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Abstract

Numerical simulations represent a fundamental tool for the design and optimization
of industrial manufacturing processes such as welding. Despite the impressive de-
velopment of the numerical methods and the means of calculation, the complexity
of these processes and the new demands of the more advanced industries make it
necessary to rethink the available methods, strategies and simulation algorithms.

In this thesis, we propose new numerical methods with a Model Order Reduction
approach, a consolidated discipline that has provided surprising solutions in different
applications, such as advanced manufacturing processes.

First, different strategies for the efficient simulation of conventional welding pro-
cesses are proposed. To this end, the use of Computational Vademecums is intro-
duced for the improvement of methods such as the Generalized Finite Element for
thermal calculation, the local-global approach for the mechanical calculation or the
direct construction of vademecums useful for pre-design phases. Then, an efficient
PGD solver for thermo-mechanical simulations for friction stir welding is presented.

This thesis shows how Model Order Reduction, apart from being an end, can be
an excellent ingredient to improve the efficiency of traditional numerical methods,
with great interest for the industry.
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Résumé

Les simulations numériques représentent un outil fondamental pour la conception
et l’optimisation de procédés industriels de fabrication tels que le soudage. Malgré
le développement impressionnant des méthodes numériques et des moyens de calcul
utilisables, la complexité des procédés de fabrication et les nouvelles exigences des
industries les plus avancées obligent à repenser les méthodes, les stratégies et les
algorithmes de simulation disponibles.

Dans cette thèse, de nouvelles méthodes numériques avec une approche de Réduc-
tion des Modèles sont proposées, une discipline consolidée qui a fourni des solutions
étonnantes dans différentes applications, comme les procédés de fabrication avancés.

Tout d’abord, différentes stratégies sont proposées pour la simulation efficace
des procédés de soudage conventionnel, à cet effet, l’utilisation de Computational
Vademecums est introduite. En second lieu, un solveur PGD efficace est présenté
pour les simulations thermo-mécaniques de soudage par friction-malaxage.

L’introduction de ces abaques numériques améliorent des méthodes telles que :
les éléments finis généralisés pour le calcul thermique, l’approche locale-globale pour
le calcul mécanique et enfin, la construction directe des abaques utiles pour la phase
de pré-design.

Cette thèse montre comment la réduction des modèles, en plus d’être une fin
en soi, peut être un excellent ingrédient pour améliorer l’efficacité des méthodes
numériques traditionnelles. Cela représente un grand intérêt pour l’industrie.
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Resumen, conclusiones y
aportaciones científicas

Resumen

Las simulaciones numéricas representan hoy en día una herramienta fundamental
para la concepción y optimización de procesos de fabricación industrial tales como
la soldadura. A pesar del impresionante desarrollo de los métodos numéricos y de
los medios de cálculo disponibles, la complejidad de estos procesos y las nuevas
exigencias de las industrias más avanzadas, obligan a repensar los métodos, las
estrategias y los algoritmos de simulación actuales.

En esta tesis, se proponen nuevos métodos numéricos con un enfoque de re-
ducción de modelos, una disciplina consolidada que ha proporcionado resultados
excepcionales en diferentes aplicaciones como la de los procesos avanzados de fabri-
cación.

En primer lugar, se presentan diferentes estrategias para la simulación eficaz
termo-mecánica de la soldadura convencional. Para ello, se introducen los denomi-
nados Computational Vademecums. Estos ábacos permiten mejorar métodos como
el de los Elementos Finitos Generalizados o el enfoque local-global para el análisis de
la soldadura. Además, se muestra cómo estos ábacos constituyen una extraordinaria
herramienta para fases de prediseño.

En segundo lugar, se presenta un solver avanzado para la simulación termo-
mecánica de procesos de fabricación con aplicación directa al friction stir welding,
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un proceso de soldadura no convencional.

Esta tesis muestra como la Reducción de Modelos, lejos de representar un fin
último, puede ser un ingrediente formidable para mejorar la eficacia de métodos
numéricos y estrategias tradicionales. Además, esto se puede realizar de forma
mínimamente intrusiva lo que despierta un gran interés en la industria.

Conclusiones

En esta tesis se han presentado diferentes herramientas para la simulación de pro-
cesos de soldadura convencional y no convencional. La originalidad de este trabajo
reside en el uso de técnicas de reducción de modelos con enfoques distintos a los tradi-
cionales buscando su mayor aplicabilidad industrial. Esto ha significado la propuesta
de mejora de estrategias numéricas robustas y de fácil integración en plataformas de
cálculo preexistentes.

La V-GFEM es un método para la simulación eficaz de modelos térmicos tran-
sitorios. Su principal ventaja consiste en adaptar el espacio de aproximación de la
solución en función de los parámetros de la simulación en tiempo real. Esto se logra
mediante la introducción de un ingrediente clave: un computational vademecum que
se puede calcular offline. La V-GFEM no sólo hereda las buenas propiedades de la
GFEM (aproximabilidad, confomidad y carácter meshless) sino que además tiene
una importante ventaja: tan solo necesita una función de enriquecimiento que será
la adecuada para esa simulación en ese preciso instante. El costo computacional de
la V-GFEM es el mismo que cualquier método GFEM donde se emplee una sola
función de enriquecimiento. En los ejemplos presentados se ha obtenido aproximaa-
mente una diferencia de un orden magnitud entre el cálculo de una solución con
V-GFEM y una solución FEM h-adaptada a una misma precisón.

El método Metalocal-global presentado es una estrategia eficaz para estimar dis-
torsiones y tensiones residuales en grandes estructuras donde se realizan una gran
cantidad de soldaduras. Esta estrategia se basa en el enfoque local-global solucio-
nando una de sus limitaciones: la consideración de la influencia de la estructura
global sobre la región local de una forma eficiente. El método Metalocal-global



sustituye la simulación local por un computational vademecum que proporciona la
solución plástica local para cualquier influencia elástica global sobre la región de
soldadura. Es un método sistemático para construir una base de datos de computa-
tional vademécums que puede ser utilizada para diferentes geometrías y condiciones
de contorno de grandes estructuras.

La simulación completa de la soldadura tradicional ha sido estudiada en un
escenario simplificado: el estado estacionario. No obstante, se ha mostrado como la
posibilidad de constuir computational vademecums de estos procesos abre la puerta
a nuevos escenarios de gran interés para la industria en preproceso, optimización
y ajuste de datos experimentales para la simulación de procesos de soldadura. Se
ha hecho especial hincapié en la baja intrusividad del método, permitiendo utilizar
códigos industriales para su elaboración.

Finalmente, se ha presentado un solver basado en la PGD para la simulación
eficaz de modelos termo-mecánicos y en particular para friction stir welding, un
proceso de soldadura no convencional. Este solver permite resolver un problema
3D mediante un conjunto de problemas 2D, disminuyendo dramáticamente el coste
computacional asociado.

Aportaciones científicas

En esta tesis se han realizado las siguientes aportaciones científicas originales:

• Elaboración del método V-GFEM para la simulación eficaz de modelos tér-
micos transitorios y en particular para el análisis de térmico de la soldadura
convencional.

• Introducción del método Metalocal-global para la mejora de la simulación
mecánica de procesos de soldadura convencional bajo la hipótesis de sepa-
ración local-global.

• Creación de computational vademecums no intrusivos para el análisis completo
de la soldadura en régimen estacionario (térmico, metalúrgico y mecánico)
empleando plataformas de simulación préxistentes.



• Proposición de un solver eficiente basado en la PGD para la simulación de
procesos de termo-mecánicos de fabricación como friction stir welding.
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Introduction

The emergence and development of computer simulations have constituted a real
revolution in science and engineering, thus having a great impact on our society.
Simulations have expanded theoretical science based on mathematical models to
arrive at new physical predictions, to build new scientific theories and to validate
existing theories. A good example to understand that simulations do science to-
day, is the gravitational waves: computational simulations predicted with amazing
accuracy (and many years in advance! (Novak and Ibáñez, 2000)) recent experi-
mental observations (Abbott et al., 2016). But in addition, numerical simulations
are a formidable tool for the simulation of engineered systems. Like in fundamental
science, computational simulations have taken the physical and mathematical foun-
dations of engineering enriching them with their own disciplines such as computer
science or applied mathematics, to create a new paradigm for understanding current
engineering: Simulation-Based Engineering Science (SBES) (Oden et al., 2006).

If we see engineering as an interface between science and society, we can appre-
ciate the impact that computer simulation has on our lives for their fundamental
contributions in civil engineering, automotive, aeronautics, energy industries, de-
fense, meteorology or the environment to name just a few examples. It can be
said, without any doubt, that in all the above fields the incorporation of numerical
simulations has been a real breakthrough in its development.

Numerical simulations in engineering began more than 60 years ago, although it
is perhaps from the ’90s onwards when they have revolutionized all its application
fields, thanks to the important development of algorithms and the great capacity
of calculation that was becoming available. Nowadays the enormous advantages of
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numerical simulations are clear, among others, in silico experimentation without the
limitations of the real world, time and economical savings, apart from no human or
environmental risks.

However, there is some consensus in the scientific community (Oden et al., 2011,
2003) about the fact that the next scientific and technical challenges in our society far
exceed the capabilities of the current SBES paradigm. More ambitious applications,
more competitive industries, new manufacturing processes and the need of reducing
environmental impact, will require rethinking calculation methods and algorithms,
the management of massive data and even the role of numerical simulations in future
engineers’ academic training.

In this context, this thesis focuses on proposing new computational algorithms
and enriching existing methods in computational mechanics to respond to some of
these new requirements. In particular those concerned with advanced industries for
efficient simulation of conventional and non-conventional welding processes.

The simulation of manufacturing processes involves many challenges for which
traditional methods find many difficulties. Some of these are:

• Complex multiphysical and coupled models that are more and more used.

• Increasing demand for virtual simulation platforms that cover all stages of the
design taking into account the manufacturing process itself or even products’
service life.

• High-dimensional design spaces that are impossible to explore using conven-
tional techniques.

• Need to introduce real-time simulations in deployed devices for augmented
reality environments and control of data-driven manufacturing processes.

The common denominator of the different contributions included in this work to
obtain simulations that can respond to these scenarios is the Model Order Reduc-
tion (MOR). This computational mechanic discipline has proven to be an appealing
option to address the challenges of this new paradigm of computation. One of the
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fundamental goal of this thesis is to show how MOR techniques not only can solve
problems by themselves, but also be integrated in other traditional methods to en-
hance them increasing their efficiency.

After this very brief introduction, the thesis is structured as follows. In Chap-
ter 1, a state-of-the-art of different techniques of model order reduction is elabo-
rated, emphasizing those that have been used throughout this work. Additionally,
at the end of this first chapter, different contributions of MOR for different indus-
trial manufacturing processes are presented. In Chapter 2, a Generalized Finite
Element method enriched with a Computational Vademecum is presented for the
thermal analysis of conventional welding and thermal treatments. In Chapter 3,
the mechanical analysis of conventional welding is stated. In this same chapter,
computational vademecum as a library of pre-calculated knowledge are used. This
allows us to greatly decrease the computational cost of certain types of welding sim-
ulations, local-global approach, very useful in practice. In Chapter 4, the thermal
and mechanical steady-state analysis for conventional welding are elaborated and
the construction of computational vademecums for them is proposed. Chapter 5
proposes an advanced high-efficiency solver for thermomechanical problems involv-
ing large deformations in plate-like geometries. This solver is based on the Proper
Generalized Decomposition, one of the reduction techniques of models introduced in
Chapter 1. Friction Stir Welding, a non-conventional welding process, is proposed
as an application of this technique. Finally, the general conclusions of this thesis
and the future lines of research that remain open are drafted.

The work introduced here has been encouraged by the scientific and industrial
challenges transmitted by our industrial partner ESI Group. Without relinquishing
to make scientific contributions of interest, this thesis reflects a new trend: the
integration of MOR methods in a less intrusive way, taking advantage of the available
tools and also for problems of industrial interest. If this has been accomplished, it
has been thanks to the continued collaborative work between ESI Group and our
research team.
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Chapter 1

Introduction to Model Order
Reduction and applications to
manufacturing processes.

Model Order Reduction (MOR) is an appealing scientific discipline to address the
above mentioned new challenges. In a nutshell, a MOR method is any numeri-
cal approach that aims to replace a high-fidelity simulation by another one with a
much lower computational cost. A high-fidelity simulation is one carried out using
traditional numerical methods such as Finite Elements, Finite Volumes or Spectral
Methods, where generic approximation spaces and resolution techniques are applied.
In contrast, MOR techniques pursue great computational savings through the intro-
duction of more suitable approximation spaces for the problem in hand and more
efficient solvers. The price to pay is an additional error coming from reduction.

MOR methods are the key ingredient of each one of the techniques presented
in this thesis. Thus, it is pertinent to present a brief classification of the different
families of MOR methods and to introduce the most relevant methods for this work.
Namely, the Reduced Basis method (RB), the Proper Generalized Decomposition
(PGD) and the Sparse Subspace Learning method (SSL) will be elaborated.
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1.1 Introduction to MOR methods

Model Order Reduction is a discipline of Computational Mechanics that date back
to the ’80s and the early ’90s with the application of POD in fluid mechanics Deane
et al. (1991); Gatski and Glauser (1992), following the developments in POD by
Lumley Lumley (1967) in the late ’60s. After these first applications in flow simu-
lations, a large number of MOR methods and strategies has emerged for a plethora
of different applications. Even with the expansion of High Performance Computing
(HPC) occurring at the same time, MOR methods have been increasingly used in
many fields in response to highly challenging scenarios such as:

• Optimization problems with lot of parameters where performing only one sim-
ulation can take days.

• Stochastics PDEs.

• Simulations that must be performed in real time. Such as Dynamic Data
Driven Application Systems (DDDAS) applications (Darema, 2004).

• Problems defined in high dimensional spaces, such as the kinetic theory model
presented in the PGD foundation paper (Ammar et al., 2006).

• The integration of numerical simulations in new contexts such as surgery
(Quarteroni and Formaggia, 2004).

MOR methods do not simplify the physical model but construct new numerical
strategies to compute compact and inexpensive approximations of multidimensional
solutions. They exploit the correlations that naturally exist between the degrees of
freedom of a numerical model, and reduces the problem’s computational complexity
by giving a lower dimensional representation of the solution.

The ways to classify MOR methods have been diverse according to their different
features. In this section we will present a classic classification, which can be found
in (Benner et al., 2013) seasoned with more current contributions from (Aguado,
2016) and (Cohen and DeVore, 2015). Due to its generality and interest, we will use
a notation similar to (Cohen and DeVore, 2015).

7



Chapter 1. Introduction to MOR methods.

In Computational Mechanics the modeling of a system is generally performed
through Partial Differential Equations (PDEs) defined in a physical domain where
certain parameters are fixed. These parameters are of different nature (geometric,
material or technological parameters) and they can be formulated typically by the
definition of some coefficients, flows or boundary conditions in the PDE. We speak of
parametric PDEs when any of these parameters can vary within a range of interest.
In general we write:

P(u,µ) = 0, (1.1)

where u is the unknown, µ represents the parameters and P : V × X → W is a
linear o nonlinear differential operator where (X, V,W ) is a triplet of Banach spaces.
Supposing that µ is defined over a compact set A ⊂ X and for each value µ a unique
solution u = u(µ) exists, then the solution map,

u : µ 7→ u(µ),

and the solution manifold,

M = u(A) = {u(µ) : µ ∈ A},

can be defined.

It is important to note that the fact that the operator P could be linear does
not imply the linearity of the solution map. The calculation of this manifold may
be impracticable in many of the scenarios mentioned above: high dimensionality of
the parametric space X or the need to perform calculations in real time.

Te solution map may also be viewed as a function

(x,µ) 7→ u(x,µ),

and MOR methods, by exploiting certain properties of the solution map, such as
holomorphy and anisotropy, (see (Cohen and DeVore, 2015) for more details), try to
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approach it as follows:

(x,µ) 7→ un(x,µ) :=
n∑
i=1

vi(x)φi(µ) (1.2)

where {v1, . . . , vn} are functions of x living in the solution space V and {φ1, . . . , φn}
are functions of µ with values in R or C. This approximation is analogous to low-
rank approximation of matrices and, although it is out of the scope of this work,
the interested reader can find in (Aguado, 2016) a more thorough exposition of this
idea.

The optimal separability of the solution map given by Eq. (1.2) leads to the
concept of Kolmogorov’s n-width , which in general, because of its computational
cost, is not practical for MOR methods. Thus, we will seek separate sub-optimal
approaches, which will conform the different families of MOR methods.

A fundamental idea in MOR techniques, making them very convenient to address
with the challenging scenarios presented above, is the offline-online approach. These
methods structure the workload in two phases:

• Offline phase. In this first stage, the approximate solution map representation
(Eq. (1.2)) is constructed in a complete or partial way. It is computation-
ally expensive but typically it is performed only once and using important
computational resources (HPC).

• Online phase. In this phase, the problem in question is solved in a very eco-
nomical or even trivial way, depending on whether the separated form has been
calculated partially or completely.

At this point, the reader might wonder how the offline-online structure, with a
costly offline stage, could lead to computational savings in comparison with tradi-
tional simulation where the workload is performed in just one stage. On the one
hand, there is a gain from the fact that the offline phase is done in an “intelligent”
way, working with an approximation of the solution manifolds that provides good
results with a much lower computational cost. On the other hand, this structure
allows to perform simulations online in light computer platforms and deployed de-
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vices, which is in itself a fundamental competitive advantage for many applications
already mentioned. The workload distribution between both stages varies signifi-
cantly between the different MOR methods.

1.1.1 General classification of MOR methods

We can classify the different MOR methods according to different characteristics,
which are not mutually exclusive:

• A priori / A posteriori. Those methods that inspect the mapping of the so-
lution, typically solving the full problem for different values of µ (snapshots),
are called a posteriori. Those who do not perform this inspection of the solu-
tion are considered a priori. Reduced Basis and methods based on the POD
can be considered a posteriori. The PGD and other low-rank approximation
techniques can be considered a priori.

• Adaptivity: A non-adaptive method is one that, for a given n, selects the basis
of functions {v1, . . . , vn} and even {φ1, . . . , φn} of Eq. (1.2) a priori (up to
a multiplicative set of coefficients), typically through some knowledge of the
solution. On the contrary, an adaptive method is the one that, typically in a
greedy way, adds a function n which depends on the n−1 previously obtained
to enrich them. This classification might seem equivalent to the former one,
since it is commonly thought that any non-adaptive method is a priori and
any adaptive method is a posteriori. However, in the opinion of the author,
these features are not correlated. This is the case, for example, of the PGD,
where without requiring snapshots (it is an a priori method) follows a greedy
strategy to construct, in an adaptive way, the separated form. In general
adaptive techniques provide better results. In this thesis, all the techniques
used (whether the calculation of snapshots is needed or not) are adaptive.

• Projective / Interpolant. In MOR, a simplified form of the mapping of the
solution is sought. However, this can be done in different ways and with
different workload distribution between the offline-online phases. Projective
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methods only compute {v1, . . . , vn} in the offline phase, constructing a ba-
sis. On this basis, the original PDE is projected, being expressed in a much
smaller dimension. Then, the reduced PDE is solved to calculate the coeffi-
cients {φ1(µ), . . . , φn(µ)} in the online phase. On the contrary, the interpo-
lating methods calculate the entire separated form during the offline stage,
leaving for the online one the trivial task of substituting the values of the
parameter in the previous expression. These methods are able to calculate
a numerical handbook of the solution, also known as computational vademe-
cum (Chinesta et al., 2013b), since the solution is precomputed offline with an
explicit dependence of the parameters.

• Intrusiveness. It is said that a method is non-intrusive if it is possible to im-
plement it without substantially modifying the high-fidelity simulation solver
and without knowing the exact form of the PDE. An ideal non-intrusive MOR
method uses the high-fidelity solver as a black-box and without needing to
know the original PDE that is being solved. In contrast, an intrusive method
makes use of the PDE structure itself and modifies the resolution method. A
priori methods, such as PGD, are clear examples of intrusive methods, whereas
those based on POD, Reduced Basis or polynomial interpolation approaches
are non-intrusive (or very slightly intrusive). Sometimes intrusiveness is not
a problem but a goal. It is the case of the reformulation of a solver using
a MOR technique to gain efficiency. An example is the in-plane-out-of-plane
PGD decomposition that is used in Chapter 5. However, and generally speak-
ing, intrusiveness is an impediment to the incorporation of MOR solutions into
preexisting simulation platforms. This problem is very present today, and in-
trusive methods such as the PGD are being reformulated in much less intrusive
(Borzacchiello et al., 2017, 2016) versions. This thesis is also an example of
this tendency and the MOR methods that appear in Chapters 2, 3 and 4 are
non-intrusive.

After this brief classification we will elaborate the two MOR methods that are
used in the following chapters of this thesis: the PGD and the SSL. Also, for a better
understanding of these methods, the Reduced Basis method is introduced first.
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1.1.2 Reduced Basis

Although this family of MOR methods is not used in this thesis, for the sake of
completeness, in this section we will briefly describe the generalities of Reduced
Basis methods (Maday et al., 2002; Patera and Rozza, 2007; Quarteroni et al., 2015).
Moreover, the POD which is not a MOR method itself, but the main ingredient to
construct reduced spaces, is also introduced. We will focus on the Galerkin Reduced
Basis (G-RB), which will enable us to understand the principles of the majority of
projective MOR methods.

Let us consider a parametric PDE with a set of parameters µ expressed in Eq.
(1.1). The set of solutions u(µ) generated as µ varies in its domain A produc-
ing a manifold M (see Fig. 1.1). The fundamental hypothesis of RB is that this
manifold can be approximated by the linear combination of a few elements of M.
The underlying idea is to generate an approximated solution that belongs to a sub-
space VN ∈ V of dimension N � dim(V ) and, in that way, much less expensive
computational-wise. The following are the steps involved:

I The high-fidelity problem is solved for a given set S = {µ1, . . . ,µp} of values
of the parameters. These solutions are called snapshots:

{u(µ1), . . . , u(µp)}.

II From these snapshots, using the POD (see section 1.1.2.1), a basis ofN functions
is constructed,

{v1, . . . , vN},

which generates the reduced basis space:

VN = span{v1, . . . , vN}.

It is important to note that none of the functions vi are solution of the high-
fidelity problem.

III Once the basis is obtained, the reduced problem is generated by projection of the
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discretized PDE, generating a system of N independent equations. This implies
the orthogonalization of the residual of the high-fidelity problem calculated in
the reduced solution with respect to a subspace WN ∈ V of dimension N . If
WN = VN , then it is the particular case of a Galerkin Reduced Basis method
that can be formulated as follows. Find uN(µ) ∈ VN such that

a(uN(µ), wN ;µ) = f(wN ;µ) ∀wN ∈ VN . (1.3)

Figure 1.1: Scheme of the manifold and its approximation

Taking into account the offline-online division, previous scheme’s phases I and
II are performed offline while III is carried out online. It is clear how, unlike other
MOR methods, the use of Reduced Basis methods also implies a resolution of a PDE
(with reduced dimensionality size) in the online phase (Eq. (1.3)).

It is important to note that resolution complexity scales with the reduced dimen-
sion N provided the PDE is linear. In the case of having a nonlinear PDE, the reso-
lution of the reduced PDE will continue to imply a computational cost that depends
on the dimensionality of the high-fidelity problem. This is because nonlinear terms
must be reconstructed in the original space V to be evaluated. This problem is today
one of today’s most actively researched topics in the MOR community and there are
several widely accepted methods such as the Empirical Interpolation Method (EIM)
(Barrault et al., 2004), its discrete counterpart DEIM (Chaturantabut and Sorensen,
2010) and the Hyper-reduction methods (Farhat et al., 2015; Hernández et al., 2017).
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1.1.2.1 The Proper Orthogonal Decomposition

The POD is not a MOR method in itself but a key algorithm for important methods
such us Reduced Basis and projected MOR methods in general. The POD is a
technique for reducing the dimensionality of a dataset by its representation on an
orthonormal basis that is optimal in a least-square sense. The original variables
are transformed into a new set of uncorrelated variables (called modes). Ideally,
considering only a few of these modes, most of the energy present with the original
variables is retained.

If we consider the set of snapshots S = {µ1, . . . ,µp}, we define the snapshot
matrix S ∈ Rd×p, with d = dim(V ), as

S = [u1 | · · · | up] ,

where ui is the resolution of the high-fidelity problem for the set of parameter values
µp. Making a Singular Value Decomposition (Golub and Van Loan, 2012) of S we
obtain

S = UΣZT ,

where U = [ϕ1 | · · · | ϕd] ∈ Rd×p and Z = [χ1 | · · · | χd] ∈ Rp×p are orthogonal
arrays and Σ = diag(σ1, . . . , σr) ∈ Rd×p with σ1 ≥ σ2 ≥ . . . ≥ σr. Since

STϕi = σ2
iχi, i = 1, . . . , r

or equivalently,
SSTϕi = σ2

iϕi, i = 1, . . . , r,

then σ2
i , i = 1, . . . , r, are the nonzero eigenvalues of the matrix STS (the so-called

correlation matrix), listed in nondecreasing order.

For any N < np, the POD basis V ∈ Rd×N of dimension N (step II of the
algorithm of the Reduced Basis) is defined as the set of the first N left singular
vectors ϕ1, ...,ϕN of U .

It can be proved that the error in the POD basis is equal to the sum of the
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squares of the singular values corresponding to the neglected POD modes (Benner
and Sokolov, 2006). Therefore, to select the dimension N < r such that the pro-
jection error is less than a desired εPOD tolerance it is sufficient to choose N as the
smallest integer such that

I(N) =
∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2POD.

1.1.3 The Proper Generalized Decomposition

In the previous section we have described the basic principles of Reduced Basis, a
posteriori projective MOR method. These techniques present certain limitations,
mainly the difficulty to apply them to problems involving a large number of param-
eters (the curse of dimensionality (Bellman, 1956)) and the criterion of choosing the
appropriate snapshots to build the reduced basis. These limitations motivated the
emergence of other techniques that could circumvent these problems, as is the case
of the PGD.

The PGD, proposed in 2006 by Chinesta et al (Ammar et al., 2006), generalizes
the radial decomposition previously introduced by Ladeveze (Ladeveze, 1985) as
an ingredient of the LATIN method, considering parameters of any nature with
surprising results. It is an a priori MOR method (it does not need snapshots), and
thanks to its incremental algorithm of construction that uses alternated directions,
it efficiently amends the curse of dimensionality.

In the first place we are going to introduce the PGD with a general formalism,
following the presentation of (Aguado, 2016). This approach allows us to appreciate
the elegance of the PGD by extracting it from particular discretization methods or
a specific algorithm of construction.

Let us consider the variational form of the parametric PDE given in Eq. (1.1), for
the particular case of having only one parameter µ. The problem can be formulated
as finding u ∈ Vs, where Vs is an appropriate approximation space, such that

a(u,w;µ) = l(w), (1.4)
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for every w ∈ Vs and some µ ∈ Iµ. Bilinear and linear forms are denoted by
a( · , · ) : Vs × Vs → K and l( · ) : Vs → K, respectively, where K is R or C. The
former model is the so-called high-fidelity problem, even when u is an approximated
solution.

For a proper understanding of the PGD principles it is necessary to first intro-
duce the notion of tensor product spaces. Let us construct an approximation of the
solution in the parametric domain, so the high-fidelity problem must be reformu-
lated: find u ∈ V := Vs⊗ Vµ, a tensor product space (Kolda and Bader, 2009), such
that

a(u,w) = l(w),

for every w ∈ V . It is important to note that the parametric dependence is omitted
since the approximation space covers the parametric domain. This means that the
parameter is a new coordinate just as space and time.

If Vs := span{v1≤i≤N
s } and Vµ := span{v1≤i≤M

µ }, an element of the tensor product
space, V , of these spaces reads:

u =
N∑
i=1

M∑
j=1

αij v
i
sv
j
µ, (1.5)

where vs and vµ are elements of Vs and Vµ respectively. αij defines the entries of a
two-dimensional tensor, α ∈ KN×M .

The construction of a solution in the form given by Eq.(1.5), in general, entails
a prohibitive computational cost, since its complexity scales exponentially with the
number of dimensions of the problem. Instead, other separate solutions are sought
that imply a much lower cost, such as the PGD.

Let us consider the high-fidelity problem and the functional spaces Vs and Vµ,
the spatial and parametric functional spaces respectively. Let us define the tensor
product space V := Vs ⊗ Vµ that can be built from them. Consider now the R
pairs of functions (urs, urµ) ∈ Vs × Vµ such that the solution of Eq.(1.4) can be well
approximated as follows:

u ≈
R∑
r=1

ursu
r
µ. (1.6)
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Eq. (1.6) is called a separated representation of order R, because it is a sum of
function products of space and parameter. The objective of PGD is to compute the
function pairs (urs, urµ), also called space and parameter modes, respectively.

Let us consider the following finite dimensional approximation spaces defined
from the modes:

Vs := span
{
vrs = urs

‖urs‖
, 1 ≤ r ≤ R

}
and Vµ := span

{
vrµ =

urµ
‖urµ‖

, 1 ≤ r ≤ R

}
,

both of dimension R. A tensor product space can be built from these spaces as
V := Vs ⊗ Vµ ⊂ V . Let us introduce a subset of that tensor product space:

SR :=
{
v ∈ V : v =

R∑
r=1

ur v
r
sv

r
µ, with vrs ∈ Vs, vrµ ∈ Vµ and ur ∈ K

}
.

We denote by uR an element of SR, also called a rank-R separated representation.
From Eq. (1.6), the approximation u ≈ uR belongs to that subset.

PGD allows building SR progressively: S1, S2, . . ., each one of them defined from
SR = SR−1 + S1, for R ≥ 2. Therefore, the successive approximation spaces are
nested, i.e. SR−1 ⊂ SR. This is made by seeking a pair (us, uµ) ∈ Vs × Vµ. When
it is available, Vs and Vµ are updated by normalizing us and uµ, respectively. The
new approximation will be defined from

u(R+1) = uR + usuµ ⇔ u(R+1) =
R+1∑
r=1

ur v
r
sv

r
µ.

In order to introduce the PGD algorithm, let us assume that we have already
built SR, i.e. uR is known, and we want to compute a couple (us, uµ) ∈ Vs×Vµ such
that:

a(usuµ, w) = r(uR, w), (1.7)

for every w ∈ V . We denote by r( · , · ) the residual, defined as

r(uR, w) := l(w)− a(uR, w).
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Observe that computing both us and uµ is a nonlinear problem. Let us assume that
the problem to be solved is elliptic. Then, Eq. (1.7) can be turned into an equivalent
nonlinear optimization problem:

min
us,uµ
J (us, uµ) := 1

2a(usuµ, usuµ)− r(uR, usuµ).

The stationarity conditions of the functional can be found by means of calculus of
variations. Consider the following arbitrary variations: us + ξws and uµ + ηwµ.
Substituting and taking derivatives with respect to ξ and η:

a(usuµ, wsuµ) = r(uR, wsuµ), ∀ws ∈ Vs, (1.8a)

a(usuµ, uswµ) = r(uR, uswµ), ∀wµ ∈ Vµ. (1.8b)

The stationarity conditions can be expressed in a single equation as follows: find
(us, uµ) ∈ Vs × Vµ such that

a(usuµ, wsuµ + uswµ) = r(uR, wsuµ + uswµ), ∀(ws, wµ) ∈ Vs × Vµ. (1.9)

Eq. (1.9) can be interpreted as a Galerkin formulation which imposes the cancel-
lation (i.e. orthogonality) of the residual simultaneously with respect to Vs ⊗ {uµ}
and {us} ⊗ Vµ (Nouy, 2010).

Eq. (1.8) suggests applying a fixed-point algorithm to solve the nonlinear opti-
mization problem. The fixed-point is as follows:

I Assume uµ is known, then update us from Eq. (1.8a).

II From us just computed, update uµ by solving Eq. (1.8b).

III Go back to the first step.

Once presented this general formulation, we will particularize the PGD with two
worked examples that will serve to understand two of the most important appli-
cations of PGD that have been used in this thesis: the PGD as a computational
vademecum constructor (Chinesta et al., 2013b; Courard et al., 2016) and the PGD
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as a particularly efficient differential solver. The reader thus engaged can find in
(Chinesta et al., 2013a) more details about PGD and even in (Cueto et al., 2016)
Matlab codes to solve similar examples to those presented here.

1.1.3.1 The PGD as a computational vademecum constructor

Let us consider the following parametric heat transfer equation:

∂u

∂t
− k ·∆u = f

with homogeneous initial and boundary conditions. PGD opens the possibility of
introducing general parameters of the problem as extra coordinates in order to con-
struct a computational vademecum. It means that, for example, the material prop-
erties or the applied forces are no longer parameters but coordinates of the problem.
Thus, the solution can be particularized later for any particular value of each param-
eter (coordinate) inside their domains of definition. Instead of tackling the original
problem, an offline more complex problem is constructed. Once the latter is solved,
we can get the original problem’s solution for any particular case. In order to do so,
we just have to run online evaluations with a negligible cost.

The price to pay is an increase of the problem dimensionality and the resulting
nonlinear formulation. The first drawback is overcome by the fact that the PGD
formulation scales linearly with the dimensions so it is not a major issue. The second
one is circumvented using an appropriate iterative solver, in practice, the alternate
direction fixed-point algorithm.

The weighted residual form of the problem reads:

∫
Ω×It×Ik

u∗ ·
(
∂u

∂t
− k ·∆u− f

)
dx · dt · dk = 0

for every test function u∗ in its appropriate functional space.

In this example we introduce the time and the conductivity of the material as
extra coordinates of the computational vademecum. This implies that the desired
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solution will have the next form:

u(x, t, k) ≈
N∑
i=1

Xi(x) ·Ti(t) ·Ki(k).

Assuming that we are in the enrichment step n, the following approximation is
already known,

un−1(x, t, k) ≈
n−1∑
i=1

Xi(x) ·Ti(t) ·Ki(k).

and one desires to compute a new functional product Xn(x) ·Tn(t) ·Kn(k), which
we write as Rn(x) ·Sn(t) ·Wn(k) for notational simplicity. Thus, the solution in this
step n reads:

un = un−1 +Rn(x) ·Sn(t) ·Wn(k). (1.10)

In order to compute the new enrichment functional we consider the next test func-
tion:

u∗ = R∗n(x) ·Sn(t) ·Wn(k) + Rn(x) ·S∗n(t) ·Wn(k) + Rn(x) ·Sn(t) ·W ∗
n(k). (1.11)

Hence, trial and test functions are given by the equations (1.10) and (1.11) respec-
tively. Introducing them in the variational form, the next nonlinear problem is
obtained:

∫
Ω×It×Ik

u∗ ·
(
R ·W dS

dt
− k ·S ·W∆R

)
dx · dt · dk =

∫
Ω×It×Ik

u∗ · f −
n−1∑
i=1

∫
Ω×It×Ik

u∗ ·
(
Xi ·Ki

dTi
dt
− k ·Ki ·Ti∆Xi

)
dx · dt · dk

where the coordinate dependencies have been removed to alleviate the notation. Ad-
ditionally, we will consider that the source function can be expressed in a separated
form:

f ≈
m∑
j=1

fxj (x)× f tj (t)× fkj (k),

which can be obtained using a HOSVD or applying a PGD approximation, as we
will study in the first example of this chapter.
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As we have indicate before, this problem is solved with the alternated direction
fixed-point algorithm which works as follows:

I Assuming S(t) and W (k) known, R(x) is computed:

− αxβx
∫

Ω
R∗Rdx− γxδx

∫
Ω
R∗∆Rdx =

m∑
j=1

χxjπ
x
j

∫
Ω
R∗fxj dx−

−
n−1∑
i=1

(
αxi β

x
i

∫
Ω
R∗Xidx− γxi δxi

∫
Ω
R∗∆Xidx

)
, (1.12)

where the the integrals have been split and the next scalar values are known at
this point:

αx =
∫
Ik
W 2dk αxi =

∫
Ik
kWKidk

βx =
∫
It
S
dS

dt
dt βxi =

∫
It
S
dTi
dt
dt

γx =
∫
Ik
kW 2dk γxi =

∫
Ik
kWKidk

δx =
∫
It
S2dt δxi =

∫
It
STidt

χxj =
∫
Ik
Wfkj dk πxj =

∫
It
Sf tjdt.

II With the assumed W (k) and the previously computed R(x), S(t) is obtained
solving:

αtβt
∫
It
S∗
dS

dt
dt− γtδt

∫
It
S∗Sdt =

m∑
j=1

χtjπ
t
j

∫
It
S∗f jt dt−

−
n−1∑
i=1

(
αtiβ

t
i

∫
It
S∗
dTi
dt
dt− γtiδti

∫
It
S∗Tidt

)
, (1.13)
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where the scalar values read:

αt =
∫

Ω
R2dx αti =

∫
Ω
RXidx

βt =
∫
Ik
W 2dk βti =

∫
Ik
WKidk

γt =
∫

Ω
R∆Rdx γti =

∫
Ω
R∆Xidx

δt =
∫
Ik
kW 2dk δti =

∫
Ik
kWKidk

χtj =
∫

Ω
Rfxj dx πtj =

∫
Ik
Wfkj dk.

III Finally, using R(x) and S(t) from previous steps W (k) is computed:

αkβk
∫
Ik
W ∗Wdk − γkδk

∫
Ik
kW ∗Wdk =

m∑
j=1

χkjπ
k
j

∫
Ik
W ∗f jkdk−

−
n−1∑
i=1

(
αki β

k
i

∫
Ik
W ∗Kdk − γki δki

∫
Ik
kW ∗Kidk

)
, (1.14)

where

αk =
∫

Ω
R2dx αki =

∫
Ω
RXidx

βk =
∫
It
S
dS

dt
dt βki =

∫
It
S
dTi
dt
dt

γk =
∫

Ω
R∆Rdx γki =

∫
Ω
R∆Xidx

δk =
∫
It
S2dk δki =

∫
It
STidt

χkj =
∫

Ω
Rfxj dx πkj =

∫
It
Sf tjdt.

This three steps are repeated in a loop until the convergence of the new functional
product is achieved. It is important to remark that Eq. (1.12) is a regular second
order PDE which can be solved for any method. In practice, the integration by parts
is applied and then linear interpolations can be used. If the strong form is recovered,
Eq. (1.13) is a first order ODE that can be solved with any temporal integrator.
Eq. (1.14) does not involve any derivatives, it is a linear system of equations.
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1.1.3.2 The PGD as an efficient solver

One of the most prolific PGD applications, because of the quality of the results
and its diverse applicability, is the so-called in-plane-out-of-plane decomposition.
The first applications in linear elasticity were published in (Bognet et al., 2012a,b).
More recently it has been used in no-Newtonian squeeze flows with porous media
(Ghnatios et al., 2015).

Many of the models of material forming and composites manufacturing processes
are defined in degenerated three-dimensional domains. It is called degenerated do-
main such domain in which one or two of the dimensions are much smaller than the
others, as in plate-type geometries. Mesh-based solution of models defined in such
domains is a challenging issue because they involve meshes with too many degrees
of freedom. Often, the physics of the problem is very rich in the direction of the
degenerated coordinate (typically the thickness) and a very fine mesh is required.
This could lead to unaffordable computational costs.

Traditionally in engineering, this problem has been solved using simplified models
defined in domains with less dimensions. This is the case of the classical theories of
strength of materials, where three-dimensional solids are approximated by 1D or 2D
models (beams, plates and shells) (Timoshenko et al., 1956). These approximations
involve some kinematical and mechanical hypotheses on the evolution of the solution
through the degenerated dimension. Then, the solution is only valid in those points
in which the Saint-Venant principle is satisfied.

The PGD has the advantage of the separation of the variables to decrease the
dimensionality of the operators to compute. As we have previously seen, it is possible
to find the solution in the form

u(x) ≈
N∑
i=1

Xi(x) ·Yi(y) ·Zi(z),

but also using a plate-type decomposition,

u(x) ≈
N∑
i=1

Xi(x, y) ·Zi(z).
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In the first case, a complete separation is carried out. This means that we also
need a fully-separated geometry, which is complicated to find in practice. However,
the plate-type decomposition or the in-plane-out-of-plane decomposition is much
more versatile: many geometries involved in practical problems can be generated
using the extrusion of a generic 2D section. This technique is used throughout this
work and it will be explained in detail.

It has to be remarked that the in-plane-out-of-plane PGD solution is not a sim-
plified mode such as the beams or plates theories. It is a fully 3D solution which
is able to represent the 3D effects that the simplified theories cannot do. Thus,
comparisons should be made with real 3D FEM models. This fact does not mean
that no relationships could be established between the PGD separated solution and
some simplified models. The first PGD modes usually capture the solution of the
simplified models, enriching the solution with the following modes.

Let us illustrate the technique with a simple problem, a linear elastic problem
in a plate-shape Ξ = Ω × I domain. Assuming the next separated form of the
displacement field

u(x, y, z) =


u(x, y, z)
v(x, y, z)
w(x, y, z)

 ≈
N∑
i=1


uixy(x, y) ·uiz(z)
vixy(x, y) · viz(z)
wixy(x, y) ·wiz(z)

 .

where uxy(x, y), vxy(x, y) and wxy(x, y) are function of the in-plane coordinates,
whereas uz(z), viz(z) and wz(z) are functions involving the thickness coordinate.
The weak formulation of this problem reads:

∫
Ξ
ε(u∗) ·K · ε(u)dΞ =

∫
Ξ
u∗ ·f d dΞ +

∫
ΓN
u∗ ·F d dΓ,

where K is the Hooke tensor, f d represents the body forces and F d the forces
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applied on the boundary ΓN . The strains have the next separated expression:

ε(u(x, y, z)) ≈
N∑
i=1



uixy,x ·uiz
vixy,y · viz
wixy ·wiz,z

uixy,y ·uiz + vixy,x · viz
uixy ·uiz,z + wixy,x ·wiz
vixy · viz,z + wixy,y ·wiz


.

Assuming that the first nmodes have been computed, we want enrich the solution
adding another functional product:

un+1(x, y, z) = un(x, y, z) +


Ru(x, y) ·Su(z)
Rv(x, y) ·Sv(z)
Rw(x, y) ·Sw(z)

 .

The last expression conforms the trial function. As we have seen in the previous
section, the test function has the next form:

u∗(x, y, z) =


R∗u(x, y) ·Su(z) +Ru(x, y) ·S∗u(z)
R∗v(x, y) ·Sv(z) +Rv(x, y) ·S∗v(z)
R∗w(x, y) ·Sw(z) +Rw(x, y) ·S∗w(z)

 .

The weak form, after introducing the trial and test function, reads:

∫
xy

∫
z
ε(u∗(x, y, z)) ·K · ε(un+1(x, y, z)) dx dy dz

=
∫
xy

∫
z
u∗(x, y, z) ·f d dx dy dz +

∫
ΓN
u∗(x, y, z) ·F d dΓ. (1.15)

It is easy to check that, due to the product of unknown functions, the problem
has become nonlinear. To solve it, the alternated direction fixed-point algorithm
previously described is employed.

Given an initial value S(0)(z) of S(z) arbitrarily chosen, all z dependent func-
tions are known. Eq. (1.15) therefore is reduced to a 2D problem where the three
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components of R(x, y) are the unknown fields. Its solution yields R(1)(x, y), a first
approximation of R(x, y). Then using the just computed R(1)(x, y) in (1.15), we
similarly obtain a 1D problem which allows computing the three components of
S(1)(z) that constitutes the next approximation of S(z). This fixed point loop keeps
running until reaching convergence, i.e:

∫
Ξ

i=3∑
i=1

(
R(j)(x, y) ·S(j)(z)−R(j−1)(x, y) ·S(j−1)(z)

)2
dx dy dz ≤ ε,

where ε is a small enough tolerance.

One continues adding new PGD modes until certain approximation grade is
reached. In general this is achieved by imposing a minimum bound to the residual
of the PDE after the new mode is added. In practice the residual is not computed
after each new incorporation because it is computationally expensive. Depending
on the application, the residual is computed after 5, 10 or more PGD modes.

1.1.4 The Sparse Subspace Learning method

This is an adaptive and a posteriori MOR method which does not produce a reduced
system of equations but the parametric solution itself (interpolant method).

The SSL can be coupled, in principle, to any third-party simulation software in
a non-intrusive way. The nonlinear problems become completely transparent to the
user and the intrinsic parallelism of the parametric collocation approach results in
a very competitive method (Borzacchiello et al., 2017).

The SSL method introduces a collocation approach in the parametric domain and
a hierarchical interpolation basis with an incremental strategy in order to control
the rank of the approximation. Let us assume that µ is the vector of the parameters
of the problem and u(µ) the computational vademecum sought. With the SSL
method, the exact solution u is computed in a given set of defined points µj called
collocation points and then the solution is interpolated over the parametric space
by interpolation,

u(x,µ) =
∑
m

ψms (x)ψmp (µ),
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where ψmp (µ) are given a priori, while the ψms (x) are to be determined through the
solution of full problem in collocation points. The apriori functions and the optimal
collocation points must be defined consistently.

The solutions corresponding to the different sampling parameters can be com-
puted separately using a standard deterministic solver to which the parameters are
fed as input. In this sense, the parametric solution is approximated based only on
the output of a black-box solver, provided that the representation basis is chose in a
suitable manner. Once the functions ψmp (µ) are selected, optimal collocation points
can be defined accordingly. Among different available options, an hierarchical ap-
proach involving Gauss-Chebychev-Lobatto points and Lagrangian polynomials is
very convenient for its efficiency and straightforward implementation.

For the sake of simplicity, let us consider first the case in which only one pa-
rameter µ is introduced. The collocation points are naturally chosen as the GCL
points,

Pn = {p0, p1, · · · , pn},

comprising extrema of the n-th order Chebychev polynomial of the first kind, Tn(µ),
defined in Ωµ ≡ [µmin, µmax], plus the ending points p0 = µmin and pn = µmax.

GCL points have the important property of being “nested”, as in:

· · · ⊂ P2(k−1) ⊂ P2k ⊂ P2(k+1) ⊂ · · · for k ∈ N.

The 0-th level of the grid hierarchy only includes the ending points of the para-
metric space allowing for a linear approximation. Therefore:

ψ1
s(x) ≡ u(x;µmin), ψ1

p(µ) = µmin − µ
µmax − µmin

,

ψ2
s(x) ≡ u(x;µmax), ψ2

p(µ) = µmax − µ
µmax − µmin

.

Each subsequent level k of the hierarchy is constructed using the following pro-
cedure:

• The parametric functions ψmp (µ) are identified with the Lagrangian polynomi-
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als (see Fig. 1.2):

Lk
i (µ) =

∏
j 6=i(µ− pj)∏
j 6=i pi − pj

,

with
pi ∈ P2k \ P2(k−1) and pj ∈ P2k.

• The corresponding surplus functions are determined as the difference between
the solution computed for the new collocation points, pi, and the approxi-
mation given by the interpolation from the previous hierarchical level, uk−1.
Hence:

ψms (x) = u(x; pi)− uk−1(x, pi).
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Figure 1.2: Lagrangian polynomials of the first four levels

This implies that the functions ψm
s (x) are not simply the high-fidelity solution

in the collocation points, but represents the difference between two consecutive hi-
erarchical levels. These hierarchical surplus functions also offer a natural way to
assess the convergence of the hierarchical enrichment procedure, which is stopped
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when the norm of all the newly added ψm
s (x) functions in a level is smaller than a

desired tolerance.

Once the separated solution is computed, a PGD in approximation can be per-
formed, obtaining a separated solution with considerably less modes. This allows a
high data compression providing a more compact computational vademecum. More-
over, this approximation can be computed after the calculation of each hierarchical
level. This compression is key to having a performance method when many param-
eters are considered.

For several parameters, the same strategy can be paired with Smolyak’s technique
to generate Sparse Grids (SG) from the tensor product of one dimensional grids
without incurring in the curse of dimensionality. This method retains the same
convergence rate up to a logarithmic factor provided that the function has smooth
high order mixed derivatives (Smolyak, 1963). An example of a three-dimensional
sparse grid is shown in Fig. 1.3, where the important diminishing of collocation
points with respect to a regular grid can be observed.
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Figure 1.3: Full grid vs Sparse grid

Each level is constructed considering the tensor products of the one dimensional
grids and neglecting the high order terms. Thus, the collocation points corresponding
to the level N reads,

PN =
N⋃
i=1

N+1−i⋃
j=1
Qij,

where Qij is the set of collocations points given by the tensor product of the one di-
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mensional i-th and j-th grid levels of the hierarchical discretization of the dimensions
αx and αy respectively.

1.2 MOR applications to manufacturing processes

To conclude the chapter, some applications of the mentioned MOR families for
manufacturing simulation that can be found in literature are introduced.

Historically, the first reduced simulations were carried out using a posteriori
projective methods. We find POD-based methods for Casting (Hibbeler et al., 2016),
forming (Radermacher et al., 2013), cold rolling (Seidel and Ernst, 2014), sheet
forming (Rigopoulos et al., 1997) or welding (Sikström et al., 2012). In all these
examples, the mapping of the solution is explored generating snapshots and, by
means of the POD, a reduced basis is built. Then, the PDE associated to the
original model is projected on this basis. Nevertheless, it can be observed that there
is not a very extensive literature on projective MOR methods for manufacturing
processes. This is fundamentally due to:

• The complexity of these processes, which makes finding a good enough basis
to represent the problem solution an expensive problem-dependent task.

• The presence of nonlinearities that leads to reconstruct the complete solution
in the original approximation space at each iteration to evaluate the nonlinear
terms.

Both difficulties are currently being addressed through the introduction of hyper-
reduced projective MOR techniques (Cosimo et al., 2014) with more general formu-
lations. Thus, we can find several references for the hyper-reduction of elastoplastic
processes involving internal variables (Ryckelynck, 2009) and general elastoplastic
problems (Hernández et al., 2017), which are of applicability for almost any manu-
facturing simulation.

More recently, the construction of computational vademecums has been proposed
for manufacturing processes simulation. The primary importance of the choice and

30



1.2. MOR applications to manufacturing processes

control of technological and material parameters in these processes and the appeal-
ing idea of performing real time simulations constitute a very favorable scenario for
this technique. In this way, we can find its application for the real-time prediction
and correction of tool trajectories in milling processes (Poulhaon et al., 2013), for
real-time simulation of composites manufacturing by automated tape placement
(Chinesta et al., 2014), microwaves (Barasinski et al., 2016) or thermo-forming
(Prulière et al., 2010).

Finally, new hybrid MOR techniques are emerging which combine different a
priori and a posteriori reduction techniques for complex manufacturing simulations.
This is the case of (Aguado et al., 2017), where a simulation app for the manufacture
of outlet guide vanes by resin injection is elaborated. This simulation apps, ideally,
can execute multiphysical reduced models in a few seconds and in a light-computer
platform and deployed devices.
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Chapter 2

Vademecum-based GFEM
(V-GFEM): Optimal Enrichment
for transient problems

In this chapter, a generalized finite element method based on the use of paramet-
ric solutions as enrichment functions is proposed. These parametric solutions are
precomputed offline and stored in memory in the form of a computational vade-
mecum so that they can be used online with negligible cost. This renders a more
efficient computational method than traditional finite element methods at perform-
ing simulations of processes. One key issue of the proposed method is the efficient
computation of the parametric enrichments. These are computed and efficiently
stored in memory by employing proper generalized decompositions. Although the
presented method can be broadly applied, it is particularly well suited in manufac-
turing processes involving localized physics that depend on many parameters, such
as welding.
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2.1. Introduction

2.1 Introduction

The detailed transient analysis of welding processes is a high time-consuming task
even with the current computational means available. It usually involves very fine
meshes around the weld line and frequent remeshing processes must be carried out.
This chapter is devoted to the development of a general methodology for the efficient
simulation of transient thermal problems that can be of applicability for the thermal
welding analysis.

One could think of an ideal simulation method that uses very crude meshes, pro-
viding results at very high feedback rates, and is also capable of capturing complex
physics. The Generalized Finite Element Method (GFEM) (Melenk, 1995; Melenk
and Babuška, 1996; Babuška et al., 1994; Duarte and Oden, 1996) is one candi-
date that fits this description well. By using enrichment functions, GFEM is able
to provide solutions that capture subgrid features of the physics underneath. The
main difficulty associated with GFEM methods is the development of an efficient
and accurate strategy to compute these enrichment functions.

GFEM methods and the XFEM method (Dolbow and Belytschko, 1999; Be-
lytschko et al., 2001; Moës and Belytschko, 2002) were developed simultaneously.
Even if the XFEM is more focused in the representation of cracks and discontinu-
ities, it has provided fundamental advances in the understanding and application of
partition of unity methods. The interested reader can found in (Belytschko et al.,
2009) a didactic introduction and comparison of both methods.

Ideally, this enrichment should be composed of one single function, so as to
minimize the computational cost of the resulting method. But, as can easily been
imagined, one single function can hardly serve for the enrichment of every element
in the mesh, regardless of the physics in that particular region.

For this reason, the main objective of this chapter is the development of a method
which is able to capture sharp features of the solution, in a variety of different
scenarios, with minimal extra degrees of freedom. To obtain such an ideal enrichment
function, one can imagine a sort of parametric function dependent on boundary
conditions, material characteristics, load values and other parameters that could be
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particularized to fit the approximation space in every region of the model.

Obtaining such a solution is of course not an easy task. However, computational
techniques exist which are capable of obtaining such response surfaces efficiently.
Among these techniques, PGD is particularly appealing, due to its ability to effi-
ciently construct the aforementioned parametric functions.

The resulting method, which we have called Vademecum-GFEM (V-GFEM), is
no more than a finite element method that introduces, transparently to the user, an
enrichment consisting of just one single function.

V-GFEM is a general-purpose method. However, it is particularly well adapted
to transient problems involving localized physics dependent on several technological
parameters. This is the case, for example, of welding and surface heat treatments.
In this chapter, the V-GFEM formulation and some numerical examples related to
the mentioned processes are presented.

After this introduction, the chapter is organized as follows. In Section 2.2, GFEM
is presented as well as the major approaches that exist in literature to introduce the
enrichment functions, a crucial issue in this method. In Section 2.3, the V-GFEM
is presented, the adaptative enrichment using the Computational Vademecum à la
PGD is explained, exposing the main ideas underpinning its construction. In this
section, details about its implementation are also included. Finally, in Section 2.4 ,
the suitability of the V-GFEM for transient problems is presented through several
numerical examples.

2.2 Generalized Finite Element Method

The accuracy obtained with a numerical method, and in particular with FEM,
largely depends on how suitably the method has been adapted to the specific prob-
lem. In practice, we can follow different strategies to adapt our FEM formulation
to the problem at hand. Some traditional strategies are h-adaptivity, p-adaptivity
or hp-adaptivity (Fish and Belytschko, 2007). These classical strategies are imple-
mented in most commercial simulation tools. The GFEM can be seen as a general-

36



2.2. Generalized Finite Element Method

ization of the classical h, p and hp adaptivity techniques.

For the sake of completeness, it is interesting to revisit one of the first attempts
in creating advanced adaptive strategies. In 1992, J. Fish et al. proposed the S-
FEM (Fish, 1992), in which a fine discretized patch is superimposed on a coarse
discretized domain in the region of interest. In this way, the approximation of the
variables reads:

uh =
∑
i

N c
i (x)U c

i +
∑
j

N f
j (x)U f

j ,

where one can see two different kinds of shape functions: the set of N c(x) functions
associated to the coarse mesh (global domain) and the set of N f (x) functions as-
sociated to the fine one (patch). The continuity between the patch and the global
domain can be ensured imposing U f = 0 on the boundary of the patch. In this man-
ner, S-FEM tries to avoid remeshing, a real bottleneck in 3D simulations. However,
some precautions should be taken to handle two computational meshes (Fish and
Yuan, 2005):

• Numerical quadratures are in general difficult to perform. A special mesh (in-
tersection of the coarse and the fine one) should be created to achieve accurate
results.

• Rank deficiency must be prevented.

We have applied this technique in (Ammar et al., 2009), (Ammar et al., 2011)
and (Niroomandi et al., 2012) for locally-enriching solutions expressed in a reduced
basis.

Some years later, the Generalized Finite Element Method (GFEM) was pro-
posed by Melenk and Babuška (Melenk, 1995). The main idea of this method is to
introduce in the trial space the available information about the solution.

There are many other techniques based on the same idea such as PUM, PUFEM,
XFEM or Special FEM (Melenk, 1995; Melenk and Babuška, 1996; Babuška et al.,
1994; Duarte and Oden, 1996; Dolbow and Belytschko, 1999; Oden et al., 1998;
Strouboulis et al., 2000). The GFEM is based in two properties:
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• Local approximability. GFEM is able to construct space of functions which
can approximate the solution even better than the FE space of piece-wise
polynomials.

• Conformity. The method is able to preserve the inter-element continuity with-
out losing approximation properties.

The first property will depend on the suitability of the so-called enrichment functions
for a given problem. This question will be discussed in detail in subsection 2.2.1
because it is a key aspect of this work. With respect to the second one, the inter-
element continuity is guaranteed if the enrichment is introduced in a space which
satisfies the partition of unity. The formal definition of partition of unity can be
found in (Melenk, 1995), and it can be used to construct these spaces in a general
manner, even without a mesh. In our context it is enough to say that in any
traditional finite element discretization of a domain Ω, the trial space satisfies the
partition of unity if and only if:

∑
i

Ni(x) = 1, ∀x ∈ Ω,

where Ni(x) are the shape functions.

When this property is satisfied, the GFEM approximation uh of our solution u
reads,

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I
Ne(x)

∑
j

φjbje, (2.1)

where the first term is a traditional FEM approximation and the second one is the
enrichment added. The set of nodes is represented in I and Ienr is the subset of
enriched nodes. The functions φj are responsible for introducing prior information
we have of the solution, and therefore depend on the problem being solved.

Eq. (2.1) shows that the traditional shape functions are also present in the
enrichment term, multiplying each of the φj functions. This means that, regardless
of whether φj were local or global functions, each of the new shape functions Neφ

j

are local. In other words, the new shape functions also have compact support. This
property is vital for an easy and efficient implementation of the method (Zienkiewicz
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and Taylor, 2005).

The enriched nodes, the subset Ienr in Eq. (2.1), are just located in areas of
interest where a greater accuracy is desired. These zones may be those where strong
gradients occur or there are certain localized phenomena, for example cracks or
damage. Thus, we can expect that the number of enriched nodes is relatively small
compared to the total number of nodes of the discretization.

Moreover, GFEM has a very interesting meshless character which extends its
applicability. Since the local features of a solution can be described in terms of nodal
values at the nodes of the original mesh, neither remeshing nor structured meshes
are needed. This is the case of welding processes. With a traditional h-adaptive
strategy, the computational mesh is refined in the welding locations. However, due
to the deformations induced in the process or in the assembly with other pieces, these
locations could change. Thus, the reference configuration is not useful anymore and
the mesh should be recomputed. Using GFEM this issue is circumvented, since the
enrichment can be added to the original mesh where necessary and no refinement is
needed.

As a counterpart, the degrees of freedom (DOFs) of the problem will be those
attached to the nodes of the discretization, Ui, plus those attached to each enriched
node and each of the enrichment functions bje. Moreover, GFEM will typically require
the use of a large number of integration points (O’Hara, 2010). This is a consequence
of using enriched shape functions which are in general non-polynomial and require
accurate enough quadrature rules.

Thus, from the point of view of computational efficiency, for any given accuracy,
it is desirable to use a coarse mesh using the fewest enriched nodes and enrichment
functions possible. In the limit, the best GFEM method will use only one enrichment
function with the best possible local approximation properties of the solution. This
is, as we will see, the fundamental advantage of the V-GFEM.
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2.2.1 The functional enrichment issue

The main difficulty of the construction of a GFEM solution is the selection of the
enrichment functions set. The superiority of the GFEM compared with a conven-
tional FEM depends directly on the efficacy of the enrichment functions chosen for
a given application. In literature, the following approaches can be found:

• Analytical constructions (Dolbow and Belytschko, 1999; Merle and Dolbow,
2002). They exploit the structure of the differential equation or use some
fundamental solution of it.

• Global-Local technique (GFEMgl) (O’Hara, 2010; O’Hara et al., 2009, 2011;
Duarte and Kim, 2008). The enrichment function is the solution of a fine
online-local problem with essential boundary conditions which come from an
online-coarse global one.

• Proper Orthogonal Decomposition (POD) (Aquino et al., 2009). The enrich-
ment functions are the principal POD modes of a set of snapshots of the
problem.

Analytical enrichment functions are problematic since they are hardly available
for most applications of practical interest. Because of this, the construction of
enriched functions by computational methods (Global-Local and POD) has become
more relevant in recent years. The Global-Local implies solving iteratively both
an online-global problem (coarse) and a online-local one (fine problem). Lastly,
construction by POD has two drawbacks: firstly, the reduced basis indeed cannot in
general capture all the details related to the solutions of models different from the
one from which the reduced basis has been extracted (Chinesta et al., 2013a) and
secondly, the number of relevant modes could be very large causing GFEM to be
too expensive.

When the problem is time dependent, the issue of selecting shape functions is
further complicated. In literature, one can find analytical time-dependent enrich-
ment functions, but they are for very specific applications (O’Hara, 2010). With a
Global-Local approach it is possible to build time dependent enrichment functions,
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but the iterative process must be repeated in each time step. Lastly, with a POD
approach the time-dependent enrichment functions could be potentially numerous.

The strategy introduced in this chapter aims at overcoming these difficulties by
proposing the use of a Computational Vademecum (also known as Computational
Handbook) à la PGD for generating an improved approximation space. We believe
that this approach has noteworthy advantages over existing methods.

2.3 Vademecum-GFEM

The method proposed in this chapter, the V-GFEM, is composed of two main el-
ements: the GFEM as the framework, described in the previous section, and the
vademecum as the key ingredient for constructing offline the optimal enrichment
function.

It is important to note that, in the V-GFEM, the computational vademecum
is used to construct a better approximation space, not the solution in any subdo-
main. The GFEM framework provides many advantages since neither remeshing nor
conformal meshes are needed, as it is usually the case for Domain Decomposition
techniques. Moreover, during the construction of the vademecum some phenomena
can be neglected, such as transient effects, since they are accounted for in the global
problem. This fact is in accordance with the results presented in (O’Hara et al.,
2011).

In this section we elaborate the construction of the latter, which constitutes a
true precomputed adaptive enrichment. Moreover, a general scheme of the V-GFEM
is presented, providing further details of its implementation.

2.3.1 Introducing a precomputed adaptive enrichment using
the PGD

As has been explained in Section 1.1.3, PGD constitutes an efficient multidimen-
sional solver that allows introducing model parameters (such as boundary conditions,
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initial conditions, geometrical parameters or material and process parameters) as
extra-coordinates. Then by solving only once and offline the resulting multidimen-
sional model we have access to the parametric solution that can be viewed as a sort
of handbook or computational vademecum that can be then used online.

Its use allows us to perform efficient inverse analysis, data-driven applications
and optimal design in large parametrical spaces (Chinesta et al., 2013b). Unlike
other MOR approaches, PGD does not assume the form of the basis functions of the
model. Consequently, it emerges from the physics of the problem itself on the fly.

In the V-GFEM, the computational vademecum is used to generate the proper
enrichment function that depends on technological and material parameters of the
process which are treated as extra-coordinates.

Let us assume the mathematical model related to a certain physics. In general,
this model will be expressed in terms of a system of partial differential equations
(PDEs), defined in a spatial domain under given boundary conditions. The varia-
tional formulation of one PDE of this generic problem reads,

a(u, v; p1, p2, ..., pn) = l(v; q1, q2, ..., qm), (2.2)

where u and v are the trial and test functions respectively and pi and qj, with
i = 1, .., n and j = 1, ..,m are parameters on which the problem depends. The
functions u and v are defined in the appropriate functional spaces (Johnson, 2012).

Using traditional numerical methods (FEM, finite differences, spectral meth-
ods. . . ), the solution u of the variational form (2.2) is an approximation

uh(x; p̂1, p̂2, · · · , p̂n, q̂1, q̂2, · · · , q̂m)

for each particularization p̂i, p̂j of the parameters pi and qj. Then, if one wants to
explore the parametrical space to obtain optimal solutions, the solution process must
be repeated for any possible combination of particularizations of the parameters.

Surrogate models consider the problem solution for some choices of the param-
eters and then use appropriate interpolation (e.g. Kriging). POD or RB-based
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techniques circumvent this difficulty by generating a reduced approximation basis
from some solution snapshots after extracting the relevant information.

The PGD, on the other hand, constructs the approximated solution as follows,

uh =
N∑
k=1

F k(x)
∏
i

P k
i (pi)

∏
j

Qk
j (qj),

where the parameters appear explicitly in the solution as extra-coordinates. Even
if the problem becomes highly multidimensional in most cases, the use of separated
representations allows circumenting the aforementioned “curse of dimensionality”.
Thus, once the parametric solution is computed, the PGD solution provides all the
possible solutions to the problem within the parametric domain pi ∈ [pmini , pmaxi ],
qj ∈ [qminj , qmaxj ]. It is worth highlighting that the construction of the vademecum
does not rely on the linearity of the problem. It can be also obtained in cases
involving nonlinear materials with state variables. However, the number of required
modes, N , may depend on the complexity of the problem. For many applications of
interest, tens of them are often enough.

The most successful implementation of the PGD involves a simple fixed-point
alternated direction algorithm, that computes alternatively the problem involving
the functions of a coordinate, assuming all the functions related to the remaining
coordinates known (calculated at the previous iteration). This implementation has
proved to be very robust and computationally efficient, circumventing the curse of
dimensionality, since it only needs to solve one low-dimensional problem at a time,
as it has been elaborated in Section 1.1.3.1.

In the V-GFEM, the computational vademecum is introduced in a GFEM frame-
work, which provides a performance that goes beyond the proposals made so far.
This method is able to generate real-time customized approximation spaces, which
not only accounts for material and technological parameters, but also for the value
of the variable on the boundaries of the enriched region. This means that the en-
richment region can “see” the changes that may occur in the global problem and
adapt accordingly. All these parameters can vary during the simulation without loss
of applicability and without compromising the solver efficiency.
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The V-GFEM formulation can be expressed in the following compact form:

uh =
∑
i∈I

Ni(x)Ui +
∑

e∈Ienr⊂I
Ne(x)φ(x, p1, ..., pn, q1, ..., qm)be, (2.3)

where the enrichment function φ is nothing but a parametric general solution com-
puted à la PGD. One can observe that the trial space now depends explicitly on the
parameters introduced in the vademecum.

The selection of these parameters should be done wisely, and should not be
limited to technological parameters. Others, such as the values of the main variable
on the border of the enriched region uΓe are of great interest in order to build a good
enrichment function (O’Hara, 2010). In this case, uΓe should be represented on a
global basis with respect to the domain of the vademecum. This basis can be, for
example, a polynomial one. In 2D, for each side of the domain, uΓe reads,

uiΓe = a1 + a2si + a3s
2
i + ...+ ans

n−1
i , (2.4)

where si is the local coordinate and uiΓe the value of uΓe on the i−side. The unique-
ness of uΓe must be enforced at the corners of the domain.

The set of enriched nodes Ienr is a subset of the nodal set of the discretized
problem. This set is determined by a geometric region (the so-called enrichment
region) which is generally much smaller than the global domain. In the following
examples, the enrichment region is attached to the movement of a heat source, where
the thermal gradients are important and the solution cannot be found accurately
using a coarse mesh.
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2.3.2 General scheme and implementation

For the sake of clarity, let us assume a thermal transient problem with a moving
heat source s(x, t) in a domain Ω and in the temporal interval T ∈ (0, T ),



ut −∇ · (k∇u) = s(x, t) in Ω× T

u = uD on ΓD × T
∂u

∂n
= uN on ΓN × T

u(x, 0) = u0(x) at t = 0

(2.5a)

(2.5b)

(2.5c)

(2.5d)

where the main variable u is the temperature, k the thermal diffusivity, the essential
and natural boundary conditions uD and uN are imposed on ΓD and ΓN respectively,
and the initial temperature is u0.

Attached to the source, an enrichment region, say Ωe, is set. Its size must be
determined for each particular case, taking into account that it should be large
enough to capture the finer features of the solution. The geometry of this moving
region is fixed and, at each time step, the nodes located inside are affected with the
optimal enrichment function that simply consist in particularizing the parametric
solution (computational vademecum) precomputed offline. In short, the trial space
in this region is more suitable to approximate the solution than the traditional FEM.

The V-GFEM can be divided into two stages: offline and online, as is presented
in Fig. 2.1.

In the offline stage, the vademecum is computed introducing the technological
parameters of the process, p = [p1, p2, · · · , pn]T , and the essential boundary con-
ditions, uΓe, as extra-coordinates. The size of the domain of the computational
vademecum is equivalent to the enriched region, and a very fine discretization can
be used because it is computed offline. The model to solve is the same as in the
original problem, but considering a moving reference frame, say Ωl. Thus, in this
case, the movement of the heat source is considered from a convective operator and
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Figure 2.1: V-GFEM stages

the problem reads

v · ∇φ(xl)−∇ · (k∇φ(xl)) = s(xl) in Ωl, (2.6)

where the main variable φ(xl) is the enrichment function of the global problem.

Supposing a rectilinear motion, in each time t, Ωe can be defined as Ωe = {x|x−
vt − r0 ∈ Ωl}, where r0 is the position vector between the vademecum reference
system and Ωe at initial time.

The essential boundary conditions in this problem uΓe are not imposed since
they are extra-coordinates of the solution, like other technological parameters. In
this way, using the PGD, the Eq. (2.6) can be solved in an extended domain Ωl ×
Ip1 × · · · × Ipn × Ia1 × · · · × Iam to obtain,

φ(xl,p,a) =
N∑
k=1

F k(xl)
n∏
i=1

P k
i (pi)

m∏
j=1

Akj (aj),

where p = [p1, . . . , pn] ∈ Ip1 × · · · × Ipn are the technological parameters of the
problem (thermal source velocity, power and shape of the heat source...) and a =
[a1, . . . , am] ∈ Ia1 × · · · × Iam are the coefficients of the polynomial basis of uΓe in
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Eq. (2.4).

It is important to note that the computational vademecum generates steady
enrichment functions, suitable when a stationary regime in the global problem is
reached. Being rigorous, that means that to introduce the best approximation space
in the pure transient phases of the simulation, the acceleration of the source should
also be included as an extra-coordinate.

In the online phase, at the time step t, the global problem is solved within the
GFEM framework with the enrichment function obtained from particularizing the
parametric local problem. This can be carried out in two ways:

• Explicitly: The particularization is carried out according to the technological
parameters in the current time step, but the solution on the enrichment domain
boundary in the previous time step, i.e. φt(pt, ut−1

Γe ). This explicit scheme
works well if the time step is not very large and the solution evolves smoothly
as it is the case, for example, in welding simulation.

• Implicitly: Using a point-fixed strategy, the global problem is solved iteratively
updating uΓe until the enrichment function φt converges. This scheme is pre-
sented in Fig. 2.2, where φ̂ is an auxiliary function to check this convergence
and the upper index t − 1 represents a value in the previous time step of the
current one.

It should be noted that the explicit strategy is a particularization of the im-
plicit one where φ̂ is not computed, omitting the decision block. For the examples
presented here, the explicit scheme provides excellent results.

At each time step, a good initial guess is the enrichment function from the
boundary conditions in the parametric solution coming from the previous time step.
For stationary problems, a simple and effective idea is to introduce the particular-
ization of the vademecum with uΓe = 0, a sort of “fundamental solution” of the
problem, performing the fixed-point iterations if necessary. Note that this point-
fixed iteration does not imply a great computational effort, since the updating of
the enrichment function is performed at negligible cost. In addition, to solve the
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Figure 2.2: V-GFEM online stage
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global problem, because the domain remains fixed, several reanalysis techniques can
be used, alleviating the computational cost of the solution (O’Hara, 2010).

This strategy is analogous to the iterative strategy concerned with improving the
local boundary conditions in the GFEMgl presented in (O’Hara et al., 2009, 2011)
and analyzed in (Gupta et al., 2012). In these references an alternative strategy is
proposed, the introduction of a buffer zone. This zone enlarges the local domain
using layers of coarse elements in order to introduce smoother boundary conditions
to the local problem. In the context of the V-GFEM, this implies changing the
domain of the computational vademecum with no other alterations to the general
scheme.

In order to extract utΓe in each time step, the global solution ut has to be projected
on the borders of the enriched area on the basis given by Eq. (2.4). In this work a
simple L2 projection is carried out.

For certain parameter values, the parametric solution in some regions of its do-
main of definition could be accurately represented by the subjacent FE coarse ap-
proximation, leading to rank deficiency. This fact indicates that as soon as the
enriched solution in a particular region of the domain in which the enrichment is
performed can be accurately described by the coarse approximation, the associated
nodes should be removed from the enrichment nodal list Ie. For this purpose we can
generate a second vademecum, by projecting, again offline, the parametric solution,
φ(xl,p,a), from which the enrichment function is extracted, on different coarse FE
element approximations associated with different mesh size h ∈ [h1, · · · , hM ]. This
projection writes ∫

Ω
uhi∗uhi dω =

∫
Ω
uhi∗φ dω, (2.7)

being uhi(xl,p,a) the projected solution on a mesh of size hi, and then the projection
must be performed for each considered mesh characterized by its size hi, even if the
mesh size could be introduced as an extra-coordinate within the PGD framework.
Then, once the projected parametric solutions uhi are available, the parametric
residual,

rhi(xl,p,a) = φ− uhi , (2.8)
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could be computed and compared to a threshold value ε according to

rhi2 < ε2. (2.9)

As soon as for the given parameters the parametric solution constituting the
GFEM enrichment is particularized, at each node in the enrichment region (domain
in which the enrichment solution is defined) we particularize the residual (2.8), and
if the inequality (2.9) holds, we remove from the enrichment nodal list that node.
This procedure ensures an optimal enrichment while avoiding rank deficiency.

The solution of the Eq. 2.7 can be very expensive computational-wise if the PGD
method is used to construct the enrichment vademecum, since the projection cannot
be only performed over the spatial modes but over the whole reconstructed solution.
However, if the SSL method introduced in Section 1.1.4 is used, the projection
can be performed over the spatial modes exclusively (before recompacting with the
PGD). To illustrate this idea, let us consider an enrichment function vademecum
constructed using the SSL with Sysweld depicted in Fig. 2.3. Without loss of
generality, only technological parameters associated to the heat source have been
considered (see the numerical example of Chapter 4 for further details).

Figure 2.3: Enrichment function vademecum
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For a certain coarse mesh a residual vademecum rhi(xl,p,a) can be constructed,
as shown in Fig. 2.4 and Fig. 2.5. For different parameter values, one can decide
what region must be enriched according to a certain tolerance ε. Fig. 2.4 and Fig.
2.5 indicate that dark blue regions must not be enriched to prevent rank deficiency.

Figure 2.4: Residual vademecum

2.4 Numerical Examples

As it was said in the introduction, the V-GFEM is particularly well suited for the
simulation of processes involving moving heat sources, such as welding or surface
heat treatments. This is because there is a small region where physical changes are
much more pronounced (Heat Affected Zone, HAZ) and the process strategy should
be optimized in large parametric spaces.

In this section, several numerical examples using the V-GFEM for an unsteady
heat equation are shown. This equation is encountered in the thermal analysis of
the mentioned processes (Bergheau and Fortunier, 2013). The examples presented in
this section are relatively simple with the purpose of illustrating the potential of the
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Figure 2.5: Another particularization of residual vademecum

V-GFEM for this kind of simulations: the domain is 2D and the technological and
material parameters do not correspond to any real process. However, the method
can be applied to the 3D simulation of real industrial processes.

2.4.1 Statement of the problem

Let us consider the transient PDE (2.5) in the domain Ω depicted in Fig. 2.6, where
s(x, t) reads

s(x, t) = Q

σ
√

2π
exp

1
2

(
x− (xc + V t)

σ

)2

− 1
2

(
y − yc
σ

)2
 ,

where x = (x, y), Q controls the power of the heat source and σ is related with the
size of the area of incidence of the heat source. V is the magnitude of the velocity
v = V ux where ux is the unitary vector of the coordinate x. The starting point of
the heat source is (xc, yc).

Let us assume homogeneous Dirichlet boundary conditions on ΓDH and homoge-
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Figure 2.6: Scheme of the problem

neous Neumann boundary conditions on ΓN . On ΓD a Dirichlet boundary condition
is imposed and its value depends on the example. The coefficient of diffusivity takes
the value 1 and the other parameters will vary depending on the example.

To perform the V-GFEM, an enrichment region Ωe is defined attached to the
heat source, as can be seen in Fig. 2.6. This region, a subdomain of the global
domain, moves with the source whilst retaining its shape and size. Then, in an off-
line stage, the computational vademecum for this problem is computed in a moving
reference frame. Moreover, the velocity of this reference frame is considered as an
extra-coordinate.

In this example, the next parameters were introduced in the vademecum as
extra-coordinates: the power of the heat source Q, the magnitude of the thermal
source velocity V , the region of incidence of the heat source described by σ and
the temperature at the boundary of the enrichment region uΓe. To introduce the
latter, a polynomial basis of order three was used. Thus, the parametric enrichment
function reads:

φ = φ(x, Q, V, σ, a1, · · · , a12) =
N∑
k=1

F k(x)Gk
i (Q)Hk

i (V )Iki (σ)
12∏
j=1

Akj (aj).

In Fig. 2.7, the computational vademecum constructed for this example is presented.
The visualization can be easily done with the ParaView open source plugin developed
in our research group (Bordeu et al., 2013).

Then, the variational formulation of the problem (2.5) is constructed,
(
ut+1∗,

ut+1

∆t

)
+ a

(
ut+1∗, ut+1

)
=
(
ut+1∗,

ut

∆t

)
+
(
ut+1∗, st+1

)
(2.10)
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Figure 2.7: Computational Vademecum

where a Galerkin spatial discretization and an implicit α-method (with α = 1) as
a temporal scheme are used. For clarity, the argument of the functions have been
omitted.

In Eq. (2.10), a (ut+1∗, ut+1) is the Laplacian operator and the trial and test func-
tions, ut+1 and ut+1∗ respectively, are constructed using the approximation given
by the V-GFEM in Eq. (2.3). It is important to realize that, exactly as in the
GFEMgl (O’Hara et al., 2009, 2011), in the V-GFEM the enrichment function is
time-dependent. Thus, the operator

(
ut+1∗, u

t

∆t

)
on the right hand side should be

carefully computed since it involves two functions, ut+1∗ and ut, which are repre-
sented using different approximation spaces. For this purpose, two particularizations
of the vademecum must be stored when using this temporal integration scheme.

In this example, in order to perform the numerical integration, the coarse mesh
equipped with a large number of integration points (of the order of 100) in the
enriched elements has been used. The number of points has been determined by
numerical tests as in (O’Hara et al., 2009). Advanced integration strategies, taking
into account the offline/online nature of the presented work are still in progress.

In the next section we will analyze the solution of this problem solved with the

54



2.4. Numerical Examples

V-GFEM formulation under different scenarios. The computational vademecum,
computed offline, is the same and the algorithm described in Fig. 2.2 was followed
in all of these cases.

2.4.2 V-GFEM VS FEM

Let us start illustrating the important improvement that can be achieved with an
enriched trial space in comparison with a traditional FEM space. In this example
the following boundary conditions and technological parameters were selected: Q =
10 W/m2, V = 1 m/s, σ =

√
0.05 and u = 0 on ΓD.

The V-GFEM and the FEM simulations were carried out using the same coarse
mesh depicted in Fig. 2.8. For clarity, the temperature field is represented as
a relief map. As can be seen in Fig. 2.8, the V-GFEM solution, in solid color,
significantly improves the FEM solution, wire-frame represented, in the vicinity of
the heat source. Differences up to 30% in the maximum temperature value were
observed.

Figure 2.8: V-GFEM solution vs FEM solution
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Here, the enrichment function is trivially updated, since the technological param-
eters are constant and the temperature field on the border of the enriched region
does not change significantly during the simulation. Thus, in this case, the advan-
tage of having a computational vademecum is the possibility of performing just one
calculation for a given family of problems.

Adaptation to the boundary conditions

Let us now consider different boundary conditions of the global problem, setting
u = 1 on ΓD in the upper part of the narrow zone. Then, when the source enters
in this narrow region, the global essential boundary conditions affect the optimal
trial space. With the V-GFEM, due to the fact that the enrichment function is an
explicit function of uΓe, the best approximation space is always achieved. In Fig.
2.9 one can observe how the vademecum generates different enrichment functions φ
in different instants during the simulations according to global boundary conditions.

Figure 2.9: Adaptivity of the enrichment function

This allows us to obtain a considerably improved solution with respect to the
FEM one using the same coarse mesh, as is shown in Fig. 2.10. The V-GFEM
solution, in wire-frame, is equipped with the optimal trial space in the current time
step. In solid color, the FEM solution using the same coarse mesh is represented. If
the enrichment function is not updated as it is indicated in Fig. 2.9, the improve-
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ment obtained with the V-GFEM will be reduced by 15%-20% as we will see in the
following sections.

Figure 2.10: V-GFEM solution vs FEM solution with change in BCs

2.4.3 Accounting for variable technological parameters

We move forward now to analyze the key feature of the V-GFEM: the adaptation
in real time to changes in the technological parameters of the simulation.

Let us consider a thermal source velocity which changes from 30 m/s to 5 m/s
at a certain point during the process. The other technological parameters take the
fixed values Q = 10 W/m2 and σ =

√
0.025. All the Dirichlet and Neumann BCs

are homogeneous.

In Fig. 2.11, the two enrichment functions generated by the vademecum with
those two different velocities are shown. The function φ1 was particularized at
30 m/s and the function φ2 at 5 m/s.

Then, two simulations were carried out. In the first one, we chose φ = φ1 and
we keep it constant during the complete simulation. In the second one, on the other
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hand, φ was updated conveniently to the thermal source velocity change. In Fig.
2.12 the relative errors of both of the simulations are presented. It can be seen that
updating the enrichment function diminishes the maximum relative error from 27%
to 5% with respect to a reference solution (a FEM solution with a very fine mesh).

Figure 2.11: Enrichment functions at different advance velocities

Figure 2.12: Relative errors with and without adapting the enrichment function

Let us now see another example. In this case, it is the area of incidence of the heat
source, controlled by the parameter σ, which changes during the simulation. The
essential and natural boundary conditions are homogeneous again. We set the other
technological parameters, Q = 10 W/m2, V = 10 m/s. We started the simulation
with σ =

√
0.05 and at a certain point it changes to σ =

√
0.005. The two enriched

functions generated by the computational vademecum at those instants are φ1 and
φ2 respectively as can be seen in Fig. 2.13.

As before, we performed two simulations. In the first one, we set φ = φ1 and we
keept it constant during the entire simulation. In the second one, φ was updated
conveniently, adapting it to the change of area of incidence. In this case, the fact of
updating or not the enrichment function results in a difference of 25% in maximum
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Figure 2.13: Enrichment functions in different areas of incidence of the heat source

temperature with respect to the reference solution, as can be observed in Fig. 2.14.
In this figure, the reference FEM solution is in wire-frame and in solid color the
solution without updating the enrichment function and by updating it within the
V-GFEM framework.

In the last example, one can see that the thermal history of a given point could
be significantly affected if an adaptation of the enrichment fuction is not carried
out. If a GFEM without updating is considered, the maximum temperature at the
point drops around a 25% with respect to the reference solution. Conversely, if
the V-GFEM is used, the results are in very good agreement with the reference
solution as can be observed in Fig. 2.15. It should be noted that, since updating the
vademecum has a negligible cost, this improvement is obtained with no additional
computational effort.

In simulation of welding, the thermal analysis is usually coupled with a metallur-
gical model to obtain changes in phases and in the microstructure of the material.
For this analysis, a thermal history with errors of the order of 25% may represent
in practice (see Fig. 2.15) obtaining a completely wrong numerical prediction of
metallurgical and consequently mechanical properties.

2.4.4 Timing

In order to obtain a measure of the relative computational savings we obtain with
the just presented technique, we solved the problems with a sequence of FEM meshes
refined by bisection (i.e., each mesh contained four times the number of degrees of
freedom of its parent mesh.)
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Figure 2.14: Difference between solution with and without updating the enrichment
function
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Figure 2.15: Thermal history of a material point

Our conclusion is that, in general, the proposed V-GFEM technique could obtain
the same level of accuracy of its equivalent FEM mesh, but refined twice more. The
resulting CPU savings turns out to be of one order of magnitude.

We strongly believe, nevertheless, that the advantages to be obtained in three-
dimensional meshes will be even more important. Moreover, due to the fact that the
enrichment function is known (computed offline), advanced integration strategies, as
in (Olmos et al., 1996), can be used to significantly reduce the number of integration
points with the consequent saving in computational time.
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Chapter 3

Metalocal-global method for the
analysis of large welded structures

In this chapter, the Metalocal-global is proposed as an efficient method to estimate
final distortions and residual stresses in large structures where repetitive welded
joints are performed. This method is based on the local-global method circumventing
its main issue: the consideration of the influence of the global structure over the
local region in an efficient manner. The Metalocal-global method substitutes the
local simulation for a computational vademecum which provides the local solution
for any elastic influence of the global domain over the local one. This methodology
provides a systematic way to construct a database of computational vademecums
that can be stored and used for different global geometries and global boundary
conditions.
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3.1 Introduction

Welding is a clear example of how numerical simulation has played a fundamental
role in industry. According to Painter et al. (Bachorski et al., 1999), numerical
experiments can be used to simulate a process or to gain a deeper understanding
of its physics, depending on the scope of the model used. Computational Welding
Mechanics (CWM) is not an exception and both types of studies can be found in
literature. In this chapter we focus in improving the efficiency of a numerical strategy
used for the simulation of welding in large structures where a high number of welded
joints are performed (see Fig. 3.1). The main objective in these simulations is the
prediction of residual stresses and distortion caused by the welding process.

This problem involves the use of models and hypothesis according to the variables
of interest and their length scales. For numerical simulations at structural (or macro)
length scale, the Finite Element method is de facto the standard method used. In
the case of CSW, the thermo-mechanical models used are fairly consolidated in
literature (Bergheau and Fortunier, 2013; Goldak and Akhlaghi, 2006) and can be
found in several commercial codes.

Figure 3.1: Large welded structure

However, a detailed transient analysis (DTA) of welding in large structures, de-
spite the important means of calculation available today, requires prohibitive calcu-
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lation time. This is of particular importance when the aim is to optimize the welding
strategy in order to minimize the distortion and the residual stresses. Indeed, the
number of parameters to be considered (technological variables, paths, welding se-
quence, grips positions, etc.) is so large that makes it unfeasible to perform DTAs
to explore the complete design space.

The application of model order reduction for a detail transient mechanical analy-
sis of a welding process is a real challenge. We know from the Idelsohn’s benchmark
studied in (Allier et al., 2015) that the separability of problems involving moving
heat sources is an issue. Moreover, because the trajectory of the source is not as-
sumed a priori and inelasticities evolve in regions far from the heat source lead to
the impossibility of following a similar strategy as developed in the previous chap-
ter. Thus, we are interested in improving a simplified analysis of the mechanical
simulation of welding.

Several simplified methods to provide approximate solutions with a computa-
tional cost of orders of magnitude lower than the DTA have been proposed. First,
the Shrinkage method of Tsai et al. (Tsai et al., 1995) came up with variations like
Lump-Pass method (Yang et al., 2002). These strategies neglect the contribution of
the heat-up phase introducing the hypothesis that residual stresses are mainly due
to the cooling of the material once welding has occurred (shrinkage). This is not
very accurate when it comes to obtain the final distortion of the structure because
these methods consider neither the direction of welding nor the transient effect of the
motion of the source. In other words, the shrinkage is applied to the complete weld
line instantly. Furthermore, the mechanical history of material points and phase
changes cannot be calculated properly and certain calibration with experimental
measures is needed to achieve good results. Even with these constraints, the shrink-
age analysis provides valuable information in early phase of design, being widely
used in industry today (Jackson and Darlington, 2011). A. Mendizabal et al. have
recently proposed an improved shrinkage method in which the welding strategy is
considered (Mendizabal et al., 2016).

The second family of simplified methods is composed of the so-called elastic
methods. They are based on the Inherent Strain Method, proposed by Y. Ueda et
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al. in 1979 (Ueda et al., 1979). The behavior of the large structure is obtained
through an elastic calculation in which some known local plastic deformations are
introduced into the weld line and an elastic global problem is solved. Hence, the
principle of virtual works,

∫
Ω
σ : ε(w) dV =

∫
Ω
f ·w dV +

∫
Γt
t̄ ·w dA,

must be satisfied for any compatible displacement w when a volumetric force f
and certain tractions t̄ on the boundary Γt are considered. The stress field reads
σ = D(ε − εp), where D is the elasticity tensor and the plastic strain field, εp,
comes from analytical results, experiments or numerical simulations.

Subsequently, G. Jun generalized this idea leading to the Plasticity-Based Dis-
tortion Analysis (PDA) (Jung, 2003), also known as Mapped Plastic Strain Method.
Here, the inherent strains come from a local simulation model and they are mapped
into an elastic overall problem solved in a coarser discretization mesh. Its fundamen-
tal contribution is showing that the various components of distortions (and residual
stresses) cannot be obtained by only considering one associated component of the
inherent strain field because it is a coupled problem.

Finally, the so-called local-global method proposed by Souloumiac et al. in
(Souloumiac et al., 2002) where the introduction of local plastic strains in the global
linear simulation is made through a local subdomain rather than a mapping. This
allows the use of degenerated elements in the global elastic problem (typically shell
elements) instead of 3D solid elements that can be reserved only for the local one.
Moreover, this strategy facilitates its implementation in commercial codes. Some
industrial applications can be found in (Duan et al., 2007). Those families of CMW
methods are schematized in the Fig. 3.2.

The main shortcoming of the PDA and the local-global methods is that the
boundary conditions of the local problem should reflect the mechanical influence of
the rest of the structure in order to obtain a reliable local solution. The importance
of the correct choice of the local problem boundary conditions has been noted by
different authors (Mendizabal et al., 2016; Souloumiac et al., 2002) and studied in
detail by Duan et al. in (Duan et al., 2007). Their choice is critical because the
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Figure 3.2: Scheme of CMW methods.

local plasticity depends on them and cannot be corrected later in the elastic global
calculation.

Moreover, in the PDA and the local-global methods the local problem must be
recalculated whenever these boundary conditions need to be changed, the initial
conditions are not the same or the technological parameters vary. This limits the
interest of these methods because finally the total simulation, including the local
resolutions, results in high computational cost. This problem has been pointed out
by Yang et al. in (Yang and Athreya, 2013), proposing the creation of a database
of local problems. However, up to our knowledge, it is not clear in literature how to
efficiently construct this database.

In this work, a new local-global method able to circumvent the forementioned
limitations is presented. After this introduction the chapter is organized as follows.
The proposed method and its different ingredients are elaborated in Section 3.2.
Then, numerical examples of this technique are described in Section 3.3.
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3.2 Metalocal-Global Method

Computational vademecums can also be an interesting ingredient to improve preex-
isting methods such as the Vademecum-GEFM introduced in Chapter 2, the numer-
ical integrator presented in (González et al., 2014) and the Metalocal-global method
elaborated in this chapter.

The Metalocal-global method circumvents both the main limitations of the PDA
and the local-global strategy thanks to the introduction of a computational vade-
mecum, offline precomputed, as a local metamodel. In this local metamodel, the
influence of the global domain over the local domain is parametrized and it is part
of the solution in an explicit form. This allows instant access to an approximated
local elasto-plastic solution for any global geometry and any global boundary con-
ditions. Furthermore, the computational vademecum construction is non-intrusive,
facilitating the introduction of this method in commercial simulation platforms.

We move foward to the elaboration of the two main bricks of the method: the
identification of the mechanical influence of the global structure over the local do-
main, and the construction of a non-intrusive computational vademecum for the
local model. At the end of this section, a general scheme of the method is presented.

3.2.1 Identification of the equivalent stiffness coefficients

As described in the introduction, local-global techniques for welding simulations
assume that complex physics only take place in a local region around the weld line.
Thus, a costly detailed transient model is solved in a little local domain. The rest
of the structure, the global domain, is considered just as an elastic structure where
neither metallurgical changes nor plastic deformations occur.

However, the influence of the global domain over the local one cannot be ne-
glected in the detailed transient calculation. In the Metalocal-global method this
influence is parametrized in order to construct the local meta-model.

Let us consider a general structure Ω with certain essential boundary condi-
tions ΓD (fixed displacements) and certain natural boundary conditions ΓN (applied
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loads). This domain is divided into two subdomains, the local domain, Ωl, and the
global one, ΩG, as depicted in Fig. 3.3.

Local-Global 

Interface

Welding

Figure 3.3: General local-global problem.

From the local-global hypothesis it follows that, after the discretization, the
elastic contribution of the global domain can be seen as a static condensation of
the global degrees of freedom (DOFs) over the degrees of freedom of the local-global
interface,

K̃ii = Kii −KiGK
−1
GGKGi,

where the subindices i and G denote the block of the stiffness matrix corresponding
to the DOFs of the interface and to the DOFs of the global domain respectively. This
is nothing but a superelement technique where the non-singularity ofKGG is needed.
The boundary conditions should preclude all rigid body motions: if this condition
is not verified, the superelement is called floating and especial techniques such as
projections and generalized inverses must be used. Without loss of generality, we
consider in this chapter that the global domain is not a floating domain and no loads
are applied on this region. This is the case of most of the situations in practice where
the thermal loads come from the heat source situated in the local region and several
areas of the global domain must be clamped in order to perform quality welds.

Once the stiffness condensation has been carried out, the nonlinear problem is
solved in the local domain taking into account this contribution. Typically, if a
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generic Newton-Raphson method is used, each iteration (k) requires the solution of
the standard linear system for an increment of displacements δu(k),

KT δu
(k) = −r(k−1), (3.1)

whereKT is the tangent operator and r(k−1) is the residual of the precedent iteration.
The tangent operator must include the contribution of the global superelement, K̃ii,
with a proper assembly of the DOFs of the interface.

Obviously, an exact parametrization of the influence of the global domain over
the local one implies defining one parameter for each K̃ii term. This leads to the
same number of parameters as the number of degrees of freedom of the interface.
The construction of a computational vademecum with such a number of parameters
is unfeasible from a practical point of view. Thus, a simplified strategy to reduce
this number to a few of them is proposed below.

Let us consider an auxiliary local problem where a layer of elements around
the local domain is introduced as depicted in Fig. 3.4. The external boundary of
the layer is fixed and the internal nodes coincide with the nodes of the local-global
interface. The aim is to construct a stiffness matrix associated to the layer, K lay,
that should reproduce as best as possible the condensed stiffness matrix, K̃ii, of the
original problem. This can be done, for example, changing the elastic properties, of
the elements of the layer, their section properties or introducing some multiplicative
factors inK lay. In any case, two fundamental requirements must be fulfilled: firstly,
it should be a small number of parameters, and secondly a simple and generalized
strategy to fit these parameters must be defined.

It should be noted that this strategy is not a general domain decomposition
technique. In fact, one could formulate a plethora of complex mechanical problems
where this equivalence cannot be, in general, achieved using just a few number of
parameters. However, in this case, the global influence can be seen as a restriction
to the local free dilatation (and contraction) by a heat source. In other words, the
global domain acts as a structural rig of the local domain. Therefore, it is reasonable
to establish a certain equivalence between K̃ii and K lay though some simple and
general mechanical tests.
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Local-Global Interface

Auxiliary Layer

Fixed Boundary

Figure 3.4: Auxiliary local problem.

Let us define K̂ lay as the stiffness matrix of the assembled layer using some
arbitrary element properties (elastic parameters and section), for example the same
as those of the global domain. Then, this stiffness matrix is multiplied by a uniform
displacement vector in each direction, U j ∈ Rni with j ∈ {x, y, z}. U j contains an
arbitrary constant value at each degree of freedom associated to the j direction and
it is null in the degrees of freedom associated to the others. These products lead to
the nodal force vectors F lay

j which represent the nodal forces needed to obtain the
nodal displacements given by U j. In the 3D case we obtain:

K̂
lay ·Ux = F lay

x

K̂
lay ·U y = F lay

y

K̂
lay ·U z = F lay

z .

The same procedure is carried out with the condensed stiffness matrix K̃ii, using
the same displacement vectors U j to compute the nodal force vectors F cond

j . In the
3D case they read,

K̃ii ·Ux = F cond
x

K̃ii ·U y = F cond
y

K̃ii ·U z = F cond
z .

Thereafter, the equivalent stiffness coefficients αj can be defined as the ratio
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between the norms of the nodal forces F cond
j and F lay

j ,

αj =
||F cond

j ||
||F lay

j ||
. (3.4)

Finally, the condensed stiffness matrix K̃ii is approximated byK lay which is the
assembly of the matrices αjK̂j

lay, where K̂j represents the extraction of the degrees
of freedom in the j direction of K̂ lay, in a 3D problem,

K̃ii 'K lay =
3∑
j=1

αjK̂j
lay
.

The coefficients αj are computed a priori for a certain application, so the intervals
αj ∈ [αminj , αmaxj ] are known and a computational vademecum taking into account
these coefficients as parameters can be constructed. For this application, due to the
not too large number of parameters and we are interested in a non-intrusive method,
the SSL method, elaborated in Section 1.1.4 has been chosen.

3.2.2 General Algorithm of the Metalocal-global method

Once the two main ingredients of the Metalocal-global method have been introduced,
for the sake of clarity, the general strategy is developed below in a concise manner.

Let us consider a large structure where an important number of welded joints
must be performed at different positions l. All the welded joints must be described
with the same local geometry, Ωl, as depicted in Fig. 3.5.

Since the local geometry is constant, an auxiliary problem is created adding a
layer of elements to the local domain, as explained in Section 3.2.1. The computa-
tional vademecum can be created considering αj as parameters, using this auxiliary
problem.

For each position l, a static condensation is carried out and all the associated
equivalent stiffness coefficients αlj are identified.

Finally, the computational vademecum is particularized and the local plastic
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l=1
l=2

l=3

l=4

l=5

Figure 3.5: Scheme of a large structure welded at different regions.

strain field is computed for each particular position. These plastic strains can be
inserted into the global structure through a local subdomain (which coincides with
the local domain of the computational vademecum) or by projection in a coarse
mesh. This decision does not affect the strategy presented in this work.

It should be noted that the welding sequence can be taken into account since
the coefficients αlj of the position l are computed after the introduction of the local
solution of the position l−1. Thus, if this previous local welding has an influence in
the global stiffness of the structure, the coefficients αlj will take account on it. The
general steps of the method are presented below:

1. For each local position l, an static condensation is carried out.

2. The equivalent stiffness coefficients, αlj are identified.

3. The computational vademecum, computed offline, is particularized for those
coefficients. So, the local plastic strain field is provided.

4. The local plastic strain field, εp, is introduced in the global structure.

5. A linear elastic problem is solved.
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3.3 Numerical examples

In this section, two simple benchmarks are presented: a linear thermo-elastic prob-
lem first and then a thermo elasto-plastic one. In both of them, a symmetrical thin
plate is submitted to a Gaussian temperature distribution on its center. A local-
global domain division is carried out and the Metalocal-global strategy is studied.
These examples do not try to reproduce the real physics of a welding simulation but
to study the feasibility of the proposed strategy from a numerical point of view.

3.3.1 Linear thermo-elastic benchmark

This first example is aimed to verify whether, for a linear thermo-elastic problem,
the auxiliary problem is able to reproduce the elastic solution in the local domain
for different global geometries and for different global boundary conditions. The
auxiliary problem is defined in Section 3.2.1 equipped with the equivalent stiffness
coefficients.

Let us consider a symmetrical thin plate submitted to a Gaussian temperature
distribution in its local domain as depicted in Fig. 3.6. Under the plane stress
hypothesis the problem to be solved reads,

∫
Ω
ε(w)T ·D · ε dV =

∫
Ω
wT ·D · εth dV (3.5)

with

ε ≡
[
ε11 ε22 2ε12

]T
, D ≡ E

1− ν2


1 ν 0
ν 1 0
0 0 1−ν

2

 and εth = αt∆T.

The value of the dilatation coefficient αt is 23 · 10−6K−1 and ∆T = 105/(18π)exp(−(x2+
y2)/18)K is the imposed temperature field. The elastic parameters are E = 70 GPa
and ν = 0.2.

The geometry of the local domain, Ωl, will remain constant and the geometry and
boundary conditions of the global domain, ΩG and ΓG respectively, will be modified.

75



Chapter 3. Metalocal-global method for the analysis of large welded structures

Temperature

Distribution

Figure 3.6: Linear thermo-elastic example.

Let’s begin by examining the local solution for different ΓG. In Fig. 3.7, the norm
of the displacement field is presented for both the reference solution for the case of
fixed boundaries and the case of traction-free condition. If the auxiliary problem is
constructed and the equivalent stiffness coefficients are identified, the local solutions
are conveniently approximated in both cases, as it can be seen in Fig. 3.8.

Traction-free condition on  Fixed boundary on

Figure 3.7: Linear thermo-elastic reference solutions.

In the previous examples, the equivalent stiffness coefficients took the values
αx = 0.094, αy = 0.1127 for ΓG fixed, and αx = 0.0681, αy = 0.0522 for the
traction-free condition. The local problem is frequently solved in practice with fixed
boundary conditions to avoid performing repetitive local simulations. This choice
leads to less accurate results, as can be seen in Fig. 3.9 and 3.10, where this strategy
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Aux. problem equivalent to traction-free on  Auxiliary problem equivalent to �xed

Figure 3.8: Linear thermo-elastic local solutions with equivalent stiffness coefficients.

is compared with the equivalent stiffness approach. The equivalent stiffness approach
provides relative errors inferior to 10% in almost the complete local domain, while
with fixed boundary conditions relative errors are between 50% and 100% in most
than half of the plate.

Local Boundaries �xed Equivalent sti�ness approach

Figure 3.9: Relative errors for fixed ΓG.

Finally, if another global geometry is considered, the presented strategy is able
to provide an accurate approximated local solution, as it can be seen in Fig. 3.11.
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Local Boundaries �xed Equivalent sti�ness approach

Figure 3.10: Relative errors for traction-free ΓG.

Equivalent sti�ness approach
Reference Solution

Figure 3.11: Equivalent stiffness approach in a circular plate.

3.3.2 Thermo elasto-plastic example and computational vade-
mecum

Then, let us move on to a new benchmark solution where the real local-global hy-
pothesis is introduced: a thermo elasto-plastic problem is solved in the local domain
while the global domain is considered purely elastic.

For the local model, a plane stress projected von Mises model with linear isotropic
hardening is solved. The implicit elastic predictor/return-mapping algorithm used
can be found in (de Souza Neto et al., 2011). It is interesting to note that, if
a plane stress model is used, the equation that must be solved to compute the
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plastic multiplier is nonlinear even if a linear hardening is used. For the sake of
completeness, the govern equations of this plastic model are enumerated below.

1. Elastoplastic strain split
ε̇ = ε̇e + ε̇p

2. Elastic law
σ = Dεe

3. Yield function definition

Φ = 1
2σ

TPσ − 1
3σ

2
y(ε̄p); P ≡ 1

3


2 −1 0
−1 2 0
0 0 6



4. Plastic flow rule
ε̇p = γ̇

∂Φ
∂σ

= γ̇Pσ

5. Hardening variable evolution

˙̄εp = γ̇

√
2
3σ

TPσ

6. Loading/unloading criterion

γ̇ ≥ 0, Φ ≤ 0, γ̇Φ = 0

where γ̇ is the plastic multiplier.

The nonlinear problem is formulated incrementally in displacements following a
Newton-Raphson method, as Eq. (3.1) indicates. The tangent operator KT must
be conveniently assembled in the global domain, where it remains constant, and in
the local domain, where it evolves according with the plastic model. The Newton
Raphson algorithm is initialized with the trial strains that results from the linear
predictor, given by the solution of Eq. (3.5). On this occasion, a negative increment
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of temperature has been imposed. This increment of temperature is constant ∆T =
1200K inside an ellipse centered in the middle of the plate.

Let us consider a fixed geometry ΩG with different boundary conditions ΓG and
see how the equivalent stiffness coefficients are able to approximate the reference
solution in the local domain. To that purpose, the equivalent plastic strains are
used for comparisons.

In the first example, the global boundaries are considered fixed, u = 0 at ΓG.
The reference solution is computed and is compared with the approximated solution
created with the coefficients αx = 1.1713 and αy = 1.1671. A good agreement
between them can be seen in Fig. 3.12.

Fixed boundary on Equivalent sti�ness approach

Figure 3.12: Equivalent stiffness approach with fixed ΓG.

For the second example, the global boundaries are free, ∂u
∂n

= 0 at ΓG. Again,
with the identification of coefficients given by Eq. 3.4, a good approximation solution
is reached, as Fig. 3.13 shows. In this case, the values of the equivalent stiffness
coefficients are αx = 0.2484 and αy = 0.2283.

For the case of fixed ΓG, the absolute of the equivalent stiffness approach and
the strategy of fixing the local domain with respect to the reference solution are
presented in Fig. 3.14.

The above examples show that it is possible to reproduce the local solution for
very different geometries and boundary conditions of the global domain with a few
number of parameters in a systematic way. Since the local domain is invariable
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Traction-free condition on  Equivalent sti�ness approach

Figure 3.13: Equivalent stiffness approach with traction-free condition.

Local Boundaries �xed Equivalent sti�ness approach

Figure 3.14: Absolute errors of fixed local domain and equivalent stiffness approach
for ΓG fixed.

as well as the added layer of elements, a computational vademecum can be built
for certain intervals of the parameters, αx = [0.01, 3] and αy = [0.01, 3] in this
case, following the SSL method. It has to be remarked that the intervals can be
constructed as αi = (0, 1] if the elements of boundary layers have the same properties
as the elements of the global region, since the local cannot be stiffer than the global.
This is not the case in these examples, where unitary thickness for the layer has
been chosen, different to the global region one and αi > 1 can be obtained.
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The separated solution associated to the vademecum is composed of 8 modes:

εp(x, α1, α2) =
8∑

m=1
cmψ

m
s (x)ψm

1 (α1)ψm
2 (α2),

In the Fig. 3.15, 3.16 and 3.17, the first four modes of each dimension are presented.
To construct this computational vademecum, 385 collocation points were needed,
obtaining an estimated relative error of 0.02%. Not all of the collocation points
must be computed (see (Borzacchiello et al., 2017)) and once it has been built it can
be stored and reused for very different global geometries and boundary conditions
if the local region remains identical.

Mode 1 Mode 2

Mode 3 Mode 4

Figure 3.15: The first four spatial modes of the computational vademecum.

It is also possible to explore the vademecum with an intuitive ParaView interface
developed by Bordeau (Bordeu et al., 2013). A screenshot of this interface with the
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Figure 3.16: The first four modes of parameter α1 of the computational vademecum.
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Figure 3.17: The first four modes of parameter α2 of the computational vademecum.

vademecum constructed for this example is shown in Fig. 3.18.

The presented examples are devoted to the identification of equivalent stiffness
coefficients, the construction of the local metamodel and the verification of the
goodness of the local solution. The last step in the Metalocal-global strategy is the
inclusion of the plastic strain field into the global structure. This step, not included
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Figure 3.18: Screenshot of the ParaView interface to visualize computational vade-
mecums.

in this work, is completely equivalent to that of the original local-global method
and can be carried out using the same local-global domains or through a projection
of the local plastic strain field into a coarse global mesh that discretize the entire
domain.
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Chapter 4

Vademecums for steady-state
welding

As has been mentioned in the previous chapters, when a detailed transient analysis
is carried out the costs of the simulation of welding processes involving thermal,
metallurgical and mechanical analysis can be high. In Chapter 3 we have introduced
different families of methods that try to reduce the computational effort of the
mechanical analysis by introducing simplifying hypotheses. An improvement of one
of these approaches, the local-global, that can be combined with a computational
vademecum to gain efficiency has been elaborated.

In this chapter we propose to revisit one of the strongest simplifications that can
be made in welding simulation: the steady-state hypothesis. Although, in principle,
these models can have a very restricted use in real applications we will see that they
will be quite helpful to adjust some parameters used in practice and for pre-design
stages. As it will be seen below, it is especially appealing the possibility of building
a computational vademecum of these processes, which is the purpose of this chapter.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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4.1 Introduction

The steady-state simulation of welding is one of the first applications found in the
literature led by the first work of modeling the heat source in welding carried out
by Rosenthal (Rosenthal, 1946) and Rykalin (Rykaline, 1976). This Eulerian for-
mulation uses spatial coordinates: the material points move through the observed
domain, which is fixed in space. The reference mesh and the arc are fixed and the
material moves relative to the mesh at the welding speed, as is schematized in Fig.
4.1.

Material Flow

Figure 4.1: Eulerian framework and Goldak ellipsoid

With these first models it was possible to reproduce quite approximately the
temperature distribution in a zone sufficiently far from the weld pool in thick
plates. With a second generation of heat source models, in which the Goldak el-
lipsoid (Goldak et al., 1985) stands out, more accurate temperature distributions
are achieved and nonlinearities and metallurgical processes could be included in the
analysis. The double Goldak ellipsoid, shown in Fig. 4.1, is perhaps the most com-
monly used model in welding simulations at structural level and can be used for
both stationary and non-stationary simulations. In this model, the physics of the
weld pool is not reproduced and as a result the temperature that appears in it is
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fictitious. The power density distribution in the front quadrant of the double Goldak
ellipsoid becomes:

qf (x, y, z) = 6
√

3ffQ
abcπ
√
π

exp
(
−3

(
x2

a2
1

+ y2

b2
1

+ z2

c2
1

))
,

and for the rear quadrant becomes:

qr(x, y, z) = 6
√

3frQ
abcπ
√
π

exp
(
−3

(
x2

a2
2

+ y2

b2
2

+ z2

c2
2

))
.

In Fig. 4.1 a1 = a2 = a and b1 = b2 = b, but in general the parameters are
independent. In this model the fractions ff and fr of the heat deposited in the front
and rear quadrants are needed, where ff + fr = 2. The results obtained using this
model are valid for the prediction of distortions and residual stresses, which is the
aim of the welding simulation at this length scale. More sophisticated models with
more realistic weld pool physics have been proposed in (Radaj, 2000; Ohji et al.,
1992; Weiss et al., 1995; Sudnik et al., 1998, 2000).

The steady-state mechanical analysis came later, emphasizing the pioneering
works of Bergheau et al. (Bergheau et al., 1992) and Gu et al. (Gu et al., 1993),
where Eulerian formulations were elaborated. These first works are based on an
Eulerian framework where the Gauss points follow the streamlines, needing a certain
pre-processing and data structure adapted to the simulation. Other formulations
such as those of Shanghvi et al. (Shanghvi and Michaleris, 2002) permit relaxing
these requirements, although they present other inconveniences of complexity that
cause that the former methods are the most used in industry.

The steady-state simulations, as long as they can be applied, allow to dramati-
cally diminish the computational cost in comparison with a detailed transient anal-
ysis. This gaining normally represents several orders of magnitude, while keeping a
reasonable level of precision (Goldak and Akhlaghi, 2006).

That is, the following would be the application scenarios:

• Simulations where a steady-state (or a succession of several steady-states) is
sufficiently representative of the physics of the problem. The starting and final
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transient stages should be negligible. Moreover, the welding process must be
performed in a prismatic body where the source travels parallel to the axis of
the prism. Convection and radiation boundary conditions must be invariant
with respect the welding direction. This situation could appear when welding
standard long structural components like beams.

• Predesign analysis. These simulations can be very useful for having preliminary
results before launching the full transient model.

• Source fitting. As mentioned, Goldak’s ellipsoid provides good results, but
since it does not represent the physics of the weld pool, its parameters must
be adjusted. A first coarse-tuning can be performed ensuring that, in the sim-
ulation, the internal temperature of the weld pool corresponds to the melting
point of the material. This guarantees achieving a good penetration of the
weld. However, if more accuracy is required, a fine-tune of the heat source
parameters must be performed with the aid of experimental testing (Fig. 4.2).
This process is the so-called source fitting and it is performed with steady-state
simulations. In this case the mechanical calculation is not needed.

Figure 4.2: Experimental measure for source fitting

In all of these scenarios, the construction of a non-intrusive computational vade-
mecums can provide enormous advantages since, with a traditional approach, either
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for a predesign stage or a source fitting, the stationary simulation must be launched
on numerous occasions leading to a high computational time. In addition, the con-
struction of a computational vademecums opens the possibility of an optimization
and sensitivity analysis of a quantity of interest, an information of great value that
is not available through a conventional trial-error approach (Chinesta et al., 2013b).
Finally, a non-intrusive computational vademecum, such as the one presented here,
can be updated over time through the accumulated experienced of new simulations,
enriching the parametric range of the current vademecum.

4.2 Steady-state formulations

In this section the classic thermal and mechanical steady-state formulations for
welding are briefly reviewed. We focus on the formulations that have been used
in the numerical example of Section 4.3, although other steady-state formulations
(Shanghvi and Michaleris, 2002) can be found in related literature.

4.2.1 Thermal and metallurgical formulation

The heat conduction equation in an Eulerian reference frame reads,

ρcv · ∇T −∇ · (k∇T ) = q̇,

where c is the heat capacity, k is the thermal conductivity, v is the velocity vector
of the mass flow with respect to the co-moving coordinate system (- v is the velocity
of the heat source) and q̇ is the heat generation per unit volume. The stress power
is usually neglected in practice, decoupling thermal and mechanical problems.

Microstructure evolution is associated with a material point. In a Lagrangian
formulation, Gauss points are material points and hence one simply solves the equa-
tions for microstructure evolution as a function of temperature. However, in a
steady-state formulation, Gauss points are spatial points and not material points.
Thus, because the velocity field is constant, one must compute the streamlines to
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capture the thermal cycle of each material particle. This methodology needs a spe-
cial data structure to identify for each Gauss point n+1 its precedent, not necessary
consecutive, integration point (spatial point) n in the streamline (see Fig. 4.3).

Figure 4.3: Relationship between material and integration points

It should be noted that thermal and metallurgical calculations are fully coupled:
at each temperature, phase proportions are calculated.

4.2.2 Mechanical formulation

Taking into account that we are working with an Eulerian reference system, the
temporal derivative of any tensorial magnitude F attached to the material points
reads:

Ḟ = ∂F

∂t
(x, t)−∇xF ·v(x, t).

Since inertial terms are neglected, the equilibrium equation does not change with
respect to a Lagrangian formulation,

∇ ·σ(x, t) + f(x, t) = 0.
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Considering classical small strain plasticity (Simo and Hughes, 2006), an additive
decomposition of strains is introduced,

ε = εe + εp,

and considering the thermal dilatation, the constitutive law reads,

σ(x, t) = D : [ε(x, t)− εp(x, t)− α(T (x, t)− T0(x))I] + σ0(x).

Compatibility equation,

ε(x, t) = 1
2
[
∇u(x, t) +∇tu(x, t)

]
also remains the same with regard to a material reference system.

The plastic flow rule in the Eulerian reference system reads,

∂εp

∂t
(x, t)−∇εp(x, t) ·v(x, t) = λ

∂f

∂σ
(x, t).

Analogously, the hardening law in this reference system is

∂αk
∂t

(x, t)−∇αk(x, t) ·v(x, t) = λ
∂f

∂Ak

(x, t).

An associative flow rule has been considered, since the yield function, f , is also the
flow potential. The loading/unloading criterion remains identical to the Lagrangian
case,

φ ≤ 0, γ̇ ≥ 0, γ̇φ = 0,

and appropriate boundary conditions must be introduced into the Ω spatial domain.

For the temporal discretization, an explicit Euler scheme is used. As an example,
the discretized flow plastic rule reads,

εp(x, t+ ∆t)− εp(x, t)
∆t + v

εp(x, t)− εp(x+ ∆x, t)
∆x = λ

∂f

∂σ(x, t+ ∆t) .
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Once the temporal and spatial discretization are performed, the iterative reso-
lution only differs from a classic elastoplastic problem in the expression of plastic
deformations. In the Eulerian case, a material particle situated in the spatial point
n + 1 at time t + 1 it was situated in the point n at the previous instant, and this
fact must be conveniently taken into account. In practice, these spatial points are
the Gauss points and then, the precedence relation between them must be known.

For the sake of clarity and without loss of generality, the algorithm of this
methodology is presented in Alg. 1 for a thermoelastoplastic problem with a linear
kinematic hardening law. It is quite straightforward to include another hardening
law, always taking into account that internal variables must be integrated over the
streamlines as indicated. In the case of considering a nonlinear plastic law, the cal-
culation of the plastic multiplier can be done by the classical procedures developed
in (Simo and Hughes, 2006).

Algorithm 1 Steady-state mechanical algorithm
1: Data known at instant t: {σ0, ε0, ε

p
0, T0}

Data known at instant t+ ∆t: {∆T}
Initialization: {∆σj,∆εj,∆εpj} = {0 0 0}

2: Incremental variables at tj: {∆σj,∆εj,∆εpj}
3: Solving global equilibrium to obtain the elastic predictor: ∆εj+1
4: Check plastic admissibility
ξ∗j+1 = s0 −Hεp0 + 2µ∆ej+1 + (2µ+H)v∆t

∆x (εp0 − εp0(n))
5: if ‖ξ∗j+1‖ ≤ k, then

Process is elastic: εpj+1 = εp0 − v∆t
∆x (εp0 − εp0(n))

6: else
Process is plastic: εpj+1 = εp0 − v∆t

∆x (εp0 − εp0(n)) + 1
2µ+H

(
1− k

‖ξ∗
j+1‖

)
ξ∗j+1

7: end if
8: σj+1 = σ0 +D :

[(
∆εj+1 −∆εpj+1

)
− α∆TI

]
9: if ‖σj+1 − σj‖ ≤ Tol, then

Go to 1
10: else

Go to 2
11: end if
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4.3 Numerical example

In this section several computational vademecums for the welding of a steel T-beam
are presented. The example is realistic and the black-box solver was Sysweld, one
of the most used welding software in industry.

These vademecums (thermal, mechanical and metallurgical), would be useful for
the three purposes introduced above: simulating an almost steady welding condition,
predesign analysis and source fitting.

We illustrate this methodology selecting three parameters associated to the heat
source (a Goldak ellipsoid): The energy per unit length, Ep ∈ [150, 250]J/mm, the
source velocity, V ∈ [5, 15]mm/s and the total length of the ellipsoid, A = c1 + c2,
with A ∈ [2, 6]mm.

The geometry of the steel T-beam is shown in Fig. 4.4. The material is a Man-
ganese Carbon Steel S355J2G3 and its properties are extracted from the proprietary
Sysweld database. These properties are temperature-dependent, including the hard-
ening law. For the thermal problem radiation and convective boundary conditions
were introduced. The radiation coefficient varies with temperature while the con-
vection coefficient h = 25W/m2/K was fixed. A constant temperature of 20oC

is imposed at the entrance nodes. For the mechanical problem, spring boundary
conditions in wing extremities of the beam have been imposed (red arrows in Fig.
4.4) with K = 500N/mm, simulating the typical weld fixture clamps used in these
processes.

To obtain the vademecums, 297 snapshots were calculated corresponding to the
first four levels of the SSL method elaborated in Section 1.1.4. The estimated relative
error was less than 2% for the thermal abacus, and less than 5% for the mechanic
and metallurgical ones. The solution, can be re-compacted by the PGD, obtaining
a separated representation solution of only 15 modes that preserves the previous
relative error,

u ≈
15∑
i=1

ψis(x)ψiEp(Ep)ψiV (V )ψiA(A),

where u represent any variable of interest (a computational vademecum is con-
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Figure 4.4: Fixed displacements in the T beam

structed for each variable). In Fig. 4.5 and Fig. 4.6 the first two spatial and
parametric modes are shown.

Thanks to the pxdmf format and its ParaView plugin (Bordeu et al., 2013),
these vademecums can be easily visualized and manipulated. Fig. 4.7 shows a
screenshot of the thermal vademecum for the parameter values Ep = 200, V = 11.124
and A = 3.769 (shown in the picture). The updating of these parameters can be
performed continuously using the sliders shown in Fig. 4.8.

This vademecum can be used to perform the source fitting, as shown in Fig. 4.9,
where it can be observed, by an orthogonal cut, if the selected parametric values
provide the desired penetration. Likewise, optimization analysis can be envisioned
by representing the sensitivity of one quantity of interest with respect the variations
of the parameters. For example, one can visualize the sensitivity of the thermal field
with respect to the parameter A (∂T/∂A), as depicted in Fig. 4.10.

The mechanical and metallurgical vademecums, which may be of great interest
for pre-design analysis, are shown in Fig. 4.11 and Fig. 4.12 respectively. From
among all the possible variables to be shown of the mechanical problem, the equiv-
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Mode 1

Mode 2

Figure 4.5: First two modes of spatial dimension
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Figure 4.6: First two modes of each parametric dimension
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Figure 4.7: Thermal vademecum

Figure 4.8: Parametric sliders
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Figure 4.9: Orthogonal cut of thermal vademecum for source fitting

Figure 4.10: Sensitivity of temperature with respect A
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alent plastic deformations generated by the welding process are shown in Fig. 4.11.
In order to show the feasibility of the construction of metallurgical vademecum, the
volumetric ratio of phase II (Bainite) after the welding operation is shown in Fig.
4.12. Both vademecums can be updated continuously using the sliders shown in Fig.
4.8.

Figure 4.11: Equivalent plastic strains vademecum
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Figure 4.12: Proportion of phase II (Bainite) vademecum
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Chapter 5

PGD solver for thermomechanical
models defined in plate domains:
application to FSW

In this chapter, a new efficient updated Lagrangian strategy for numerical simula-
tions of material forming processes is presented and illustrated with the simplified
simulation of a non-conventional welding process: the Friction Stir Welding (FSW).
The basic ingredient is the tensorial decomposition of the velocity field into a finite
sum of in-plane and an out-of-plane components that leads to an equivalent compu-
tational complexity similar to a set of two-dimensional problems. This is efficiently
achieved by using the Proper Generalized Decomposition (PGD), which is here em-
ployed as a solver as it was introduced in Section 1.1.3.2. The resulting strategy
is of general purpose, although it is especially well suited for addressing thermome-
chanical models defined in plate or shell (in general, parallelepipedic) domains, such
as the case in FSW.
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5.1 Introduction

Numerical simulation of material forming processes is a fundamental tool in industry
but it continues being a very challenging task. These simulations are specially
complex due to the following:

• The multiphysic nature of the problem that leads to coupled thermomechanical
problems with non-trivial boundary conditions.

• The presence of large deformations and strains.

• The emergence of voids and flaws.

• The presence of evolving free surfaces and fixed or moving interfaces.

• The need of knowledge of the thermomechanical history of each material par-
ticle to evaluate properties depending on each thermomechanical history.

In general, three numerical simulation frameworks can be found in literature to
simulate thermomechanical processes. Choosing a particular one depends on the
specific application. Briefly, we can summarize the following frameworks:

• Eulerian. The discretization mesh is fixed. This means that the mesh does
not evolve in time. In practice, with this approach, no mesh distortion occurs.
This is, in principle, the easiest approach to simulate fluid-like materials with
no free boundaries.

Unfortunately, the material derivative in a fixed reference frame will contain a
convective term. This convective term, when it dominates the problem, leads
to numerical instabilities and the problem should be stabilized (Donea and
Huerta, 2003). Additionally, the path and thermomechanical history of the
material particles should be reconstructed a posteriori, involving numerical
inaccuracies. Besides, this reconstruction is frequently performed since the
physics of the problem depends on the material distribution (Dialami et al.,
2013). Finally, the treatment of both free surfaces and evolving boundary
conditions is a tricky issue within the Eulerian framework.
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• Lagrangian. Discretization nodes are attached to material particles. The mesh
evolves in time following material motion, obtaining their thermomechanical
history in a direct manner. Free surfaces are easily tracked and boundary con-
ditions can be easily imposed (Martínez et al., 2004; Alfaro et al., 2006b,c,a).

However, this approach leads to distorted meshes when large deformations
occur, and therefore, a frequent remeshing is needed. 3D-remeshing could be
very expensive in practice, constituting for some applications a true simulation
bottleneck. In addition, frequent projections of fields between old and new
meshes are required, introducing numerical diffusion.

• Arbitrary Lagrangian-Eulerian (ALE). This framework was developed in order
to avoid the main issues of the former approaches while preserving their main
advantages. Discretization nodes are attached neither to the space nor to
material points. The mesh moves in a prescribed way to avoid an excessive
distortion, alleviating remeshing procedures.

However, convective terms associated with the relative velocity between the
mesh and the material remain in the formulation, implying again numerical
difficulties. ALE-based methods can be very expensive computational-wise,
and the field projection between meshes is not completely avoided. Moreover,
they require certain “know-how”: the mesh velocity depends on specific appli-
cation and its determination is not a trivial task. In any case, computational
codes based on ALE approaches are succesfully employed for numerical sim-
ulation of material forming processes such as FSW (Feulvarch et al., 2013;
Guerdoux and Fourment, 2009).

The choice of one or another approach will depend on specific application. A
deeper analysis of these frameworks can be found in (Donea et al., 2004). For
FSW, hybrid strategies combining different frameworks in the different regions (ALE
around the pin, Lagrangian or Eulerian faraway) show accurate results (Feulvarch
et al., 2013) .

Updated-Lagrangian frameworks are very appealing since material particles can
be tracked without any approximation and without postprocessing. However, its
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computational cost remains sometimes too high, basically due to reiterative remesh-
ings. Indeed, the main goal of this chapter is to explore a new strategy to enhance
updated Lagrangian simulations reducing substantially its computational cost. To
that end, in Section 5.2 the main ingredients of the proposed technique are intro-
duced, namely the in-plane-out-of-plane decomposition based on PGD (Chinesta
et al., 2013a). In the same section, the use of efficient stabilized nodal conforming
integration (Yoo et al., 2004) to allow for minimal loss of accuracy despite mesh dis-
tortion (Cueto and Chinesta, 2015; Quak et al., 2011) is elaborated. In Section 5.3,
the proposed strategy is validated, while in Section 5.4 the possibility of employing
the proposed technique for FSW simulation is envisioned.

5.2 Proposed strategy

The proposed strategy can be seen as a natural extension of the in-plane/out-of-
plane decomposition based on the Proper Generalized Decomposition (PGD) in an
updated Lagrangian framework. The idea of decomposing three-dimensional (here,
velocity) fields into a sequence of two-dimensional and one-dimensional fields was
initially developed to analyze plates by Bognet et al. (Bognet et al., 2012a) and has
been introduced in Chapter 1.

The main idea of the approach here developed is to take advantage of updated
Lagrangian methods, very convenient for material forming simulations, in which
the thermomechanical history is of major interest, but obtaining a significant re-
duction of its computational complexity using the in-plane/out-of-plane PGD-based
decomposition. The material particles’ position and all the variables attached to
them are projected onto a plane and onto the thickness axis (step1). Using these
nodal projections two functional spaces are constructed, 2D and 1D respectively.
The intensive variables are projected on these spaces using a PGD approximation,
equivalent to a singular value decomposition (SVD) (step 2). Then, the thermome-
chanical problem is solved as a series of 2D and 1D problems in these spaces thanks
to the in-plane/out-of-plane PGD-based formulation (step 3). Once the solution is
obtained, the primary variables can be reconstructed in the material particles in the
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3D domain (step 4) and their positions updated (step 5). This reconstruction does
not involve any interpolation or projection stage, avoiding the numerical diffusion
and other numerical difficulties. These steps are repeated until the end of the simu-
lation. In Fig. 5.1, a general scheme of the strategy with its different steps is shown.
Note that mechanical and thermal parts of the problem can be solved using spatial
decomposition regardless the coupling scheme used.

Figure 5.1: General scheme of the proposed strategy

The main ingredients of the proposed strategy are presented in detail below. In
Section 5.2.1 the space decomposition in the updated Lagrangian framework is de-
scribed. A general flow model for material forming processes is presented considering
linear and nonlinear behavior laws. In Section 5.2.2, stabilized conforming nodal in-
tegration (SCNI) is briefly reviewed, which allow performing accurate integration of
the operators even in very distorted meshes (Yoo et al., 2004; Quak et al., 2011).
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5.2.1 The in-plane/out-of-plane decomposition in an updated
Lagrangian framework

Let us describe this updated Lagrangian strategy through a generic viscoplastic flow
model (Oh and Altan, 1989) in a domain Ω.

The balance of momentum and mass equations without inertia and the assumed
incompressibility of the flow read:

∇ ·σ = 0, ∇ ·v = 0 in Ω. (5.1)

To calculate the temperature field, the viscoplastic flow model is coupled with
the heat transfer equation:

∇ · (k∇T ) + ṙ − (ρcpṪ ) = 0 in Ω. (5.2)

The rate of heat generation due to plastic deformation is obtained from

ṙ = βσ : d,

where β is the fraction of mechanical energy transformed to heat and d the strain
rate tensor.

Together with these equations, a constitutive law and the appropriate boundary
conditions should be considered. The mechanical and thermal problem will be solved
iteratively.

Considering a plate domain Ω = Ξ × I with (x, y) ∈ Ξ and z ∈ I, we assume
the separated approximation of the velocity field

v(x, y, z) =


u(x, y, z)
v(x, y, z)
w(x, y, z)

 ≈
N∑
i=1


uixy(x, y) ·uiz(z)
vixy(x, y) · viz(z)
wixy(x, y) ·wiz(z)

 ,

where uxy(x, y), vxy(x, y) and wxy(x, y) are functions of the in-plane coordinates
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whereas uz(z), viz(z) and wz(z) are functions involving the thickness coordinate.
Similarly, the strain rate tensor can be expressed in a separated form. If viscosity is
not constant its separated representation is needed in order to preserve the 2D/1D
complexity. This can be performed by invoking again the PGD approximation:

µ(x, y, z) ≈
M∑
k=1

µkxy(x, y) ·µkz(z).

Two different constitutive laws have been considered. In the linear case the
constitutive equation reads:  ∇p = µ∇ · (∇v)

∇ ·v = 0
,

where p and µ are the pressure and the viscosity of the fluid respectively.

To circumvent the problems related to the development of stable mixed for-
mulations (i.e., approximations verifying the LBB condition) within the separated
representation, a penalty formulation is considered that modifies mass balance by
introducing a penalty coefficient λ small enough

∇ ·v + λp = 0,

or, more explicitly,

p = −1
λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= −∇ ·v

λ
.

By replacing it into the momentum balance (first equation in (5.1)) we obtain

∇ (∇ ·v) + ξ∆v = 0,
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with ξ = µλ. After some elementary algebra, it results


∂2u
∂x2 + ∂

∂x
∂v
∂y

+ ∂
∂x

∂w
∂z

∂
∂y

∂u
∂x

+ ∂2v
∂y2 + ∂

∂y
∂w
∂z

∂
∂z

∂u
∂x

+ ∂
∂z

∂v
∂y

+ ∂2w
∂z2

+ ξ


∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

∂2v
∂x2 + ∂2v

∂y2 + ∂2v
∂z2

∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

 = 0.

The flow model can readily be extended to power-law fluids: ∇p = ∇ ·T
∇ ·v = 0

,

where the extra-stress tensor T writes:

T = 2Kdn−1d, (5.3)

with K and n two rheological parameters and the equivalent strain rate d given by:

d =
√

2(d : d),

where “ : ” denotes the tensor product twice contracted.

In order to perform the in-plane/out-of-plane decomposition, the system of PDEs
defined by Eqs.(5.1)-(5.2) should be written in its variational form. For instance,
assuming linear behavior and a penalty formulation, the variational formulation
writes:

a(w,v) + ξb(w,v) = 0, (5.4)

with
a(w,v) =

∫
Ω
∇ ·w∇ ·v dΩ and b(w,v) =

∫
Ω
∇w : ∇v dΩ,

where a and b are the bilinear forms related to the incompressibility and viscous
terms ; v and w are the trial and test functions respectively.

Then, it is assumed that the first n − 1 modes of the PGD solution have been
previously obtained. To further enrich this solution with another functional product
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the following problem needs to be solved:

v(x, y, z) =


u(x, y, z)
v(x, y, z)
w(x, y, z)

 ≈
n−1∑
i=1


uixy(x, y) ·uiz(z)
vixy(x, y) · viz(z)
wixy(x, y) ·wiz(z)

+R(x, y) ◦ S(z), (5.5)

where the second term on the right-hand side represents the enrichment and the
symbol ‘◦’ denotes the so-called entry-wise Hadamard or Schur multiplication for
vectors.

The test function is defined by:

w = R∗(x, y) ◦ S(z) +R(x, y) ◦ S∗(z). (5.6)

Introducing Eqs. (5.5) and (5.6) into Eq. (5.4), a nonlinear problem results
due the presence of the products of the unknown PGD modes. As we have seen
in Chapter 1, this is the case even when the original problem is linear. To solve
this nonlinearity, the already explained alternated direction fixed-point algorithm is
used.

5.2.2 FE-SCNI

In the proposed strategy, after nodal position updating, their orthogonal projections
into a 2D domain defined by the in-plane coordinates and the 1D projection onto the
domain thickness, constitute the nodal position of the interpolant spaces used for
the PGD solution. An additional problem is faced, since the 2D mesh will eventually
be very distorted, and the numerical integration of the discrete operators may be
not accurate enough.

Chen et al. (Yoo et al., 2004) introduced the SCNI technique to perform an
accurate nodal integration in meshless methods. Indeed, it has been observed that
SCNI can be incorporated into traditional FE formulations to produce a very robust
method to deal with highly distorted meshes with almost no loss of accuracy (Cueto
and Chinesta, 2015).
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5.2. Proposed strategy

The SCNI is based on the assumed strain method, in which a modified gradient
is introduced at the integration point (node):

∇̃v(xi) = 1
Ai

∫
Ωi
∇v(x) dΩ,

where xi are the coordinates of node ni and Ai the area defined by the cell Ωi. The
set of cells defines a partition of the 2D domain. Typically a Voronoi tessellation is
used (see Fig. 5.2), although any type of non-overlapping tilling can be used.

Figure 5.2: Voronoi tessellation to perform the SCNI

The modified strain rate tensor is given by

d̃(xi) = 1
Ai

∫
Ωi
d(x)dΩ = 1

Ai

∫
Ωi


∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂z

+ ∂w
∂y

)
1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂v
∂z

+ ∂w
∂y

)
∂w
∂z

 dΩ.

Applying the divergence theorem, it results in:

d̃(xi) = 1
Ai

∫
Γi


u(x)nx 1

2(u(x)ny + v(x)nx) 1
2(u(x)nz + w(x)nx)

1
2(u(x)ny + v(x)nx) v(x)ny 1

2(v(x)nz + w(x)ny)
1
2(u(x)nz + w(x)nx) 1

2(v(x)nz + w(x)ny) w(x)nz

 dΓ.
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Thus, in order to compute the strain rate at each node considered to integrate
the weak form it suffices to approximate the different components of the velocity
field in each element by using standard shape functions such as piecewise linear
interpolants, and then evaluate the integral on the boundary of the cell associated
to each node. When Voronoi cells are considered, the numerical quadrature can be
calculated evaluating the boundary integral on each face of the polyhedral cell.

5.3 Validation of the strategy

5.3.1 Revisiting PGD through a Poisson’s problem

This first example analyzes the PGD acting as a differential solver in separated
dimensions with a 2D Poisson’s problem:

∆u = f in Ω = (0, 2)× (0, 1)

u = 0 on x = 0

u = 0 on y = 0

u = −y(y − 1) on x = 2
∂u

∂y
= g(x) on y = 1,

where the source term has been considered as

f(x, y) = −20 exp((1− x)2/0.1) exp((0.5− y)2/0.1).

The function associated to natural boundary condition reads

g(x) =

0, if x ≤ 0.5

1, if x > 0.5.

The most typical structure of a PGD approximation to the problem is to look
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for a solution of the form:

u(x, y) ≈
N∑
i=1

Fi(x) ·Gi(y).

Here, a stopping criterion was set at 10−4 as tolerance for the residual. This leads
to around 40 PGD functional pairs or “modes”, depending on the number of the
2D points considered. When new points are introduced, the solution becomes richer
and more PGD modes are necessary to capture the finest solution features.

In Fig. 5.3 the absolute error (in infinity norm) of the PGD solution is presented.
A 2D standard FEM solution in a fine enough mesh was considered as the reference
solution. Obviously, the more points are considered in the domain, the more infor-
mation we get and the less error is obtained. This method is approximately of order
one with respect to the number of points used.

Both the reference solution and the reconstructed PGD solution in the points of
the 2D domain are presented in Fig. 5.4, where the reference solution is represented
as a continuous surface, and the PGD solution as spheres in the introduced points.
The PGD solution is in very good agreement with the fully 2D solution while it is
computed only with the cost of a set of 1D problems.

5.3.2 Unsteady convection-diffusion equation

In this section, the updated Lagrangian framework is considered and analyzed. For
that purpose, the transient rotating pulse (advection-diffusion) example proposed in
(Donea and Huerta, 2003) is solved. The problem reads:


ut + a · ∇u−∇ · (ν∇u) = s in Ω = (0, 1)× (0, 1)

u = 0 on ∂Ω

u = 0 at t = 0

(5.8a)

(5.8b)

(5.8c)

115



Chapter 5. PGD solver for thermomechanical models
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Figure 5.3: PDE absolute error.

with a small diffusion ν = 10−5, a = (−y + 0.5, x− 0.5) and

s =

cos(π/2
√
x2
c + y2

c ), if
√
x2
c + y2

c ≤ 1

0, otherwise
,

with (xc, yc) = (x− 0.2, y − 0.2).

It is well-known that an Eulerian FEM solution requires stabilization regardless
the selected time integration scheme. Here we have used, as a reference solution, a
streamline-upwind Petrov-Galerkin (SUPG) discretization in space and an implicit
multistage Padé method R2,2 as time integration scheme (Donea and Huerta, 2003).
The stabilized weak form of the time discretized problem is given by(

w,
∆u
∆t

)
− (w,W∆ut) +

∑
e

(τP(w),R(∆u))Ωe = (w, gunt ) ,
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Figure 5.4: Reference solution (continuous) versus PGD solution (spheres)

where

∆u =
 un+ 1

2 − un

un+1 − un+ 1
2

 , ∆ut =
 u

n+ 1
2

t − unt
un+1
t − un+ 1

2
t

 .
∆u is the primary variable, w is the test function and ∆t the chosen time step. The
partial time derivatives are obtained from the governing Eq. (5.8a),

unt = sn − L(un)

where L is the associated linear differential operator.

The matrix W and the vector g are useful to express the Padé scheme in a
compact form and they read:

W = 1
24

 7 −1
13 5

 , g = 1
2

1
1

 .
The operator P(w) characterizes the stabilization technique, in this case a SUPG,

P(w) := W (a · ∇)w.
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The time-dependent residual R reads

R(∆u) = ∆u
∆t −W∆ut − gunt

Finally, τ is the intrinsic time scale matrix which in this example reads:

τ = h

2a

[
coth(Pe)− 1

Pe

]
W−1,

where h is the mesh size, a is the convection magnitude and Pe the Péclet number.

It is important to note that, even when using standard SUPG techniques, the so-
lution exhibits oscillations near the boundary. In the updated Lagrangian approach,
the convective term does not appear, and therefore stabilization is not necessary
since oscillations do not occur. In an updated Lagrangian approach, the problem
reads:

ut − ν∇2u = s,

where ut represents the material derivative calculated along the flow streamlines
related to the velocity field a.

If an implicit temporal scheme is used, and the increment of u, ∆u = un+1− un,
is selected as primary variable, the semi-discretized equation to solve at each time
step, reads:

∆u
∆t − ν∇

2 (∆u) = sn+1 + ν∇2un.

To solve this problem using the PGD, the trial and test functions are constructed
as in the previous example, as

∆u(x, y) ≈
n−1∑
i=1

∆uix(x) ·∆uiy(y) +R(x) ·S(y)

and
w = R∗(x) ·S(y) +R(x) ·S∗(y).

respectively. Moreover, in the time step n + 1 the known fields un and sn+1 should
be expressed in a separated form by invoking a standard SVD.
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This problem has been solved by the proposed strategy for different times in
[0, π] and compared with a reference FEM solution with no oscillations thanks to
a higher diffusion coefficient. In Fig. 5.5 relative errors in L2 norm for a value of
the diffusion coefficient of 10−3 are presented. It can be seen that even with a not
too high number of points (about 1000), the errors are small, between 2% and 10%
throughout the complete simulation. These values are reasonable in an industrial
context.

Figure 5.5: Relative errors in L2 norm

It is also remarkable that the method has a greater robustness in problems where
convection is dominant. Indeed, if the diffusion coefficient is set to 10−5, the FEM
solution presents oscillations near the boundary, regardless of the time integration
scheme used (Donea and Huerta, 2003). However, it can be seen in Fig. 5.6 that
the proposed strategy provides a solution which does not present these oscillations
on the border. The SUPG solution is presented as a continuous surface while the
PGD solution is presented with spheres in the material points positions. Moreover,
thanks to the separation of variables, the problem solution exhibits roughly a 1D
computational cost.
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Figure 5.6: FEM solution versus PGD solution in a convection-dominated problem

5.4 FSW-like kinematics

FSW is a solid state welding technique which since its invention in 1991 is of great
interest to the industry (Mishra and Ma, 2005).The FSW welding process is con-
ceptually simple. A non-consumable rotating tool with a specially designed pin and
shoulder is inserted into the abutting edges of sheets or plates to be joined and
traversed along the line of joint. The tool heats the workpiece ant its stir movement
produces the joint.

In this work, a simplified model of the kinematics of this process has been tested
with the proposed strategy. The viscous flow expressed in Eq. (5.1) has been solved
considering a nonlinear behavior law (a Power Law, Eq. (5.3)). For the sake of
simplicity and without loss of generality, the thermal problem has been omitted,
considering an isothermal process without mechanical dissipation. The boundary
conditions consists of an imposed velocity (V adv) far away from the tool (∂Ω), and
an imposed tangential velocity (V tg) on the tool surface (∂Λ). In Fig. 5.7 a scheme
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Figure 5.7: FSW kinematics model

of the problem is depicted. Thus, the problem reads,



∇ ·σ = 0 in Ω

∇ ·v = 0 in Ω

v = V adv on ∂Ω

v = V tg on ∂Λ,

Even when neither the real technological parameters (constitutive model, friction
law, etc.) nor the actual geometry of the tools are implemented, the feasibility of
the numerical algorithm is proved: a 3D flow model can be solved in an updated
Lagrangian framework with a computational cost characteristic of 2D simulations.
Moreover, the thermomechanical history (mechanical history in this case) of the
material particles is computed directly from the simulation. For instance, we can
study the evolution of the viscosity of a material particle during the process. In
Fig. 5.8, we can observe how the viscosity of the material particle decreases when it
approaches the tool, where the strain rates are high due to the rotation of the pin.
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The streamlines are not computed a posteriori: they are simply the different
positions of the material particles obtained during the simulation. In Fig. 5.9, the
paths of some of these material points are shown. Moreover, it is well known from
literature (Mishra and Ma, 2005) that the material flow plays a fundamental role
in the quality of the welding, and some typical defects such as the tunnel effect can
be predicted with its analysis. This method provides a direct way to perform this
study, indeed the material particles of both welded plates are easily tracked just
attaching an scalar value to them. In Fig. 5.10, this application is shown using two
colors to represent the two different plates to joint. The relative position between
the particles of the two plates behind the tool could indicate, using the appropriate
techniques, the existence of defects.

Figure 5.8: Viscosity of a material particle with respect to the distance to the
entrance
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Figure 5.9: Material viscosity along some material pathlines
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Figure 5.10: Direct visualization of material mixing
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Conclusion

In this thesis, different strategies for the efficient simulation of conventional and
non-conventional welding processes have been proposed. The originality of this
work resides in the use of MOR techniques with different approaches seeking its
best industrial applicability: improving classic and robust techniques and easing
their integration in preexistent computational platforms. Its main contributions,
conclusions and lines of research are summarized here.

The V-GFEM, for efficient simulations of transient thermal models, has been
introduced. Its main advantage consists in adapting the trial space in real-time
to approximate the solution of the problem optimally. This is achieved thanks to
the key ingredient of V-GFEM, the computational vademecum, which is computed
offline. Not only does the V-GFEM inherit the good features of the GFEM for-
mulations such as local approximability, conforming and meshless character of the
enrichment, but also brings an important advantage: it only needs one enrichment
function which is the best possible for a given family of problems at any instant of
the simulation. The computational cost of the V-GFEM is the same as any other
GFEM approach in which only one analytical enrichment function is used. In the
examples presented here, we have generally obtained a difference of an order of mag-
nitude between the V-GFEM solution and FEM solution with a h-adapted mesh to
obtain the same accuracy.

The Metalocal-global method has been proposed as an efficient one to estimate
final distortions and residual stresses in large structures where repetitive welded
joints are performed. This strategy is based on the local-global method circumvent-
ing its main issue: the consideration of the influence of the global structure over the
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local region in an efficient manner. The Metalocal-global method substitutes the
local simulation for a computational vademecum, which provides the local solution
for any elastic influence of the global domain over the local one. This methodology
constitutes a systematic way to construct a database of computational vademecums
that can be stored and used for different global geometries and global boundary
conditions.

The complete simulation of conventional welding has been treated in a simplified
scenario: steady-state. It has been seen how computational vademecum opens the
door to new applications of great industrial applicability, such as predesign, sensi-
tivity analysis or source fitting. In that chapter, special emphasis has been placed
on the consideration of non-intrusive methodologies for the construction of these
vademecums, showing numerical examples carried out using Sysweld as a black-
box solver for thermal, metallurgical and mechanical analysis. Finally, the PGD
has been presented as an efficient solver that reduces the computational complexity
of models defined in 3D plate-like geometries, very suitable for the simulation of
unconventional welding processes like FSW.

Many lines of research remain open. The most significant one is perhaps how to
introduce model reduction in mechanical welding simulations without any additional
hypothesis. Although this objective has been completed for the thermal analysis
(at least as a demonstrator with an academic code), for the mechanical analysis
our proposal lays on simplifying hypothesis: local-global hypothesis or steady-state.
The complexity in considering this analysis without any simplification lies in the
fact that, from the mechanical point of view, welding is not a local problem: plastic
deformations and introduced residual stresses evolve for a considerable time after the
passage of the heat source. This fact, together with the possibility of considering an
infinity of possible trajectories, entails that the strategies above introduced cannot
be straightforwardly applied.

A second open research area concerns to the use of PGD as an in-plane-out-of-
plane solver in industry. This MOR technique, as presented here, is too intrusive
for its implementation on preexisting computing platforms. This opens the door to
envisioning less intrusive formulations that continue to take advantage of this high-
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performance spatial decomposition. This line of research is well advanced in our
group and it is possible that in the near future current limitations will be solved.
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Résumé 
 

Les simulations numériques représentent un outil 
fondamental pour la conception et l'optimisation de 
procédés industriels de fabrication tels que le soudage. 
Malgré le développement impressionnant des méthodes 
numériques et des moyens de calcul utilisables, la 
complexité des procédés de fabrication et les nouvelles 
exigences des industries les plus avancées obligent à 
repenser les méthodes, les stratégies et les algorithmes 
de simulation disponibles.  

Dans cette thèse, de nouvelles méthodes numériques 
avec une approche de Réduction des Modèles sont 
proposées, une discipline consolidée qui a fourni des 
solutions étonnantes dans différentes applications, 
comme les procédés de fabrication avancés. 

Tout d'abord, différentes stratégies sont proposées pour 
la simulation efficace des procédés de soudage 
conventionnel, à cet effet, l'utilisation de Computational 
Vademecums est introduite. L’introduction de ces 
abaques numériques améliorent des méthodes telles 
que : les Éléments Finis Généralisés pour le calcul 
thermique, l'approche local-global pour le calcul 
mécanique et enfin, la construction directe des abaques 
numériques utiles pour la phase de pré-design. 

En second lieu, un solveur PGD efficace est présenté 
pour les simulations thermo-mécaniques de soudage par 
friction-malaxage. 

Cette thèse montre comment la réduction des modèles, 
en plus d'être une fin en soi, peut être un excellent 
ingrédient pour améliorer l'efficacité des méthodes 
numériques traditionnelles. Cela représente un grand 
intérêt pour l'industrie. 
 
Mots-clés 
Simulation numérique du soudage, Soudage par 
friction malaxage, Réduction des modèles 
numériques, Proper Generalized Decomposition, 
Abaques Numériques, Generalized Finite Element 
method, Local-global method, Soudage 
stationnnaire. 

Abstract
 

Numerical simulations represent a fundamental tool for 
the design and optimization of industrial manufacturing 
processes such as welding. Despite the impressive 
development of the numerical methods and the means of 
calculation, the complexity of these processes and the 
new demands of the more advanced industries make it 
necessary to rethink the available methods, strategies 
and simulation algorithms. 

In this thesis, we propose new numerical methods with a 
Model Order Reduction approach, a consolidated 
discipline that has provided surprising solutions in 
different applications, such as advanced manufacturing 
processes. 

First, different strategies for the efficient simulation of 
conventional welding processes are proposed. To this 
end, the use of Computational Vademecums is 
introduced for the improvement of methods such as the 
Generalized Finite Element for thermal calculation, the 
local-global approach for the mechanical calculation or 
the direct construction of vademecums useful for pre-
design phases. Then, an efficient PGD solver for thermo-
mechanical simulations for friction stir welding is 
presented. 

This thesis shows how Model Reduction, besides being 
an end, it can be an excellent ingredient to improve the 
efficiency of traditional numerical methods, with great 
interest for the industry. 

Key Words 
Computational Welding Mechanics, Welding, Friction 
Stir Welding, Model Order Reduction, Proper 
Generalized Decomposition, Computational 
Vademecum, Generalized Finite Elements, Local-
Global methods, Steady-state welding.	

Diego Canales Aguilera 
 

Titre de la thèse : Stratégies numériques avancées pour la 
simulation efficace de procédés de soudage conventionnels et 
non conventionnels : Une approche de réduction de modèles. 

 

Title of thesis: Advanced Numerical Simulations for 
Conventional and Non-Conventional Welding Processes: A 
Model Order Reduction Approach.




	Introduction
	Introduction to MOR methods.
	Introduction to MOR methods
	General classification of MOR methods
	Reduced Basis
	The Proper Orthogonal Decomposition

	The Proper Generalized Decomposition
	The PGD as a computational vademecum constructor
	The PGD as an efficient solver

	The Sparse Subspace Learning method

	MOR applications to manufacturing processes

	V-GFEM for transient problems
	Introduction
	Generalized Finite Element Method
	The functional enrichment issue

	Vademecum-GFEM
	Introducing a precomputed adaptive enrichment using the PGD
	General scheme and implementation

	Numerical Examples
	Statement of the problem
	V-GFEM VS FEM
	Accounting for variable technological parameters
	Timing


	Metalocal-global method for the analysis of large welded structures
	Introduction
	Metalocal-Global Method
	Identification of the equivalent stiffness coefficients
	General Algorithm of the Metalocal-global method

	Numerical examples
	Linear thermo-elastic benchmark
	Thermo elasto-plastic example and computational vademecum


	Computational Vademecums for steady-state welding simulations
	Introduction
	Steady-state formulations
	Thermal and metallurgical formulation
	Mechanical formulation

	Numerical example

	PGD solver for thermomechanical models
	Introduction
	Proposed strategy
	The in-plane/out-of-plane decomposition in an updated Lagrangian framework
	FE-SCNI

	Validation of the strategy
	Revisiting PGD through a Poisson's problem
	Unsteady convection-diffusion equation

	FSW-like kinematics

	Conclusion
	Bibliography

