97, 2015.

J. H. Cho, Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-beta1-Induced Epithelial Mesenchymal Transition, PLoS One, vol.11, issue.9, p.162186, 2016.

R. M. Eaton, Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing, Anal Bioanal Chem, vol.407, issue.23, pp.6965-73, 2015.

A. C. Webster, Chronic Kidney Disease, Lancet, vol.389, pp.1238-1252, 2017.

T. T. Mong-hiep, Clinical characteristics and outcomes of children with stage 3-5 chronic kidney disease, Pediatr Nephrol, vol.25, issue.5, pp.935-975, 2010.

F. Becherucci, Chronic kidney disease in children, Clin Kidney J, vol.9, issue.4, pp.583-91, 2016.

C. D. Kaspar, R. Bholah, and T. E. Bunchman, A Review of Pediatric Chronic Kidney Disease, Blood Purif, vol.41, issue.1-3, pp.211-218, 2016.

R. Calderon-margalit, History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease, N Engl J Med, vol.378, issue.5, pp.428-438, 2018.

R. A. Bailey, Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging, BMC Res Notes, vol.7, p.415, 2014.

J. Gatwood, Evidence of chronic kidney disease in veterans with incident diabetes mellitus, PLoS One, vol.13, issue.2, p.192712, 2018.

G. L. Bakris, Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group, Am J Kidney Dis, vol.36, issue.3, pp.646-61, 2000.

G. Cai, Prevalence, awareness, treatment, and control of hypertension in elderly adults with chronic kidney disease: results from the survey of Prevalence, Awareness, and Treatment Rates in Chronic Kidney Disease Patients with Hypertension in China, J Am Geriatr Soc, vol.61, issue.12, pp.2160-2167, 2013.

J. M. Smith, Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant, vol.11, pp.366-73, 2007.

N. Nicolaou, Genetic, environmental, and epigenetic factors involved in CAKUT, Nat Rev Nephrol, vol.11, issue.12, pp.720-751, 2015.

V. P. Capone, Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play, Int J Mol Sci, vol.18, issue.4, 2017.

K. Ginzburg, Acute Stress Disorder Symptoms Predict All-Cause Mortality Among Myocardial Infarction Patients: a 15-Year Longitudinal Study, Ann Behav Med, vol.50, issue.2, pp.177-86, 2016.

I. Seif and E. , Histological patterns of idiopathic steroid resistant nephrotic syndrome in Egyptian children: A single centre study, J Nephropathol, vol.2, issue.1, pp.53-60, 2013.

V. D. D'agati, Pathobiology of focal segmental glomerulosclerosis: new developments, Curr Opin Nephrol Hypertens, vol.21, issue.3, pp.243-50, 2012.

J. A. Kari, Clinico-pathological correlations of congenital and infantile nephrotic syndrome over twenty years, Pediatr Nephrol, vol.29, issue.11, pp.2173-80, 2014.

N. P. Huttunen, Renal pathology in congenital nephrotic syndrome of Finnish type: a quantitative light microscopic study on 50 patients, Int J Pediatr Nephrol, vol.1, issue.1, pp.10-16, 1980.

C. Kitiyakara, P. Eggers, and J. B. Kopp, Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States, Am J Kidney Dis, vol.44, issue.5, pp.815-840, 2004.

Y. C. Liu and J. Chun, Prospects for Precision Medicine in Glomerulonephritis Treatment, Can J Kidney Health Dis, vol.5, p.2054358117753617, 2018.

H. Szymanik-grzelak, Lupus nephritis in children -10 years' experience, Cent Eur J Immunol, vol.41, issue.3, pp.248-254, 2016.

S. E. Wenderfer and J. P. Gaut, Glomerular Diseases in Children, vol.24, pp.364-371, 2017.

G. Ardissino, Epidemiology of chronic renal failure in children: data from the ItalKid project, Pediatrics, vol.111, issue.4, pp.382-389, 2003.

, Annual report, 2008.

M. M. Rodriguez, Congenital Anomalies of the Kidney and the Urinary Tract (CAKUT), Fetal Pediatr Pathol, vol.33, pp.293-320, 2014.

S. P. Mcdonald, Long-term survival of children with end-stage renal disease, N Engl J Med, vol.350, issue.26, pp.2654-62, 2004.

J. W. Groothoff, Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study, Kidney Int, vol.61, issue.2, pp.621-630, 2002.

J. Oh, Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation, vol.106, pp.100-105, 2002.

M. M. Mitsnefes, Cardiovascular disease in children with chronic kidney disease, J Am Soc Nephrol, vol.23, issue.4, pp.578-85, 2012.

E. J. Johnson, B. P. Dieter, and S. A. Marsh, Evidence for distinct effects of exercise in different cardiac hypertrophic disorders, Life Sci, vol.123, pp.100-106, 2015.

A. Drukker, J. Urbach, and J. Glaser, Hypertrophic cardiomyopathy in children with end-stage renal disease and hypertension, Proc Eur Dial Transplant Assoc, vol.18, pp.542-549, 1981.

A. Goren, J. Glaser, and A. Drukker, Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment, Pediatr Nephrol, vol.7, issue.6, pp.725-733, 1993.

M. M. Mitsnefes, Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors, Pediatr Nephrol, vol.14, pp.898-902, 2000.

T. Ulinski, Reduction of left ventricular hypertrophy in children undergoing hemodialysis, Pediatr Nephrol, vol.21, issue.8, pp.1171-1179, 2006.

M. Chinali, Reduced systolic myocardial function in children with chronic renal insufficiency, J Am Soc Nephrol, vol.18, issue.2, pp.593-601, 2007.

M. Chinali, Left Ventricular Mass Indexing in Infants, Children, and Adolescents: A Simplified Approach for the Identification of Left Ventricular Hypertrophy in Clinical Practice, J Pediatr, vol.170, pp.193-201, 2016.

A. C. Boyd, N. B. Schiller, and L. Thomas, Principles of transthoracic echocardiographic evaluation, Nat Rev Cardiol, vol.12, issue.7, pp.426-466, 2015.

J. C. Kupferman, BP control and left ventricular hypertrophy regression in children with CKD, J Am Soc Nephrol, vol.25, issue.1, pp.167-74, 2014.

M. D. Sinha, Blood pressure control and left ventricular mass in children with chronic kidney disease, Clin J Am Soc Nephrol, vol.6, issue.3, pp.543-51, 2011.

M. C. Matteucci, Left ventricular geometry in children with mild to moderate chronic renal insufficiency, J Am Soc Nephrol, vol.17, issue.1, pp.218-244, 2006.

M. M. Mitsnefes, Left ventricular mass and systolic performance in pediatric patients with chronic renal failure, Circulation, vol.107, issue.6, pp.864-872, 2003.

N. Bullington, Left ventricular hypertrophy in pediatric kidney transplant recipients: longterm follow-up study, Pediatr Transplant, vol.10, issue.7, pp.811-816, 2006.

D. J. Weaver and . Jr, Cardiac output and associated left ventricular hypertrophy in pediatric chronic kidney disease, Pediatr Nephrol, vol.24, issue.3, pp.565-70, 2009.

A. C. Wilson, High prevalence of the metabolic syndrome and associated left ventricular hypertrophy in pediatric renal transplant recipients, Pediatr Transplant, vol.14, issue.1, pp.52-60, 2010.

M. Mitsnefes, Masked hypertension associates with left ventricular hypertrophy in children with CKD, J Am Soc Nephrol, vol.21, issue.1, pp.137-181, 2010.

H. Cho, Influence of the Method of Definition on the Prevalence of Left-Ventricular Hypertrophy in Children with Chronic Kidney Disease: Data from the Know-Ped CKD Study. Kidney Blood Press Res, vol.42, pp.406-415, 2017.

R. L. Ruebner, Cardiovascular Disease Risk Factors and Left Ventricular Hypertrophy in Girls and Boys With CKD, Clin J Am Soc Nephrol, vol.11, issue.11, pp.1962-1968, 2016.

R. Vanholder, S. Van-laecke, and G. Glorieux, What is new in uremic toxicity? Pediatr Nephrol, vol.23, pp.1211-1232, 2008.

E. Snauwaert, Concentrations of representative uraemic toxins in a healthy versus nondialysis chronic kidney disease paediatric population, Nephrol Dial Transplant, 2017.

C. Zoccali, Left ventricular hypertrophy, cardiac remodeling and asymmetric dimethylarginine (ADMA) in hemodialysis patients, Kidney Int, vol.62, issue.1, pp.339-384, 2002.

E. Mervaala, Metabolomics in angiotensin II-induced cardiac hypertrophy, Hypertension, vol.55, issue.2, pp.508-523, 2010.

M. Kuwahara, Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats, Biochim Biophys Acta, vol.1842, issue.9, pp.1433-1476, 2014.

S. C. Hung, Indoxyl Sulfate: A Novel Cardiovascular Risk Factor in Chronic Kidney Disease, J Am Heart Assoc, issue.6, 2017.

X. S. Cao, Association of indoxyl sulfate with heart failure among patients on hemodialysis, Clin J Am Soc Nephrol, vol.10, issue.1, pp.111-120, 2015.

M. M. Mitsnefes, FGF23 and Left Ventricular Hypertrophy in Children with CKD, Clin J Am Soc Nephrol, vol.13, issue.1, pp.45-52, 2018.

W. Seeherunvong, Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis, Pediatr Nephrol, vol.27, issue.11, pp.2129-2136, 2012.

K. Smith, Fibroblast growth factor 23, high-sensitivity cardiac troponin, and left ventricular hypertrophy in CKD, Am J Kidney Dis, vol.61, issue.1, pp.67-73, 2013.

A. Grabner, FGF23/FGFR4-mediated left ventricular hypertrophy is reversible, vol.7, p.1993, 2017.
DOI : 10.1038/s41598-017-02068-6

URL : https://www.nature.com/articles/s41598-017-02068-6.pdf

D. Marco and G. S. , Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD, Nephrol Dial Transplant, vol.29, issue.11, pp.2028-2063, 2014.

A. Grabner, Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy, Cell Metab, vol.22, issue.6, pp.1020-1052, 2015.

M. C. Matteucci, Change in cardiac geometry and function in CKD children during strict BP control: a randomized study, Clin J Am Soc Nephrol, vol.8, issue.2, pp.203-213, 2013.

K. P. Morris, Non-cardiac benefits of human recombinant erythropoietin in end stage renal failure and anaemia, Arch Dis Child, vol.69, issue.5, pp.580-586, 1993.

N. C. Chesnaye, Mortality risk in European children with end-stage renal disease on dialysis, Kidney Int, vol.89, issue.6, pp.1355-62, 2016.

B. J. Maron, Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy, J Am Coll Cardiol, vol.41, issue.6, pp.974-80, 2003.

P. Spirito, Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy, N Engl J Med, vol.342, issue.24, pp.1778-85, 2000.

M. L. Griffin, Dilated cardiomyopathy in infants and children, J Am Coll Cardiol, vol.11, issue.1, pp.139-183, 1988.

H. B. Wiles, Prognostic features of children with idiopathic dilated cardiomyopathy, Am J Cardiol, vol.68, issue.13, pp.1372-1378, 1991.

B. M. Chavers, Diagnosis of cardiac disease in pediatric end-stage renal disease, Nephrol Dial Transplant, vol.26, issue.5, pp.1640-1645, 2011.

G. Schlieper, Vascular calcification in chronic kidney disease: an update, Nephrol Dial Transplant, vol.31, issue.1, pp.31-40, 2016.

R. Shroff, D. A. Long, and C. Shanahan, Mechanistic insights into vascular calcification in CKD, J Am Soc Nephrol, vol.24, issue.2, pp.179-89, 2013.

E. M. Urbina, Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association, Hypertension, vol.54, issue.5, pp.919-50, 2009.

E. V. Hidvegi, Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years, J Hypertens, vol.30, issue.12, pp.2314-2335, 2012.

G. S. Reusz, Reference values of pulse wave velocity in healthy children and teenagers. Hypertension, vol.56, pp.217-241, 2010.

D. Thurn, Aortic Pulse Wave Velocity in Healthy Children and Adolescents: Reference Values for the Vicorder Device and Modifying Factors, Am J Hypertens, vol.28, issue.12, pp.1480-1488, 2015.

R. C. Shroff, Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation, vol.118, pp.1748-57, 2008.

K. Wesseling-perry, Early skeletal and biochemical alterations in pediatric chronic kidney disease, Clin J Am Soc Nephrol, vol.7, issue.1, pp.146-52, 2012.

J. Bacchetta, The consequences of chronic kidney disease on bone metabolism and growth in children, Nephrol Dial Transplant, vol.27, issue.8, pp.3063-71, 2012.

L. Rees and R. Shroff, The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr Nephrol, vol.30, pp.2061-71, 2015.

A. L. Durham, Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness, Cardiovasc Res, vol.114, issue.4, pp.590-600, 2018.

J. L. Reynolds, Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD, J Am Soc Nephrol, vol.15, issue.11, pp.2857-67, 2004.

T. Tani, Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease, vol.7, p.2233, 2017.

N. W. Chavkin, Phosphate uptake-independent signaling functions of the type III sodiumdependent phosphate transporter, PiT-1, in vascular smooth muscle cells, Exp Cell Res, vol.333, issue.1, pp.39-48, 2015.

M. Y. Speer, Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis, J Cell Biochem, vol.110, issue.4, pp.935-982, 2010.

M. E. Lin, Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice, Am J Pathol, vol.185, issue.7, pp.1958-69, 2015.

F. G. Graciolli, Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uraemia, Nephrol Dial Transplant, vol.24, issue.5, pp.1416-1437, 2009.

W. Jahnen-dechent, Fetuin-A regulation of calcified matrix metabolism, Circ Res, vol.108, issue.12, pp.1494-509, 2011.

J. Schaible, Serum fetuin-A and vitamin D in children with mild-to-severe chronic kidney disease: a cross-sectional study, Nephrol Dial Transplant, vol.27, issue.3, pp.1107-1120, 2012.

R. C. Shroff, The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis, Nephrol Dial Transplant, vol.23, issue.10, pp.3263-71, 2008.

K. Wesseling-perry and I. B. Salusky, Phosphate binders, vitamin D and calcimimetics in the management of chronic kidney disease-mineral bone disorders (CKD-MBD) in children, Pediatr Nephrol, vol.28, issue.4, pp.617-642, 2013.

R. Shroff, Ergocalciferol supplementation in children with CKD delays the onset of secondary hyperparathyroidism: a randomized trial, Clin J Am Soc Nephrol, vol.7, issue.2, pp.216-239, 2012.

M. B. Aytac, Effect of cholecalciferol on local arterial stiffness and endothelial dysfunction in children with chronic kidney disease, Pediatr Nephrol, vol.31, issue.2, pp.267-77, 2016.

M. M. Mitsnefes, Cardiovascular complications of pediatric chronic kidney disease, Pediatr Nephrol, vol.23, issue.1, pp.27-39, 2008.

R. Ross, The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, vol.362, issue.6423, pp.801-810, 1993.

T. M. Brady, Carotid intima-media thickness in children with CKD: results from the CKiD study, Clin J Am Soc Nephrol, vol.7, issue.12, pp.1930-1937, 2012.

B. M. Chavers and C. A. Herzog, The spectrum of cardiovascular disease in children with predialysis chronic kidney disease, Adv Chronic Kidney Dis, vol.11, issue.3, pp.319-346, 2004.

B. Valérie and . Of,

M. Miyagi, Impact of renal function on coronary plaque composition, Nephrol Dial Transplant, vol.25, issue.1, pp.175-81, 2010.

S. Hayano, Relation between estimated glomerular filtration rate and composition of coronary arterial atherosclerotic plaques, Am J Cardiol, vol.109, issue.8, pp.1131-1137, 2012.

W. G. Goodman, Vascular calcification in chronic kidney disease, Am J Kidney Dis, vol.43, issue.3, pp.572-581, 2004.

T. M. Doherty, Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads, Proc Natl Acad Sci, vol.100, pp.11201-11207, 1920.

N. Alexopoulos and P. Raggi, Calcification in atherosclerosis, Nat Rev Cardiol, vol.6, issue.11, pp.681-689, 2009.

A. E. Odink, The association of arterial stiffness and arterial calcification: the Rotterdam study, J Hum Hypertens, vol.22, issue.3, pp.205-212, 2008.

N. M. Van-popele, Association between arterial stiffness and atherosclerosis: the Rotterdam Study, Stroke, vol.32, issue.2, pp.454-60, 2001.

G. S. Berenson, Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study, N Engl J Med, vol.338, issue.23, pp.1650-1656, 1998.

R. M. Lauer, Coronary heart disease risk factors in school children: the Muscatine study, J Pediatr, vol.86, issue.5, pp.697-706, 1975.

A. C. Wilson, Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease, Clin J Am Soc Nephrol, vol.6, issue.12, pp.2759-65, 2011.

A. Nayir, Arterial changes in paediatric haemodialysis patients undergoing renal transplantation, Nephrol Dial Transplant, vol.16, issue.10, pp.2041-2048, 2001.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, issue.6917, pp.868-74, 2002.

S. L. Goldstein, Acute and chronic inflammation in pediatric patients receiving hemodialysis, J Pediatr, vol.143, issue.5, pp.653-660, 2003.

A. Lindner, Accelerated atherosclerosis in prolonged maintenance hemodialysis, N Engl J Med, vol.290, issue.13, pp.697-701, 1974.

D. S. Milliner, Soft tissue calcification in pediatric patients with end-stage renal disease, Kidney Int, vol.38, issue.5, pp.931-937, 1990.

L. S. Ibels, Arterial calcification and pathology in uremic patients undergoing dialysis, Am J Med, vol.66, issue.5, pp.790-796, 1979.

G. Muteliefu, A. Enomoto, and T. Niwa, Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress, J Ren Nutr, vol.19, issue.1, pp.29-32, 2009.

H. Yamamoto, Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells, Kidney Int, vol.69, issue.10, pp.1780-1785, 2006.

H. Shimizu, ROS and PDGF-beta [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration, Am J Physiol Cell Physiol, vol.297, issue.2, pp.389-96, 2009.

A. Adijiang, Indoxyl sulphate promotes aortic calcification with expression of osteoblastspecific proteins in hypertensive rats, Nephrol Dial Transplant, vol.23, issue.6, pp.1892-901, 2008.

L. Dou, The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair, Kidney Int, vol.65, issue.2, pp.442-51, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01610444

P. Brunet, Does uremia cause vascular dysfunction? Kidney Blood Press Res, vol.34, pp.284-90, 2011.

E. Siomou, Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease, Pediatr Nephrol, vol.26, issue.7, pp.1105-1119, 2011.

A. A. Portale, Disordered FGF23 and mineral metabolism in children with CKD, Clin J Am Soc Nephrol, vol.9, issue.2, pp.344-53, 2014.

A. Yasin, Fibroblast growth factor-23 and calcium phosphate product in young chronic kidney disease patients: a cross-sectional study, BMC Nephrol, vol.14, p.39, 2013.

J. M. Yoon, Dyslipidemia in children and adolescents: when and how to diagnose and treat? Pediatr Gastroenterol Hepatol Nutr, vol.17, pp.85-92, 2014.

, Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation, Am J Kidney Dis, vol.35, issue.6, pp.1-140, 2000.

H. Lu, Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice, J Clin Invest, vol.118, issue.3, pp.984-93, 2008.

H. Lu, Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis, Br J Pharmacol, vol.165, issue.6, pp.2000-2008, 2012.

P. Stenvinkel, R. Pecoits-filho, and B. Lindholm, Coronary artery disease in end-stage renal disease: no longer a simple plumbing problem, J Am Soc Nephrol, vol.14, issue.7, pp.1927-1966, 2003.

B. Schieffer, Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction, Circ Res, vol.87, issue.12, pp.1195-201, 2000.

S. Barra, Early increase of carotid intima-media thickness in children with parental history of premature myocardial infarction, Heart, vol.95, issue.8, pp.642-647, 2009.

M. Litwin, Patient survival and causes of death on hemodialysis and peritoneal dialysis--single-center study, Pediatr Nephrol, vol.16, issue.12, pp.996-1001, 2001.

D. G. O'neill, Chronic kidney disease in dogs in UK veterinary practices: prevalence, risk factors, and survival, J Vet Intern Med, vol.27, issue.4, pp.814-835, 2013.

L. Pelander, Incidence of and mortality from kidney disease in over 600,000 insured Swedish dogs, Vet Rec, vol.176, issue.25, p.656, 2015.

R. E. Cianciolo, S. L. Benali, and L. Aresu, Aging in the Canine Kidney, Vet Pathol, vol.53, issue.2, pp.299-308, 2016.

L. J. Fick, Telomere length correlates with life span of dog breeds, Cell Rep, vol.2, issue.6, pp.1530-1536, 2012.

N. Mizushima, Autophagy: process and function, Genes Dev, vol.21, issue.22, pp.2861-73, 2007.

S. Fougeray and N. Pallet, Mechanisms and biological functions of autophagy in diseased and ageing kidneys, Nat Rev Nephrol, vol.11, issue.1, pp.34-45, 2015.

F. A. Valentijn, Cellular senescence in the aging and diseased kidney, J Cell Commun Signal, vol.12, issue.1, pp.69-82, 2018.

L. J. Debowes, Association of periodontal disease and histologic lesions in multiple organs from 45 dogs, J Vet Dent, vol.13, issue.2, pp.57-60, 1996.

Z. Pavlica, Periodontal disease burden and pathological changes in organs of dogs, J Vet Dent, vol.25, issue.2, pp.97-105, 2008.

L. T. Glickman, Association between chronic azotemic kidney disease and the severity of periodontal disease in dogs, Prev Vet Med, vol.99, issue.2-4, pp.193-200, 2011.

M. A. Fisher and G. W. Taylor, A prediction model for chronic kidney disease includes periodontal disease, J Periodontol, vol.80, issue.1, pp.16-23, 2009.

M. A. Fisher and Z. Q. Ma, The association between periodontitis and high C-reactive protein in adults with chronic kidney disease is not clearly established, J Evid Based Dent Pract, vol.12, issue.3, pp.171-174, 2012.

J. De-loor, Urinary biomarkers for acute kidney injury in dogs, J Vet Intern Med, vol.27, issue.5, pp.998-1010, 2013.

J. V. Bonventre and L. Yang, Cellular pathophysiology of ischemic acute kidney injury, J Clin Invest, vol.121, issue.11, pp.4210-4231, 2011.

D. A. Ferenbach and J. V. Bonventre, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat Rev Nephrol, vol.11, issue.5, pp.264-76, 2015.

C. A. Brown, Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and, J Vet Diagn Invest, vol.19, issue.5, pp.525-556, 2007.

J. Bartges and D. Polzin, Nephrology and Urology of Small Animals, 2011.

M. J. Acierno and M. A. Labato, Hypertension in renal disease: diagnosis and treatment, Clin Tech Small Anim Pract, vol.20, issue.1, pp.23-30, 2005.

H. Syme, Hypertension in small animal kidney disease, Vet Clin North Am Small Anim Pract, vol.41, issue.1, pp.63-89, 2011.

S. L. Benali, X-Linked Hereditary Nephropathy in Navasota Dogs: Clinical Pathology, Morphology, and Gene Expression During Disease Progression, Vet Pathol, vol.53, issue.4, pp.803-815, 2016.

G. E. Lees, A model of autosomal recessive Alport syndrome in English cocker spaniel dogs, Kidney Int, vol.54, issue.3, pp.706-725, 1998.

C. P. Chu, RNA-seq of serial kidney biopsies obtained during progression of chronic kidney disease from dogs with X-linked hereditary nephropathy, vol.7, p.16776, 2017.

J. Kim, Multicystic dysplastic kidney disease in a dog, Can Vet J, vol.52, issue.6, pp.645-654, 2011.

P. Gharahkhani, A non-synonymous mutation in the canine Pkd1 gene is associated with autosomal dominant polycystic kidney disease in Bull Terriers, PLoS One, vol.6, issue.7, p.22455, 2011.

T. Morita, Renal dysplasia with unilateral renal agenesis in a dog, J Comp Pathol, vol.133, issue.1, pp.64-71, 2005.

M. C. Bruder, Renal dysplasia in Beagle dogs: four cases, Toxicol Pathol, vol.38, issue.7, pp.1051-1058, 2010.

M. H. Whiteley, J. S. Bell, and D. A. Rothman, Novel allelic variants in the canine cyclooxgenase-2 (Cox-2) promoter are associated with renal dysplasia in dogs, PLoS One, vol.6, issue.2, p.16684, 2011.

M. H. Whiteley, Allelic variation in the canine Cox-2 promoter causes hypermethylation of the canine Cox-2 promoter in clinical cases of renal dysplasia, Clin Epigenetics, vol.6, issue.1, p.7, 2014.

H. W. Schnaper, Remnant nephron physiology and the progression of chronic kidney disease, Pediatr Nephrol, vol.29, issue.2, pp.193-202, 2014.

D. J. Polzin, Evidence-based step-wise approach to managing chronic kidney disease in dogs and cats, J Vet Emerg Crit Care, issue.23, pp.205-220, 2013.

L. M. Harjes, Fibroblast Growth Factor-23 Concentration in Dogs with Chronic Kidney Disease, J Vet Intern Med, vol.31, issue.3, pp.784-790, 2017.

A. Shipov, The Influence of Chronic Kidney Disease on the Structural and Mechanical Properties of Canine Bone, J Vet Intern Med, vol.32, issue.1, pp.280-287, 2018.

C. C. Marone, Effects of metabolic alkalosis on calcium excretion in the conscious dog, J Lab Clin Med, vol.101, issue.2, pp.264-73, 1983.

R. A. Sutton, N. L. Wong, and J. H. Dirks, Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney, Kidney Int, vol.15, issue.5, pp.520-553, 1979.

J. A. Kraut and N. E. Madias, Consequences and therapy of the metabolic acidosis of chronic kidney disease, Pediatr Nephrol, vol.26, issue.1, pp.19-28, 2011.

J. L. Pouchelon, Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement, J Small Anim Pract, vol.56, issue.9, pp.537-52, 2015.

A. P. Nicolle, Azotemia and glomerular filtration rate in dogs with chronic valvular disease, J Vet Intern Med, vol.21, issue.5, pp.943-952, 2007.

X. Tang, Renal denervation decreases susceptibility of the heart to ventricular fibrillation in a canine model of chronic kidney disease, Exp Physiol, vol.102, issue.11, pp.1414-1423, 2017.

E. H. Fiocchi, The Use of Darbepoetin to Stimulate Erythropoiesis in the Treatment of Anemia of Chronic Kidney Disease in Dogs, J Vet Intern Med, vol.31, issue.2, pp.476-485, 2017.

R. Relford, J. Robertson, and C. Clements, Symmetric Dimethylarginine: Improving the Diagnosis and Staging of Chronic Kidney Disease in Small Animals, Vet Clin North Am Small Anim Pract, vol.46, issue.6, pp.941-60, 2016.

J. M. Babyak, Prevalence of Elevated Serum Creatinine Concentration in Dogs Presenting to a Veterinary Academic Medical Center, J Vet Intern Med, vol.31, issue.6, pp.1757-1764, 2010.

V. Hendy-willson, V. E. , and B. M. Pressler, An overview of glomerular filtration rate testing in dogs and cats, Vet J, vol.188, issue.2, pp.156-65, 2011.

H. W. Tvedten and A. Noren, Comparison of a Schmidt and Haensch refractometer and an Atago PAL-USG Cat refractometer for determination of urine specific gravity in dogs and cats, Vet Clin Pathol, vol.43, issue.1, pp.63-69, 2014.

H. W. Tvedten, H. Ouchterlony, and I. E. Lilliehook, Comparison of specific gravity analysis of feline and canine urine, using five refractometers, to pycnometric analysis and total solids by drying, N Z Vet J, vol.63, issue.5, pp.254-263, 2015.

Y. Miyagawa, Development of correction formulas for canine and feline urine specific gravity measured using a Japanese refractometer, J Vet Med Sci, vol.73, issue.5, pp.679-81, 2011.

M. D. Willard and H. Tvedten, Small animal clinical diagnosis by laboratory methods, 2012.

M. Rishniw and R. Bicalho, Factors affecting urine specific gravity in apparently healthy cats presenting to first opinion practice for routine evaluation, J Feline Med Surg, vol.17, issue.4, pp.329-366, 2015.

S. A. Brown, Single-nephron adaptations to partial renal ablation in the dog, Am J Physiol, vol.258, issue.3, pp.495-503, 1990.

G. F. Grauer, Effects of enalapril versus placebo as a treatment for canine idiopathic glomerulonephritis, J Vet Intern Med, vol.14, issue.5, pp.526-559, 2000.

J. N. King, Effects of Benazepril on Survival of Dogs with Chronic Kidney Disease: A Multicenter, Randomized, Blinded, Placebo-Controlled Clinical Trial, J Vet Intern Med, vol.31, issue.4, pp.1113-1122, 2017.

A. Yalcin and M. Cetin, Electrophoretic separation of urine proteins of healthy dogs and dogs with nephropathy and detection of some urine proteins in dogs using immunoblotting, vol.155, pp.104-112, 2004.

L. Harley and C. Langston, Proteinuria in dogs and cats, Can Vet J, vol.53, issue.6, pp.631-639, 2012.

G. E. Lees, Assessment and management of proteinuria in dogs and cats: 2004 ACVIM Forum Consensus Statement (small animal), J Vet Intern Med, vol.19, issue.3, pp.377-85, 2005.

M. E. Duffy, A. Specht, and R. C. Hill, Comparison between Urine Protein: Creatinine Ratios of Samples Obtained from Dogs in Home and Hospital Settings, J Vet Intern Med, vol.29, issue.4, pp.1029-1064, 2015.

E. Harison, Acute azotemia as a predictor of mortality in dogs and cats, J Vet Intern Med, vol.26, issue.5, pp.1093-1101, 2012.

C. Buranakarl, Relationships between degree of azotaemia and blood pressure, urinary protein:creatinine ratio and fractional excretion of electrolytes in dogs with renal azotaemia, Vet Res Commun, vol.31, issue.3, pp.245-57, 2007.

A. Zotti, Correlation of renal histopathology with renal echogenicity in dogs and cats: an ex-vivo quantitative study, BMC Vet Res, vol.11, p.99, 2015.

N. Bragato, N. C. Borges, and M. C. Fioravanti, B-mode and Doppler ultrasound of chronic kidney disease in dogs and cats, Vet Res Commun, vol.41, issue.4, pp.307-315, 2017.

B. M. Pressler, Clinical approach to advanced renal function testing in dogs and cats, Vet Clin North Am Small Anim Pract, vol.43, issue.6, pp.1193-208, 2013.

J. P. Braun, H. P. Lefebvre, and A. D. Watson, Creatinine in the dog: a review, Vet Clin Pathol, vol.32, issue.4, pp.162-79, 2003.

M. Yerramilli, Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury: The Role of Novel Biomarkers as Early and Accurate Diagnostics, Vet Clin North Am Small Anim Pract, vol.46, issue.6, pp.961-93, 2016.

J. P. Lulich, Urine specific gravity -The most underutilized test in veterinary medicine, 2017.

G. F. Grauer, Canine glomerulonephritis: new thoughts on proteinuria and treatment, J Small Anim Pract, vol.46, issue.10, pp.469-78, 2005.

S. Herget-rosenthal, Imaging techniques in the management of chronic kidney disease: current developments and future perspectives, Semin Nephrol, vol.31, issue.3, pp.283-90, 2011.

E. Stock, Contrast-Enhanced Ultrasound Examination for the Assessment of Renal Perfusion in Cats with Chronic Kidney Disease, J Vet Intern Med, vol.32, issue.1, pp.260-266, 2018.

D. M. Good, Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease, Mol Cell Proteomics, vol.9, issue.11, pp.2424-2461, 2010.

J. P. Schanstra, Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides, J Am Soc Nephrol, vol.26, issue.8, pp.1999-2010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01907604

S. J. Prohaska and P. F. Stadler, The use and abuse of -omes, Methods Mol Biol, vol.719, pp.173-96, 2011.

W. Zhang, F. Li, and L. Nie, Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology, pp.287-301, 2010.

T. Maier, M. Guell, and L. Serrano, Correlation of mRNA and protein in complex biological samples, FEBS Lett, vol.583, issue.24, pp.3966-73, 2009.

J. M. Bauca, E. Martinez-morillo, and E. P. Diamandis, Peptidomics of urine and other biofluids for cancer diagnostics, Clin Chem, vol.60, issue.8, pp.1052-61, 2014.

P. Schulz-knappe, Peptidomics: the comprehensive analysis of peptides in complex biological mixtures, Comb Chem High Throughput Screen, vol.4, issue.2, pp.207-224, 2001.

B. Hocher and J. Adamski, Metabolomics for clinical use and research in chronic kidney disease, Nat Rev Nephrol, vol.13, issue.5, pp.269-284, 2017.

R. M. Califf, Biomarker definitions and their applications, Exp Biol Med (Maywood), vol.243, issue.3, pp.213-221, 2018.

H. Mischak, Recommendations for biomarker identification and qualification in clinical proteomics, Sci Transl Med, vol.2, issue.46, pp.46-88, 2010.

H. Mischak, Clinical proteomics: A need to define the field and to begin to set adequate standards, Proteomics Clin Appl, vol.1, issue.2, pp.148-56, 2007.

M. Harpole, J. Davis, and V. Espina, Current state of the art for enhancing urine biomarker discovery, Expert Rev Proteomics, vol.13, issue.6, pp.609-635, 2016.

D. J. Orton and A. A. Doucette, Proteomic Workflows for Biomarker Identification Using Mass Spectrometry -Technical and Statistical Considerations during Initial Discovery. Proteomes, pp.109-127, 2013.

Z. Li, Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity, PLoS One, vol.8, issue.7, p.67451, 2013.

Z. R. Yang, Biological applications of support vector machines, Brief Bioinform, vol.5, issue.4, pp.328-366, 2004.

B. J. Wolf, Development of Biomarker Models to Predict Outcomes in Lupus Nephritis, Arthritis Rheumatol, vol.68, issue.8, pp.1955-63, 2016.

X. Han, A. Aslanian, and J. R. Yates, Mass spectrometry for proteomics, Curr Opin Chem Biol, vol.3, issue.5, pp.483-90, 2008.

E. B. Yalcin, S. M. De-la, and M. , Review of matrix-assisted laser desorption ionizationimaging mass spectrometry for lipid biochemical histopathology, J Histochem Cytochem, vol.63, issue.10, pp.762-71, 2015.

J. B. Fenn, Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, issue.4926, pp.64-71, 1989.

E. C. Yi, A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation, Rapid Commun Mass Spectrom, vol.17, issue.18, pp.2093-2101, 2003.

P. Hoffmann, Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer, Angew Chem Int Ed Engl, vol.46, issue.26, pp.4913-4919, 2007.

L. Sun, Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests, Angew Chem Int Ed Engl, vol.52, issue.51, pp.13661-13665, 2013.

J. S. Page, Ionization and transmission efficiency in an electrospray ionization-mass spectrometry interface, J Am Soc Mass Spectrom, vol.18, issue.9, pp.1582-90, 2007.

A. Schlosser and R. Volkmer-engert, Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry, J Mass Spectrom, vol.38, issue.5, pp.523-528, 2003.

L. Konermann, Unraveling the mechanism of electrospray ionization, Anal Chem, vol.85, issue.1, pp.2-9, 2013.

D. R. Demartini, A short overview of the components in mass spectrometry instrumentation for proteomics analyses. Tandem Mass spectrometry, 2013.

B. C. Bohrer, Biomolecule analysis by ion mobility spectrometry, Annu Rev Anal Chem, issue.1, pp.293-327, 2008.

T. C. Walther and M. Mann, Mass spectrometry-based proteomics in cell biology, J Cell Biol, vol.190, issue.4, pp.491-500, 2010.

D. W. Koppenaal, MS detectors. Anal Chem, vol.77, issue.21, pp.418-427, 2005.

V. Thongboonkerd, Practical points in urinary proteomics, J Proteome Res, vol.6, issue.10, pp.3881-90, 2007.

A. Rogowska-wrzesinska, 2D gels still have a niche in proteomics, J Proteomics, vol.88, pp.4-13, 2013.

M. Jerebtsova and S. Nekhai, Quantitative mass spectrometry of urinary biomarkers, J Integr OMICS, vol.4, issue.2, pp.69-78, 2014.

J. W. Allwood and R. Goodacre, An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses, Phytochem Anal, vol.21, issue.1, pp.33-47, 2010.

K. Guo, F. Bamforth, and L. Li, Qualitative metabolome analysis of human cerebrospinal fluid by 13C-/12C-isotope dansylation labeling combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry, J Am Soc Mass Spectrom, vol.22, issue.2, pp.339-386, 2011.

T. O. Metz, The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery, Biomark Med, vol.1, issue.1, pp.159-185, 2007.

W. Zhang, T. Hankemeier, and R. Ramautar, Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics, Curr Opin Biotechnol, vol.43, pp.1-7, 2017.

R. Haselberg, G. J. De-jong, and G. W. Somsen, Capillary electrophoresis-mass spectrometry for the analysis of intact proteins, vol.32, pp.66-82, 2007.

C. Pontillo and H. Mischak, Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease, Clin Kidney J, vol.10, issue.2, pp.192-201, 2017.

A. Gaspar, Trends in CE-MS, Electrophoresis, vol.29, issue.1, pp.66-79, 2005.

C. Neususs, M. Pelzing, and M. Macht, A robust approach for the analysis of peptides in the low femtomole range by capillary electrophoresis-tandem mass spectrometry, Electrophoresis, vol.23, issue.18, pp.3149-59, 2002.

R. Ramautar, G. W. Somsen, G. J. De, and J. , CE-MS for metabolomics: developments and applications in the period 2012-2014, Electrophoresis, vol.36, issue.1, pp.212-236, 2015.

W. Kolch, Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery, Mass Spectrom Rev, vol.24, issue.6, pp.959-77, 2005.

N. D. Avent, Post-genomics studies and their application to non-invasive prenatal diagnosis, Semin Fetal Neonatal Med, vol.13, issue.2, pp.91-99, 2008.

J. Metzger, Adapting mass spectrometry-based platforms for clinical proteomics applications: The capillary electrophoresis coupled mass spectrometry paradigm, Crit Rev Clin Lab Sci, vol.46, issue.3, pp.129-52, 2009.

Y. Shen, Characterization of the human blood plasma proteome, Proteomics, vol.5, issue.15, pp.4034-4079, 2005.

Z. Yu, Differences between human plasma and serum metabolite profiles, PLoS One, vol.6, issue.7, p.21230, 2011.

L. Du, D. G. Musson, and A. Q. Wang, Stability studies of vorinostat and its two metabolites in human plasma, serum and urine, J Pharm Biomed Anal, vol.42, issue.5, pp.556-64, 2006.

B. Kamlage, Impact of Prolonged Blood Incubation and Extended Serum Storage at Room Temperature on the, Human Serum Metabolome. Metabolites, vol.8, issue.1, 2018.

H. Mischak, Epidemiologic design and analysis for proteomic studies: a primer on -omic technologies, Am J Epidemiol, vol.181, issue.9, pp.635-682, 2015.

J. Klein, The role of urinary peptidomics in kidney disease research, Kidney Int, vol.89, issue.3, pp.539-584, 2016.

D. M. Good, Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future, J Proteome Res, vol.6, issue.12, pp.4549-55, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409636

S. Bouatra, The human urine metabolome, PLoS One, vol.8, issue.9, p.73076, 2013.

H. G. Gika, Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples, J Chromatogr B Analyt Technol Biomed Life Sci, vol.871, issue.2, pp.299-305, 2008.

Q. Xiao, Sources of variability in metabolite measurements from urinary samples, PLoS One, vol.9, issue.5, p.95749, 2014.

M. Lauridsen, Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage, Anal Chem, vol.79, issue.3, pp.1181-1187, 2007.

M. Rotter, Stability of targeted metabolite profiles of urine samples under different storage conditions, Metabolomics, vol.13, issue.1, p.4, 2017.

E. Critselis and H. L. Heerspink, Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression, Nephrol Dial Transplant, vol.31, issue.2, pp.249-54, 2016.

A. Argiles, CKD273, a new proteomics classifier assessing CKD and its prognosis, PLoS One, vol.8, issue.5, p.62837, 2013.

J. Siwy, Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy, Nephrol Dial Transplant, vol.29, issue.8, pp.1563-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01907630

G. E. Currie, Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria, Cardiovasc Diabetol, vol.17, issue.1, p.50, 2018.

M. Lindhardt, Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial, BMJ Open, vol.6, issue.3, p.10310, 2016.

S. Decramer, Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis, Nat Med, vol.12, issue.4, pp.398-400, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122384

S. Decramer, Identification of urinary biomarkers by proteomics in newborns: use in obstructive nephropathy, Contrib Nephrol, vol.160, pp.127-168, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00408927

S. Decramer, Urine in clinical proteomics, Mol Cell Proteomics, vol.7, issue.10, pp.1850-62, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00360866

J. Drube, Urinary proteome analysis identifies infants but not older children requiring pyeloplasty, Pediatr Nephrol, vol.25, issue.9, pp.1673-1681, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00505093

D. Drozdz, Progression to end-stage renal disease in children with posterior urethral valves, Pediatr Nephrol, vol.12, issue.8, pp.630-636, 1998.

H. F. Parkhouse, Long-term outcome of boys with posterior urethral valves, Br J Urol, vol.62, issue.1, pp.59-62, 1988.

P. Lopez-pereira, Posterior urethral valves: prognostic factors, BJU Int, vol.91, issue.7, pp.687-90, 2003.

R. K. Morris, Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction, Prenat Diagn, vol.27, issue.10, pp.900-911, 2007.

R. K. Morris, Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction: systematic review of test accuracy, BJOG, vol.116, issue.10, pp.1290-1299, 2009.

J. Klein, Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV), Sci Transl Med, issue.5, pp.198-106, 0198.
URL : https://hal.archives-ouvertes.fr/inserm-00853060

L. U. Zimmerli, Urinary proteomic biomarkers in coronary artery disease, Mol Cell Proteomics, vol.7, issue.2, pp.290-298, 2008.
DOI : 10.1074/mcp.m700394-mcp200

URL : http://www.mcponline.org/content/7/2/290.full.pdf

M. Ponticos and B. D. Smith, Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis, J Biomed Res, vol.28, issue.1, pp.25-39, 2014.

C. Von-zur-muhlen, Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients, J Proteome Res, vol.8, issue.1, pp.335-380, 2009.

N. M. Htun, Prediction of acute coronary syndromes by urinary proteome analysis, PLoS One, vol.12, issue.3, p.172036, 2017.
DOI : 10.1371/journal.pone.0172036

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0172036&type=printable

J. Dawson, Urinary proteomics to support diagnosis of stroke, PLoS One, vol.7, issue.5, p.35879, 2012.

T. Kuznetsova, Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction, Eur Heart J, vol.33, issue.18, pp.2342-50, 2012.
DOI : 10.1093/eurheartj/eht308.p2426

URL : https://academic.oup.com/eurheartj/article-pdf/34/suppl_1/P2426/9250313/eht308.P2426.pdf

K. Rossing, Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction, PLoS One, vol.11, issue.6, p.157167, 2016.

D. Farmakis, Urine proteome analysis in heart failure with reduced ejection fraction complicated by chronic kidney disease: feasibility, and clinical and pathogenetic correlates, Eur J Heart Fail, vol.18, issue.7, pp.822-831, 2016.
DOI : 10.1002/ejhf.544

M. Madero and M. J. Sarnak, Creatinine-based formulae for estimating glomerular filtration rate: is it time to change to chronic kidney disease epidemiology collaboration equation?, Curr Opin Nephrol Hypertens, vol.20, issue.6, pp.622-652, 2011.

A. S. Levey, L. A. Inker, and J. Coresh, GFR estimation: from physiology to public health, Am J Kidney Dis, vol.63, issue.5, pp.820-854, 2014.
DOI : 10.1053/j.ajkd.2013.12.006

URL : http://europepmc.org/articles/pmc4001724?pdf=render

E. Nkuipou-kenfack, Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease, PLoS One, vol.9, issue.5, p.96955, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01907626

J. Rysz, Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome, Int J Mol Sci, vol.18, issue.8, 2017.

K. Sharma, Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease, J Am Soc Nephrol, vol.24, issue.11, pp.1901-1913, 2013.

M. J. Pena, Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes, Nephrol Dial Transplant, vol.30, pp.86-95, 2015.

M. J. Pena, Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus, Diabet Med, vol.31, issue.9, pp.1138-1185, 2014.

T. Kimura, Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling, vol.6, p.26138, 2016.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, issue.4968, pp.505-515, 1990.

A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature, vol.346, issue.6287, pp.818-840, 1990.

L. Gold, SELEX: How It Happened and Where It will Go, J Mol Evol, vol.81, pp.140-143, 2015.

A. Ruscito and M. C. Derosa, Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front Chem, vol.4, p.14, 2016.

S. M. Handy, First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin, Toxicon, vol.61, pp.30-37, 2013.

M. Citartan, Assays for aptamer-based platforms, Biosens Bioelectron, vol.34, issue.1, pp.1-11, 2012.

S. M. Lato, Boron-containing aptamers to ATP, Nucleic Acids Res, vol.30, issue.6, pp.1401-1408, 2002.

B. Valérie, . List, and . References,

F. Long, Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor, p.2308, 2013.

C. H. Chung, Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum, Biosens Bioelectron, vol.41, pp.827-859, 2013.

L. C. Bock, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, vol.355, issue.6360, pp.564-570, 1992.

P. Dua, S. Kim, and D. K. Lee, Nucleic acid aptamers targeting cell-surface proteins, Methods, vol.54, issue.2, pp.215-240, 2011.

R. D. Jenison, High-resolution molecular discrimination by RNA, Science, vol.263, issue.5152, pp.1425-1434, 1994.

D. E. Volk and G. L. Lokesh, Development of Phosphorothioate DNA and DNA Thioaptamers, Biomedicines, vol.5, issue.3, 2017.

K. M. Song, S. Lee, and C. Ban, Aptamers and their biological applications. Sensors (Basel), vol.12, pp.612-643, 2012.

J. R. Birch and A. J. Racher, Antibody production, vol.58, pp.671-85, 2006.

S. C. Gopinath, Antiviral aptamers. Arch Virol, vol.152, pp.2137-57, 2007.

L. Gold, Aptamers and the RNA world, past and present, Cold Spring Harb Perspect Biol, vol.4, issue.3, 2012.

M. Mckeague, Analysis of In Vitro Aptamer Selection Parameters, J Mol Evol, vol.81, pp.150-61, 2015.

A. Paul, Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX, Oligonucleotides, vol.19, issue.3, pp.243-54, 2009.

T. W. Wiegand, High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I, J Immunol, vol.157, issue.1, pp.221-251, 1996.

J. C. Cox, Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer, Nucleic Acids Res, vol.30, p.108, 1920.

V. Thiviyanathan and D. G. Gorenstein, Aptamers and the next generation of diagnostic reagents, Proteomics Clin Appl, vol.6, pp.563-73, 2012.

B. Mondal, A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets, Appl Microbiol Biotechnol, vol.99, issue.22, pp.9791-803, 2015.

M. B. Murphy, An improved method for the in vitro evolution of aptamers and applications in protein detection and purification, Nucleic Acids Res, vol.31, issue.18, p.110, 2003.

N. Duan, An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine, Anal Chim Acta, vol.961, pp.100-105, 2017.

T. Hunniger, Just in time-selection: A rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing, Anal Chem, vol.86, issue.21, pp.10940-10947, 2014.

C. Forier, DNA aptamer affinity ligands for highly selective purification of human plasmarelated proteins from multiple sources, J Chromatogr A, pp.39-50, 1489.

C. S. Ferreira, C. S. Matthews, and S. Missailidis, DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers, Tumour Biol, vol.27, issue.6, pp.289-301, 2006.

U. S. Patil, Labeling primary amine groups in peptides and proteins with Nhydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfidebond linkers, Bioconjug Chem, vol.24, issue.9, pp.1562-1571, 2013.

C. S. Ferreira, DNA aptamers against the MUC1 tumour marker: design of aptamerantibody sandwich ELISA for the early diagnosis of epithelial tumours, Anal Bioanal Chem, vol.390, issue.4, pp.1039-50, 2008.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, pp.778-795, 1998.

S. D. Mendonsa and M. T. Bowser, In vitro evolution of functional DNA using capillary electrophoresis, J Am Chem Soc, vol.126, issue.1, pp.20-21, 2004.

C. Y. Lim, A. E. Lim, and Y. C. Lam, Ionic Origin of Electro-osmotic Flow Hysteresis. Sci Rep, vol.6, p.22329, 2016.

P. M. Nowak, Improving repeatability of capillary electrophoresis-a critical comparison of ten different capillary inner surfaces and three criteria of peak identification, Anal Bioanal Chem, vol.409, issue.18, pp.4383-4393, 2017.

S. F. Li, Capillary electrophoresis, principles, practice and applications, Journal of Chromatography library, vol.52, 1992.

X. Xuan, Electroosmotic flow with Joule heating effects, Lab Chip, vol.4, issue.3, pp.230-236, 2004.

J. Ruckman, Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain, J Biol Chem, vol.273, issue.32, pp.20556-67, 1998.

M. G. Boels, Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy, Am J Pathol, vol.187, issue.11, pp.2430-2440, 2017.

J. Menne, C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria, Nephrol Dial Transplant, vol.32, issue.2, pp.307-315, 2017.

M. Ilgu and M. Nilsen-hamilton, Aptamers in analytics. Analyst, vol.141, issue.5, pp.1551-68, 2016.

Y. Liu, Aptamer-based electrochemical biosensor for interferon gamma detection, Anal Chem, vol.82, pp.8131-8137, 2010.

X. Li, Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions, Biosens Bioelectron, vol.23, issue.11, pp.1624-1654, 2008.

L. A. Holeman, Isolation and characterization of fluorophore-binding RNA aptamers, Fold Des, vol.3, issue.6, pp.423-454, 1998.

M. A. Gomes-de-castro, C. Hobartner, and F. Opazo, Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy, PLoS One, vol.12, issue.2, p.173050, 2017.

Z. Z. Lim, Gold nanoparticles in cancer therapy, Acta Pharmacol Sin, vol.32, issue.8, pp.983-90, 2011.

C. A. Mirkin, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, vol.382, issue.6592, pp.607-616, 1996.

Y. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, vol.297, issue.5586, pp.1536-1576, 2002.

F. Xia, Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes, Proc Natl Acad Sci, vol.107, issue.24, pp.10837-10878, 2010.

Y. Wu, Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles, Analyst, vol.137, issue.18, pp.4171-4179, 2012.

S. Lee, Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer, PLoS One, vol.9, issue.7, p.100847, 2014.

K. Han, Z. Liang, and N. Zhou, Design strategies for aptamer-based biosensors, Sensors (Basel), vol.10, issue.5, pp.4541-57, 2010.

H. B. Seo and M. B. Gu, Aptamer-based sandwich-type biosensors, J Biol Eng, vol.11, p.11, 2017.

S. D. Mendonsa and M. T. Bowser, In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis, J Am Chem Soc, vol.127, issue.26, pp.9382-9385, 2005.

R. K. Mosing, S. D. Mendonsa, and M. T. Bowser, Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase, Anal Chem, vol.77, pp.6107-6119, 2005.

L. Dong, Screening and Identifying a Novel ssDNA Aptamer against Alpha-fetoprotein Using CE-SELEX. Sci Rep, vol.5, p.15552, 2015.

J. Yang and M. T. Bowser, Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target, Anal Chem, vol.85, issue.3, pp.1525-1555, 2013.

L. Hao, Affinity capillary electrophoresis with laser induced fluorescence detection for thrombin analysis using nuclease-resistant RNA aptamers, J Chromatogr A, pp.124-129, 1476.

A. Carrel and C. C. Guthrie, Functions of a Transplanted Kidney, Science, vol.22, issue.563, p.473, 1905.

J. J. Abel, L. G. Rowntree, and B. B. Turner, On the removal of diffusable substances from the circulating blood by means of dialysis, Transactions of the Association of American Physicians, vol.11, issue.2, pp.164-169, 1913.

L. Gold, Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One, vol.5, issue.12, p.15004, 2010.