R. P. Amann, The cycle of the seminiferous epithelium in humans: a need to revisit, Journal of andrology, vol.29, issue.5, pp.469-487, 2008.

L. Fagerberg, B. M. Hallstrom, P. Oksvold, C. Kampf, D. Djureinovic et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics, Mol Cell Proteomics, vol.13, issue.2, pp.397-406, 2014.

D. Ramskold, E. T. Wang, C. B. Burge, and R. Sandberg, An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data, PLoS computational biology, vol.5, issue.12, p.1000598, 2009.

Y. Zhang, Q. Li, F. Wu, R. Zhou, Y. Qi et al., Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins, Journal of proteome research, vol.14, issue.9, pp.3583-3594, 2015.

P. De-la-grange, L. Gratadou, M. Delord, M. Dutertre, and D. Auboeuf, Splicing factor and exon profiling across human tissues, Nucleic Acids Res, vol.38, issue.9, pp.2825-2838, 2010.

Q. Xu, B. Modrek, and C. Lee, Genome-wide detection of tissue-specific alternative splicing in the human transcriptome, Nucleic Acids Res, vol.30, issue.17, pp.3754-3766, 2002.

K. Kashimada and P. Koopman, Sry: the master switch in mammalian sex determination, Development, vol.137, issue.23, pp.3921-3930, 2010.

A. Mclaren, Gonad development: assembling the mammalian testis, Curr Biol, vol.8, issue.5, pp.175-177, 1998.

R. Nagano, S. Tabata, Y. Nakanishi, S. Ohsako, M. Kurohmaru et al., Reproliferation and relocation of mouse male germ cells (gonocytes) during prespermatogenesis. The Anatomical record, vol.258, pp.210-220, 2000.

P. S. Western, D. C. Miles, J. A. Van-den-bergen, M. Burton, and A. H. Sinclair, Dynamic regulation of mitotic arrest in fetal male germ cells, Stem Cells, vol.26, issue.2, pp.339-347, 2008.

I. Da-cruz, R. Rodriguez-casuriaga, F. F. Santinaque, J. Farias, G. Curti et al., Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage, BMC genomics, vol.17, issue.1, p.294, 2016.

Y. T. Tseng, H. F. Liao, C. Y. Yu, C. F. Mo, and S. P. Lin, Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells, Reproduction, vol.150, issue.3, pp.77-91, 2015.

F. T. Neto, P. V. Bach, B. B. Najari, P. S. Li, and M. Goldstein, Spermatogenesis in humans and its affecting factors. Seminars in cell & developmental biology, 2016.

F. Rossi, A. Ferraresi, P. Romagni, L. Silvestroni, and V. Santiemma, Angiotensin II stimulates contraction and growth of testicular peritubular myoid cells in vitro, Endocrinology, vol.143, issue.8, pp.3096-3104, 2002.

S. B. Cigorraga, H. Chemes, and E. Pellizzari, Steroidogenic and morphogenic characteristics of human peritubular cells in culture, Biology of reproduction, vol.51, issue.6, pp.1193-1205, 1994.

G. Verhoeven, E. Hoeben, D. Gendt, and K. , Peritubular cell-Sertoli cell interactions: factors involved in PmodS activity, Andrologia, vol.32, issue.1, pp.42-45, 2000.

L. D. Russell, H. P. Ren, I. Sinha-hikim, W. Schulze, and S. Hikim, AP: A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell, The American journal of anatomy, vol.188, issue.1, pp.21-30, 1990.

C. Y. Cheng, E. W. Wong, H. H. Yan, and D. D. Mruk, Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances, Molecular and cellular endocrinology, vol.2010, issue.1-2, pp.49-56

P. G. Stanton, Regulation of the blood-testis barrier. Seminars in cell & developmental biology, 2016.

D. J. Allan, B. V. Harmon, and S. A. Roberts, Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat, Cell proliferation, vol.25, issue.3, pp.241-250, 1992.

Y. Hai, J. Hou, Y. Liu, Y. Liu, H. Yang et al., The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis, Seminars in cell & developmental biology, vol.29, pp.66-75, 2014.

D. G. De-rooij and L. D. Russell, All you wanted to know about spermatogonia but were afraid to ask, Journal of andrology, vol.21, issue.6, pp.776-798, 2000.

D. G. De-rooij, Proliferation and differentiation of spermatogonial stem cells, Reproduction, vol.121, issue.3, pp.347-354, 2001.

J. M. Oatley and R. L. Brinster, The germline stem cell niche unit in mammalian testes, Physiological reviews, vol.2012, issue.2, pp.577-595

R. E. Braun, R. R. Behringer, J. J. Peschon, R. L. Brinster, and R. D. Palmiter, Genetically haploid spermatids are phenotypically diploid, Nature, vol.337, issue.6205, pp.373-376, 1989.

G. D. Mehta, S. M. Rizvi, and S. K. Ghosh, Cohesin: a guardian of genome integrity, Biochim Biophys Acta, vol.2012, issue.8, pp.1324-1342

D. W. Fawcett, The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes, The Journal of biophysical and biochemical cytology, vol.1956, issue.4, pp.403-406

D. Zickler and N. Kleckner, Meiotic chromosomes: integrating structure and function. Annual review of genetics, vol.33, pp.603-754, 1999.

E. Bolcun-filas, Y. Costa, R. Speed, M. Taggart, R. Benavente et al., SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination, The Journal of cell biology, vol.176, issue.6, pp.741-747, 2007.

F. A. De-vries, E. De-boer, M. Van-den-bosch, W. M. Baarends, M. Ooms et al., Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation, Genes & development, vol.19, issue.11, pp.1376-1389, 2005.

W. Edelmann, P. E. Cohen, B. Kneitz, N. Winand, M. Lia et al., Mammalian MutS homologue 5 is required for chromosome pairing in meiosis, Nature genetics, vol.21, issue.1, pp.123-127, 1999.

D. L. Pittman, J. Cobb, K. J. Schimenti, L. A. Wilson, D. M. Cooper et al., Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog, Mol Cell, vol.1, issue.5, pp.697-705, 1998.

F. Yang, R. De-la-fuente, N. A. Leu, C. Baumann, K. J. Mclaughlin et al., Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis, The Journal of cell biology, vol.173, issue.4, pp.497-507, 2006.

K. Yoshida, G. Kondoh, Y. Matsuda, T. Habu, Y. Nishimune et al., The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis, Mol Cell, vol.1, issue.5, pp.707-718, 1998.

L. Yuan, J. G. Liu, J. Zhao, E. Brundell, B. Daneholt et al., The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility, Mol Cell, vol.5, issue.1, pp.73-83, 2000.

F. Baudat, Y. Imai, and B. De-massy, Meiotic recombination in mammals: localization and regulation, Nat Rev Genet, vol.14, issue.11, pp.794-806, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875210

J. Fraune, S. Schramm, M. Alsheimer, and R. Benavente, The mammalian synaptonemal complex: protein components, assembly and role in meiotic recombination, Experimental cell research, vol.2012, issue.12, pp.1340-1346

R. L. Meuwissen, H. H. Offenberg, A. J. Dietrich, A. Riesewijk, M. Van-iersel et al., A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes, The EMBO journal, vol.1992, issue.13, pp.5091-5100

G. Hamer, K. Gell, A. Kouznetsova, I. Novak, R. Benavente et al., Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex, J Cell Sci, vol.119, pp.4025-4032, 2006.

Y. Costa, R. Speed, R. Ollinger, M. Alsheimer, C. A. Semple et al., Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis, J Cell Sci, vol.118, pp.2755-2762, 2005.

S. Schramm, J. Fraune, R. Naumann, A. Hernandez-hernandez, C. Hoog et al., A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility, PLoS Genet, vol.7, issue.5, p.1002088, 2011.

J. L. Syrjanen, L. Pellegrini, and O. R. Davies, A molecular model for the role of SYCP3 in meiotic chromosome organisation, p.3, 2014.

K. Winkel, M. Alsheimer, R. Ollinger, and R. Benavente, Protein SYCP2 provides a link between transverse filaments and lateral elements of mammalian synaptonemal complexes, Chromosoma, vol.118, issue.2, pp.259-267, 2009.

X. C. Li, E. Bolcun-filas, and J. C. Schimenti, Genetic evidence that synaptonemal complex axial elements govern recombination pathway choice in mice, Genetics, vol.189, issue.1, pp.71-82, 2011.

P. B. Moens, D. J. Chen, Z. Shen, N. Kolas, M. Tarsounas et al., Rad51 immunocytology in rat and mouse spermatocytes and oocytes, Chromosoma, vol.106, issue.4, pp.207-215, 1997.

B. De-massy, Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annual review of genetics, vol.47, pp.563-599, 2013.

F. Baudat, J. Buard, C. Grey, A. Fledel-alon, C. Ober et al., PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice, Science, vol.327, issue.5967, pp.836-840, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459048

K. Brick, F. Smagulova, P. Khil, R. D. Camerini-otero, and G. V. Petukhova, Genetic recombination is directed away from functional genomic elements in mice, Nature, vol.2012, issue.7400, pp.642-645
URL : https://hal.archives-ouvertes.fr/hal-00877666

R. Kumar, N. Ghyselinck, K. Ishiguro, Y. Watanabe, A. Kouznetsova et al., MEI4 -a central player in the regulation of meiotic DNA double-strand break formation in the mouse, J Cell Sci, vol.128, issue.9, pp.1800-1811, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153588

L. Wojtasz, K. Daniel, I. Roig, E. Bolcun-filas, H. Xu et al., Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAAATPase, PLoS Genet, vol.5, issue.10, p.1000702, 2009.

E. P. Mimitou and L. S. Symington, DNA end resection: many nucleases make light work, DNA Repair (Amst), vol.8, issue.9, pp.983-995, 2009.

S. Burma, B. P. Chen, M. Murphy, A. Kurimasa, and D. J. Chen, ATM phosphorylates histone H2AX in response to DNA double-strand breaks, The Journal of biological chemistry, vol.276, issue.45, pp.42462-42467, 2001.

J. H. Lee and T. T. Paull, Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex, Science, vol.304, issue.5667, pp.93-96, 2004.

L. Y. Lu and X. Yu, Double-strand break repair on sex chromosomes: challenges during male meiotic prophase, Cell cycle, vol.14, issue.4, pp.516-525, 2015.

J. M. Turner, Meiotic sex chromosome inactivation, Development, vol.134, issue.10, pp.1823-1831, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01229825

F. Rouyer, M. C. Simmler, C. Johnsson, G. Vergnaud, H. J. Cooke et al., A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes, Nature, vol.319, issue.6051, pp.291-295, 1986.
URL : https://hal.archives-ouvertes.fr/hal-01160710

L. Kauppi, M. Barchi, F. Baudat, P. J. Romanienko, S. Keeney et al., Distinct properties of the XY pseudoautosomal region crucial for male meiosis, Science, vol.331, issue.6019, pp.916-920, 2011.

O. Fernandez-capetillo, S. K. Mahadevaiah, C. A. Romanienko, P. J. Camerini-otero, R. D. Bonner et al., H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis, Developmental cell, vol.4, issue.4, pp.497-508, 2003.

Y. Ichijima, M. Ichijima, Z. Lou, A. Nussenzweig, R. D. Camerini-otero et al., MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells, Genes & development, vol.25, issue.9, pp.959-971, 2011.

H. Royo, G. Polikiewicz, S. K. Mahadevaiah, H. Prosser, M. Mitchell et al., Evidence that meiotic sex chromosome inactivation is essential for male fertility, Curr Biol, vol.20, issue.23, pp.2117-2123, 2010.

A. Inselman, S. Eaker, and M. A. Handel, Temporal expression of cell cycle-related proteins during spermatogenesis: establishing a timeline for onset of the meiotic divisions. Cytogenetic and genome research, vol.103, pp.277-284, 2003.

H. Royo, H. Prosser, Y. Ruzankina, S. K. Mahadevaiah, J. M. Cloutier et al., ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing, Genes & development, vol.2013, issue.13, pp.1484-1494

J. M. Turner, O. Aprelikova, X. Xu, R. Wang, S. Kim et al., Deng CX: BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation, Curr Biol, vol.14, issue.23, pp.2135-2142, 2004.

K. Daniel, J. Lange, K. Hached, J. Fu, K. Anastassiadis et al., Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1, Nature cell biology, vol.13, issue.5, pp.599-610, 2011.

A. Kouznetsova, H. Wang, M. Bellani, R. D. Camerini-otero, R. Jessberger et al., BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes, J Cell Sci, vol.122, pp.2446-2452, 2009.

W. M. Baarends, J. W. Hoogerbrugge, H. P. Roest, M. Ooms, J. Vreeburg et al., Histone ubiquitination and chromatin remodeling in mouse spermatogenesis, Developmental biology, vol.207, issue.2, pp.322-333, 1999.

A. M. Khalil, F. Z. Boyar, and D. J. Driscoll, Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.16583-16587, 2004.

I. G. Cowell, R. Aucott, S. K. Mahadevaiah, P. S. Burgoyne, N. Huskisson et al., Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals, vol.111, pp.22-36, 2002.

D. Motzkus, P. B. Singh, and S. Hoyer-fender, M31, a murine homolog of Drosophila HP1, is concentrated in the XY body during spermatogenesis, Cytogenetics and cell genetics, vol.86, issue.1, pp.83-88, 1999.

C. Metzler-guillemain, J. Luciani, D. Depetris, M. R. Guichaoua, and M. G. Mattei, HP1beta and HP1gamma, but not HP1alpha, decorate the entire XY body during human male meiosis, Chromosome Res, vol.11, issue.1, pp.73-81, 2003.

S. Hoyer-fender, C. Costanzi, and J. R. Pehrson, Histone macroH2A1.2 is concentrated in the XY-body by the early pachytene stage of spermatogenesis, Experimental cell research, vol.258, issue.2, pp.254-260, 2000.

G. W. Van-der-heijden, A. A. Derijck, E. Posfai, M. Giele, P. Pelczar et al., Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation, Nature genetics, vol.39, issue.2, pp.251-258, 2007.

S. H. Namekawa, P. J. Park, L. F. Zhang, J. E. Shima, J. R. Mccarrey et al., Postmeiotic sex chromatin in the male germline of mice, Curr Biol, vol.16, issue.7, pp.660-667, 2006.

J. M. Turner, Meiotic Silencing in Mammals. Annual review of genetics, vol.49, pp.395-412, 2015.

E. Bolcun-filas, V. D. Rinaldi, M. E. White, and J. C. Schimenti, Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway, Science, vol.343, issue.6170, pp.533-536, 2014.

J. M. Turner, S. K. Mahadevaiah, O. Fernandez-capetillo, A. Nussenzweig, X. Xu et al., Silencing of unsynapsed meiotic chromosomes in the mouse, Nature genetics, vol.37, issue.1, pp.41-47, 2005.

J. M. Turner, S. K. Mahadevaiah, P. J. Ellis, M. J. Mitchell, and P. S. Burgoyne, Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids, Developmental cell, vol.10, issue.4, pp.521-529, 2006.

T. Odorisio, S. K. Mahadevaiah, J. R. Mccarrey, and P. S. Burgoyne, Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes, Developmental biology, vol.180, issue.1, pp.336-343, 1996.

P. J. Hendriksen, J. W. Hoogerbrugge, A. P. Themmen, M. H. Koken, J. H. Hoeijmakers et al., Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse, Developmental biology, vol.170, issue.2, pp.730-733, 1995.

C. Rougeulle, J. Chaumeil, K. Sarma, C. D. Allis, D. Reinberg et al., Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome, Mol Cell Biol, vol.24, issue.12, pp.5475-5484, 2004.

M. Tan, H. Luo, S. Lee, J. F. Yang, J. S. Montellier et al., Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell, vol.146, issue.6, pp.1016-1028, 2011.

J. M. Bryant, G. Donahue, X. Wang, M. Meyer-ficca, L. J. Luense et al., Characterization of BRD4 during mammalian postmeiotic sperm development, Mol Cell Biol, vol.35, issue.8, pp.1433-1448, 2015.

W. M. Baarends, E. Wassenaar, J. W. Hoogerbrugge, S. Schoenmakers, Z. W. Sun et al., Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome, J Cell Sci, vol.120, pp.1841-1851, 2007.

L. Dai, C. Peng, E. Montellier, Z. Lu, Y. Chen et al., Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark, Nat Chem Biol, vol.10, issue.5, pp.365-370, 2014.

Y. Chen, R. Sprung, Y. Tang, H. Ball, B. Sangras et al., Lysine propionylation and butyrylation are novel post-translational modifications in histones, Mol Cell Proteomics, vol.6, issue.5, pp.812-819, 2007.

E. M. Flynn, O. W. Huang, F. Poy, M. Oppikofer, S. F. Bellon et al., A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications, Structure, vol.23, issue.10, pp.1801-1814, 2015.

E. Montellier, S. Rousseaux, Y. Zhao, and S. Khochbin, Histone crotonylation specifically marks the haploid male germ cell gene expression program: Post-meiotic male-specific gene expression, Bioessays, 2011.

T. A. Soboleva, M. Nekrasov, A. Pahwa, R. Williams, G. A. Huttley et al., A unique H2A histone variant occupies the transcriptional start site of active genes, Nature structural & molecular biology, 2011.

K. Bruce, F. A. Myers, E. Mantouvalou, P. Lefevre, I. Greaves et al., The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken, Nucleic Acids Res, vol.33, issue.17, pp.5633-5639, 2005.

C. Xiong, Z. Wen, and G. Li, Histone Variant H3.3: A versatile H3 variant in health and in disease, Science China Life sciences, vol.59, issue.3, pp.245-256, 2016.

Y. Colino-sanguino and S. J. Clark, Valdes-Mora F: H2A.Z acetylation and transcription: ready, steady, go! Epigenomics, vol.8, pp.583-586, 2016.

C. Jin, C. Zang, G. Wei, K. Cui, W. Peng et al., H3.3/H2A.Z double variantcontaining nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions, Nature genetics, vol.41, issue.8, pp.941-945, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01292426

J. Cocquet, P. J. Ellis, Y. Yamauchi, S. K. Mahadevaiah, N. A. Affara et al., The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis, PLoS biology, vol.7, issue.11, p.1000244, 2009.

L. N. Reynard and J. M. Turner, Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions, J Cell Sci, vol.122, pp.4239-4248, 2009.

M. D. Griswold, Spermatogenesis: The Commitment to Meiosis, Physiological reviews, vol.96, issue.1, pp.1-17, 2016.

C. Rathke, W. M. Baarends, S. Awe, and R. Renkawitz-pohl, Chromatin dynamics during spermiogenesis, Biochim Biophys Acta, vol.1839, issue.3, pp.155-168, 2014.

J. Gaucher, N. Reynoird, E. Montellier, F. Boussouar, S. Rousseaux et al., From meiosis to postmeiotic events: the secrets of histone disappearance, The FEBS journal, vol.2010, issue.3, pp.599-604

B. Drabent, C. Bode, B. Bramlage, and D. Doenecke, Expression of the mouse testicular histone gene H1t during spermatogenesis, Histochem Cell Biol, vol.106, issue.2, pp.247-251, 1996.

Q. Lin, A. Sirotkin, and A. I. Skoultchi, Normal spermatogenesis in mice lacking the testis-specific linker histone H1t, Mol Cell Biol, vol.20, issue.6, pp.2122-2128, 2000.

H. Tanaka, N. Iguchi, A. Isotani, K. Kitamura, Y. Toyama et al., HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility, Mol Cell Biol, vol.25, issue.16, pp.7107-7119, 2005.

W. Yan, L. Ma, K. H. Burns, and M. M. Matzuk, HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.10546-10551, 2003.

L. N. Mishra, N. Gupta, and S. M. Rao, Mapping of post-translational modifications of spermatidspecific linker histone H1-like protein, HILS1, J Proteomics, vol.128, pp.218-230, 2015.

M. Nekrasov, T. A. Soboleva, C. Jack, and D. J. Tremethick, Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1, Nucleus, vol.2013, issue.6, pp.431-438

T. Shinagawa, L. M. Huynh, T. Takagi, D. Tsukamoto, C. Tomaru et al., Disruption of Th2a and Th2b genes causes defects in spermatogenesis, Development, vol.142, issue.7, pp.1287-1292, 2015.

E. Montellier, F. Boussouar, S. Rousseaux, K. Zhang, T. Buchou et al., Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B, Genes & development, vol.2013, issue.15, pp.1680-1692
URL : https://hal.archives-ouvertes.fr/hal-01322388

J. Govin, E. Escoffier, S. Rousseaux, L. Kuhn, M. Ferro et al., Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis, The Journal of cell biology, vol.176, issue.3, pp.283-294, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176730

S. H. Syed, M. Boulard, M. S. Shukla, T. Gautier, A. Travers et al., The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome, Nucleic Acids Res, vol.37, issue.14, pp.4684-4695, 2009.

S. B. Moss, P. B. Challoner, and M. Groudine, Expression of a novel histone 2B during mouse spermiogenesis, Developmental biology, vol.133, issue.1, pp.83-92, 1989.

E. Unni, Y. Zhang, M. Kangasniemi, W. Saperstein, S. B. Moss et al., Stage-specific distribution of the spermatid-specific histone 2B in the rat testis, Biology of reproduction, vol.53, issue.4, pp.820-826, 1995.

B. T. Yuen, K. M. Bush, B. L. Barrilleaux, R. Cotterman, and P. S. Knoepfler, Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development, vol.141, pp.3483-3494, 2014.

M. C. Tang, S. A. Jacobs, D. M. Mattiske, Y. M. Soh, A. N. Graham et al., Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice, PLoS Genet, vol.11, issue.2, p.1004964, 2015.

H. Tachiwana, W. Kagawa, A. Osakabe, K. Kawaguchi, T. Shiga et al., Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.10454-10459, 2010.

B. P. Kennedy and P. L. Davies, Acid-soluble nuclear proteins of the testis during spermatogenesis in the winter flounder. Loss of the high mobility group proteins, The Journal of biological chemistry, vol.255, issue.6, pp.2533-2539, 1980.

C. Caron, C. Pivot-pajot, L. A. Van-grunsven, E. Col, C. Lestrat et al., Cdyl: a new transcriptional co-repressor, EMBO Rep, vol.4, issue.9, pp.877-882, 2003.

E. L. Bell, I. Nagamori, E. O. Williams, D. Rosario, A. M. Bryson et al., SirT1 is required in the male germ cell for differentiation and fecundity in mice, Development, vol.141, issue.18, pp.3495-3504, 2014.

W. Li, J. Wu, S. Y. Kim, M. Zhao, S. A. Hearn et al., Chd5 orchestrates chromatin remodelling during sperm development, Nature communications, vol.5, p.3812, 2014.

J. Gaucher, F. Boussouar, E. Montellier, S. Curtet, T. Buchou et al., Bromodomain-dependent stage-specific male genome programming by Brdt, The EMBO journal, vol.2012, issue.19, pp.3809-3820

E. S. Klaus, N. H. Gonzalez, M. Bergmann, M. Bartkuhn, W. Weidner et al., Murine and Human Spermatids Are Characterized by Numerous, Newly Synthesized and Differentially Expressed Transcription Factors and Bromodomain-Containing Proteins, Biology of reproduction, vol.95, issue.1, p.4, 2016.

G. Leroy, B. Rickards, and S. J. Flint, The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription, Mol Cell, vol.30, issue.1, pp.51-60, 2008.

C. Dottermusch-heidel, K. E. Gonzalez, N. H. Bhushan, S. Meinhardt, A. Bergmann et al., H3K79 methylation directly precedes the histone-toprotamine transition in mammalian spermatids and is sensitive to bacterial infections, Andrology, vol.2014, issue.5, pp.655-665

W. Zhang, Y. Hayashizaki, and B. C. Kone, Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase, The Biochemical journal, vol.377, pp.641-651, 2004.

L. Zhang, L. Deng, F. Chen, Y. Yao, B. Wu et al., Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer, Oncotarget, vol.2014, issue.21, pp.10665-10677

O. Gilan, E. Y. Lam, I. Becher, D. Lugo, E. Cannizzaro et al., Functional interdependence of BRD4 and DOT1L in MLL leukemia, Nature structural & molecular biology, vol.2016, issue.7, pp.673-681

C. R. Shirley, S. Hayashi, S. Mounsey, R. Yanagimachi, and M. L. Meistrich, Abnormalities and reduced reproductive potential of sperm from Tnp1-and Tnp2-null double mutant mice, Biology of reproduction, vol.71, issue.4, pp.1220-1229, 2004.

J. Singh and M. R. Rao, Interaction of rat testis protein, TP, with nucleosome core particle, Biochemistry international, vol.17, issue.4, pp.701-710, 1988.

R. Baskaran and M. R. Rao, Interaction of spermatid-specific protein TP2 with nucleic acids, in vitro. A comparative study with TP1, The Journal of biological chemistry, vol.265, issue.34, pp.21039-21047, 1990.

F. Leduc, V. Maquennehan, G. B. Nkoma, and G. Boissonneault, DNA damage response during chromatin remodeling in elongating spermatids of mice, Biology of reproduction, vol.78, issue.2, pp.324-332, 2008.

J. Bao and M. T. Bedford, Epigenetic regulation of the histone-to-protamine transition during spermiogenesis, Reproduction, vol.151, issue.5, pp.55-70, 2016.

N. Gupta, M. P. Madapura, U. A. Bhat, and M. R. Rao, Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2, The Journal of biological chemistry, vol.290, issue.19, pp.12101-12122, 2015.

Y. Marushige and K. Marushige, Transformation of sperm histone during formation and maturation of rat spermatozoa, The Journal of biological chemistry, vol.250, issue.1, pp.39-45, 1975.

P. C. Yelick, R. Balhorn, P. A. Johnson, M. Corzett, J. A. Mazrimas et al., Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not, Mol Cell Biol, vol.7, issue.6, pp.2173-2179, 1987.

C. Cho, W. D. Willis, E. H. Goulding, H. Jung-ha, Y. C. Choi et al., Haploinsufficiency of protamine-1 or -2 causes infertility in mice, Nature genetics, vol.28, issue.1, pp.82-86, 2001.

R. Balhorn, A model for the structure of chromatin in mammalian sperm, The Journal of cell biology, vol.1982, issue.2, pp.298-305

A. Noblanc, A. Kocer, and J. R. Drevet, Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge, Basic and clinical andrology, vol.24, p.6, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01920016

N. V. Hud, M. J. Allen, K. H. Downing, J. Lee, and R. Balhorn, Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy, Biochem Biophys Res Commun, vol.193, issue.3, pp.1347-1354, 1993.

J. A. Shaman, Y. Yamauchi, and W. S. Ward, Function of the sperm nuclear matrix. Archives of andrology, vol.53, pp.135-140, 2007.

W. S. Ward, Function of sperm chromatin structural elements in fertilization and development. Molecular human reproduction, vol.16, pp.30-36, 2010.

A. Arpanahi, M. Brinkworth, D. Iles, S. A. Krawetz, A. Paradowska et al., Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences, Genome research, vol.19, issue.8, pp.1338-1349, 2009.

S. S. Hammoud, D. A. Nix, H. Zhang, J. Purwar, D. T. Carrell et al., Distinctive chromatin in human sperm packages genes for embryo development, Nature, vol.460, issue.7254, pp.473-478, 2009.

R. J. Aitken, D. Iuliis, and G. N. , Origins and consequences of DNA damage in male germ cells, Reprod Biomed Online, vol.14, issue.6, pp.727-733, 2007.

L. D. Russell, J. A. Russell, G. R. Macgregor, and M. L. Meistrich, Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. The American journal of anatomy, vol.192, pp.97-120, 1991.

M. S. Lehti and A. Sironen, Formation and function of the manchette and flagellum during spermatogenesis, Reproduction, vol.151, issue.4, pp.43-54, 2016.

K. Inaba, Sperm flagella: comparative and phylogenetic perspectives of protein components. Molecular human reproduction, vol.17, pp.524-538, 2011.

M. L. Vadnais, A. M. Lin, and G. L. Gerton, Mitochondrial fusion protein MFN2 interacts with the mitostatin-related protein MNS1 required for mouse sperm flagellar structure and function, Cilia, vol.3, p.5, 2014.

C. L. Borg, K. M. Wolski, G. M. Gibbs, and M. K. O'bryan, Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Human reproduction update, vol.16, pp.205-224, 2010.

A. Abou-haila and D. R. Tulsiani, Mammalian sperm acrosome: formation, contents, and function. Archives of biochemistry and biophysics, vol.379, pp.173-182, 2000.

S. Franik, Y. Hoeijmakers, D. 'hauwers, K. Braat, D. D. Nelen et al., Klinefelter syndrome and fertility: sperm preservation should not be offered to children with Klinefelter syndrome, Human reproduction, vol.31, issue.9, pp.1952-1959, 2016.

P. P. Khil, N. A. Smirnova, P. J. Romanienko, and R. D. Camerini-otero, The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation, Nature genetics, vol.36, issue.6, pp.642-646, 2004.

D. Bachtrog, Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration, Nat Rev Genet, vol.14, issue.2, pp.113-124, 2013.

D. Cortez, R. Marin, D. Toledo-flores, L. Froidevaux, A. Liechti et al., Origins and functional evolution of Y chromosomes across mammals, Nature, vol.508, issue.7497, pp.488-493, 2014.

Y. Q. Soh, J. Alfoldi, T. Pyntikova, L. G. Brown, T. Graves et al., Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes, Cell, vol.159, issue.4, pp.800-813, 2014.

M. Graves and J. A. , Human Y chromosome, sex determination, and spermatogenesis-a feminist view, Biology of reproduction, vol.63, issue.3, pp.667-676, 2000.

M. Graves and J. A. , The rise and fall of SRY. Trends in genetics : TIG 2002, vol.18, pp.259-264

D. W. Bellott, J. F. Hughes, H. Skaletsky, L. G. Brown, T. Pyntikova et al., Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators, Nature, vol.508, issue.7497, pp.494-499, 2014.

B. T. Lahn and D. C. Page, Four evolutionary strata on the human X chromosome, Science, vol.286, issue.5441, pp.964-967, 1999.

S. A. Sandstedt and P. K. Tucker, Evolutionary strata on the mouse X chromosome correspond to strata on the human X chromosome, Genome research, vol.14, issue.2, pp.267-272, 2004.

Y. E. Zhang, M. D. Vibranovski, P. Landback, G. A. Marais, and M. Long, Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome, PLoS biology, vol.2010, issue.10
URL : https://hal.archives-ouvertes.fr/hal-00539515

H. Ellegren, Sex-chromosome evolution: recent progress and the influence of male and female heterogamety, Nat Rev Genet, vol.12, issue.3, pp.157-166, 2011.

H. S. Sin, Y. Ichijima, E. Koh, M. Namiki, and S. H. Namekawa, Human postmeiotic sex chromatin and its impact on sex chromosome evolution, Genome research, vol.2012, issue.5, pp.827-836

Y. C. Hu and S. H. Namekawa, Functional significance of the sex chromosomes during spermatogenesis, Reproduction, vol.149, issue.6, pp.265-277, 2015.

J. L. Mueller, S. K. Mahadevaiah, P. J. Park, P. E. Warburton, D. C. Page et al., The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression, Nature genetics, vol.40, issue.6, pp.794-799, 2008.

D. Bachtrog, Signs of genomic battles in mouse sex chromosomes, Cell, vol.159, issue.4, pp.716-718, 2014.

C. D. Meiklejohn and Y. Tao, Genetic conflict and sex chromosome evolution, Trends Ecol Evol, vol.25, issue.4, pp.215-223, 2009.

B. T. Lahn and D. C. Page, A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins, Human molecular genetics, vol.9, issue.2, pp.311-319, 2000.

P. Thonneau, S. Marchand, A. Tallec, M. L. Ferial, B. Ducot et al., Incidence and main causes of infertility in a resident population (1,850,000) of three French regions, Human reproduction, vol.6, pp.811-816, 1988.

A. Ferlin, B. Arredi, and C. Foresta, Genetic causes of male infertility, Reproductive toxicology, vol.22, issue.2, pp.133-141, 2006.

K. Stouffs and W. Lissens, X chromosomal mutations and spermatogenic failure, Biochim Biophys Acta, vol.2012, issue.12, pp.1864-1872

K. Stouffs, H. Tournaye, and I. Liebaers, Lissens W: Male infertility and the involvement of the X chromosome. Human reproduction update, vol.15, pp.623-637, 2009.

F. Yang, S. Silber, N. A. Leu, R. D. Oates, J. D. Marszalek et al., TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse, EMBO molecular medicine, vol.7, issue.9, pp.1198-1210, 2015.

L. Tiepolo and O. Zuffardi, Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm, Hum Genet, vol.34, issue.2, pp.119-124, 1976.

E. Heard and J. Turner, Function of the sex chromosomes in mammalian fertility. Cold Spring Harbor perspectives in biology, vol.3, p.2675, 2011.

J. K. Dhanoa, C. S. Mukhopadhyay, and J. S. Arora, Y-chromosomal genes affecting male fertility: A review. Veterinary world, vol.9, pp.783-791, 2016.

J. F. Hughes, H. Skaletsky, and D. C. Page, Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the DAZ (Deleted in AZoospermia) genes, Bioessays, vol.34, issue.12, pp.1035-1044, 2012.

J. F. Hughes, H. Skaletsky, T. Pyntikova, T. A. Graves, S. K. Van-daalen et al., Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content, Nature, vol.2010, issue.7280, pp.536-539

F. Decarpentrie, O. A. Ojarikre, M. J. Mitchell, and P. S. Burgoyne, Recombination between the mouse Y chromosome short arm and an additional Y short arm-derived chromosomal segment attached distal to the X chromosome PAR, Chromosoma, vol.125, issue.2, pp.177-188, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01469040

S. Mazeyrat, N. Saut, V. Grigoriev, S. Mahadevaiah, O. A. Ojarikre et al., A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis, Nature genetics, vol.29, pp.49-53, 2001.

N. Vernet, S. K. Mahadevaiah, Y. Yamauchi, F. Decarpentrie, M. J. Mitchell et al., Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division, PLoS Genet, vol.10, issue.6, p.1004444, 2014.

N. Vernet, S. K. Mahadevaiah, F. Decarpentrie, G. Longepied, D. G. De-rooij et al., Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development, PloS one, vol.2016, issue.1, p.145398
URL : https://hal.archives-ouvertes.fr/hal-01469705

Y. Yamauchi, J. M. Riel, V. Ruthig, and M. A. Ward, Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Formation and Function in Assisted Fertilization, PLoS Genet, vol.11, issue.12, p.1005476, 2015.

Y. Matsubara, T. Kato, K. Kashimada, H. Tanaka, Z. Zhi et al., TALEN-Mediated Gene Disruption on Y Chromosome Reveals Critical Role of EIF2S3Y in Mouse Spermatogenesis, Stem cells and development, vol.24, issue.10, pp.1164-1170, 2015.

S. K. Mahadevaiah, T. Odorisio, D. J. Elliott, A. Rattigan, M. Szot et al., Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities, Human molecular genetics, vol.7, issue.4, pp.715-727, 1998.

M. Szot, V. Grigoriev, S. K. Mahadevaiah, O. A. Ojarikre, A. Tour et al., Does Rbmy have a role in sperm development in mice? Cytogenetic and genome research, vol.103, pp.330-336, 2003.

S. Abid, V. Sagare-patil, J. Gokral, and D. Modi, Cellular ontogeny of RBMY during human spermatogenesis and its role in sperm motility, Journal of biosciences, vol.38, issue.1, pp.85-92, 2013.

P. S. Burgoyne, S. K. Mahadevaiah, M. J. Sutcliffe, and S. J. Palmer, Fertility in mice requires X-Y pairing and a Y-chromosomal "spermiogenesis" gene mapping to the long arm, Cell, vol.71, issue.3, pp.391-398, 1992.

S. J. Conway, S. K. Mahadevaiah, S. M. Darling, B. Capel, A. M. Rattigan et al., Y353/B: a candidate multiple-copy spermiogenesis gene on the mouse Y chromosome, Mamm Genome, vol.5, issue.4, pp.203-210, 1994.

M. A. Ward and P. S. Burgoyne, The Effects of Deletions of the Mouse Y Chromosome Long Arm on Sperm Function -Intracytoplasmic Sperm Injection (ICSI) -Based Analysis, Biology of reproduction, vol.74, pp.652-658, 2006.

A. Toure, M. Szot, S. K. Mahadevaiah, A. Rattigan, O. A. Ojarikre et al., A new deletion of the mouse Y chromosome long arm associated with the loss of Ssty expression, abnormal sperm development and sterility, Genetics, vol.166, issue.2, pp.901-912, 2004.

A. Toure, E. J. Clemente, P. Ellis, S. K. Mahadevaiah, O. A. Ojarikre et al., Identification of novel Y chromosome encoded transcripts by testis transcriptome analysis of mice with deletions of the Y chromosome long arm, Genome biology, vol.6, issue.12, p.102, 2005.

P. Ellis, E. J. Clemente, P. Ball, A. Toure, L. Ferguson et al., Deletions on mouse Yq lead to upregulation of multiple X-and Y-linked transcripts in spermatids, Human molecular genetics, vol.14, pp.2705-2715, 2005.

Y. Yamauchi, J. M. Riel, Z. Stoytcheva, P. S. Burgoyne, and M. A. Ward, Deficiency in mouse Y chromosome long arm gene complement is associated with sperm DNA damage, Genome biology, vol.2010, issue.6, p.66

J. M. Riel, Y. Yamauchi, A. Sugawara, H. Y. Li, V. Ruthig et al., Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging, J Cell Sci, issue.126, pp.803-813, 2013.

D. Lolis, I. Georgiou, M. Syrrou, K. Zikopoulos, M. Konstantelli et al., Chromomycin A3-staining as an indicator of protamine deficiency and fertilization, Int J Androl, vol.19, issue.1, pp.23-27, 1996.

L. N. Reynard, J. Cocquet, and P. S. Burgoyne, The multi-copy mouse gene Sycp3-like Y-linked (Sly) encodes an abundant spermatid protein that interacts with a histone acetyltransferase and an acrosomal protein, Biology of reproduction, vol.81, issue.2, pp.250-257, 2009.

J. Cocquet, P. J. Ellis, S. K. Mahadevaiah, N. A. Affara, D. Vaiman et al., A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse, PLoS Genet, vol.8, issue.9, p.1002900, 2012.

M. J. Kohn, J. Sztein, R. Yagi, M. L. Depamphilis, and K. J. Kaneko, The acrosomal protein Dickkopf-like 1 (DKKL1) facilitates sperm penetration of the zona pellucida, Fertil Steril, vol.93, issue.5, pp.1533-1537, 2010.

P. Zheng, J. Eastman, V. Pol, S. Pimplikar, and S. W. , PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein, Proceedings of the National Academy of Sciences of the United States of America, vol.95, pp.14745-14750, 1998.

X. Su, G. Zhu, X. Ding, S. Y. Lee, Y. Dou et al., Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1, Genes & development, vol.28, issue.6, pp.622-636, 2014.

H. C. Eberl, C. G. Spruijt, C. D. Kelstrup, M. Vermeulen, and M. Mann, A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics, Mol Cell, vol.49, issue.2, pp.368-378, 2013.

J. Cocquet, P. J. Ellis, Y. Yamauchi, J. M. Riel, T. P. Karacs et al., Deficiency in the multicopy Sycp3-like X-linked genes Slx and Slxl1 causes major defects in spermatid differentiation, Mol Biol Cell, vol.21, issue.20, pp.3497-3505, 2010.

S. J. Conway, S. K. Mahadevaiah, S. M. Darling, B. Capel, Á. M. Rattigan et al., Y353/B: a candidate multiple-copy spermiogenesis gene on the mouse Y chromosome, Mammalian Genome, vol.5, pp.203-210, 1994.

P. S. Burgoyne, S. K. Mahadevaiah, M. J. Sutcliffe, and S. J. Palmer, Fertility in mice requires X-Y pairing and a Y-chromosomal "spermiogenesis" gene mapping to the long arm, Cell, vol.71, pp.391-398, 1992.

Q. Helleu, P. R. Gerard, and C. Montchamp-moreau, Sex chromosome drive. Cold Spring Harbor perspectives in biology 2015, vol.7, p.17616
URL : https://hal.archives-ouvertes.fr/hal-01693002

J. M. Good, T. Giger, M. D. Dean, and M. W. Nachman, Widespread over-expression of the X chromosome in sterile F1 hybrid mice, PLoS Genet, issue.9, p.6, 2010.

J. M. Good, The conflict within and the escalating war between the sex chromosomes, PLoS Genet, vol.8, issue.9, p.1002955, 2012.

E. Mulugeta-achame, E. Wassenaar, J. W. Hoogerbrugge, E. Sleddens-linkels, M. Ooms et al., The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids, BMC genomics, vol.11, p.367, 2010.

L. Y. Lu, J. Wu, L. Ye, G. B. Gavrilina, T. L. Saunders et al., RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis, Developmental cell, vol.18, issue.3, pp.371-384, 2010.

H. S. Sin, A. Barski, F. Zhang, A. V. Kartashov, A. Nussenzweig et al., RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids, Genes & development, vol.2012, issue.24, pp.2737-2748

V. Perissi, K. Jepsen, C. K. Glass, and M. G. Rosenfeld, Deconstructing repression: evolving models of co-repressor action, Nat Rev Genet, vol.11, issue.2, pp.109-123, 2010.

S. L. Berger, The complex language of chromatin regulation during transcription, Nature, vol.447, issue.7143, pp.407-412, 2007.

K. M. Zhang, Y. F. Wang, R. Huo, Y. Bi, M. Lin et al., Characterization of Spindlin1 isoform2 in mouse testis, Asian journal of andrology, vol.10, issue.5, pp.741-748, 2008.

B. N. Devaiah, C. Case-borden, A. Gegonne, C. H. Hsu, Q. Chen et al., BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin, Nature structural & molecular biology, vol.2016, issue.6, pp.540-548

S. Tu, Y. Shin, W. M. Zago, B. A. States, A. Eroshkin et al., Takusan: a large gene family that regulates synaptic activity, Neuron, vol.55, issue.1, pp.69-85, 2007.

N. Nakanishi, S. D. Ryan, X. Zhang, A. Khan, T. Holland et al., Synaptic protein alpha1-takusan mitigates amyloid-beta-induced synaptic loss via interaction with tau and postsynaptic density-95 at postsynaptic sites, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.33, issue.35, pp.14170-14183, 2013.

A. N. Spiess, N. Walther, N. Muller, M. Balvers, C. Hansis et al., SPEER--a new family of testisspecific genes from the mouse, Biology of reproduction, vol.68, issue.6, pp.2044-2054, 2003.